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Abstract

Voice transformation is the process of transforming the characteristics of speech uttered
by a source speaker, such that a listener would believe the speech was uttered by a
target speaker. In this thesis two aspects of the transformation problem are addressed:
voice quality and intonation.

The voice quality transformation component of our system has two main parts cor-
responding to the two components of the source-filter model of speech production. The
first component transforms the spectral envelope as represented by a linear prediction
model. The transformation is achieved using a Gaussian mixture model, which is trained
on aligned speech from source and target speakers. The second part of the system pre-
dicts the spectral detail from the transformed linear prediction coefficients. A novel
approach is proposed, which is based on a classifier and residual codebooks. The system
has some similarities with earlier work by Kain, however the work reported here is not
restricted to speech spoken in a monotone and with mimicked prosody. Also, on the
basis of a number of performance metrics it outperforms existing systems.

We also present a new method for the transformation of FO contours from one speaker
to another based on a small linguistically motivated parameter set. The system performs
a piecewise linear mapping using these parameters. A perceptual experiment clearly
demonstrates that the presented system is at least as good as an existing technique for
all speaker pairs, and that in many cases it is much better and almost as good as using
the target FO contour.
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Chapter 1

Introduction

Voice transformation is the process of taking the speech of a source speaker and trans-
forming the characteristics of the signal, such that a human listener would believe the

speech was uttered by a target speaker.

1.1 Motivation

Throughout our lives we rely on our ability to identify speaker identity. For example,
in a telephone conference or radio programme we can identify and distinguish between
different speakers.

One of the main applications of voice conversion would be in the field of text-to-
speech adaptation. Modern speech synthesisers generally work by joining together seg-
ments of speech to create a desired utterance. In order for such an approach to work,
a large database of speech is required, and in addition many man hours must be spent
labeling the data. A voice transformation system which could be trained on relatively
small amounts of data would allow new voices to be created with much lower cost. In
addition, such a system could be used in a situation where the speaker was not available
and previous recordings had to be used, such as is the case where a patient had lost the
power of speech through disease or injury.

Voice transformation also has other applications such as very low bandwidth speech
encoding; the speech may be transmitted without speaker identity information, and this

may be resynthesised at the decoding stage. Voice transformation may also prove useful
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for multimedia entertainment, as a pre-processing step to speech recognition and also
in the field of voice disguise. In addition, gaining a better understanding of the ways
in which speakers differ is likely to be valuable more generally in both speech synthesis

and recognition.

1.2 Summary of existing transformation approaches

As previously mentioned, voice conversion involves modifying the characteristics of
source speech to be like that of the target speaker. There are a number of different
parameters to be mapped including voice quality, fundamental frequency and timing
characteristics.

There has been a considerable amount of research directed at the problem of trans-
forming voice quality (Arslan 1999, Arslan & Talkin 1997, Stylianou, Cappe & Moulines
1995). The general approach has been to begin with a training phase in which material
from source and target speakers is aligned and used to define a transformation which
maps the acoustic space of the source speaker to that of the target. Residual Excited
Linear Prediction (RELP) analysis has commonly been used to represent the spectral
characteristics of the speech. A variety of approaches have been used to map the LPC
parameters, including codebooks (Abe, Nakamura, Shikano & Kuwabara 1988), neural
networks (Narendranath, Murthy, Rajendran & Yegnanrayana 1995) and most recently
Gaussian mixture models (GMMs) (Stylianou et al. 1995). Codebooks had problems
due to the discontinuities created when moving from one codebook to another over
time. GMMs have been shown to be the most successful, since they avoid the discon-
tinuities associated with the codebook approaches. Early approaches used the residual
(spectral detail) of the source speaker unmodified. More recently filters (Arslan 1999)
and codebooks (Kain 2001) have been used to transform the residuals.

Very little work has been directed at the problem of mapping the FO contours of
one speaker to another. All existing voice transformation systems simply normalise the
mean and standard deviation of the fundamental frequency to be that of the target

speaker.
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1.3 Summary of proposed approach

In this work the two aspects of voice transformation (voice quality and intonation)
will be addressed separately. It is easier to discuss and assess these two components
individually, and it would be trivial to integrate the two systems together.

The voice quality transformation system has two main parts, which correspond to the
two components of the source-filter model. The first component transforms the spectral
envelope as represented by a linear prediction model. The transformation is achieved
using a Gaussian mixture model, which is trained on aligned speech from source and
target speakers.

The second part of the voice quality transformation system predicts the spectral
detail from the transformed LPC parameters. A classifier is used to perform this task,
in combination with separate magnitude and phase residual codebooks.

The system has some similarities with earlier work by Kain, however this system is
extended to perform well with normal speech, rather than speech spoken in a monotone
and with mimicked prosody. Specifically, the system represents residuals without the
need for the harmonic sinusoidal model.

The FO transformation system makes use of the parameterisation described by Pat-
terson (2000). Frequency measurements were taken by Patterson at four selected target
points in each sentence. These points are sentence-initial high (S), non-initial accent
peaks (H), post-accent valleys (L), and sentence-final low (F). For each sentence there
is one sentence-initial high, one sentence-final low and a varying number of peaks and
valleys depending on the sentence. The mapping from source to target F0 is piecewise
linear, where one segment runs through the points (Fsource, Frarget) and (Lsources Ltarget)
another between (Lsoyrce; Ltarget) and (Hsources Hiarget), and a final segment through

(Hsom'cea Htm‘get) and (Ssourcea Starget)-

1.4 Outline
The remainder of the dissertation covers the following material:

e Chapter 2 gives an introduction to some of the properties of speech signals. It
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also provides a review of the literature on speaker discrimination, and on existing

voice transformation systems.

e Chapter 3 describes the component of the presented system that converts the

spectral envelope of the speech signal.
e Chapter 4 explains how the system for transforming spectral detail functions.

e Chapter 5 proposes a new method for the transformation of FO contours. It does so
by applying a non-linear mapping function to the source contour, the parameters

of which are derived from linguistically motivated features.

e Chapter 6 presents a perceptual experiment to assess the effectiveness of the FO

transformation system.

e Chapter 7 concludes the work and makes suggestions for future work.



Chapter 2

Background

2.1 Properties of the speech signal

2.1.1 Speech model

Human speech is produced by the vocal tract, which starts at the glottis (vocal folds)
and ends at the lips. The lungs contract to force air through the trachea and pharynx
and out through the nasal and oral cavities. In English there are four different types of
sounds that can be created; aspiration noise, frication noise, plosion and voicing. Voicing
is a quasi-periodic vibration of the vocal folds - for example the syllable in "lay’. The
frequency of the vibration is called the fundamental frequency or F0O and is perceived as
pitch.

The sound wave produced at the glottis is modified by the vocal tract. One useful
way of describing speech production is the source-filter model. In this view a source
(excitation) waveform is modified by a filter. This model is able to represent most speech
phenomena. A simple form of this model works as follows; during unvoiced speech the
excitation may be modeled as noise, and during voicing as a series of impulses at the
appropriate fundamental frequency. The filter simulates the effect of the vocal tract

resonance, to create the resulting speech.
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Figure 2.1: The human vocal tract - from (King 2002)

2.1.2 Speaker characteristics

There are a very large number of respects in which speech from different speakers differs.

These can be broken down into three main types of cues to speaker identity:

e Segmental: Segmental characteristics describe the timbre of the voice. This en-
compasses information such as the location and bandwidth of the formants, as well
as the frequency spectra of the glottal signal (glottal tilt). For example, glottal
tilt dictates whether the speech would be described as breathy.

e Suprasegmental: These characteristics describe the prosodic features of the voice
related to the style of speaking. This includes information about how the funda-
mental frequency (FO0) varies during utterances, duration variation, and also how

stress varies over the course of a sentence.

e Linguistic: Linguistic features include the choice of words, as well as pronunciation
differences due to dialects. For example, if a speaker uses the word 'wee’ rather

than ’small’; this suggests that they may be Scottish.
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2.2 Speaker discrimination

Human recognition of speakers is by no means perfect, as was shown in an experiment
by Ladefoged and Ladefoged (1980). They measured the ability of subjects to recognize
a group of 53 voices, 29 of which were familiar to the speaker. The subjects were asked
to name the speaker. 31% of the familiar voices were correctly identified from a single
word, 66% from a single sentence and only 83% from 30s of speech!

Research by Necioglu et al (Necioglu, Burhan, Clements, Barnwell & Schmidt-
Nielson 1998) indicates that the most important cues to speaker discrimination are as
follows: median F0 and vocal tract features such as length for males; median F0, glottal
tilt, and mean duration of unvoiced segments for females. Matsumoto et al (1973) inves-
tigated the ability of speakers to discriminate between Japanese vowels from different
speakers. He found that average FO accounts for 55% of the variance, FO and spectral
tilt together account for 71% and F0O and the lowest three formants accounts for 81% of
the variation.

An investigation by van Lancker et al (1985) tested the ability of listeners to recognize
voices when played normally as well as backwards. He found that for some speakers the
listeners were able to recognize the speaker nearly as well, whereas for others they
performed poorly. On the basis of this and other research, Van Lancker concluded that
the critical cues for recognition are not the same for all speakers.

In a paper by Zetterholm (2000) it was shown that voice quality, pitch register, into-
nation and other prosodic aspects of the voice and speech style are important features to
capture in order to succeed in imitating another voice. This was demonstrated through
a series of perceptual tests.

Very little work has been done on the transformation of linguistic features. It is
particularly hard problem since in order to do so, one must recognise the words spoken,
identify those words which should be mapped, and then synthesise the appropriate word
with the voice quality of the target speaker.
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2.3 Existing voice transformation systems

In order to carry out voice transformation there are a number of different parameters
to be mapped, including spectral dynamics, fundamental frequency and timing. These
characteristics can broadly be decomposed into two parts; firstly voice quality, and

secondly characteristics of the fundamental frequency and timing.

2.3.1 Voice Quality Conversion

There has been a considerable amount of research directed at the problem of voice quality
transformation (Arslan 1999, Arslan & Talkin 1997, Stylianou et al. 1995). The general
approach has been to begin with a training phase in which material from source and
target speakers is aligned and used to define a transformation which maps the acoustic
space of the source speaker to that of the target. There are two key questions to be
addressed; how should the speech signal be represented and how should the mapping be

achieved?

Parameter spaces for the representation of speech

The first approaches were based around linear predictive coding (LPC) (Makhoul 1975).
The central idea behind LPC is that speech can be modeled by applying an appropriate
filter to a pulse-like excitation signal. This approach had the disadvantage of creating
voices which sound rather 'robotic’ and unnatural. The technique was improved with
a method in which the residual error was measured and used to produce an excitation
signal. This technique is known as residual-excited linear prediction (RELP). This
technique is much better at representing voice signals accurately, and has been used
extensively in speech compression and synthesis. It has also been used in much of the
work on voice transformation (Arslan 1999, Arslan & Talkin 1997, Stylianou et al. 1995).

Other work has made use of a technique called sinusoidal modeling (Bailly, Bernard &
Coisnon 1998). The idea is to decompose the speech signal into a sum of sine waves. The
discrete Fourier transform (DFT) is commonly used to perform this decomposition. The
problem with this approach is that the dimensionality of the sinusoidal representation is

high. This makes it very difficult to perform transformations on this data. In order to



CHAPTER 2. BACKGROUND 9

overcome this problem McAulay and Quatieri (1995) proposed the use of all-pole models
(like that of LPC) to represent the frequency spectrum at each point in time. Then as
few as 10 to 20 linear prediction coefficients may efficiently represent the spectrum for
each time segment. There are well known techniques for deriving these coefficients based
on the frequency power spectrum, from the work on LPC.

This sinusoidal modeling technique models the harmonic part of the signal well,
however it does not model the noise part effectively. One approach for dealing with
this problem is the use of harmonic plus noise models (HNMs), which have achieved
good results (Bailly 2001) in representing speech signals. This approach involves using
the sinusoidal method for representing the harmonic part of the signal and stochastic
models for the remaining part. Ahn and Holmes proposed a method for analysis using
such methods (Ahn & Holmes 1997). Bailly (2001) developed appropriate synthesis
methods. This technique is also used in the MBROLA synthesiser (Dutoit & Leich 1993).

Mapping methods

There have been a number of approaches to the problem of determining the mapping
of parameters from the source speech to the target speech. Arslan and Talkin proposed
a system (Arslan 1999, Arslan & Talkin 1997), in which the speech of both speakers is
marked up automatically into phonemes. Next, the line spectral frequencies for each
frame of each utterance are calculated and labeled with the relevant phoneme. Following
this, the centroid vector for each phoneme is calculated, and a one-to-one mapping from
source to target codebooks is established. This process is also performed on the residual
signal. The transformation may then be carried out by the use of codebook mapping.
However, the quality suffered due to the fact that the converted signal is limited to a
discrete set of phonemes.

Stylianou, Capped and Moulines suggested improvements to the method of Arslan
and Talkin through the use of Gaussian mixture models of the speakers’ spectral param-
eters (Stylianou et al. 1995). The source and target speech was first time-aligned using
dynamic time warping. Mel-frequency ceptral coefficients (MFCC’s) were computed for
each frame of speech, and a vector was produced were each element consisted of the

source MFCC'’s followed by the target MFCC’s for the same frame. A Gaussian mixture



CHAPTER 2. BACKGROUND 10

model was then fitted to this data, using the expectation-maximization algorithm (EM).
This method using GMM’s led to less unnatural discontinuities within the synthesized
speech, than the method described above based on vector quantization.

Kain (2001) proposed a solution where he mapped the spectral envelope in the man-
ner described by Stylianou et al. (1995), but then predicted the residual from the pre-
dicted spectral envelope. This resulted in fewer artifacts than existing systems, however
this work was restricted to speech where the speakers were speaking in a monotone, and
where the speakers where asked to mimic the segment and word durations of a template

speaker.

2.3.2 Intonation Transformation

As was previously discussed, intonation plays an important role in speaker identity.
The only approach which has so far been proposed to the problem of transforming
the FO contour of one speaker to another, simply consists of modifying the source FO
contour such that it has the mean and standard deviation of that of the target speaker
(Arslan 1999). However, two contours may have the same mean and standard deviation,
but differ greatly in how they are perceived, as was noted by Ladd and Terken (1995).
Clearly, a more sophisticated approach would benefit voice transformation systems.

The remaining work discussed here was not performed with a view to the develop-
ment of voice transformation systems, however it does throw light on the ways in which
intonation may be described and measured. The Tones and Break Indices (ToBI) system
proposed by Silverman et al (1992), offers a method for describing intonation contours
in terms of a series of intonational events. These comprise tones which describe pitch
accents and the nature of the contour at the end of a phrase, and break indices which
describe the nature of pauses.

A study by Clark (1999) shows that the first tone group in a phrase has a higher
mean FO than the other tone groups. This indicates that phrase initial accents have a
special status. In the Clark paper, a tone group describes any group which has a ToBI
break index of 3 or more. This equates to a break which is larger than that typically

between two words, and smaller than the break between sentences. Phrase final tones
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also are lower than other categories. Medial tone groups appear to have very similar
characteristics to one another.

Ladd and Terken (1995) conducted an investigation of pitch range variation within
and across speakers. Schriberg et al. (1996) have since expanded on this work. The
work relies on relatively invariant pitch accents in intonation contours, which broadly
correspond to the tone accents within the ToBI accent system. Schriberg et al. (1996)
investigate methods for mapping from a normal FO contour to a ’raised’ form, where the
speaker is attempting to make themselves heard over a noisy communication channel.
It was found that the raised mode can be accurately predicted using a linear function
with speaker specific parameters. A two parameter model was used to predict the raised

target (R) from the normal target (N) as follows:

R=aN+b (2.1)

Patterson (2000) expanded on the work of Schriberg et al. by investigating a number
of measures of pitch level and span, where pitch level is a measure of how high a voice
is, and pitch span is a measure of how much the pitch varies between high and low. As
part of this work Patterson proposed a method for measuring key features of a speakers
intonation contours. Frequency measurements were taken at four selected target points
in each sentence. These points were sentence-initial high (S), non-initial accent peaks
(H), post-accent valleys (L), and sentence-final lows (F'). For each sentence there is
one sentence-initial high, one sentence-final low and a varying number of peaks and
valleys depending on the sentence. Analysis was performed on approximately a minute
of speech for each speaker. The values were collected into their respective categories

and then averaged to get representative data for the speaker.

2.4 Corpora

In this thesis two corpora of data will be used. The following sections describe these

collections of data.
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2.4.1 The Boston University Radio Corpus

The Boston University Radio Corpus (Ostendorf, Price & Shattuck-Hufnagel 1995) was
selected for use as both training and test data, since it provided a large amount of
speech of a number of speakers (both male and female) uttering the same sentences.
Furthermore, the speech is phonetically segmented and prosodically labeled. FO tracks
are also provided for each utterance, together with voiced/unvoiced labeling. The speech
is sampled at 16kHz with 16bit resolution. Some of the waveforms in this corpus had
inverted polarity, so these were corrected. It was important that all the waveforms had

the same polarity, since it made extracting accurate pitchmarking easier.

2.4.2 The Patterson Corpus

The details of the collection of this data is described by Patterson (2000). It consists
of eight passages, each of approximately a minute in length, each read by a total of 32
speakers. Each passage was read in a normal, natural style. No special instructions
were given regarding the intonation to be used by the speakers. A number of statistics
relating to the fundamental frequency of the speech for each speaker are also recorded.

These statistics include mean, standard deviation, maximum frequency, etc.

2.5 Tools

FO0 tracks were extracted from the speech signals using the pda program from Edinburgh
Speech Tools (Taylor, Caley, Black & King 1999). Pitchmarks were determined using
the pitchmark program which is also from Edinburgh Speech Tools.

All other processing was performed using specially written MATLAB code. The
VOICEBOX speech processing toolbox for MATLAB was also used (Brookes 1998).
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Transforming the spectral

envelope

As described earlier the problem of transforming voice quality may be decomposed
into two parts corresponding to the two components of the source-filter model. The
first component transforms the spectral envelope and will be described in this chapter.

Howevert, we will first briefly describe how the amplitude contour may be transformed.

3.1 Transforming the Amplitude Contour

3.1.1 Computing transformation parameters

As previously discussed, one of the respects in which the speech of two speakers differs
is the amplitude of the speech over the course of a sentence. In order to transform the
amplitude envelope, we first compute the RMS amplitude of each frame of speech for all
training speech for both source and target speakers. The mean and standard deviation
of the amplitude of the voiced segments of speech was computed for the whole training
set. These values were also computed for the unvoiced segments of speech. Sections of

the waveform below the noise floor are excluded from these calculations.

13
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Figure 3.1: Graph showing an example source, target and predicted RMS amplitude
contour. The solid line repesents the target contour, the dashed line the predicted

target contour, and the dotted line the source contour)

3.1.2 Transformation

The unvoiced sections are normalized to have the mean and standard deviation of the
unvoiced sections of the target speakers speech, and a similar process is carried out
for the voiced sections. A Hanning window of length seven is then used to smooth
the resulting amplitude envelope. The resulting predicted target amplitude envelope
may then be applied to the source speech by scaling each frame of speech to have the

predicted target amplitude of that frame.

3.2 Analysis

The periods of silence prior to, and following each passage of speech were first removed,

since this would cause problems during later processing. This is because the dynamic
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Figure 3.2: Example marked up speech segment.

time warping implementation we use may only scale each frame by at most a factor of
two (see section 3.3.1). Therefore if the source piece of speech has a long silence at the
beginning and the target does not, a good alignment cannot be found.

When pitchmarking was performed, the parameters to the program were carefully
adjusted in order to avoid pitch-doubling and halving artifacts. The pitchmarks were
also post processed to align them with waveform maxima, as it was found this gave more
consistent pitchmarking. Where the speech was not voiced, pitchmarks were inserted at
a constant frequency of 125Hz.

We carry out frame based analysis of the speech, since for short segments of speech
the spectrum may be considered to be stationary. The speech was divided into short
overlapping frames, where each frame was two pitch periods long and was centred around
the current pitchmark. These frames were then windowed using a Hanning window as
can be seen in figure 3.3. The Linear Prediction Coefficients (LPC) of the filter were
computed using the autocorrelation method (Rabiner & Schafer 1978). The order of LPC

analysis, O pc was one of the variables of the experiment. The LPC filter coefficients
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Figure 3.3: Diagram showing the windowing used

were converted into line spectral frequencies (LSFs) (Rabiner & Schafer 1978). Line
spectral frequencies have better interpolation characteristics, which is important for
this system since the target LSFs will be formed from a weighted sum of source LSFs.

The ear has better frequency resolution at lower frequencies (Ladefoged 1962). In
order that the numerical distance between a pair of LSFs better reflect the perceptual
distance between them, this non-linear frequency resolution must be accounted for. One

scale that achieves this is the Bark scale. The Bark warping function b is as follows:

b(f) = 6.log(12]:)0 +1/(

f
1200

)2 +1) (3.1)

The Bark-warping process was applied to the LSFs for each frame of speech. Resid-

uals were computed by inverse filtering each frame of speech using the associated LPCs.
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3.3 Training

The purpose of the training stage is to estimate the parameters of a transformation
function that will map source features (LSF vectors) to target features with minimum
error. In order to do so, the features of source and target must be time-aligned so that
an appropriate mapping can be established. Approximately two minutes of speech was
used for training. It was found that using less speech degraded the quality significantly

(see section 3.6.3), and using more resulted in unacceptably high computation time.

3.3.1 Time-alignment

Time-alignment was carried out on each set of sentences for each source/target speaker
pair. Firstly, Cepstral Coefficients (CCs) (Rabiner & Schafer 1978) for each Bark-warped
set of LSFs were calculated, together with the log of the associated residual energy. CCs
and log energy were chosen as parameters for alignment since it was found that they
gave better results than when using LSFs or LPCs. The Dynamic Time-Warping (DTW)
(Sakoe & Chiba 1978) algorithm was used to find the minimum error alignment of these
two feature vectors. Slopes of 0.5, 1 and 2 were allowed for each point within the
alignment. Features were either duplicated or deleted within the source feature vector

in order to get matching source and target vectors.

3.3.2 Fitting the GMM
Pre-GMM estimation rejection of poorly matched data

There is a great deal of variability within and across speakers as to the way words such as
’the’ and ’a’ are spoken. In some cases they even leave out these words entirely, despite
the fact that it was a read-text task. There are also sometimes significant differences
due to differing dialects. For example the words ’lot off’ may sometimes be pronounced
as ’lotta’. When trying to compute a transformation function for mapping from one
speaker to another, it is helpful to reject these extreme cases from the training set. Our
approach is in contrast to all previous approaches which have not used a strategy of
rejecting poorly matched data. Two strategies were employed to help isolate the frames

where this occurred.
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Those pairs of aligned frames of speech where one speaker’s speech was voiced and
the other speaker’s was unvoiced were rejected from the training set. If they have
different voicing classification, this suggests that they were poorly aligned. As described
in section 3.1, the predicted amplitude envelope of the target is computed by modifying
the source amplitude envelope. The frames of speech where the predicted amplitude is
more than three times larger or smaller than the actual amplitude at that point are also
rejected. When combined, these methods typically reject about 25% of the data, and

were found to significantly improve quality in an informal listening test.

Estimation of the transformation function

The transformation function must map the features of the source speaker to the appro-
priate target speaker features. Gaussian mixture models are one possible approach to
this problem. They have the useful property of being continuous, as opposed to a lookup
table based approach such as that of Arslan and Talkin (1999). It has been shown that
GMMs have as good as or superior performance at the task of voice transformation to
other transformation approaches based on neural networks, vector quatization or linear
regression (Baudoin & Stylianou 1996).

We use the joint density approach (Ghahramani & Jordan 1994) as applied to VT
by Kain (2001). This approach involves fitting a GMM to the joint density P(z,y) and
then predicting y from x by finding E[y|z] (the expected value of y given z). To do this
we form a vector Z where each element is composed of the source features X and target

features Y, where

7 =
Y

The probability distribution of a GMM with Qrsr components (Ghahramani &

Jordan 1994) is given by:

QLsF QLsF
pamm (w505 %) = z agN (z; pig; ), z ag=10,2>0 (3.2)
g=1 g=1

where a, is the weight for component ¢, N(z;uq; E,) is the n-dimensional normal

distribution with mean 4 and covariance 3, which can be computed by
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N (@5 13 ) = L (357 @—no) (3.3)
(2m)"/2 /12|
The probability of a datapoint z belonging to a particular class p may be computed

using Bayes’ rule, which is

apN(z; pp; 2p)
S g N (w5 g Sq)
The Expectation Maximization (EM) (Ghahramani & Jordan 1994) algorithm is

Plcyla) = (3.4)

an iterative algorithm which may be used to find the most likely GMM parameters
(a, 1, ) for a given set of data. To start the process we set oy equal to 1/Qpsp for
all ¢ = 1...QrsF, X4 equal to the identity matrix for all q, and set each u4 by applying
the K-means algorithm (MacQueen 1967). The EM algorithm was then run until either
the likelihood Pgaras(z; o5 ;X)) was maximized, or 30 iterations were exceeded. After
these 30 iterations, the maximum likelihood was only found to increase marginally. It
is necessary to add a small quantity to the diagonal entries of the covariance matrices
after each iteration, in order to stop them becoming too close to singular. The value
0.00001 was used, which was found by experimentation and is somewhat smaller than
the value of 0.001 used by Kain (2001). The number of components of the GMM Qrsr

was one of the parameters which was varied in the experiment.

Post-GMM estimation rejection of poorly matched data

Once the GMM had been fitted to the training data, a second stage of rejecting poorly
matched data took place. We rejected R% of the data which had lowest probability
P(cp|z) under the GMM. These points may be regarded as remaining outliers and are
due to poor alignment. A GMM was then re-estimated for the remaining data points.
The optimum proportion for rejection (15%) was found through informal listening tests.
The appropriate amount to reject is likely to depend on the extent to which the source

and target speakers’ accents and prosody differ.
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3.4 Transformation

In order to carry out transformation, the speech is first analyzed by computing Bark-
warped LSFs for each frame. X and Y are the aligned source and target feature streams.
For each frame of source LSF's, the most likely target LSFs are computed. The expected
value of the target LSF's for a target frame, y, may be computed using the appropriate

source frame LSFs z as follows:

Elyl|z] = / y.p(y|z)dy (3.5)
QLsr Y YX (mXX X
Elylz] = Y (uy + 3, X (S5) Hz — 1y))-plegl) (3.6)
qg=1
where
o 3.7
- YXvYY (3.7)
Y72y
X
7
ne=| "7 (38)
Hq

After the predicted LSFs have been computed, a smoothing function is applied to
each of the LSF coefficients, in order to restrict the difference in value between neigh-
bouring frames. The filter used is a 2nd order lowpass digital Butterworth filter with
a cutoff frequency of Fpp of half the sampling rate. The sampling rate is the rate of
pitchmarking. This low pass filtering of the LSFs is motivated by the fact that the
components of the human speech system responsible for filtering the signal from the

glottis are restricted in how rapidly they may change their response.

3.5 Synthesis

Once a vector of target LSF's has been predicted, the LSFs are then converted from Bark
to Hertz and converted to LPCs. The associated target residuals are then found, and a

Hanning window is applied prior to inverse filtering with the associated LPC parameters.
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The resulting speech is then created by PSOLA (pitch synchronous overlap-add) of all
the frames of windowed speech.

Since an overlap and add resynthesis method is used, it is possible to modify the
pitch easily (Quatieri & McAulay 1992) by moving the pitchmarks closer together or
further apart, and to modify duration by duplicating or deleting them.

3.6 Evaluation

3.6.1 Speech Data

Data from the Boston University Radio News corpus as described in 2.4.1 was used to
both train and test the system. Four speakers, (two male and two female) were selected
for the experiment. They are labelled as fla, f2b, mla, m2b within the corpus. The
speakers are all native speakers of English and have North American accents. They
are all professional news readers. fla and f2b are female and mla and m2b are male.
Further details of the nature of the speakers can be found in documentation for the
corpus (Ostendorf et al. 1995). Experiments were run on the following transformation
combinations; ml to m2, m2 to ml, fl to f2 and 2 to fl. T}.4, seconds of data were
used for training. The test set consists of one minute of speech. The training and testing
sets do not intersect. All performance measures presented in this chapter were found on

the test set.

3.6.2 Performance indices

The error between two aligned sets A and B of LSF vectors may be computed as follows:

p . .
Ersr(A,B) = Z \l S (LY - Lg")? (3.9)
=1

where M is the number of frames, p is the LPC order and L™ is the iz, LSF vector
component in frame m.

This is however not a useful way to evaluate the performance of a transformation
system since it doesn’t take into account the ‘difficulty’ of the mapping, i.e. the difference

between the source and target vectors. The difference between two speakers is called
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Source Speaker | Target Speaker | Inter-Speaker Error | Prsp
mlb m3b 0.014 0.373
m3b mlb 0.014 0.424
fla 2b 0.013 0.312
2b fla 0.013 0.292

Table 3.1: Table showing the inter-speaker error and performance (Prgr) for a variety
of source and target speaker pairs. (Orpc = 20,Qrsr = 12,Frp = 0.3, Tirain =

60s0r120s)

the inter-speaker error Epgp(t(n),s(n)), where ¢(n) are the LSFs of the target speech.
The LSFs of the predicted target speech are represented as #(n). The transformation
error is the difference between the predicted and actual LSFs (Ersr(t(n),#(n))). Kain
suggested an LSF performance index Prgr for assessing the quality of transformation

in a voice transformation system, as follows:

Epsr(t(n),i(n))
Ersr(t(n),s(n))

A value of Prgr = 0 indicates that the output of the system is no more similar to

Prsp=1- (3.10)

the target than the source is, whereas a value of Prgr = 1 indicates that the output
of the system is identical to the target. In general, a higher value for Prgr suggests a

better system.

3.6.3 Results

As previously discussed, the experiments were carried on two pairs of speakers, with each
speaker used once as source and once as target. In table 3.1 it is possible to see that the
system has significantly different performance (Prsr) depending on which voices are to
be transformed. It can be seen that the performance for mapping speaker S to T is
different to the performance when mapping T to S. Example WAYV files of the output of
our system may be found online (Gillett 2003).

A large number of different experiments were carried out in order to discover the

effects of varying various parameters. The variables in the following experiments are as
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Figure 3.5: Graph showing the relationship between the number of components in the
GMM (Qrsr) and the mean performance of the resulting system (Prgr averaged over

all data). (OLPC = 20, FLP == 0.3,7—;57-(“"” == 608.)

follows: order of LPC analysis Orp¢, the number of components in the GMM QrsF,
the cutoff frequency of a low pass filter applied to the transformed LSFs Frp and finally
the amount of training data T}.4i,. The results were averaged for all four combinations
of source and target speakers.

Figure 3.5 shows the effect of changing the number of components in the GMM. A
value of Qrsr = 12 provided the best performance of the values we tested, regardless
of the amount of training data used. The performance does not improve when there are
more than 12 components of the GMM, and this is the case regardless of the amount of
data trained on.

The relationship between the order of LPC analysis and the performance of the
resulting system is shown in figure 3.6. It can be seen that a value of Oppc = 20
provides the best performance. This is consistent with the order of LPC analysis used
in similar tasks (Kain 2001).

The relationship between the cutoff of the low-pass smoothing filter and the perfor-
mance of the resulting system is shown in figure 3.7. The optimum cutoff is a value of
Frp = 0.3. The performance when doing smoothing with an appropriate cutoff value is

substantially higher than the performance with no smoothing. This indicates that the

I
18

20
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Figure 3.6: Graph showing the relationship between the order of LPC analysis (Orpc)
and the performance of the resulting system (Prsr). (Qrsr = 12, Frp = 0.3, Tirgin =

60s)

smoothing plays a key role in obtaining good performance from the system. The move-
ment of LSFs in natural speech is quite smooth. However, the transformation system
works on a frame by frame basis resulting in noisy tranformed LSFs. Therefore, if there
is too little filtering the transformed LSFs are still too noisy, and if there is too much
filtering then information is lost.

Figure 3.8 shows how performance improves when a larger amount of training data
was used. As the amount of training data is increased, the performance of the system
improves. The largest amount of data used for training was 120 seconds which provided
a value of Prgr = 0.3619. After a value of T}, = 30s is reached, the increase in

performance when more training data is used is much smaller.

3.7 Conclusion

The results show that in order to gain the best performance, the following parameters
should be used: Qrsr = 12,0rpc = 20, Frp = 0.3,T44in = 120s. This leads to a
performance of Prgrp = 0.3619. In existing research, the voice transformation system

which has the highest performance is a system by Kain (2001), which has a performance
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Figure 3.8: Graph showing the relationship between the amount of training data (Tiqin)
and the performance of the resulting system (Prsr). (Orpc = 20,Qrsr = 12, Frp =

0.3)
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of Prgp = 0.31. Therefore, our system outperforms this system. Unfortunately we
do not have access to the same test and training data as Kain used. Kain does not
give the duration in seconds of the training data used, however he does state that 40
sentences were used for the training corpus. The text of these sentences was taken from
the TIMIT (Garofolo, Lamel, Fisher, Fiscus, Pallett & Dahlgreen 1990) database, which
has a typical sentence length of 4 seconds. Therefore approximately 40%4 = 160 seconds
were used for training. Therefore we conclude that it is likely that Kains system was
trained on more than 120 seconds of speech. The training data used in our experiment is
significantly different since it is prosodically varied. Kain asked the speakers to speak in
a monotone, and to mimic the FO contour, segment and word durations of a particular
speaker to minimize intra-speaker error. It is easier to make the transformation if the
timing and F0 are similar, since it is easier to find a good alignment, and also because
the FO of the speech does not need to be altered so much. Our system improves over
Kain’s system since it is able to deal with a more difficult problem: natural, prosodically
varied speech. The improved performance index of our system over Kains could be due
to the fact that our system rejects poorly aligned data from the training set, and also

be due to the smoothing applied to the mapped LSFs.



Chapter 4

Transforming the spectral detail

In this chapter we address the problem of transforming the spectral detail, in order to

get a higher quality transformation. The spectral detail is represented by the residual.

4.1 Motivation and overview

4.1.1 Motivation

A study by Kain and Macon (1998) shows that in an LPC VT system, (such as that
described in chapter 3) when using source residuals for resynthesis the resulting speech
was judged to be closer to the target speaker 52% of the time (i.e. close to chance).
However, when the target residuals were used, the resulting speech was judged to be
closer to the target speaker 100% of the time. This result shows that residuals play an

important part in the characterisation of a speaker.

4.1.2 Approach

The system will predict the residuals from the transformed LSFs which were predicted
in chapter 3. This is similar to the system put forward by Kain (2001), however our
approach is different in a number of respects and it removes the requirement that all
the speech is uttered in a monotone and with mimicked prosody. In addition, Kain’s
work made use of a sinusoidal model, whereas our work does not. It may seem strange

to attempt to predict the characteristics of the source from the characteristics of the

28
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spectral envelope, since the source-filter model is based on an assumption that the resid-
ual is independent of the spectral envelope. However, if only one speaker is considered
we will show that the residual is sufficiently correlated with the spectral envelope that

prediction is possible.

4.2 Analysis

The speech of a single speaker whose residuals are to be predicted was first analysed
in the manner described in chapter 3. Although the pitchmarks were adjusted to lie at
peaks in the waveform, after the inverse LPC filter was applied the centre of the frames
no longer corresponded to the peaks in the residual. This was due to the phase shift
introduced by the inverse LPC filter. Due to the nature of the processing which will be
performed (see section 4.3), we wish the residuals to align with one another, so that their
phases are most similar. Therefore, the residuals were further processed as follows: for
all voiced frames, the peak amplitude within the middle third of the frame was found.
If this peak was over an empirically determined peak threshold (0.0017), then the frame
was moved such that this point lay at the centre of the residual.

Those residuals that did not have a peak above the threshold were marked as ’sus-
pected unvoiced’. This was performed prior to the application of the Hanning window.
All residuals which were suspected of being unvoiced, and whose neighbours were also
suspects were set to be unvoiced. This process was performed to try to eliminate in-
correctly marked-up voicing. For each residual, the magnitude and phase spectra were

computed using the Fast Fourier Transform (FFT).

4.3 Training

During training, a vector was created where each element comprised of the frames’ Cep-
tral Coefficients. Those elements of the vector where the associated frame was not voiced
were removed. The system only attempts to predict the residual for voiced frames of
speech, since the residual in unvoiced frames contains very little information about the

nature of the speaker, as there is no vocal fold activity. A GMM with @), components
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was then fitted to this data. For each component of the GMM a codeword was calcu-
lated. This codeword has a magnitude spectrum, which was computed by summing the
magnitude spectra of all the residuals, weighted according to the probability of each
datapoint (frame of Cepstral Coefficients) belonging to that component. If h,; is the
posterior probability of Cyqin (the training data) for a class ¢ and frame ¢, then the
magnitude for codebook entry ¢ is:
N b
0,
Mg = Z M. =x
i=1 E:leh%j

The codeword also contains a table of all the phases of the frames which have a 90%

(4.1)

or greater probability of belonging to that component. The value of 90% was chosen
in order to ensure there was a large enough number of entries in the table to provide
reasonable spread of lengths of the associated phases, which will be important for reasons

explained in 4.4.

4.4 Residual Prediction

Given the set of Cepstral coefficients associated with a voiced frame of speech, the resid-
ual may be predicted in the following way. The magnitude of the residual was computed
by summing all the codeword magnitudes, weighted according to the probability of the

datapoint belonging to the component that this codeword is associated with. This is:

Q
M; = mg.hy, (4.2)
q=1

This method for predicting magnitudes has the desirable property of the resulting
magnitude spectrum changing smoothly provided the input parameters change smoothly.
This avoids many of the artifacts associated with vector quatization methods (Arslan
1999).

Unfortunately, the same approach may not be taken with the phase, since phase
may not be interpolated using a weighted sum analogous to equation 4.2 due to the
way in which phase may ‘wrap around’ (i.e. a phase of 27 is equivalent 0). In addition,

resampling a phase to be a different length also requires interpolation. Resampling would
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be required to alter the residual to be the desired length for each frame. Although one
might think that the phase could be unwrapped to overcome these difficulties, this is
an error prone process (Gold & Morgan 2000, Kain 2001), and was therefore not used
in this system. Instead, the following method was chosen: the phase was computed
by finding the most likely component of the GMM and choosing the phase from the
associated table that was closest in length to the desired frame length.

After a phase and magnitude vector had been obtained, the magnitude vector was
resampled to be of the same length as the phase vector. An anti-aliasing FIR filter of
length 10 was used during the resampling process. The inverse Fourier transform was

then used to convert the magnitude and phase back into a time-domain signal.

4.5 Transformation

In order to perform the transformation, we require a set of Cepstral Coefficients for
each frame of speech. These may either be predicted using the method of Chapter 3,
or obtained directly from the target speech if the system is being used purely to do
residual prediction. For each frame of speech, if the frame is voiced, then a residual
is predicted on the basis of the Cepstral Coefficients of that frame. If it is unvoiced,
then the source residual is used, though it is resampled to be of the correct length. It
is acceptable to resample in this case, since the resampling process is being performed
in the time domain rather than the complex frequency domain as was discussed earlier.
Each frame of speech is resynthesised by filtering the residual using the appropriate LPC
coefficients. Finally the speech is formed using the overlap and add method described

in section 3.5.

4.6 Evaluation

4.6.1 Performance indices

In order to ascertain the relative effectiveness of the system depending on the parameter
values used, it is necessary to have a method for measuring performance. The perfor-

mance index used in the last chapter is not appropriate, since it measures only errors in
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LSFs. The most common measure used in speech coding tasks is the signal-to-noise ratio
(SNR). Therefore we have selected this for measuring the performance of our system.

The signal to noise ratio is the ratio of the signal energy to the noise energy. Therefore

X |FFT(s(n))?
([FFT(sc(n))| = [FFT(s(n))])?

SNR(s(n),sc(n)) = 10.logloZ (4.3)

gives the SNR on a dB scale, where s(n) is the original speech, and s.(n) its coded form.
The SNR of a whole utterance is computed by dividing the speech into a number of fixed
length (20ms) frames, and then finding the average SNR of these frames, rather than
simply finding the SNR. of the whole utterance. A frame based approach better reflects
the perceptual quality as errors in quiet and loud segments of the speech are computed
separately. The error is computed on the magnitude spectrum, since this better reflects
perceptual quality, as the human auditory system is not very sensitive to changes in

phase. Higher SNR values indicate a better system.

4.6.2 Results

Figure 4.2 shows how the SNR of the system varies with the number of components
(Qrp) in the residual prediction GMM. It can be seen that the highest SNR values are
obtained when ,, = 64. This is likely to be due to the fact that when fewer components
are used, it is not possible for the system to fit to the data well enough, whereas when
more components are used, the model is over-fitted to the data.

Figure 4.2 also shows how the SNR values change depending on whether LSF values
are predicted or not. In the column ’residual prediction only’, the values relate to
an experiment where the target LSFs were used directly and only the residuals were
predicted. In the column ’LSF and residual prediction’ the LSFs were predicted (as
described in the last chapter), and then these predicted LSFs were used for prediction
of the associated residuals. It can be seen from figure 4.2 that the total error is higher
when both the LSFs and residual are predicted. This is of course what one would expect.

The effect on the SNR of varying the amount of training data can be seen in table

4.3. As the amount of training data increases, the SNR also increases.
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Figure 4.2: Graph showing the effect of changing the number of components in the
residual prediction GMM, on the SNR in dB of the system. (Oppc = 20,QrLsr =
12, Tyrqin = 60s.)
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Figure 4.3: Graph showing the relationship between the amount of training data (T3qin)

and the SNR in dB of the resulting system. (Orpc = 20, Qrsr = 12, Qrp = 64.)
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4.7 Conclusion

We have presented a performance measure based on a signal to noise ratio for the
magnitude spectrum of the speech. We have shown that a GMM with 64 components
provides the highest SNR. The results also show that when residual prediction alone
is performed a higher SNR is obtained (3.085 dB) than when full transformation is
carried out (2.141 dB). These results are confirmed in informal listening tests, where it
was found that when residual prediction alone is performed, the quality of the speech
is extremely high, and it is quite hard to tell from the original speech. Example files
may be found online (Gillett 2003). When LSF mapping and residual prediction are
performed, the quality is also good and may easily be recognised as the target speaker.
This perception of good transformation quality is reflected in figure 4.4 where it can be
seen that the predicted waveform is very similar to the target waveform. However, there

are buzzing and other artifacts, which are typically associated with RELP manipulation.
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Figure 4.4: A predicted waveform overlaid over the target waveform. Both LSF predic-

tion and residual prediction was performed. The solid line represents the target speech

and the dashed line represents the predicted waveform.



Chapter 5

Transforming the FO contour

5.1 Introduction

In this dissertation so far we have only addressed issues of voice quality. We now turn
our attention to the problem of transforming F0O contours. In contrast to the other work
on voice quality, there has been very little work in this area. The approach taken by all
existing systems (Arslan & Talkin 1997, Arslan 1999, Stylianou et al. 1995, Toda, Ju,
Saruwatari & Shikano 2000) is to simply normalise the FO of the source speaker to be

like that of the target. We will call this mapping function My, where

My (37) = ((-T - ,U'source)/asource) * Otarget + [target (5-1)

and Lsources Tsource are the mean and standard deviation of the source speaker respec-
tively, and fiqrget, Otarget are the mean and standard deviation of the target speaker.
This mapping technique fails to capture many of the important features of FO con-
tours, which contain information about speaker identity. We present a method for the
transformation of FO contours from one speaker to another based on a small linguistically
motivated parameter set. This was first presented in an earlier paper (Gillett 2002).
Training FO contour generation models for speech synthesis requires a large corpus
of speech (Black & Hunt 1996, Kochanski & Shih 2000). If it were possible to adapt the
FO contour of one speaker to sound more like that of another speaker, using a small,

easily obtainable parameter set, this would be extremely valuable for speech synthesis.
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5.2 Parameterisation

We use the parameterisation described by Patterson (2000), which was based on work
by Ladd and Terken (1995). Patterson took FO measurements at four selected target
points in each sentence. These points were sentence-initial high (S), non-initial accent
peaks (H), post-accent valleys (L), and sentence-final low (F’). For each sentence there
is one sentence-initial high, one sentence-final low and a varying number of peaks and
valleys depending on the sentence. Patterson carried out analysis on approximately
a minute of speech for each speaker. The values were collected into their respective
categories and then averaged to get representative data for the speaker. Figure 5.1
shows diagramatically where the four points lie. The mean and standard deviation of
the frequency of the voiced segments of speech for each speaker were also computed. In
this work we make use of these values of S,H,L,F, mean and standard deviation collected
by Patterson. All the following work using these parameters to carry out mappings is
the work of the author and was not proposed by Patterson. We are simply using his

data set and measurements of the parameters.

5.3 Mapping

The mapping from source to target FO is then defined by a piecewise linear map-
ping, where one segment runs through the points (Fsource; Frarget) and (Lsource; Ltarget),
another between (Lsource; Ltarget) and (Hsource, Hiarget), and a final segment through
(Hsources Hiarget) and (Ssource, Starget)- An example mapping is shown in figure 5.2,
where one can see how a value z may be transformed to a value Mpr(z). The mapping
function Mpy, is:

—F. L —Fy .
Fta,'/‘get + (1' source)( target ta'rget) lf.’L' < Lsource

(Lsou'rce _Fsource)

MPL(-T) = Ltarget + (z=Lagurce)(Hrarget—Liarget) if Lyource < T < Hyouree (52)

(HSO'M’I‘CB _LSO’MTCE

—H S —H .
Hta'rget + (w source)( target target) lf.’I,' > Hsource

(SSO'U/I"CS _HSO'U/I‘CE
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fo

Time

Figure 5.1: Measurement locations on an idealised speaker contour.

5.4 Transformation

Pitchmarks and FO tracks are first found for the speech to be transformed, using the
same tools as described earlier in section 2.5. The four parameters (S,H,L,F) were then
obtained for both source and target speaker (from Patterson’s thesis). These eight
parameters were then used to define the mapping Mpr. Then for each voiced element
of the FO track, the FO value was converted using Mpy. Finally, pitchmarks were
generated from the transformed FO track, and the speech was resynthesised using pitch

synchronous overlap and add (PSOLA) (Gold & Morgan 2000).

5.5 Discussion

It is possible for the parameters of the mapping function to assume values such that
that mapping function Mpy, is in practice identical to the mapping Mpy. There will also

be cases where the mappings differ a great deal.
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As can be seen in figure 5.3, the example target FO contour is more closely matched by
the method presented in this thesis, than by a method based on transforming the mean
and standard deviation. In particular it can be seen that the FO contour generated
by the presented method more closely follows the sentence initial high of the target
speaker. This may also be perceived from the associated waveforms (Gillett 2003). In
addition, if one examines the distribution of the F0 values, the track transformed using
the presented method has a distribution which more closely matches the distribution of
the target speaker. This can be seen in figure 5.4.

These are simply examples of the result of the mapping function. In the next chapter
a perceptual experiment will be presented to measure the effectiveness of the presented

method.



CHAPTER 5. TRANSFORMING THE FO CONTOUR

400

T
— - Normalisation
—©— Piecewise linear

350

300

FO of speaker SO (Hz)
X
o
T

200

150 | | | | | |

140 150 160 170 180 190 200
FO of speaker FL (Hz)

Figure 5.2: Female-female FO map

210

220

230

41



CHAPTER 5. TRANSFORMING THE FO CONTOUR

Frequency (Hz)

350

300

250

200

42

|
>§2<>5<X O Target
* X X Normalisation
><>§Z<X>Q x  Piecewise linear
X
Q
@ XX
o @
@ X
®
XX
0 K
X
®
8 ®
'''' --.- X
@
X XK
1o >§<>$< & ox XXX
@88% X >z< >z<>2<><
@ » X%z& o
° o b W
O > *
® @%?*f % S X, w0
! ! ! ! ©\ & ! m X \- @ !
20 40 60 80 100 120 140 160 180
Time (Ms)

Figure 5.3: Target and mapped f0 tracks




CHAPTER 5. TRANSFORMING THE F0O CONTOUR 43

1200 I
—— Target
Normalisation
* - Piecewise-linear
1000 |- ) -

800
%]
Q
£
o
S 600
[}
o)
€
=
z

400

200

0 . '
150 200 250 300 350 400

Frequency of speech (Hz)
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Chapter 6

Evaluating the FO transformation

system

6.1 Introduction

The previous chapter demonstrated a new approach to the problem of transforming F0
contours from one speaker to another. We wish to ascertain if the proposed method
is perceived as producing contours that are more similar to the FO contours of the
target speaker, than the existing technique. In order to this, we conducted a perceptual

experiment.

6.2 Measuring the difference between techniques for given

speaker pairs

In this experiment we will be investigating the relative effectiveness of the new method
we presented in the last chapter (Mpr), against the existing technique based on the
normalisation of mean and standard deviation (My). As previously discussed, the
extent to which the results of the two methods differ is dependent on the particular
parameters of the two speakers involved. For example, if the four points of the piecewise

linear mapping ((Fsourcea Ftarget)a (Lsourcea Ltarget)a (Lsom‘ce, Ltarget): (Hsourcea Htarget))a

lie on the line defined by the mean and standard deviations (Usource; Tsources Htargets
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Otarget), then the result of applying these two mappings will be identical. Figure 6.1
shows one mapping where the difference is large, and another where the difference is
small.

The extent of any preference for one or other technique is likely to be proportional
to the degree by which the two techniques differ for the speaker pair being tested.
Therefore we have devised a method for determining how different the mappings are,
for a particular speaker pair.

The difference between the two techniques for a given speaker pair is computed by
taking the sum of the squares of the differences between the mapped frequencies gener-
ated by each of the two methods, at points corresponding to Ssources Hsources Lsources Fsource-
All frequencies are measured on an equivalent rectangular bandwidth (ERB) scale (Gold

& Morgan 2000). This difference can be represented as:

DI(Aa B) = (MN(Ssource) - Starget)2 + (MN(Hsource) - Htarget)2

+ (MN(Lsource) - Ltarget)2 + (MN(Fsource) - Ftarget)2

This difference measure is not symmetric. In other words, D'(A, B) # D'(B, A).
This is as expected, since the mapping function defined in the last chapter is non-linear.
However, it is likely that there will be a high correlation between the two values. It is

useful to have an overall distance measure between two speakers. We define this to be:

A, B) + D'(B, A)
2

p(a, B) = 2 (6.1)

6.3 Stimuli

The speech used in this experiment was recorded previously by Patterson (2000) as
described in 2.4. Two sentences were selected from this corpus, chosen for their relatively

short duration.

1) ’Madonna has been lined up as a key backer along with Ossie Kilkenny,

the accountant to the stars.’
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Figure 6.1: Graphs showing an example of a frequency mapping where the piecewise
linear mapping is very similar to the normalisation mapping (left), and a frequency

mapping where they are very different (right).

2) ’Kilkenny, whose clients include the rock band U2, will be employed as a

consultant.’

Seven male and seven female speakers were selected, all of whom are native speakers
of English, and have an accent commonly spoken by people from the Home Counties.
Their ages range from 19 to 65.

For each same sex speaker pair (S,7), and for each of the two sentences, we created
three stimuli. Firstly, the sentence uttered by source speaker S with its FO modified to
have the mean and standard deviation of the target speaker T. Secondly, the source
speech with its FO modified using the new method presented in this thesis. Finally, the
source speech with the actual FO contour of the target applied to it. This final sentence
is the ideal output of an F0O transformation system. For all three stimuli types, although
the FO was modified, the voice quality was not. Therefore these stimuli have the voice
quality of the source speaker with the intonation of the target speaker.

The experiment was of an XABX type, where X was the sentence spoken by the
target speaker. A and B were the same sentence spoken by the source speaker modified
to have an FO contour like the target speaker, by one of the three methods described
earlier. The decision to make the experiment XABX rather than ABX was based on

the fact the utterances are relatively long, and in pilot experiments it was found that
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sm | gf2 |rc | me |1l | vr | jb
sm| - |6+ |1-] 1 |1-| 3 4
gf2 | - - | 7|8+ |3 |10+ | 8
rc | - - ]-101]1 3 |5+
me | - - - - 1 2 4+
rl - - - - - 2- 1-
vr - - - - - - 2
-] -] -

Table 6.1: Table showing a measure of the difference (D) between the two FO mapping

b

techniques for English male speaker pairs. (Members of Sgame are marked with -’ and

members of S y;fferent are marked with '+7).

playing the target twice helped the subjects decide which of A or B was better.

In order to ensure that any result we obtain is due to improvements in our method
over the existing technique, we created two sets of stimuli. One of these groups consisted
of those where we expect to get a clear preference for one or other method. These were
the speaker pairs where the distance between the two methods, as defined in equation
6.2, was large. We call this group Sgifferent- 1he other group was of speaker pairs
where the two methods do not differ greatly. We call this group Ssame. For each sex
we selected five pairs where D(S,T) is large, and five where it is small. We did not
necessarily select the four largest or smallest values, since we were also trying to ensure
that each speaker is chosen about the same number of times. In table 6.1 the distances
between each male speaker pair is recorded, and table 6.2 contains similar information
for the female speakers. These also indicate which speaker pairs were selected for the
two groups.

In order to control for ordering effects, any given pair of stimuli was always presented
both ways round to a given subject. Since there are three methods (A,B,C), there are
6 possible combinations as follows: XABX, XBAX, XCAX, XACX, XBCX, XCBX.

Since the concentration span of our subjects is limited, and we are most interested

in the result concerning the destinction between the existing method (A), and our newly
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fl| so |nc|jk| jv |rs| mt
l|-]22+ 15| 8 1 | 7-] 21+
so | - - 4- 110|224 | 6 2
nc | - - - 2144 | 1 1
jk | - - - - 7 |1-| 6
v | - - - - - 7| 21+
rs | - - - - - - 4-
mt | - - - - - - -

Table 6.2: Table showing a measure of the difference (D) between the two FO mapping

b

techniques for English male speaker pairs. (Members of Sgame are marked with -’ and

members of S y;fferent are marked with '+7).

presented method (B), each subject is either presented with (XABX, XBAX, XCAX,
XACX) or (XABX, XBAX, XCBX, XBCX). This is carried out such that there are
always paired groups, so that all those subjects with odd subject numbers are presented
with the first set, and all those with even numbers with the second set.

Since there are two groups of stimuli (one for each sex), and for each of these there
are five pairs of speakers which must be presented both ways round, and there are two
sentences, and four method combinations as described in the last paragraph, there are
2% 10%2*2x4 = 320 trials to be run. However, since each trial takes approximatly 30s,
and we wish to restrict the experiment to not more than 35 minutes so that concentration
is not impaired, we can have at most 70 trials per subject. Therefore, for each subject
we select four speaker pairs, where half are from Ssame and half from Sgiferent: 10
give a total of 64 stimuli for each subject. The exact correspondence between subject

numbers and which speaker pairs they listen to can be seen in tables 6.3 and 6.4.

6.4 Subjects

Twenty-five subjects were selected of whom approximately half were native and half
non-native speakers of English. Similarly, approximately half were male and half were

female. The task of discriminating between two similar FO contours is difficult. Therefore
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Source Speaker | Target Speaker | Sex Group Subject Numbers
gf2 vr M | Sqifferent 1,11,21
vr gf2 M | Sjifferent 2,12,22
me jb M | S3ifferent 3,13,23
jb me M | Sqifferent 4,14,24
sm gf2 M | S3ifferent 5,15,25
gf2 Sm M | Sdifferent 6,16
rc jb M | Sjifferent 717
jb re M | Sqifferent 8,18
gf2 me M | Sdifferent 9,19
me gf2 M | Sqifferent 10,20
rl jb M Ssame 1,11,21
ib 1l M | Ssame 2,12,22
sm rc M Ssame 3,13,23
rc sm M Ssame 4,14,24
rl v M Ssame 5,15,25
vr rl M Ssame 6,16
rc me M Ssame 7,17
me rc M Ssame 8,18
sm rl M Ssame 9,19
rl sm M Ssame 10,20

Table 6.3: Table showing which male speaker pairs each subject listened to.

49



CHAPTER 6. EVALUATING THE FO0 TRANSFORMATION SYSTEM

Source Speaker | Target Speaker | Sex Group Subject Numbers
fl SO F | Sqifferent 1,11,21
SO f F | Sqifferent 2,12,22
jv mt F | Sqifferent 3,13,23
mt jv F | Sqifferent 4,14,24
fl mt F | Sqifferent 5,15,25
mt fl F | Sdifferent 6,16
ne v F | Sgifferent 717
v ne F | Sqifferent 8,18
50 v F | Saifferent 9,19
jv SO F | Sqifferent 10,20
jk IS F Ssame 1,11,21
TS jk F Ssame 2,12,22
SO nc F Ssame 3,13,23
nc SO F Ssame 4,14,24
nc jk F Ssame 5,15,25
jk nc F Ssame 6,16
IS mt F Ssame 7,17
mt TS F Ssame 8,18
fl TS F Ssame 9,19
s i F Ssame 10,20

Table 6.4: Table showing which female speaker pairs each subject listened to.
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a relatively large number of subjects where selected, with a view to removing those who

were not good at the task from the analysis.

6.5 Experiment

The E-Prime experiment design system was used for this experiment (Psy 2002). Prior
to the experiment being run on the computer, the sex of the subjects together with
their first language, and if non-native, an estimate of their ability at English was noted.
Any academic background relating to linguistics was also recorded. The subjects were
then placed in a quiet booth with headphones, computer monitor and an input box
for recording responses. The subjects were given on-screen instructions regarding the

procedure for inputing data. The following instructions were then given to the subjects:

You will be presented with four pieces of speech. First you will be presented
with a piece of target speech. Then two attempts of a speaker at imitating
the FO of the target speaker. Finally you will be presented with the target

speech once more.

(Target) target speech

(1) first attempt by the imitator
(2) second attempt by the imitator
(Target) target speech

You must decide whether attempt 1 or 2 has a more similar pitch pattern to
the target. You shouldn’t make your decision based on any aspects of the

voice apart from pitch.

If you think the first attempt sounds most like the target then press 1. If

you think the second attempt sounds most like the target then press 2.

In some cases it will be very hard to distinguish a difference between attempts

1 and 2. If so, just choose one or other.

If you have any questions, please ask the experimenter now, otherwise press

either button to continue.
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The subjects were given three practice trials, followed by 70 actual trials. The
experiment took approximately 35 minutes for each subject to complete. The order in

which the stimuli were presented was randomized for each subject.

6.6 Results

For each subject, the number of times they selected the ideal contour in preference to
a contour formed by either of the mapping techniques was counted. In order for the
results to be meaningful, the subject must be capable of telling that the 'correct’ FO
contour is better at representing the target speaker than a contour formed by either
of the mapping techniques. Since the task is difficult, a relatively low level (60%) of
preference for the ideal contour was selected as a criteria for rejecting subjects from
further analysis. Just over half (13 of 25) of the subjects were able to tell that the
ideal contour was better than mapped contours. It may seem suprising that such a high
proportion of the subjects were not able to distinguish effectively, however making such
judgements is difficult for naive listeners.

For the remaining set of subjects, the number of times the subject preferred contours
mapped with Mpp, over My was counted for each of the two data sets, Sjifferent and
Ssame. Table 6.5 shows the results of these calculations. No correlation between the
nature of the subject (i.e. whether they were native speakers, their sex), and their
preferences was found. Also, the sex of the speaker does not appear to make any
difference to the preferences expressed.

The mean and standard deviation of each category was then computed. In order to
establish the statistical significance of these results, we used Student’s t-test for equal
variances. A one tailed analysis was performed, since we are trying to determine the
probability of a particular method being better than the other, rather than looking for a
preference either way. The results of this analysis are contained in table 6.6. Students t-
test provides a value of o, where « indicates the probability of the result being purely due
to chance. A value of @ < 0.01 is generally accepted as being a statistically significant
result. It is therefore clear from table 6.6 that the preference for Mpy over My for

Sdifferent 1S highly significant. Similarly the preference for the target contour over the
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Preference for Mpy, (%)
Subject | on Sgifferent | 00 Ssame | for target
1 72 56 72
2 78 56 86
3 61 56 81
4 56 44 69
5 83 56 89
6 56 44 63
7 67 50 72
8 61 56 64
9 56 75 72
10 61 56 67
11 83 50 78
12 67 50 78
13 72 50 61

Table 6.5: Table showing the individual subject preferences for different mapping meth-
ods.
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Mean (%) | Std. Dev. « t
Preference for Mpy, 67 10 < 0.0000001 -8.711448
over My for Sjifferent
Preference for Mpy, 54 8 ~ 0.02 -2.488684
over My for Ssame
Preference for target 73 9 < 0.00000000001 | -13.805951
over mapped contours

Table 6.6: Table showing the subject preferences for different mapping methods.

mapped contours is also significant. However, the significance of the preference for Mpy,
over My for Ssame is not very high, as is to be expected, since on the data set Ssame,

the two methods (Mpy and My ), are almost identical (see section 6.2).

6.7 Conclusion

It was found that 73% of the time subjects expressed a preference for the ideal contour
over a mapped contour. The remaining 26% of the time the subject chose the mapped
contour, this is likely to be due to the fact that the contours were so similar that the
subject was not able to distinguish between them. A clear preference for our method is
shown in the experiment, with subjects selecting the speech modified with the presented
mapping (Mpr) in preference to My for the dataset where the two methods are most
different 67% of the time. This result compares very favourably with the preference for
the ideal contour of 73%, suggesting that using Mpy, is almost good as using the actual
contour. In the cases where the mapping techniques differ least, there was a preference
for Mpyr, although it is on the border of not being statistically significant.

It has been clearly shown that the presented method based on a piecewise-linear
mapping is at least as good as the only existing technique for FO contour mapping for
all speaker pairs, and that in many cases it is much better and almost as good as using

the target FO contour.
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Conclusion

7.1 Summary

In this thesis we have tackled two of the major tasks necessary to produce an effective
voice transformation system. The voice quality transformation component of our system
has two main parts corresponding to the two components of the source-filter model. The
first component transforms the spectral envelope as represented by a linear prediction
model. The transformation was achieved using a Gaussian mixture model, which was
trained on aligned speech from source and target speakers. Using Kain’s LSF conversion
performance measure (Kain 2001), our system achieves a value of Ppgp = 0.36, whereas
Kain’s system which is representative of the best existing sytems achieves a value of
only Prsr = 0.31 on a similar amount of training data.

The second component of the voice quality conversion system predicts the spectral
detail from the transformed LSFs. In the training phase a Gaussian mixture model is
used to cluster the space of all voiced LSFs. Residual phases and magnitudes are stored
in codeword tables for each component. When performing prediction, the Gaussian
mixture model and codeword tables are used to predict a residual for each frame of
LSFs. We also made measurements of a spectral magnitude domain signal to noise ratio
measure. The results show that when residual prediction alone is performed a higher
SNR is obtained (3.085) than when full transformation is carried out (2.141).

We presented a new method for the transformation of FO contours from one speaker
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to another based on a small linguistically motivated parameter set. Mean sentence initial
highs, sentence medial highs, sentence medial lows, and sentence final lows were found
for the source and target speakers. These eight parameters then define a three segment
piecewise-linear mapping (Mpy,).

A perceptual experiment was conducted, to ascertain how well the mapping performs
relative to the standard approach based on normalisation of mean and standard deviation
(Mpy). A clear preference for our method is shown in the experiment, with subjects
selecting the speech modified with the mapping Mpy, in preference to My for the dataset
where the two methods are most different 67% of the time. This result compares very

favourably with the preference for the ideal contour of 73%.

7.2 Conclusion

The thesis advances the state of the art in a number of key respects. Methods for
the rejection of poorly matched data have been described which enhance the quality of
voice quality transformation. This is particularly useful for transforming natural speech
where there is differing pronunciation, dialects and disfluencies. Our system also uses a
lowpass filter to smooth the LSF tragectories, which significantly improves performance.
Due to these advances, our LSF transformation system outperforms existing techniques.
We have also presented a new method for transformation of spectral detail from one
speaker to another, which produces high quality results. The system presented is capable
of transforming utterances given a small amount of speech from two speakers, where the
speech is naturally spoken and prosodically varied. The transformed speech can be
easily recognized, however there are significant signal processing artifacts introduced.
The second area in which this thesis offers a major contribution, is in FQ transfor-
mation. The perceptual experiment clearly demonstrates that our system is at least as
good as the only existing technique for FO contour mapping for all speaker pairs, and
that in many cases it performs much better and is almost as good as using the target

FO contour.
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7.3 Future Work

The voice quality transformation system does produce output with noticeable signal-
processing artifacts. Further work must be done to reduce these artifacts. Improvements
in the residual prediction module are likely to yield the most noticeable improvements.

The work on FO transformation makes use of a number of parameters that were
extracted by hand. However, for this approach to be useful, methods must be developed
which extract these parameters automatically. The problem of finding these parameters
is likely to be much easier than finding the pitch accents in a sentence. In order to
find the sentence intial high, one may simply find the highest F0 in the first one second
of speech, and similarly one may find the sentence final low by finding the minimum
of the last second of speech for the sentence. To find sentence medial highs and lows,
an approach based on finding maxima and minima in a smoothed F0 contour may well

produce good results.



Appendix A

Perceptual Experiment Materials

A.1 Screen 1

Welcome to the experiment.
Input in this experiment will be given using the white box with five buttons which
is on the desk in front of you. Button 1 is the left-most button, and button 2 is the

button adjacent to it.

A.2 Screen 2

You will be presented with four pieces of speech. First you will be presented with a
piece of target speech. Then two attempts of a speaker at imitating the pitch of the

target speaker. Finally you will be presented with the target speech once more.
(1) first attempt by the imitator

(2) second attempt by the imitator
(Target) target speech
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A.3 Screen 3

You must decide whether attempt 1 or 2 has a more similar pitch pattern to the target.
You shouldn’t make your decision based on any aspects of the voice apart from pitch.
If you think the first attempt sounds most like the target then press 1. If you think
the second attempt sounds most like the target then press 2. In some cases it will be
very hard to distinguish a difference between attempts 1 and 2. If so, just choose one
or other. If you have any questions, please ask the experimenter now, otherwise press

either button to continue.

A.4 Screen 4

Press button "1’ if you think the first attempt was closest to the target.

Press button 2’ if you think the second attempt was closest to the target.
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