
1

The Festival Speech Synthesis System

Seminar Two:
Inside Festival

Outline

This session first looks at data is
represented inside Festival and how it
can be manipulated.

We then look at some of the details of
Unit Selection speech synthesis.

2

The utterance

The utterance is the container object in
which speech synthesis occurs.

Information is added to the utterance by
each stage of the synthesis process.

Most of this information is stored in
HRGs (hetrogeneous relation graphs)
as relations, items and features

Items and features

Each chunk of data is stored as an item.

● phones, words, syllables, pitch accents,…

Each item is described by a set of features.

● name, end, …

● e.g. for a word: pos

● e.g. for a syllable: stress

3

Some example items

name: Peter

pos: nnp

pbreak: NB

name: p

end: 1.2

ph_vc: -

ph_ctype: s

ph_cplace: l

A word item A segment item

Items and Relations

Items don’t exist on their own, but each
item is part of one or more relation.

Relations come in 2 flavours, lists and
trees.

4

Some standard relations

Token – pre-processed input tokens

Word – actual words (e.g. eighty four)

Phrase – phrases

Syllable – syllables

Segment – phones

SylStructure* – syllabic structure

IntEvent – intonation events

Intonation* – intonation structure

Unit – chosen unit sequence

* – tree relations

Tigger the cat

σ σ σσ

t g # k #t

SylStructure

When items are in more than one relation

Tigger the cat Word

σ σ σσ Syllable

t g # k #t
Segment

5

σ σ σ

H* H* L-L%

When items are in more than one relation

σ σ σσ Syllable

H* L-L%H*

IntEventIntonation

So a syllable item can be in up to 3
relations:

● Syllable, Sylstructure and Intonation

Accessing utterances in scheme

> (set! utt (Utterance Text “Hello world.”))

#<Utterance 0xa1843a0>

> (utt.synth utt)

…

#<Utterance 0xa1843a0>

> (utt.relationnames utt)

(Token Word Phrase …)

> (set! segs (utt.relation.items utt ‘Segment))

(#<item 0xb261a08> #<item 0xb247808> #<item 0xb2609d0>...)

6

Accessing utterances in scheme

> (set! seg1 (car segs))

#<item 0xb261a08>

> (set! seg2 (car (cdr segs)))

#<item 0xb247808>

> (item.feat seg1 “name”)

“pau”

> (item.feat seg2 “name”)

“hh”

Accessing utterances in scheme

> (utt.relation.print utt ‘Segment)

()

id _17 ; name pau ; dur_factor 0 ; end 0.22 ; source_end 0.081826 ;

id _7 ; name hh ; dur_factor -0.296956 ; end 0.277954 ; source_end 0.188655 ;

id _8 ; name ax ; dur_factor -0.317324 ; end 0.320176 ; source_end 0.289519 ;

id _9 ; name l ; dur_factor 0.240634 ; end 0.399659 ; source_end 0.378457 ;

id _11 ; name ow ; dur_factor 0.0696307 ; end 0.550046 ; source_end 0.550021 ;

id _13 ; name w ; dur_factor 0.636568 ; end 0.625551 ; source_end 0.690708 ;

id _14 ; name er ; dur_factor 0.520952 ; end 0.725881 ; source_end 0.800834 ;

id _15 ; name l ; dur_factor 0.520952 ; end 0.813381 ; source_end 0.912022 ;

id _16 ; name d ; dur_factor 0.730381 ; end 0.883052 ; source_end 1.09058 ;

id _18 ; name pau ; dur_factor 0 ; end 1.10305 ; source_end 1.37287 ;

Nil

7

Moving around a relation

(item.next ITEM)

(item.prev ITEM)

(item.parent ITEM)

(item.daughter1 ITEM)

(item.daughter2 ITEM)

> (item.feat (item.next seg2) “name”))

“ax”

> (item.feat (item.next (item.next seg2))
“name”))

“l”

Moving between relations

Recall that an item can be in more than
one relation.

● Any instance of an item is considered
to be held with respect to a single
relation at any time.

● The functions like item.next only allow
you to move around that relation.

8

This is important so lets look at it again!

● Each item can be in multiple relations

● In each relation each item has certain
links to other items
– Segment items link to other segments

– Syllable items link to other syllables

● If you want to move from syllables to
segments you need to reference with
respect to the SylStructure relation
– The parent and daughter links are only

available in this relation

Moving between relations

We can change the relation which an item is being held
in reference to:

(item.relation ITEM RELATIONNAME)

And there are some short cuts for moving around:

(item.relation.next ITEM RELATIONNAME)

(item.relation.prev ITEM RELATIONNAME)

(item.relation.parent ITEM RELATIONNAME)

(item.relation.daughter1 ITEM RELATIONNAME)

(item.relation.daughtern ITEM RELATIONNAME)

9

Moving between relations

[Recall seg2 is a Segment item]

> (item.feat (item.parent seg2) “name”)

nil

> (item.feat (item.relation.parent seg2 ‘SylStructure)
“name”)

“syl”

sylSyllable

axhhSegment pau

SylStructure

seg2

Moving between relations

> (item.feat (item.parent (item.relation.parent seg2
‘SylStructure)) “name”)

“hello”

SylSyllable

axhhSegment pau

SylStructure

seg2

hello

syl

Word

10

More on features

Features come in a
number of types:

• Real features
– Physical data in the

item
• Feature functions

– A predefined function
• User defined feature

functions
– A user defined

function

name: p

end: 1.2

ph_vc: -

ph_ctype: s

ph_cplace: l

lisp_myfeat: hi

A segment item

Feature paths

Sometimes it is possible to move around
a relation using special path directives
in a feature name

(item.feat seg
“R:SylStructure.parent.parent.name”)

11

Feature paths

R:<relationname>. ref. wrt. this relation

parent.

daughter1. first daughter

daughtern. last daughter

n. next

p. previous

nn. next next

pp. previous previous

lisp_<functionname> user defined function

The synthesis process

Synthesis is an 13 step process.

utt.synth (called by SayText) calls 13
functions, one after the other, on the
given utterance structure.

Each function (think of them as modules)
adds to the utterance in some way.

12

Step 1: Initialisation

This step just does some housework to
get ready for synthesis.

Step 2: Text

Parses the input text into Tokens

● Tokens include: “hello”, “world”, “123”

● Token relation is created

Step 3: Token POS

This assigns a part of speech tag to
tokens before they are split up.

● Mainly to deal with numbers.

● A combination of statistically trained
and hand written rules.

● Tags are things like: cardinal, ordinal

● Tags are added to items in the token
relation

13

Step 4: Tokenisation

Converts the tokens into words

● Words are things that we can look up in a
pronunciation dictionary.

● This mainly deals with working out how to say
numbers and symbols

– Nineteen eighty four vs. one thousand nine hundred
and eighty four

● The default rules are specific to English, and
not always perfect.

● The Word relation is created

Step 5: Part of Speech

A statistical POS tagger assigns POS to each
word

● Default is for English

POS is used in diphone synthesis to determine
duration lengths and aids prosody generation.

POS may not be as important for unit selection

POS tags are added to items in the Word
relation

14

Step 6: Phrasify

Add phrase breaks

Can be either trivial rules or a statistical model

● Punctuation is the main predictor

● Some maximum number of syllables without
a break.

Generally 3 levels of break are predicted:

● BB, B, NB (big break, break, no break)

Phrase relation is created and break features
are added to items in the Word relation

Step 7: Word module

This module creates the Syllable,
Segment and SylStructure relations

● Word pronunciation is determined by a
pronunciation lexicon and/or letter to
sound rules.

● This phase can be really difficult (e.g.
for English) or reasonably easy (e.g.
for Spanish)

15

Step 8: Pauses

Provision for pauses are made in
appropriate places (at phrase breaks
etc…)

● Quite trivial hand written rules

● Silence segments are inserted in the
Segment relation

Step 9: Intonation

For unit selection, nothing is currently
done here!

For diphones:

● Statistical model predicts ToBI accent
symbols

● Intevent and Intonation relations are
created

16

Step 10: Postlexical rules

A series of postlexical rules are applied

● Some hand written

– “the” vs “thee”

● Some statistical

– Vowel reduction

These rules usually affect the Segment
relation, but can actually be defined to
do anything

Step 11: Segment Durations

Again, for unit selection nothing is done here.

Diphones:

● A duration for each segment is predicted.

– Start from an average value

– Adjust statistically (based on linguistic features)

● End times feature are added to the Segment
items

17

Step 12: Intonation Targets

Nothing is done for unit selection

Diphones:

● A model generates a synthetic pitch
contour, resulting in a series of pitch
targets for each syllable

● Creates the f0 relation

Step 13: Waveform Synthesis

A series of diphones are selected, and
joined together.

Pitch and duration modification are
carried out where appropriate

A number of relations are created

● Unit: diphones for synthesis

● Wave: a single item containing a the
waveform

18

Unit selection speech synthesis

Record a database of speech with each
diphone in many different contexts,
and use find the most appropriate
diphone in each case.

In fact do we even need to use
diphones? Would a different unit size
be better? Could we use units of
variable sizes?

We shall stick with diphones for now.

Confusing terminology…

Diphone speech synthesis: A Concatonative
speech synthesis method where one example
of each diphone is used to produce any
speech.

This does not mean that all other speech
synthesis method do not use diphones.

A unit selection speech synthesiser may use
diphones. However, we tend to not call it a
diphone synthesiser to avoid confusion.

19

How what you record affects synthesis

400 sentence database

2000 sentence database

No data from the
domain

With data from the
domain

Other linguistic structure

Phone labels are not enough, we also
need to know about the context for
each phone.

What we tend to do, is process the text
of each utterance as we would do when
synthesising it, and save the linguistic
structure to provide the context.

The result is a database of linguistically
annotated speech

20

Using the database for synthesis

At synthesis time we are give a text and we are
required to find the most suitable phone
sequence from our database to concatenate
together to produce suitable speech

First we carryout linguistic analysis as we would
for standard diphone synthesis

The result is a suitable linguistic structure
which is similar to the structure our database
is annotated with.

Unit selection speech synthesis

#

#

#

#

#

dh

dh

dh

dh

ax

ax

ax

ax

ax

c

c

c

c

ae

ae

ae

ae

ae

ae

t

t

t

t

t

s

s

s

s

ae

ae

ae

ae

ae

t

t

t

#

#

#

#

#

#dh ax c ae t s ae t

target

candidates

21

How do we do this?

ae

Target Cost Join Cost

Phonetic context

Stress

Syllable position

Word position

Phrase position

Linguistic Features

MFCCs

F0

Energy

Acoustic Features

ae

A standard search procedure

We want the sequence of candidates
which minimises the cost.

You’ve seen this type of set up before,
we use a Viterbi search to find the best
sequence using the join and target
costs.

We could even use token passing!

22

Unit selection speech synthesis

#

#

#

#

#

dh

dh

dh

dh

ax

ax

ax

ax

ax

c

c

c

c

ae

ae

ae

ae

ae

ae

t

t

t

t

t

s

s

s

s

ae

ae

ae

ae

ae

t

t

t

#

#

#

#

#

#dh ax c ae t s ae t

Join cost in detail

The join cost determines how well two adjacent pieces of
speech join together.

A simple join cost would locally compare:

● Spectral characteristics

● F0

● Energy

For a diphone join, the join position is supposed to be
stable.

Units recoded sequentially in the database receive a zero
join cost (this favours using whole syllables, words,
sentences,… where possible).

23

Example

waveform

spectrogram

energy

f0

Left unit Right unit

Join point

Using a join cost

Festival’s multisyn engine simply uses
normalised versions of these, weighted
equally.

Designing a good join cost is an active
are of research, some current idea
include:

What is the best spectral representation
to compare: MFCCs, LSFs, MCA etc….
(Vepa & King)

Data-driven (CART) Perceptually-based
join costs (Syrdal & Conkie)

24

Target cost in detail

The target cost is supposed to determine who
well a target unit matches a given candidate
unit.

How a target cost should be implemented again
is an interesting research question.

● Festival’s multisyn engine uses hand written
rules that compare linguistic features of the
target and candidate.

– These rules each are assigned a weight which
determines how important they are with respect to
each other.

Festival’s target cost rules

Phone to left of diphone is?7Left context
noun, verb, function word etc…6Part of speech

Position of diphone in word
(initial medial, final, inter)

5Word position

Position of diphone in syllable
(initial, medial, final, inter)

5syllable position

Does Candidate have a spurious
duration?

10Bad duration
Phone to right of diphone is?4Right context

Does candidate have spurious
F0?

25Bad f0

Primary, secondary or no stress10stress
DescriptionWeightRule

Our weights are chosen heuristically, ideally we would want to train
them from data.

The implementation of some of the components is complicated by the
fact that we are comparing diphones rather than phones.

25

Training the target cost weights

Two ways target cost weights could be trained
from data:

● Use perceptual testing, train weights (or even
the target cost) to match perceptual ratings

– Requires a lot of perceptual testing

● Synthesis a held-back test-set of your
database, train weights to match the
acoustics of this test data.

– Computationally expensive, but no human subjects
required.

Units other than diphones?

Smaller units:

● half-phones (AT&T, and others)

Bigger (variable sized) units:

● Prosodic structure matching (Taylor)

– A form of pre-selection.

Units suitable for a particular language

● Moras, Syllables, etc….

26

Post processing

Once we have a chosen sequence of
units wee need to concatenate them.

We need to decide if we should do the
following:

● Spectral smoothing

● Pitch smoothing or modification

● Duration modification

