
1

The Festival Speech Synthesis System

Seminar One:
An introduction

What is this course about?

The Festival speech synthesis system

● What Festival is, how it does things

● General principles of speech synthesis

● Building Multisyn voices

● What resources are available to you

You will not learn everything. That takes
about 5 years!

2

Who are we? What do we do?

Rob Clark

● Festival developer and coordinator at CSTR

● Interests include: intonation for speech synthesis

Korin Richmond

● Festival developer and researcher at CSTR

● Interests include: unit selection, using information
from the articulatory domain

Other current Festival developers:

● Alan Black (CMU): Original project developer

● Volker Strom (CSTR): Prosody and unit selection

Course Outline

1. Introduction to Festival and building
multisyn voices

2. More unit selection and voice building

3. Using and evaluating voices

3

1. Introduction to Festival and voice building

We will look at:

● What Festival is and what it does

● The basics of using Festival
– Introduction to scheme

● Data needed to build voices.

You get to:

● Start using Festival

● Start building a voice.

In the beginning…

Festival started life about 8 years ago:

● Developed by Alan Black & Paul Taylor
at CSTR, University of Edinburgh

● A Diphone based Synthesiser for
English

Since then:

● Other synthesis methods & languages

● Various derived commercial products

4

What is Festival? (Festival 2.0)

● A development environment for speech
synthesis research

● A medium scale reasonably robust TTS
system.

What is festival not?

● Officially supported under windows

● A robust large scale TTS server
environment

Festival/Festvox

Festival

● The synthesiser

● From: CSTR, University of Edinburgh

Festvox

● Voice development tools and
documentation

● From: CMU speech group

5

Concatonative Speech Synthesis

Diphones are generally the type of units used

● A diphone is a chunk of speech which starts
at the centre of one phone and ends at the
centre of the next

k tcat phones

k_ _t t_##_k diphones

How many diphones does a language have?

● No. of phones squared?

Types of synthesis Festival provides

Diphone

● Record 1 instance of each diphone

Cluster units (clunits)

● Multiple instances of each diphone

General unit selection (multisyn) [New in Festival
1.95]

● Multiple instances of each diphone

HMM Based (HTS) [Heiga Zen]

● Trained HMMs generate the speech

6

Running Festival

Various modes

● Interactive scheme shell

● Batch processing

● Server/Client

● C/C++ API

We concentrate on the interactive
scheme mode

An introduction to scheme

What is scheme?

● An interpreted shell language

● A variant of LISP

Why scheme?

● Allows maximum flexibility

– Rapid prototyping

– Flexible configuration

● Is completely embedded in Festival, no
package dependencies.

7

The good the bad and the ugly

The downside is that scheme and LISP are a bit
obscure, and not the easiest language to
work with.

– The brackets will drive you mad!!!

… So we provide a gentle introduction here.
This is intended to be enough information
(often simplified) to enable the use and
understanding of scheme in Festival rather
than anything else.

Scheme for beginners

There is only one type of statement in scheme,
it looks like this:

(function_name arg1 arg2 …)

And the only thing scheme does it to take
expressions like the one above and evaluate
them, replacing the statement with the result
of the evaluation

8

Scheme for beginners

Some examples:

> (+ 1 2)

3

> (print “hello”)

“hello”

nil

> (SayText “Hello world”)

#<Utterance 0xa184560>

> (+ 1 (+ 1 2))

4

Data structures in scheme

Simple atomic data types:

● t, nil

● 1,2,3,…

Creating new atomic data items

> (quote hi)

hi

The quote function is the only function to not evaluate its argument!

Short hand: ‘hi, ‘a, ‘b, ‘1, ‘2, ‘label, ‘strawberry

The point of atoms is that they evaluate to themselves.

9

Data structures in scheme

Strings:

“hi”, “label”, “strawberry”

Strings are not atoms!
“strawberry” ≠ ‘strawberry

Although many festival functions can
take either as their arguments

Variables and function names

Names that are unquoted are assumed to be variables or function
names.

Variables can be set with the command set!

> (set! v1 “hello”)

“hello”

> (set v1 (+ 1 2))

3

> v1

“hello”

> v2

3

Functions can be defined with the command define which we will hear
more about later.

10

Complex data types

Lists are the main data type in scheme.

There are 2 ways to generate lists.

> (list 1 2 3 ‘a ‘b ‘c)

(1 2 3 a b c)

> ‘(1 2 3 a b c)

(1 2 3 a b c)

> (list 1 2 3 ‘(a b c))

(1 2 3 (a b c))

> (list 1 2 3 v1 v2)

(1 2 3 1 3)

Processing lists

Two list accessing function car and cdr

● car – return the first item in the list

● cdr – return the tail of the list

> (set! l1 ‘(1 (“hello” “world”) 2))

> (car l1)

1

> (cdr l1)

((“hello” “world”) 2)

> (car (cdr l1))

(“hello” “world”)

11

Defining functions

An example of a function definition:

(define (foo a1 a2 a3)

(let ((v1 (+a1 a2))

(v2 nil))

(set! v2 (+ v1 a3))))

> (foo 1 2 3)

6

> (foo 1 2)

SIOD ERROR: too few arguments : …

More on let

(let ((v1 val1) (v2 val2) v3 v4)
BODY)

Let defines the scope of local variables
● It take 2 arguments a list of variables and a

body of code
– The variables are defined for the duration of the

body
– The variables can either be lists: where a value is

specified
– or just a variable name

12

Testing equality

(eq? a b) true if the same object

(equal? a b) true if recursively equal

(string-equal a b) true if strings match

(string-matches a b) true if regex matches

(< a b) true if a < b

(> a b) true if a > b

Some scheme programming constructs…

(cond (test1 do1) (test2 do2) …)

(cond

((not (number ?))

(print “x is not a number”))

((< 3 x)

(print “x is < 3”))

(t

(print “ x is >= 3”)))

13

Some scheme programming constructs…

(mapcar (lambda (X) DO_EACH_X) LIST_OF_Xs)

> (mapcar

(lambda (x)

(* 2 x))

‘(1 2 3 4 5))

(2 4 6 8 10)

To keep the procedural programmers happy…

(while CONDITION BODY)

(while (> x 0)

(print x)

(set! x (- x 1))

(if CONDITION TRUE_DO FALSE_DO)

(if (eq? x 1) (print “x is 1”) (print “x is not 1”))

14

Loading files

(load “path/filename.scm”)

Loads the scheme file and evaluates its
contents

Useful as long expressions and function
definitions are difficult to get right on
the command line.

Scheme in Festival

In the next session we will learn about
manipulating utterances in scheme

But we have already seen our first
example

(SayText “Hello world”)

15

Scheme in Festival

Scheme is used by Festival in a number
of ways:

● To control the flow of the synthesis
process

● To prototype new methods

● To allow easy access to the data
structures as synthesis before, during
and after synthesis.

Non-interactive festival

Festival can also be run in batch mode

● Used during voice building

● Ok for diphone voices

● Bad for multisyn voices

$ festival –b ’(some_command arg 1 arg2)’

16

Getting help

Most scheme functions have documentation built in. Type
the name of the function and press <ESC> followed by H

> (SayText<ESC>H

(SayText TEXT)

TEXT, a string, is rendered as speech.

Also, pressing TAB halfway through a function name will
give you a list of possible completions

Failing that, the festival manual is online at:

http://www.cstr.ed.ac.uk/projects/festival/manual

Building a new voice multisyn voice

What do we need to build a new voice?

● The language front end working!

– Helps to determine what to record

– Needed to build the linguistic structure of
the database

● A speech database which gives
coverage of the language

17

The stages of building a voice

● Language resource preparation

● Text selection

● Recording

● Processing recorded data

● Labelling data

● Building utterance structures

● Voice definition

Designing a voice

Important stage

● A badly designed voice will sound bad

● Once you have recorded your voice it
may hard to go back…

18

Text selection

The idea is to have a diphone in our database suitable
for every occasion.

To do this we define a set of contexts we wish each
diphone to be found it.

● Stressed vs. unstressed

● Different syllable positions

● Different word positions

● Different phrase positions

This is complicated by the fact that we are dealing with
diphones!

So we just record each diphone we need in
each context, right?

… well we try.

How many diphones are there?

● Word internal diphones

● Inter-word diphones

Distribution of diphones in context

● Zipf like.

diphones

fr
eq

u
en

cy

19

What sort of data needs to be recorded?

The sort that it is going to be expected
to speak!

● Limited domain vs. Completely general

Many sub-databases

● News, flights, meetings, names &
addresses, dialogue, lists, email, …

How much data do I need to record?

sentenceswordsphonesVoice

awb
nina

11341000036,000
210038300175,000

● Nina probably has too many phones

– Would be ok with prosody

● Awb has just enough

Both are single domain voices

20

Selecting the text

Ideal situation is to get loads of text and select
a subset from it.

● Copyright issues

Select a core set for minimum diphone
coverage (no context)

Add diphones in context to this in proportion to
their frequency distribution.

(Our tools for this are not yet perfected…)

If data is not available, you may need to design
by hand, and test coverage

Recording you data

Studio conditions

● Ideal is almost anechoic

– Most recording studios have a `presence’

Nina – recorded in our not so great
studio

Awb – laptop, cheap microphone in a
quiet room

21

Choosing a speaker

Someone that can read naturally

Someone who’s voice quality is
consistent

– Not breathy or creaky, constant volume

Someone whose voice you can stand to
listen to!

● Voice talents

● Acting/drama students

Other recording issues

Presenting data

● Printed 10 sentences per page

Splitting data

● Use a 7khz beep

Sessions

● Same time of day, days close together.

22

Processing the data

● Pitchmark generation

– From EGG signal or the waveform

● MFCCs

– For labelling and join cost

● Waveform and MFCC normalisation

– To make the data more consistent

● LPCs for final synthesis

Labelling the data

Automatic vs. hand labelling

● Accuracy vs. consistency

We are not actually interested in the
phone boundaries anyway!

Suggest an HTK forced alignment
approach

23

Forced alignment

Speech recognition task, but we know
what the phone sequence is!

● We model each phone with 3 state
hidden Markov model (HMM)

Forced alignment process

1. Train models from flat start

2. Realign labels

3. Retrain better models

4. Realign labels

5. Increase mixtures + retrain models

6. Final alignment

All nicely scripted.

24

Script requirements

● The text for the sentences

– Festival is used to create initial label file.

● A list of phones

● A list of allowed phone substitutions

● MFCCs for the speech

Labelling issues

Competing requirements:

The
speaker

The
synthesis
process

Matching the speaker is more important

25

Labelling issues

We allow phone substitution

● To try to match what the speaker actually said

We label the closures of stops and affricates

● We use the boundary as the join point

We add an optional short pause at the end of each word

We add silence at beginning and end of utterance

We substitute some phone symbols, e.g. “?”

sil s t_cl t aa f sp d_cl d y p_cl

“Staff duplication…”

p

Building the utterances

Needed so we can compare target diphones to
candidates

We automatically:

● Part synthesise each sentence (again!)

● Match the segments with our labels and
extract the end times

– Taking into account the pauses, closures,
substitutions etc.

– Add a few features to mark certain phones as being
problematic.

26

Defining the voice

Final stage in building a voice is to
prepare a scheme definition file for the
voice

Likely problems with a new voice

Labelling problems

● Speaker did not follow the script

● Speaker pronounces things differently

● Random alignment failure

Other problems

● Bad pitchmarking

