

Summary

In this work, we present a new approach for automatic speech recognition (ASR) which tries to take advantages from the two main approaches applied to this field currently: templates and hidden Markov models (HMMs).

Automatic Speech Recognition

- An ASR system extracts a sequence of feature vectors from speech. This sequence can be considered as a trajectory in the feature space.
- The main task of ASR is decoding trajectories to obtain the underlying message.
- These trajectories present a large variability due to both internal and external factors such as gender, pitch, accent or interlocutor.

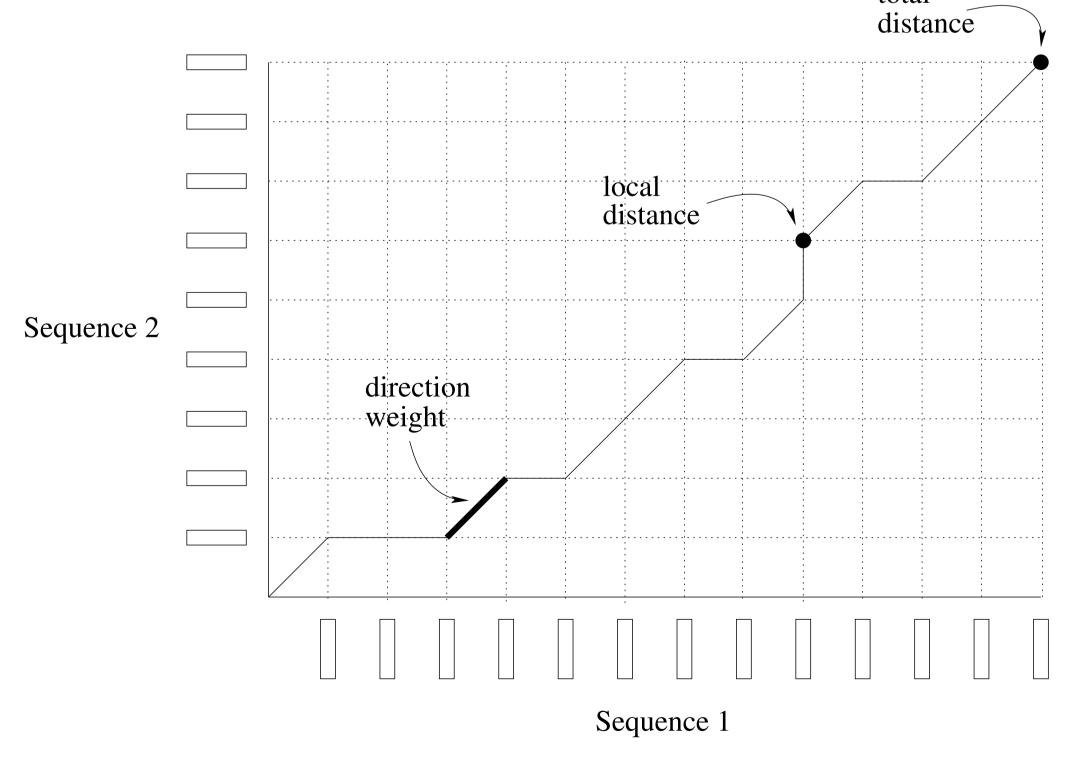
message —

random system

speech \rightarrow

Template Approach

- Test utterances are compared with reference templates.
- This comparison is based on a distortion measure usig a DTW technique. total



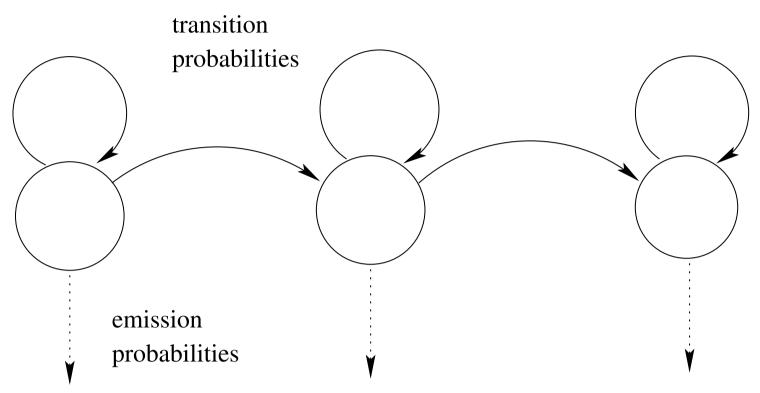
- Every template represents a particular way of pronuntiation for a specific word, hence, explicit representation of the speech variability is carried out.
- The larger the number of templates, the better accuracy the ASR system will achieve since more variability will be represented.

Integrating Template Information into HMM-based ASR

IDIAP Research Institute, CH-1920 Martigny, Switzerland {aradilla,vepa,bourlard}@idiap.ch

Stochastic Approach

• A HMM is built for every linguistic unit.



- HMMs are easily scalable. Moreover, efficient algorithms exist for training and decoding.
- All the necessary information from the training data is summarized in some model parameters.
- Assumptions about the model may not satisfy speech properties.

Integraging Template Information

- Template and stochastic approaches are somehow complementary: HMMs generalizes speech trajectories whereas templates carry out an explicit representation of them.
- On the other hand, they have some similarities since both of them use time warping for dealing with temporal distortion. Also, templates can be considered as a kind of simple HMM.

Experiment Description

The dataset used for this experiment is OGI Digits. As a feature vector, we have used static and delta features (26 dimensions).

- 1. N-best hypothesis are obtained by a conventional HMM/GMM system.
- 2. DTW-based measure is computed for each word of each hypothesis. The K best measures are chosen and an average measure is obtained for each word. This measure can be combined with the likelihood obtained by the HMM system.
- 3. The hypothesis with the best total score is considered as the correct one.

• -				
H-1	one	two	three	
	– likelihood – DTW	– likelihood – DTW	– likelihood – DTW	total score – 1
H - 2	one	zero	four	
	– likelihood – DTW	– likelihood – DTW	– likelihood – DTW	total score – 2

Guillermo Aradilla, Jithendra Vepa and Hervé Bourlard

- pothesis efficienty.

Results

based measure:

Experiments	Validation	Test
1000 templates - Combination	3.6%	3.9%
6000 templates - Combination	3.5%	3.6%

- likelihood ($\rho = 0.96$).

Conclusions & Future Work

- ing.

• Using this approach, we take profit from HMMs by obtaining the best hy-

• Template matching computation is reduced considerably since only those templates representing the hypothesized word are considered.

• Influence of the number of templates on the accuracy using only DTW-

Experiments	Validation	Test
Baseline	4.0%	4.3%
Max. Accuracy	2.5%	2.6%
1000 templates	3.9%	4.1%
6000 templates	3.7%	3.8%

• Combination of the DTW-based measure and HMM-based likelihood:

• High correlation factor between DTW-based measure and HMM-based

• Pitch information has been used for clustering the templates. Results have not changed significantly but computation time has been halved.

• Experiments have showed that template matching using HMM-based hypothesis improves the system accuracy. This is due to the better representation of speech trajectories with templates.

• Combination between likelihood and DTW-measure improves the results. HMMs and templates carry some complementary information.

• A mathematical framework should be established for a better understand-

• More meta-information can be used for improving accuracy.