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ABSTRACT

We investigate two wavelet-based decomposition strategies
of the f0 signal and their usefulness as a secondary task
for speech synthesis using multi-task deep neural networks
(MTL-DNN). The first decomposition strategy uses a static
set of scales for all utterances in the training data. We pro-
pose a second strategy, where the scale of the mother wavelet
is dynamically adjusted to the rate of each utterance. This
approach is able to capture f0 variations related to the sylla-
ble, word, clitic-group, and phrase units. This method also
constrains the wavelet components to be within the frequency
range that previous experiments have shown to be more natu-
ral. These two strategies are evaluated as a secondary task in
multi-task deep neural networks (MTL-DNNs). Results indi-
cate that on an expressive dataset there is a strong preference
for the systems using multi-task learning when compared to
the baseline system.

Index Terms— speech synthesis, f0 modelling, deep neu-
ral network, multi-task learning, continuous wavelet trans-
form

1. INTRODUCTION

Statistical parametric speech synthesis (SPSS) has seen large
improvements over the past years, and although it can achieve
high levels of intelligibility, the speech produced is often
fairly neutral in terms of prosody [1]. Natural prosody is still
considered an unsolved problem, especially in conversational
scenarios, where speech is expected to be more expressive. It
is widely agreed that prosody is inherently a supra-segmental
property, being influenced at syllable, word, and phrase levels
[2, 3]. However, speech synthesis systems typically code all
predictive features down to the phone- or frame-level, and
– although use of parameter generation algorithms ensures
smooth, speech-like synthetic trajectories – predictions of
acoustics are essentially made independently for each state or
frame [4].
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Recently, Deep Neural Networks (DNNs) have attracted
interest as acoustic models for speech synthesis [5, 6, 7, 8,
9]. Although models capable of leveraging long-term depen-
dencies have been proposed [8], acoustic features still cap-
ture mostly short-term variation. In this paper, we investigate
wavelet-based decomposition strategies for f0 that can be used
as secondary tasks in multi-task DNNs (MTL-DNNs). Recent
work has started to explore secondary tasks in these scenar-
ios, mostly in the spectral domain. In [9], gammatone spec-
trum, formant frequencies, line spectral frequencies (LSF), or
spectro-temporal excitation patterns (STEP) were used. Al-
though improvements were seen in objective measures, the
authors failed to see significant differences between these sys-
tems and the baseline in a perceptual evaluation.

In this work, we focus on f0-based features as secondary
tasks. The features explored can be viewed as representations
of how acoustic parameters evolve over longer temporal do-
mains. In the proposed wavelet-based representation, we find
f0 components that describe variation over syllables, words,
and phrases. Wavelets have been previously used in a vari-
ety of applications in speech processing [10]. Recently, they
have been used for the automatic annotation of prominence
[11], and as a pre-processing step for f0 modelling in SPSS
[12, 13] or voice conversion [14].

Previous work using wavelets for f0 modeling [12, 13]
used a static set of decomposition components, under the as-
sumption that they can be meaningfully related to linguistic
units. This assumption was shown not to be accurate [15].
For this reason, we propose a dynamic decomposition of f0
that is able to be meaningfully related to various linguistic
levels.

With this in mind, this work contains two novel contri-
butions: (1) an investigation of f0-based secondary tasks for
DNN speech synthesis using multi-task learning, and (2) a dy-
namic wavelet-based decomposition strategy that is percep-
tually and linguistically motivated. These contributions are
evaluated on expressive speech data, where sentences from
running text are read sequentially to tell a story, thus making
it ideal for exploring higher-level prosodic phenomena.



Fig. 1: Multi-task deep neural network (MTL-DNN). A sec-
ondary task is added alongside the primary task during train-
ing. At synthesis time, the secondary task is discarded.

2. MULTI-TASK LEARNING

The main idea behind multi-task learning (MTL) [16] is to
train a model on similar tasks using the same shared repre-
sentation. We provide the model with secondary tasks, which
will guide its parameters towards producing better representa-
tions which improve performance on the primary task. Multi-
task learning has been applied in automatic speech recogni-
tion [17] and in natural language processing [18] with various
degrees of success. In speech synthesis, variations of spec-
tral features have recently been explored, with little improve-
ments in perceptual evaluations [9].

3. THE CONTINUOUS WAVELET TRANSFORM

A wavelet is a short waveform with finite duration, whose av-
erage value is zero. The continuous wavelet transform (CWT)
can describe the f0 signal in terms of various transformations
of a mother wavelet. Scaling the mother wavelet, the trans-
form is able to capture high frequencies if the wavelet is com-
pressed, and low frequencies if it is stretched. The process is
repeated by translating the mother wavelet.

The output of the CWT is an MxN matrix where M is
the number of scales and N is the length of the signal. The
CWT coefficient at scale a and position b is given by:

C(a, b; f ;ψ) = a−1/2

∫ ∞
−∞

f(t)ψ(
t− b
a

)dt (1)

where f is the input signal and ψ is the mother wavelet.

4. WAVELET-BASED DECOMPOSITION OF F0

4.1. Decomposition Strategies

In this work, we will consider two decomposition strategies
using the CWT and the Mexican hat mother wavelet. The
first strategy is identical to that used in previous work [12,
13, 14, 15]. A set of 10 components is defined, where each
component is approximately one octave apart. These compo-
nents are constant for all utterances in the training data. The
10 components cover the full range of frequencies relevant to
f0 efficiently, and they allow reconstruction of the original f0
track with very little error (root mean squared error (RMSE)
of 2.6Hz and correlation of .995), which makes it ideal for

direct f0 modeling. However, earlier work showed that not all
components are perceptually relevant, nor can they be mean-
ingfully related to linguistic units [15].

We therefore propose a dynamic decomposition of f0 that
is not limited to a static set of scales. Instead of using fixed
scales for all utterances in the training data, we optimize
them to match the unit rates of each utterance. We propose a
decomposition using four distinct linguistic levels: syllable,
word, clitic-group, and phrase. For each utterance, we com-
pute the unit rate at each level, and we set the wavelet scale a
according to:

a =
1
λf

, where λ =
2π√

m+ 0.5
(2)

a is the wavelet scale, according to equation 1, f is the fre-
quency, which is set to the unit rate of each level, and λ is the
fourier wavelength [19], where m is set to 2 for the Mexican
hat wavelet.

The rate for each linguistic unit, except the clitic-group,
is easily derivable from the training data given an utterance-
level alignment of speech with text. Since we lack annotation
for a level between the word and the phrase, we set it to be the
average of these rates, and we call that level the clitic-group.

4.2. Analysis

To visualize the two decomposition strategies, unit and peak
(local maxima) rates were computed at utterance-level for a
set of 5000 utterances. Their distributions are approximated
in Fig. 2, which is similar to that presented in [15]. The top
axis shows unit rates (linguistic units), the middle axis shows
the peak rates for selected wavelet components in a 10-scale
decomposition, and the bottom axis the peak rates for all com-
ponents in the proposed decomposition.

The figure shows that the proposed method is meaningful
in terms of the observed linguistic units, which is not seen
in the 10-scale decomposition. The clitic-group was included
in order to capture the range given by the 6th scale, which
was judged capture relevant long-term variation [15]. Recon-
struction error for the proposed dynamic decomposition is not
ideal (RMSE of 11.3Hz and correlation .901), but this is not
an issue at this point. The current goal is not to model f0 di-
rectly with this representation, but to use it to complement a
conventional f0 predictor. Note, however, from Fig. 2 that the
proposed dynamic decomposition captures the variation asso-
ciated with scales 4 to 6, covering the range of 0.6-3.35 Hz.
This falls well within the range that speakers have associated
with naturalness (1.6-3.2Hz), according to [15].

5. EXPERIMENTS

5.1. Experimental setup

Audiobooks are a rich source of expressive speech data. The
narrator typically reads full chapters sequentially and mim-
ics the voices of characters. This makes this type of data
ideal for exploring higher-level prosodic phenomena, which



Fig. 2: Unit (top) and peak (middle and bottom) rates per sec-
ond for selected units and scales. Middle axis shows static
10-scale decomposition and bottom scale shows dynamic de-
composition.

are often related to supra-segmental units. We have used the
freely available audiobook A Tramp Abroad, written by Mark
Twain and first published in 1880, available from Librivox1.
The data has been pre-processed according to the methods
described in [20] and [21]. We focused on a subset consist-
ing only of narrated speech, and we set aside direct speech
data. The reason for this is that we intend to focus only on
the prosodic variations of read speech, without noisy direct
speech data.

We have extracted log-f0, 60-dimensional mel cepstral co-
efficients (MCCs), and 25 band aperiodicities (BAPs) at 5ms
intervals. Log-f0 was linearly interpolated and voiced/unvoiced
decision (VUV) was stored separately. We further append
dynamic features (delta and delta-delta), thus creating a 180
dimensional vector for MCCs, a 3 dimensional vector for
log-f0, and a 75 dimensional vector for BAPs. With the
voiced/unvoiced decision, the full output acoustic feature
vector consists of 259 values. We call this the primary task.
We further processed the interpolated log-f0 signal with the
CWT, using the two decomposition strategies described in
section 4. The various components of these decomposition
strategies and their dynamic features are called the secondary
task.

As input features, we use a set of 592 binary questions
at phone and higher-levels plus 9 numerical features related
to the state and frame position. The full input feature vector
consists of 601 values. Input features were normalized to the
range [0.01, 0.99] and output features were normalized to zero
mean and unit variance. We use natural duration for these ex-
periments. A 5-state left-to-right HMM was initially trained,
from which frame-level forced-alignment was derived. This
same forced-alignment was used to infer syllable, word, and
phrase rates used in the proposed dynamic decomposition of
f0.

The Deep Neural Network architecture is similar to that
used in [9]. We use tanh as the activation function in the hid-

1http://librivox.org

den layers and a linear activation function in the output layer.
Six layers were used, each with 1024 nodes. For training,
we set the mini-batch size to 256 and the maximum number
of epochs to 25. Remaining training parameters and imple-
mentation are the same as those described in [9]. Training,
development, and test sets consist of 4500, 300, and 100 ut-
terances, respectively. In these experiments, we keep input
features, data, and architecture constant. The primary task is
the same for all systems and only the secondary task is varied.

5.2. Systems Trained
We trained a total of 16 systems, which are shown in Table 1.
They are differentiated only by the secondary task they use.
The system using no secondary task is taken as a baseline.

The first block of systems uses the static 10-scale decom-
position. For example, cwt-5 indicates that the fifth scale sig-
nal was used as a secondary task. The system cwt-5, cwt-6
indicates that the fifth and the sixth scale were included as
two secondary tasks. This specific range was selected as pre-
vious work determined it to be the most perceptually relevant
[15]. The second block of systems uses the proposed four-
level dynamic decomposition. Selected levels are used as the
secondary task. When more than one component is included,
more than one secondary task was used simultaneously.

The main hypothesis we test is that including f0 compo-
nents capturing supra-segmental prosodic variation as sec-
ondary tasks will improve the overall quality of synthetic
speech output by a system trained on an expressive dataset.
We expect that the distribution of the improvements seen
with each component to be similar to the distribution of their
naturalness ratings. That is, components (or ranges) that were
judged more natural in [15] will give better results when used
as secondary tasks.

5.3. Objective results
Objective results for all trained systems are shown in Table 1.
All systems measure only on the primary task. At this point,
the output for the secondary task is discarded and no attempt
was made to integrate it in the f0 signal predicted from the
primary task.

We observe that including all decomposition components
does not improve the results over the baseline. In fact, notice-
able decreases are seen, especially in terms of f0 prediction.
Similarly, lower frequency components, such as the phrase
component, do not show improvements. This is not surpris-
ing, as these components reflect the longer-term variation of
the f0 signal, and may not be useful for the short-term varia-
tion these frame-level models attempt to describe. The cwt-5-
6 condition, which uses the sum of components 5 and 6 of a
10-scale decomposition, outperforms all other systems. This
is also not a surprise, as this is the condition judged as most
natural by participants in the experiments reported in [15].
The disadvantage of this component is that it is not directly
associated with a linguistic unit, unlike the proposed decom-
position.



Table 1: Objective results for trained systems. All systems include MCCs, log f0, VUV, and BAPs as primary acoustic features.
Secondary acoustic features are added as per the proposed decomposition, using either a dynamic or a 10-scale decomposition.
MCD is mel cepstral distortion, BAP is band aperiodicity error, V/UV is voiced/unvoiced error, and RMSE and Corr are the
root-mean-squared error and correlation between predicted and original f0 signal on voiced frames only.

Secondary acoustic features MCD BAP F0 RMSE F0 Corr V/UV Error Rate
(dB) (dB) (Hz) (% of frames)

none 4.64 2.18 27.68 0.44 4.42

cwt-1 to cwt-10 4.65 2.20 28.82 0.40 4.53
cwt-5 4.48 2.15 27.31 0.46 4.05
cwt-6 4.48 2.15 27.38 0.48 4.05

cwt-5, cwt-6 4.48 2.16 27.28 0.47 4.07
cwt-5-6 4.46 2.15 26.96 0.49 3.40

cwt-syl, cwt-wrd, cwt-clg, cwt-phr 4.64 2.20 28.69 0.43 4.48
cwt-syl 4.47 2.15 27.14 0.48 4.01
cwt-wrd 4.48 2.15 27.41 0.46 4.07
cwt-clg 4.48 2.15 26.90 0.47 4.12
cwt-phr 4.64 2.18 28.07 0.44 4.50

cwt-syl, cwt-wrd 4.66 2.19 28.14 0.44 4.59
cwt-wrd, cwt-clg 4.50 2.16 27.50 0.46 4.09
cwt-clg, cwt-phr 4.67 2.19 28.67 0.42 4.66

Quite interestingly, the condition including the syllable
and word-level components together as secondary task per-
forms worse than the remaining systems, being equivalent to
the lower frequency components. The reason for this might be
the large overlap in the syllable and word distributions seen
in Fig. 2, which makes these two components highly corre-
lated. It was expected that the clitic-group or the word com-
ponents would outperform all other systems, as these are ap-
proximately in the frequency range judged to contribute most
towards naturalness. Instead, we observe that the syllable
component yields the best objective measures. Further ex-
periments could investigate how these lower-frequency com-
ponents (word and clitic-group) behave under models capable
of leveraging long-term information, such as LSTMs [8].

5.4. Subjective results
We conducted a perceptual evaluation of 3 selected systems.
We chose the system from each decomposition strategy with
the highest f0 correlation and the baseline system for inclu-
sion in the evaluation. 50 test utterances were synthesized
from the primary parameters, and the secondary parameters
were discarded. 16 native speakers judged randomized utter-
ance pairs in a preference test with a no preference option.
Each pair was judged 8 times by different participants and
each condition received a total of 400 judgments.

Results are presented in Table 2, where we see preference
percentages and the results of a 1-tailed binomial test assum-
ing an expected 50% split, with the no-preference judgments

distributed equally over the remaining conditions. The two
proposed systems are preferred over the baseline, but no sig-
nificant differences are seen when they are compared against
each other. It was surprising to see a much smaller effect
when comparing the 10-scale system with the baseline, as it
was expected to achieve higher naturalness.

Table 2: Preference Test Results

No-MTL CWT-SYL CWT-5-6 N/P
Binomial

test p

35.75% 50.0% - 14.25% p < .01

36.5% - 45.0% 18.5% p < .05

- 36.0% 34.5% 29.5% ns

6. CONCLUSION AND FUTURE WORK

We have investigated two wavelet-based decomposition
strategies for f0 as secondary tasks in multi-task DNNs for ex-
pressive speech. The first strategy uses a static set of scales,
while the second aligns with the known rates of linguistic
units in the utterances. We have observed a strong preference
for the systems using multi-task learning.

Future work may attempt to combine the prediction of the
secondary task with the the predicted f0 signal, instead of dis-
carding it. The components at each level may also be used
to learn better feature representations at each linguistic level,
as they are assumed to capture each level’s variation. Finally,
it would be interesting to model f0 directly with the dynamic
decomposition, using the residual as a fifth component.
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