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Abstract

Filled pauses occur frequently in spontaneous human speech,
yet modern text-to-speech synthesis systems rarely model
these disfluencies overtly, and consequently they do not output
convincing synthetic filled pauses. This paper presents a
text-to-speech system that is specifically designed to model
these particular disfluencies more efffectively. A preparatory
investigation shows that a synthetic voice trained exclusively
on spontaneous speech is perceived to be inferior in quality
to a voice trained entirely on read speech, even though the
latter does not handle filled pauses well. This motivates
an investigation into the phonetic representation of filled
pauses which show that, in a preference test, the use of a
distinct phone for filled pauses is preferred over the standard
/V/ phone and the alternative /@/ phone. In addition, we
present a variety of data-mixing techniques to combine
the strengths of standard synthesis systems trained on read
speech corpora with the supplementary advantages offered by
systems trained on spontaneous speech. In a MUSHRA-style
test, it is found that the best overall quality is obtained by
combining the two types of corpora using a source mark-
ing technique. Specifically, general speech is synthesised
with a standard mark, while filled pauses are synthesised
with a spontaneous mark, which has the added benefit of also
producing filled pauses that are comparatively well synthesised.

Index Terms: TTS, Filled Pauses, HMM, Phonetic Represen-
tation, Speech Synthesis

1. Introduction
In most modern text-to-speech (TTS) systems, disfluencies are
not normally modelled overtly. Filled pauses (FPs) such as UH
and UM are normally categorised as disfluencies, yet a large
body of psycholinguistic research has shown that they fulfil a
divers set of roles in spontaneous human discourse [1]. FPs
can improve reaction times to a target word [2, 3, 4], increase
change detection rates [5], help word integration [6], and they
can be used as a delay strategy to improve interaction percep-
tion [7, 8] amongst other things. These, often subconscious,
benefits to the listener motivate the exploration of FPs in the
context of TTS. In essence, TTS output that contains convinc-
ing FPs can produce more human-like speech that clarifies the
discourse structure for the listeners, thereby reducing the cogni-
tive load they experience while processing the synthetic speech.
These desirable properties are of particular relevance given the
recent burgeoning of hi-tech personal assistants, life-like robots,
embodied agents, and the like. In these kinds of systems a
much more ‘natural’ expression is desirable, and this could be
achieved if they deploy FPs correctly.

In earlier work, we have shown that current TTS techniques
cannot replicate the reaction time [9] nor change-detection ef-
fects [10] found for natural speech. In the first case, synthesis is
the problem, while in the latter it is the vocoding. We have also
shown that we can replicate human use of FPs using language
modelling techniques [11], and we have presented a method for
FP and discourse marker (DM) insertion through a controllable
‘disfluency’ parameter [12]. By contrast, in this paper, we focus
on the question of how to realise FPs convincingly in TTS out-
put. First, Section 2 presents an analysis of the FPs in a sponta-
neous speech corpus to illustrate how FPs are acoustically dif-
ferent to other phones. One clear problem with current syn-
thetic voices is that few FPs are found in the standard training
data corpora. Therefore, in Section 3, we compare two corpora
of speech, one a standard TTS corpus, and one created from
recordings of spontaneously produced speech. Voices based
on both corpora are compared, and it is shown that, despite
natural spontaneous speech (with its relatively high FP count)
being more natural than standard corpus recordings [13], stan-
dard voices produce synthetic speech of a higher overall quality.
Also, some of the common acoustic properties of FPs are not
realised in the synthesis based on spontaneous speech, mask-
ing any potential benefits of the FPs. Consequently, in Section
4, an investigation into the phonetic representation of the FPs
in the linguistic feature set is presented, in which we compare
the phones /V/, /@/ and two non-standard representations based
on these. Following that, in Section 5, we present a number of
data-mixing techniques which are designed to retain the overall
quality of the standard corpus while facilitating the synthesis of
convincing FPs by drawing on the spontaneous corpus. Section
6 provides an overall discussion and conclusion of the findings
of the current study.

2. Data Analysis
Previous studies have shown that the fundamental frequency
(F0) contours and the duration of filled pauses are different to
other phones in fluent contexts [14, 15, 16]. Another charac-
teristic of FPs is the presence of silence before and/or after the
filled pause [17, 16]. Since it is well-known that the particular
characteristics of FPs are language-specific, we wanted to ex-
plore these claims in relation to a corpus of English. Therefore
we examined the patterns of prosodic features associated with
non-synthetic disfluencies in the test-set created by the Linguis-
tic Data Consortium for the 2004 DARPA Effective Affordable
Reusable Speech-to-Text (EARS) project meta-data evaluation
(henceforth the CS corpus). This dataset consists of a total of
3 hours of high-quality conversational speech obtained from 72
speakers. The transcriptions of the speech were accurately pro-
duced by human annotators, and the disfluencies were overtly
classified and labelled. Prosodic features were extracted for all
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Figure 1: Pause duration after UM and UH
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Figure 2: FP duration UM and UH

occurrences of the FPs UH and UM in the CS corpus. These
features were extracted either from the waveform data, or from
corresponding encoded data files, and some of the features were
extracted from 0.2 sec windows either at the start (left window)
or the end (right window) of each disfluency.

Adell et al. [16] found, in their material, that a preceding
silence often occurs (60%) but after the filler silence only oc-
curs in 24% of cases, though they noted that this finding was
anomalous. Other papers, which explore these phenomena in
different languages and different kinds of corpora, report vary-
ing patterns of silence after FPs. In the CS corpus, a silence
occurs before 83% of the FPs UH and UM (specifically, 79%
for UM, and 91% for UH). All the UH and UM tokens in the
CS corpus are followed by a pause (though the duration of the
trailing pause is, on average, less than half the duration of the
preceding pause).

The duration of CS FPs are shown in Figure 2. The distri-
bution of the FP durations peaks around 0.50 secs for UM and
around 0.39 secs for UH. When similar vowels (e.g., schwa)
occur in fluent context in the CS corpus, their duration is, on
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Figure 3: F0 start and end of FP

average, half the length of the vowels that occur in the FPs UM
and UH. Figure 3 shows that there are a larger number of F0
values greater than 50 Hz in the left window (i.e., before the
FP) than there are in the right window (i.e., after the FP). This
quantifies the extent to which the F0 contour lowers when FPs
occur. O’Shaughnessy has observed that the F0 values associ-
ated with FPs frequently end in the bottom 15% of the speaker’s
F0 range [14].

The above analysis of the FPs in the CS corpus provides
a frame-of-reference for the analysis of the acoustic properties
that characterise the synthetic FPs produced by the systems de-
scribed in sections 4 and 5.

3. Read and Spontaneous Speech Based
Voices

Most standard TTS corpora are based on phonetically balanced
sets of prompts – the Arctic prompts [18] are the best known
– read aloud by a voice talent in a studio under highly con-
trolled conditions. In [13] it was shown that studio recordings
of spontaneously produced speech are considered more natural
than these standard “read” prompts, particularly when acoustic
variation is considered. However, in [19] the overall naturalness
of TTS output produced by a system trained on a spontaneous
speech corpus never matched that of the voice trained on read
speech. The same result persisted even after a pronunciation
variant forced alignment method was applied to compensate for
the additional reductions and deletions present in the sponta-
neous speech. However, the test sentences used in [19] did not
contain FPs, and other researchers have found that including
these in voices based on spontaneous speech can improve their
perceived naturalness to be on par with, or even better than,
voices trained on read speech [20, 16]. A test was thus per-
formed to confirm whether this is also the case for the corpora
used for the experiments reported in this paper.

3.1. Methodology

The read and spontaneous speech corpora used in these experi-
ments were the same as those described in [19]. The read cor-
pus consisted of studio recordings of a female British English
speaker (recorded at 96khz, 32 bit, downsampled to 48khz, 16
bit), the prompts used were the Arctic sentences [18] and the



corpus contained a total of 1125 sentences (66 mins: 20 mins
silence, 46 mins speech). The spontaneous corpus consisted
of recordings of the same voice talent in the same studio but
it consisted of unscripted spontaneous conversation. The voice
talent and interviewer could hear each other through a headset
connection and could see each other through a webcam to main-
tain as natural an interaction as possible. The resulting record-
ings were orthographically transcribed and segmented into ut-
terances. The FPs were treated as a word token in the speech
stream (similar to previous work). In total the corpus contained
1096 sentences (58 mins: 9 mins silence, 49 mins speech).

Synthetic voices for both speech types were trained based
on HTS-2.3beta [21]. 60 sentences containing FPs were ex-
tracted from the text corpus of [11, 12] and a 5-point Mean
Opinion Score (MOS) test and a preference test to rate natural-
ness were conducted. The sentences were split into two groups
of 30 sentences for the preference pairs, and for the MOS test
the 60 sentences were randomly divided into six groups, each
containing 10 read and 10 spontaneous sentences. 30 native
English speakers were recruited and they performed the test in
a sound-proof booth in front of a screen wearing high-quality
headphones. Each listener rated all 30 preference pairs, pre-
sented in a random order, and one of the 6 MOS groups for a
total of 900 preference comparisons and 300 MOS ratings of
each sentence.

3.2. Results and Discussion

Due to one participant misunderstanding the instructions for the
experiment, this participant was removed from the analysis. For
the preference test, participants preferred the read speech 59.5%
of the time and this difference was significant using the ex-
act binomial test (p < 0.0001). For the MOS test, the read
voice (mean = 2.54) was rated significantly higher (t(288) =
2.32, p = 0.021) than the spontaneous (mean = 2.26). This
means that the read voice was considered more ‘natural’ than
the spontaneous. This is in contrast to the findings of [22, 20]
and [16]. These earlier experiments both found that a sponta-
neous synthetic voice trained on data that contained FPs was
rated at least as natural as a voice trained on read speech. There
are, however, some differences in the experiments performed.
In Andersson’s work [22, 20], a data-mixing technique was ap-
plied to overcome data sparsity problems, in which one voice
was trained using both types of speech, but a linguistic fea-
ture was added marking each sentence with the source speech
type. At synthesis time, sentences could then be synthesised
with either tag, and this technique enabled better FP-containing
sentences to be synthesised by means of the spontaneous tag.
In Adell et al. [23], synthesis of the FPs was based on a spe-
cific FP model, which was subsequently improved in [24]. FPs
were modelled separately from other speech by applying modi-
fied search rules in a unit selection system. In both approaches,
however, no results are given of the quality of synthesis based
only on the data containing FPs. This suggests that their meth-
ods must be responsible for closing the gap that we measure
in naturalness between synthetic speech based on read speech
versus that based on spontaneous speech.

4. Phonetic Representation of Filled Pauses
As the improvements found by Adell et al. [24] came from a
specific FP model, we propose something similar here, though
in an HMM-based framework. The proposed model of [24]
relies on an analysis of the acoustic features of FPs, such as

increased duration and lowered F0, and was required to be ex-
plicit in order to guide the unit selection directly. However, in an
HMM-based framework we are already building models of each
context-dependent phone, and therefore we do not need an ex-
plicit FP model. Instead, we need the linguistic context features
of the phones in an FP to distinguish them from other phones
of the same type, which would allow the decision tree context-
clustering to group the FP phones together. If a high-quality
part-of-speech tager is used, FPs should be tagged as such, and
this could serve as the distinguishing feature. However, FPs are
not usually well modelled by sentence structure POS-taggers,
and, in standard front-ends such as Festival and Flite, the tag
set is reduced to one that does not contain the FP tag. In Festi-
val 2.4 [25], when using the Combilex dictionary [26], an UH
is phonetised as /V/ – a unrounded, open-mid, back vowel –
and an UM as /V m/. However, for UM there are two addi-
tional alternatives in the dictionary: /@ m/ – schwa followed by
a bilabial nasal - and /m!/ – a short bilabial nasal. While these
are never used in standard transcriptions, they provide a con-
venient alternative representation. We here ignore the reduced
form of /m!/, partly because it could arguably be considered to
be the backchannel ‘mhm’ and not an FP, and partly because we
are initially interested in fully pronounced FPs and not heavily
reduced versions. Using /@/ for both UH and UM does not,
however, uniquely identify FPs as the /@/ is the most common
phone. It may however be a better representation of the sound
of an FP, and so should be considered. In order to provide a
distinguishing feature we suggest that a separate phone identity
could be used for the FPs which could then borrow the features
of the phone from either /@/ or /V/. In this way, the phone
identity uniquely identifies the FP vowel, and consonants in the
immediate context such as the /m/ in UM, while still sharing
characteristics of its parent vowel.

4.1. Methodology

A preference test was performed to determine whether this al-
ternative representation results in better FP realisation. SiRe
[27] was used as the front-end and was modified to convert all
vowels in FPs into each of four phones – /V/, /@/, /UHV/ and
/UH@/. /UHV/ used the phone features of /V/, and /UH@/
the features of /@/. Four voices, each using one of the four
FP phone representations, were trained using HTS-2.3beta [21]
and a combined corpus of the read and spontaneous speech,
this combination was done to ensure a higher overall quality
of speech from the read speech while still retaining samples of
the FP phone from the spontaneous corpus. Data mixing is dis-
cussed in more detail in Section 5. 20 sentences containing FPs
were selected from a corpus of ‘found data’ derived from BBC’s
Desert Island Discs (DID) programme and made available as
part of the EPSRC-funded Natural Speech Technology project.
Specifically, the sentences were selected from the utterances of
the presenter, Kirsty Young. The upper bound on the length was
25 tokens, the lower 5, and each utterance contained at least one
FP. These sentences were synthesised using each voice.

30 paid native English speakers were recruited to take part,
and each participant rated all 20 sentences for each preference
pair. As there are four different voices this results in six pairs
of 20 sentences for a total of 120 pairs rated by each participant
and a total of 600 ratings of each pair. As we were particularly
interested in the quality of the FPs, and not just the overall qual-
ity of the speech, participants were instructed to ‘judge which
of the two sentences you think sounds the most natural paying
particular attention to the realisation of UH and UM’. As found



/V/ /@/ /UHV/ /UH@/ p
55.8% 44.2% - - <0.05
48.2% - 51.8% - =0.39
47.6% - - 52.4% =0.25

- 44.1% 55.9% - <0.005
- 43.0% - 57.0% <0.001
- - 49.8% 50.2% =0.97

Table 1: Preference test results. P is calculated using the exact
binomial test, the preferred phone in a pair is indicated using
bold face.

/V/ /@/ /UHV/ /UH@/
UH dur (s) 0.152 0.153 0.246 0.250
UM dur 0.313 0.303 0.431 0.404
vowel dur 0.074 0.074 0.079 0.081
UH F0 (Hz) 176 175 160 160
UM F0 174 177 171 173
vowel F0 169 170 168 169

Table 2: Mean duration and mean F0 for UH, UM, vowels. In
all cases there were 30 UH, 9 UM and 717 vowels. The syn-
thesis system used was the straight combination from Section
5.

in [13], naturalness ratings can be influenced by the instruc-
tions, and so the above wording was crafted to ensure partici-
pants focused primarily on the FP realisation. The options were
‘Sample 1’, ‘Sample 2’ or ‘No Preference’.

4.2. Results and Discussion

Table 1 summarises the results of the preference test. ‘No Pref-
erence’ judgements were split evenly over the two systems. /@/
was significantly dispreferred compared to all other represen-
tations. There were no statistically significant differences be-
tween all other representations, although there was a tendency
for the FP-specific phones to be slightly preferred over the
/V/, with virtually no difference between the two FP-specific
phones.

Although no perceptual preference was found for the FP-
specific phones over the standard /V/, an analysis of the pre-
dicted acoustics show that both match the acoustic characteris-
tics for FPs better. Table 2 shows the mean duration and mean
F0 for UH, UM and vowels for each FP phone representation.
These data show that both /UHV/ and /UHV/ have longer dura-
tions for FPs (about 100 ms longer) than /V/ and /@/ and that
the duration for vowels is roughly equal across all FP models.
Furthermore, for both /UHV/ and /UH@/, a lower mean F0
is found. These longer durations and lowered F0 values from
/UHV/ and /UH@/ more closely match those found in Section
2 and thus show that the FP specific representations better cap-
ture the general acoustic characteristics of FPs than /V/ and /@/.
The choice between /UHV/ and /UH@/ was made based on the
finding that the /V/ phone was significantly preferred over /@/,
thus favouring features borrowed from /V/ as it would seem /@/
is not a suitable underlying phone. Therefore, /UHV/ was used
in the following investigation.

5. Data Mixing for FP Synthesis
The improved FP synthesis obtained by [22] was achieved by
a data-mixing technique previously used for producing various

emotions and speaking styles [28, 29]. The technique involves
training a single model of speech using both read and sponta-
neous data simultaneously, but distinguishing the two speech
types through an added linguistic feature which denotes the
speech type the data came from. This affects the decision tree
context-clustering, enabling each speech type to be clustered
separately during training. At synthesis time each sentence is
then marked with either the read or spontaneous tag, so that all
speech is steered toward that particular style. The benefit of the
method comes from the fact that not all context clusters will
be split on the speech-type feature, and therefore some sharing
of data is possible. [22] concludes that it is this which enables
the spontaneous speech voice to match the read speech voice by
overcoming data sparsity issues. It was not, however, reported
how this method compares to a system that combines the two
types of speech in training to produce a voice without mark-
ing the speech type. Consequently, we here present that system
alongside the other methods.

It is possible that the TTS system trained on read speech in
[22] faltered primarily because it was unable to utilise the FPs
present in the spontaneous speech effectively, particularly con-
sidering the finding in Section 3 that a standard read speech
voice is considered more natural than a spontaneous speech
based voice, even when including FPs. This could happen due
to the use of the /V/ phone, which would have samples very dif-
ferent from the FPs in the read speech. There are two possible
ways to alleviate this. First, we can use an FP-specific phone,
and the results in Section 4 suggest that /UHV/ seems most
promising. This would distinguish the phone from those present
in the read data, and therefore, during synthesis, there would
be no samples of this particular phone with the read tag. This
would force the system to use the spontaneous speech based
/UHV/ model. It may, however, also simply result in the deci-
sion tree relying on the features of the phone to utilise the read
speech samples of /V/, and so another method of synthesising
from the data mixed voice was also applied. In the previous
method, the sentence to be synthesised was tagged as either en-
tirely read or else entirely spontaneous – but it is also possible
to tag only parts of the sentence as coming from either type of
speech. Specifically, we here propose to tag all of the sentence
as read except the FPs themselves, and these we tag as sponta-
neous. This should allow us to retain the generally higher over-
all quality of the read speech, while still synthesising FPs from
the more appropriate spontaneous speech model. The main po-
tential problem with this method is that there is no data available
of sentences in which this switch happens. However, it seems
likely that the trajectory modelling applied should smooth the
transitions effectively.

There is also an alternative way of mixing the data, namely,
by using speaker adaptation. In this approach, an initial model
from several speakers is usually trained, before being adapted
to a target speaker using adaptation techniques such as the
constrained structural maximum a posteriori linear regression
(CSMAPLR) technique of [30]. We can apply this technique to
the switch between read and spontaneous data by first training
a voice on one type of speech and subsequently adapting it to
the other. Adapting from read to spontaneous could solve data
sparsity issues in a similar manner to the data marking tech-
nique, whereas adapting from spontaneous to read could retain
read speech quality while still providing data for the FPs in a
similar manner to the proposed switch in speech mark when us-
ing the marking technique.



5.1. Methodology

Four different voices were trained. One was a standard HMM
voice in which both the read and spontaneous speech were
pooled and used as training data. This provides the baseline ap-
proach (and therefore it is the system used in the phone experi-
ment above). Another voice was trained using the data marking
technique, and three methods of synthesis were applied: ev-
erything marked as read, everything marked as spontaneous, or
everything marked as read except the FPs (which were marked
as spontaneous). The final two voices were speaker-adaptive
voices. One was adapted from a base read model to the spon-
taneous speech, and the other from spontaneous to read. In to-
tal six different synthesis methods were evaluated. The /UHV/
phone representation from the phone experiment was used in
all cases, since it showed the most promise and could also po-
tentially help the marked read synthesis in realising convincing
FPs (as discussed above).

The same 20 sentences from the experiment in Section 4
were used, but this time a MUSHRA-style naturalness test was
run. This was done in part due to the many preference pairs
which would have been necessary, but also in part because we
were interested in the overall quality of the resulting speech and
not merely the synthesis of the FPs. An additional sentence
from the DID corpus was synthesised and used as a training
sample. The test was run without a natural reference as the
DID data consisted of Kirsty Young’s speech, not the voice tal-
ent’s whose speech was used to base the synthetic systems on.
The participants were instructed to rate how natural each sample
sounded. However, it was explicitly mentioned that conversa-
tional phenomena such as FPs would occur, and that this was
part of the test. This was done to ensure that participants paid
attention to the FPs specifically, while also focusing on the over-
all naturalness of each voice. Besides that, the experiment was
identical to a standard MUSHRA test with one slide per sen-
tence where participants would listen to and rate all samples of
that sentence for each system side by side. This provided both
a measure of naturalness and preference between the synthetic
voices. 30 paid native English speakers were recruited. Each
participant sat in a sound-proof booth in front of a computer
wearing high quality headphones and rated all 20 sentences for
a total of 600 evaluations of each voice. The test took approxi-
mately 30 minutes to complete for each person.

5.2. Results and Discussion

The results are given in Figure 4. All the system pairs were
compared using a Wilcoxon signed-rank test, after Holm-
Bonferroni correction to avoid false positives. All the systems
are significantly different (p < 0.001) from each other except
for Mark R and Mark Sw. This finding is somewhat surprising
as although we expected Mark Sw to improve the naturalness
of the speech, we did not expect Mark R to do equally well. We
hypothesise this is due to the fact that despite everything being
marked read in the Mark R system, spontaneous speech is nec-
essarily used because there are no occurrences of /UHV/ in the
read data.

An extra ad-hoc preference test was run to ascertain
whether it is the specific phone /UHV/ for FPs that is benefit-
ing Mark R. 10 listeners took part in this listening test compar-
ing a system with everything marked read using the /V/ phone
for FPs versus a system using the /UHV/ phone for FPs. Each
subject rated 45 sentences, an extended set of DID materials.
Instructions and listening conditions were as detailed in Sec-
tion 4. Listeners preferred the combination system with /UHV/
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Figure 4: Results of the MUSHRA-style test. R = Read, Spt
= Spontaneous, Sw = Switch. R Spt = read adapted to sponta-
neous. Spt R = Spontaneous adapted to read. Red line is the
median, square the mean.

Read
/V/

Read
/UHV/

Spont
/UHV/

Switch
/UHV/

UH dur (s) 0.059 0.143 0.241 0.242
UM dur 0.134 0.303 0.416 0.324
vowel dur 0.078 0.080 0.075 0.086
UH F0 (Hz) 182 183 171 166
UM F0 183 183 166 167
vowel F0 185 186 166 184

Table 3: Mean duration and mean F0 for UH UM and vowels.
In all cases there were 30 UH, 9 UM and 717 vowels. Syn-
thesis systems used: Mark R (V), Mark R (UHV), Mark Spt,
Mark Sw.

phone 63% of the time, significant using the exact binomial test
(p < 0.0001). This suggests that the use of the /UHV/ phone
did indeed allow the read marked speech to utilise the sponta-
neous FP occurrences to inform its model.

Furthermore, if we compare the FP durations and F0 for the
marked system using /UHV/ when either marking all as read,
spontaneous, or switching with the read marked system using
/V/ (Table 3) we can see that the read marked /UHV/ system
produces durations and F0 closer to those expected for sponta-
neous speech (cf. Section 2), whereas the read marked system
using /V/ does not capture this at all. However using the mark
switching technique gave even better results. This suggests
that although no perceptual preference difference was found be-
tween the read marked and switching system using /UHV/, the
switching system still better captures the acoustic realisation of
FPs.

Interestingly, neither adaptation system performed very
well, suggesting that despite the two types of speech being from
the same speaker, adaptation still introduces many serious arte-
facts which degrade the overall speech quality.

6. Overall Discussion and Conclusions
This paper has focused on the topic of modelling FPs overtly
in a state-of-the-art TTS system. There are many reasons



why it is desirable for such systems to model these phenom-
ena. Such as the wide range of functions in conversational
interactions which FPs performs, where they can (amongst
other things) indicate psychological states, structure spoken ex-
changes, facilitate word recall, and improve object recognition
[3, 31, 17, 32, 33, 34, 13, 35]. Given their well-attested im-
portance in spontaneous human speech, it is desirable to model
these phenomena overtly in automatic TTS systems, to produce
output that is more natural and human-like. In many respects,
the broad motivations underlying research into disfluent synthe-
sis are closely related to those that motivate the development of
emotional or expressive TTS systems [36, 37, 38, 39, 40]. These
closely-connected endeavours seek to create synthetic speech
that is able to convey a wider range of emotional or psycholog-
ical states, thereby producing synthetic voices that can simulate
certain character and personality types more convincingly.

This paper has approached the problem of modelling FPs in
a TTS system by developing an approach that exploits the most
effective capabilities of synthetic voices trained on spontaneous
and read speech. Specifically, it has been shown that a voice
based on speech only from spontaneous unscripted conversation
containing FPs is not considered as natural as a voice trained on
standard read speech. The FPs in the synthetic speech did not
exhibit the acoustic characteristics that have been shown in the
literature [16, 15, 14] and in our own investigation of the CS
corpus – notably longer durations and lower F0 compared to
fluent speech. This contrasted with earlier findings that such
voices could match voices trained on standard corpora [16, 22]
when synthesising sentences containing FPs. However, in both
cases the systems used were modified forms of a standard TTS
system.

Consequently, we then looked into a number of different
phonetic representations for modelling FPs to ascertain whether
having a distinct phone for FPs would capture the acoustic prop-
erties of FPs more successfully (similar to the modelling of
[16]). On the basis of a preference test and acoustic analyses,
the FP specific phone /UHV/ was deemed the best for FP mod-
elling. It was significantly preferred over /@/ and the longer
durations and lower F0 more closely match the desired acoustic
characteristics than /V/.

In addition to a specific phone for FPs, various data-mixing
approaches to using both the read and spontaneous speech
were explored - straight combination, data source marking and
speaker adaptation. It was found that a data-marking technique
similar to [20] performed the best. However, in contrast to [20],
this technique did not improve the spontaneous speech-based
voice to match that of a read-speech based voice. Our results
were obtained using a specific FP phone representation, and
a preference test showed that this representation improved the
perceived synthesis quality. This suggests that the voice based
on read speech, as in [20], suffered degrading quality issues due
to the bad FP representation of /V/, as it tended to use read data
in which no FPs occurred. By using a specific FP phone /UHV/
we found that the read voice could produce more convincing
FPs such that perceptual quality did not degrade compared to a
voice in which the FPs were synthesised using the spontaneous
mark. However, using the spontaneous mark produced FPs even
closer to the expected acoustic properties, and thus the switch-
ing of the mark, from read in general, to spontaneous when
synthesising FPs, produced perceptually high quality speech
while also retaining the defining characteristics of FPs. Sys-
tem samples and experimental materials currently available at
www.dall.dk/rasmus/Samples.zip to be moved to to the NST
data collection upon acceptance.
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