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Abstract
Recently, Deep Neural Networks (DNNs) have shown promise
as an acoustic model for statistical parametric speech synthesis.
Their ability to learn complex mappings from linguistic features
to acoustic features has advanced the naturalness of synthesis
speech significantly. However, because DNN parameter esti-
mation methods typically attempt to minimise the mean squared
error of each individual frame in the training data, the dynamic
and continuous nature of speech parameters is neglected. In this
paper, we propose a training criterion that minimises speech pa-
rameter trajectory errors, and so takes dynamic constraints from
a wide acoustic context into account during training. We com-
bine this novel training criterion with our previously proposed
stacked bottleneck features, which provide wide linguistic con-
text. Both objective and subjective evaluation results confirm
the effectiveness of the proposed training criterion for improv-
ing model accuracy and naturalness of synthesised speech.
Index Terms: Speech synthesis, acoustic model, deep neural
network, trajectory error

1. Introduction
Statistical parametric speech synthesis (SPSS) has been slowly
advancing in naturalness, yet can still only generate synthetic
speech with ‘acceptable’ quality. Even though SPSS offers
more flexibility and controllability than unit-selection speech
synthesis, naturalness is significantly worse than good unit-
selection speech, as seen across many years of the Blizzard
Challenge.

One limiting factor in the naturalness of SPSS using hid-
den Markov models (HMMs) is the averaging across different
linguistic contexts [1] that is intrinsic to standard decision-tree-
clustered HMMs. That is, the accuracy of the acoustic model
directly affects the naturalness of the generated speech [2]. The
focus of this paper is to improve the accuracy of the acoustic
model.

There have been many attempts to improve acoustic models
for HMM-based speech synthesis. In [3], a minimum genera-
tion error training criteria was proposed to address the inconsis-
tency between training and generation criteria. In [4], a trajec-
tory hidden Markov model was proposed to explicitly model the
relationship between static and dynamic features. In [5] and [6],
global variance and modulation spectrum enhancement tech-
niques were proposed, respectively. None of these techniques
have directly addressed the issue of across-context averaging in
decision tree based clustering, which we have found to degrade
the quality of synthesised speech considerably [1].

Recently, following the success of Deep Neural Networks
(DNNs) as an acoustic model in automatic speech recogni-
tion [7], neural networks have re-emerged as an alternative

acoustic model for SPSS, and several studies have presented
state-of-the-art performance using DNNs [8, 9, 10, 11, 12, 13].
In [8, 13], a feed-forward neural network was used to map lin-
guistic features to acoustic features (i.e., vocoder parameters)
directly. In [9], a restricted Boltzmann machine (RBM) was
used the replace Gaussian distributions and so to model acous-
tic feature distributions more precisely. In [10], a deep belief
network (DBN) was employed to model the joint probability of
linguistic and acoustic features. Generally, DNNs are used to
map a set of linguistic features to the corresponding acoustic
features, frame by frame.

As speech is a dynamic signal, temporal information is
important for both naturalness and intelligibility of the syn-
thetic speech. However, current implementations of DNN-
based speech synthesis make a frame-by-frame independence
assumption during modelling and generation. The frame-by-
frame independence assumption has two consequences. The
first is the frame-wise independence assumption when predict-
ing acoustic features. Even though contextual information has
been included in the linguistic features, when predicting acous-
tic features for consecutive frames, each frame is generated con-
ditionally independently of the others, given the linguistic con-
text. This has implications for the trajectory of the generated
acoustic features. The second consequence is the ignorance
of the interaction between static and dynamic features during
training DNN models. Dynamic features are extracted from a
sequence of static features; but, after this extraction, the rela-
tionships between static and dynamic features is neglected dur-
ing training. This has implications for the accuracy of the acous-
tic model (i.e., DNN) itself.

In previous work [13], we offered a partial solution to these
problems by stacking consecutive frames of bottleneck features,
to better capture contextual constraints. These constraints are
applied in both training and generation. However, in that work,
we still made the usual (in the case of DNN speech synthesis)
conditional independence assumption between static and dy-
namic acoustic features, during both training and generation.

Here, we propose a novel training criterion – minimum tra-
jectory error for DNNs – and we combine this with stacked bot-
tleneck features. The new criterion is inspired by minimum gen-
eration error for HMM-based speech synthesis [3] and sequence
error minimisation for voice conversion [14]. Rather than min-
imising frame-wise mean squared error, the minimum trajec-
tory error criterion considers the dynamic feature constraints in
the training phase. By integrating this criterion with stacked
bottleneck features (which can be viewed as an acoustically-
supervised compression and denoising of linguistic context), we
can now include contextual constraints at the input linguistic
level and the output acoustic level.



2. Problem statement
In this section, we review the two stages in DNN-based speech
synthesis – offline training and runtime generation – and then
discuss the problems of the current framework. During offline
training, a DNN learns the relationship between input linguistic
features x and corresponding output acoustic features o,

o = F(x) + e, (1)

where F(·) is the nonlinear mapping function learned by the
DNN, and e is the modelling error. The acoustic feature o usu-
ally consists of static features c, and corresponding dynamic
features ∆c and ∆2c, as

o = [c>,∆c>,∆2c>]> (2)

Hence, a sequence of the observation acoustic features O can
be written as

O = WC, (3)
where W contains the coefficients needed expand the static fea-
ture vector sequence C into sequence O that also includes delta
and delta-delta features [15].

To train a DNN, the objective is to minimise the error be-
tween generated ô and observed acoustic features o:

D(ô,o) = (ô− o)>(ô− o). (4)

Gradient descent algorithms, such as classical back-
propagation [16], can be applied to minimise the error
function. The gradients of model parameters can be calculated
by taking derivatives of D(ô,o) with respect to the model
parameters λ, as follows:

∂D(ô,o)

∂λ
=
∂D(ô,o)

∂o

∂o

∂λ
, (5)

where

∂D(ô,o)

∂o
= ô− o (6)

is the error at the output layer to be back-propagated through
the network from the output layer to the input layer, calculat-
ing the gradients of model parameters at each layer. In practice,
because the error of each feature vector is computed indepen-
dently, a mini-batch gradient descent method is typically ap-
plied for fast computation and stable optimisation performance.

At runtime generation, given a sequence of linguistic fea-
tures X, the corresponding acoustic features Ô are generated
from the trained DNN frame by frame as Ô = F(X). To gen-
erate smooth parameter trajectory, maximum likelihood param-
eter generation (MLPG) algorithm is used by taking dynamic
features into account. The MLPG algorithm can be written as:

Ĉ = (W>U−1W)−1W>U−1Ô (7)

where Ĉ is the predicted static acoustic feature sequence (i.e.,
trajectory). As reported in previous work, MLPG with dynamic
features is important for good quality speech [17].

Even though dynamic features are used in the MLPG al-
gorithm as a constraint for smooth parameter trajectories, the
dynamic features are still treated no differently to the static fea-
tures during model training and generation: the relationship be-
tween static and dynamic features is neglected. Since the ob-
jective of the DNN is to generate more accurate parameter tra-
jectories, it should be beneficial to include these dynamic con-
straints during training. A similar approach is already available
for HMM-based synthesis [3, 4].

3. Proposed minimum trajectory error
training

To model the interaction between static and dynamic features
and include temporal constraints in the training phase, we pro-
pose a new training criterion: to minimise the utterance-level
trajectory error, rather than the frame-by-frame error. In this
way, we minimise the error of the final smoothed trajectory di-
rectly, rather than the intermediate features. In other words, we
minimise the error of the output of MLPG (which will of course
then be used directly to generate speech), rather than minimis-
ing the error of the features that are input to MLPG.

The trajectory error function is defined as,

D(Ĉ,C) = (Ĉ−C)>(Ĉ−C) (8)

= (RÔ−C)>(RÔ−C), (9)

where C and Ĉ are the reference and generated parameter tra-
jectories, respectively, and R = (W>U−1W)−1W>U−1 is
the matrix to perform parameter generation, given static and
delta features. In comparison with Eq. (4), the new error func-
tion is computed from the smoothed trajectory rather than the
direct output of the DNN. That is, the neural network will model
parameter trajectories directly, and hence we need to take the
MLPG algorithm into account whilst training the network.

Similar to conventional DNN, gradient descent methods
can be used to train the network. The gradients of DNN model
parameters λ can computed as:

∂D(Ĉ,C)

∂λ
=

∂D(Ĉ,C)

∂Ô

∂Ô

∂λ
(10)

=
∂D(RO,C)

∂Ô

∂Ô

∂λ
, (11)

where

∂D(RÔ,C)

∂Ô
= (Ĉ−C)>R (12)

Here only ∂Ô
∂λ

is directly related to the model parameters.
In comparison to Eq. (5), the only difference between the
new training criterion and the conventional frame-based mean
squared error criterion is the method for computing the errors
to be back-propagated through the network. The method for
computing gradients for DNN parameters in lower layers is not
changed.

The training algorithm with the new criterion is similar to
conventional mini-batch gradient descent. Because we are con-
sidering trajectories, all frames from each training utterance
must now be in the same mini-batch (usually, this is not the
case: frames are shuffled). Thus, the sizes of mini-batches vary:
each mini-batch comprises all frames from a single training ut-
terance. At runtime generation, things proceed exactly as with
a conventionally-trained DNN, as per Eq. (7).

In implementation, most of the computational cost arises
from the calculation of (W>U−1W)−1. As U is diagonal,
W>U−1W becomes a banded matrix, and the computational
costs can be reduced considerably. In practice, the errors in
the output layer as presented in Eq. (12) are computed dimen-
sion by dimension. After the errors of all the dimensions are
computed, the back-propagation and gradient update processes
are the same as conventional training algorithm. In our imple-
mentation, minimum trajectory error training is about 20 times
slower than conventional frame-wise error training.



4. Experiments
4.1. Experimental setup

In our experiments, we used a corpus from a British male
speaker. The corpus was divided into three subsets, 2400 ut-
terances as training set, 70 utterances as development set, and
72 utterances as testing set. The waveform sampling rate is 48
kHz. The STRAIGHT vocoder [18] was to used extract 60-
dimensional Mel-Cepstral Coefficients (MCCs), 25 band aperi-
odicities (BAPs), and log-scale fundamental frequency (logF0

at a 5-ms frame step. During synthesis, we used the same
vocoder to reconstruct speech.

We have already shown [13] that our DNN-based system
is significantly better than our HMM-based system. Hence, we
did not include any HMM-based baselines in this experiment.
The following four systems were compared (FE=frame error;
MTE=minimum trajectory error; BN=bottleneck features):

FE-DNN: This is a feed-forward neural network trained in
the conventional way, to minimise frame-by-frame error.
The input features consisted of 592 binary features and
9 numerical features (601 in total). The 592 binary fea-
tures were derived from linguistic context such as quin-
phone identities, and part-of-speech, position informa-
tion of phoneme, syllable, word and phrase. The 9 nu-
merical features were frame position information, such
as frame position in HMM state and phoneme, state posi-
tion in phoneme, and state and phoneme durations. The
output features consisted of 60-D MCCs, 25-D BAPs,
1-D F0 and their corresponding delta, delta-delta fea-
tures. F0 was interpolated linearly in unvoiced regions,
and voiced-unvoiced information was added as an output
feature of the network. The network had six hidden lay-
ers, each of 1024 units. The bottom layers used tangent
activation function, while the output layer was a linear
regression layer. A learning rate of 0.02 and a momen-
tum of 0.3 were used in the first 10 epochs, then after
10 epochs the learning rate was halved at each epoch,
and momentum was set to 0.9. The maximum number of
epochs was 30.

MTE-DNN: This is a feed-forward neural network trained by
the minimum trajectory error (MTE) criterion proposed
here. The input and output features were the same as for
FE-DNN. The network architecture was also the same
as FE-DNN. The weights of the MTE-DNN were ini-
tialised from the fully converged FE-DNN. Learning rate
and momentum were set to 0.02 and 0.6 for the first 10
epochs. After that, momentum was set to 0.9, and the
learning rate was halved at each epoch.

FE-BN-DNN: This is similar to the FE-DNN system, but with
stacked bottleneck features and linguistic features as in-
put. The only difference between FE-BN-DNN and FE-
DNN is the use of stacked bottleneck features. In the
bottleneck network, the second hidden layer was set as
bottleneck layer, with 32 hidden units. 21 consecutive
frames (middle frame +/− 10 frames) of bottleneck fea-
tures were stacked as input. Hence, the dimension of
input layer was 1273 (32× 21 + 601).

MTE-BN-DNN: This is a DNN with the same input and out-
put features as FE-BN-DNN, but trained with the pro-
posed minimum trajectory error training criterion. It
was initialised from the converged FE-BN-DNN. Mo-
mentum was set to 0.8 for the first 10 epochs, and after

that changed to 0.9. The learning rate was set to 0.04 for
the first 10 epochs, and after that it was halved at each
epoch.

Note that in all the neural nets, the top two layers used a
halved learning rate compared to lower layers. In the implemen-
tations of above systems, CUDAMat1 was employed, to enable
training on a GPU.

4.2. Objective evaluation

We first conducted an objective evaluation to assess the per-
formance of the proposed training criterion. Although objec-
tive evaluation results do not always correlate well with per-
ceived quality, objective evaluation is still useful for tuning
DNN hyper-parameters (such as learning rate, layer sizes, etc),
which affect performance considerably.

First, we checked the convergence properties of the pro-
posed training criterion. Fig. 4.2 presents the mean squared
error of MTE-BN-DNN on training and development sets as
a function of the number of training epochs. Note that error
is measured after MLPG, since these are the acoustic features
that will be used to generate speech. It can be observed that
the new criterion reduces the trajectory error, which converges
after about 15 iterations on both training and development sets.
We note that the error jump at the 11th epoch is normal and
expected, since we changed the momentum value at that epoch;
this phenomenon was reported in [19].

Figure 2: Convergence of minimum trajectory error training for
the DNN with stacked bottleneck features (MTE-BN-DNN)

Second, we compared the objective distortions of DNNs
with and without the new training criterion on the testing set.
The results are presented in Table 1. Compared to FE-DNN,
both MCD and F0 RMSE of MTE-DNN are reduced from 4.19
dB and 9.13 Hz to 4.12 dB and 8.93 Hz, respectively. In com-
parison with FE-BN-DNN, MTE-DNN considers dynamic fea-
ture constraints at output acoustic level by minimising the tra-
jectory errors, while FE-BN-DNN uses temporal constraints
at the input linguistic feature level by stacking bottleneck fea-
tures. The objective results suggest that only stacking contex-
tual bottleneck features is more effective than only consider-

1https://github.com/cudamat/cudamat

https://github.com/cudamat/cudamat
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Figure 1: Trajectories of the 5th Mel-Cepstral Coefficient (MCC) of reference natural speech and those predicted by baseline FE-DNN
and proposed MTE-BN-DNN systems.

ing dynamic constraints at the output acoustic level. However,
combining both gives the best overall performance: MTE-BN-
DNN achieves a 0.04 dB reduction in MCD compared to FE-
BN-DNN, with similar F0 RMSE performance.

Table 1: Objective results. MCD = Mel Cepstral Distortion.
Root mean squared error (RMSE) of F0 was computed in lin-
ear frequency. V/UV error means frame-level voiced/unvoiced
error.

MCD F0 V/UV error
(dB) RMSE (Hz) rate (%)

FE-DNN 4.19 9.13 4.24
MTE-DNN 4.12 8.93 4.28
FE-BN-DNN 4.03 8.91 3.97
MTE-BN-DNN 3.99 8.97 4.02

Fig. 4.2 illustrates the trajectories of the 5th MCC of natu-
ral speech and those predicted by the baseline FE-DNN and the
proposed MTE-BN-DNN systems. It is observed that both sys-
tems can predict reasonable trajectories. The proposed system
predicts a trajectory that is on average closer to the reference
natural speech. In general, the objective evaluation results con-
firm the effectiveness of minimum trajectory error as a training
criterion, suggesting that acoustic model accuracy can indeed
be improved with the proposed method.

4.3. Subjective evaluation

We then conducted a subjective evaluation to assess the nat-
uralness of the synthesised speech via preference tests. We
considered four pairs: FE-DNN vs MTE-DNN, FE-BN-DNN
vs MTE-BN-DNN, FE-BN-DNN vs MTE-DNN and MTE-BN-
DNN vs MTE-DNN. 27 paid native English speakers partici-
pated. Each listener was asked to listen 20 randomly selected
pairs. In each pair, the listener was asked to listen to pairs
of spoken utterances (each half of the pair was the same text
generated from differing systems), and then decide which one
sounded more natural.

The preference results are presented in Fig. 4.3. First, let us
examine the effectiveness of the proposed MTE training crite-
rion. It can be observed that MTE-DNN is significantly better
than FE-DNN. MTE-BN-DNN also achieves a slightly a higher

preference score than FE-BN-DNN, although the difference is
not significant.
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Figure 3: Preference test results for naturalness.

We can also compare the two ways of including temporal
constraints by comparing with MTE-DNN and FE-BN-DNN.
FE-BN-DNN is significantly better than MTE-DNN in terms of
naturalness. This indicates that stacking bottleneck feature at
the input level is more effective than considering only temporal
constraints at the output acoustic feature level.

Last, we assessed whether the integration of minimum tra-
jectory error criteria and stacked bottleneck features is effec-
tive. MTE-BN-DNN is significantly better than MTE-DNN that
does not have stacked bottleneck features, and has a slightly (but
not significantly) higher listener preference than FE-BN-DNN,
which does not use minimum trajectory error criteria. It appears
that the minimum trajectory error criterion and stacked bottle-
neck features approaches are complementary.

5. Conclusions
In this paper, we proposed a new training criterion for DNN-
based speech synthesis, which minimises the trajectory error
rather than frame-by-frame error. We integrated the training cri-
terion with our previously-proposed stacked bottleneck features
and obtained significantly improvement over a baseline DNN
system in terms of naturalness.

The samples used in the listening tests are vailable on-
line via: http://datashare.is.ed.ac.uk/handle/
10283/786.
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