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ABSTRACT

This paper presents a sparse representation framework for
weighted frequency warping based voice conversion. In this method,
a frame-dependent warping function and the corresponding spectral
residual vector are first calculated for each source-target spectrum
pair. At runtime conversion, a source spectrum is factorised as a
linear combination of a set of source spectra in the training data.
The linear combination weight matrix, which is constrained to be
sparse, is used to interpolate the frame-dependent warping functions
and spectral residual vectors. In this way, the proposed method
not only avoids the statistical averaging caused by GMM but also
preserves the high-resolution spectral details for high-quality con-
verted speech. Experiments are conducted on the VOICES database.
Both objective and subjective results confirmed the effectiveness of
the proposed method. In particular, the spectral distortion dropped
from 5.55 dB of the conventional frequency warping approach to
5.0 dB of the proposed method. Compare to the state-of-the-art
GMM-based conversion with global variance (GV) enhancement,
our method achieved 68.5 % in an AB preference test.

Index Terms— Voice conversion, frequency warping, sparse
representation, exemplar, residual compensation

1. INTRODUCTION
Voice conversion (VC) is a technique to transform the speech of
one speaker (source) so that it sounds like it was uttered by an-
other speaker (target) without changing the language context. The
challenge is how to modify or transform the source speech param-
eters to match the target parameters while maintaining high speech
quality. A number of statistical parametric approaches have been
proposed, such as linear transformation implemented by Gaussian
mixture model [1, 2, 3, 4] and partial least squares regression [5];
nonlinear transformation through neural network [6, 7, 8] and kernel
partial least squares regression [9].

However, one of the major issues on the statistical parametric
approaches is their attempts to minimise the difference between the
converted and target features, or to maximise the joint likelihood of
the source and target features. These optimisation criteria often in-
troduce statistical averaging, which leads to over-smoothing in the
converted speech. To address this problem, a number of research
works appear recently. In [4], global variance enhancement was
proposed to model the dynamics of natural speech, which improved
the converted speech quality significantly. Other efforts include the
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non-parametric exemplar-based voice conversion, which directly use
speech exemplars to synthesize the converted speech [10, 11, 12].
Operating on high-resolution spectra, exemplar-based methods are
able to keep more spectral details.

An alternative way to avoid over-smoothing is to perform fre-
quency warping (FW) based voice conversion, which shifts the fre-
quency axis of the source spectra to that of the target. As the warping
process does not remove any spectral details, FW methods facilitate
the quality of converted speech. Several frequency warping based
approaches have been proposed in the literature, such as vocal tract
length normalization (VTLN) [13, 14], bilinear frequency warping
(BLFW) [15] and correlation-based frequency warping (CFW) [16].
One of the successful methods is the weighted frequency warping
(WFW) [17] with amplitude scaling (AS) [18]. WFW implements
smooth warping through soft clustering based on GMM. On top of
WFW, AS further shifts the amplitude of the warped spectra to match
the target counterpart. Nevertheless, both WFW and AS heavily rely
on GMM-based clustering. The statistical averaging nature of GMM
inevitably reduces the variation in the converted speech, limiting the
speech quality.

In this work, we propose a novel framework, named sparse rep-
resentation for weighted frequency warping. In this framework, we
first compute a warping function for each source-target frame pair.
Then the corresponding amplitude difference between the warped
and reference spectra, named spectral residual, is calculated. The
warping functions and spectral residual vectors are treated as exem-
plars, similar to the spectrum exemplars in [12]. At runtime, each
source spectrum is factorised as a linear combination of a set of
source spectra in the training data. The linear combination weights,
in the form of a sparse matrix, are used to interpolate the correspond-
ing warping functions and spectral residual exemplars. The resultant
weighted warping function is finally used to warp the source spec-
trum, then followed by the compensation by the weighted spectral
residual vector. In practice, the linear combination weights are esti-
mated by nonnegative matrix factorisation (NMF) technique similar
to that in [12]. Note that this bypasses the computation of posterior
probability associated to each Gaussian component in GMM-based
approaches.

There are three advantages of our proposed method over the
GMM-based weighted frequency warping:

a) High-resolution spectrum is directly used without any dimen-
sion reduction, for the estimation of linear combination weights,
warping functions and spectral residuals.

b) Due to the sparsity constraint, only a small set of warping func-
tions and spectral residual vectors are used to generate the tar-
get spectrum. Thus, the over-smoothing problem is avoided and
converted speech will become lively.



c) It offers more flexibility than the GMM-based framework. For
example, wide acoustic context is applicable to compute the
weighted warping function and spectral residual.

2. PROBLEMS IN CONVENTIONAL WEIGHTED
FREQUENCY WARPING

Weighted frequency warping (WFW) [17] is a popular implementa-
tion to produce smooth warping functions and avoid discontinuity
across frames [19]. During WFW training, given N pairs of source
X and target Y features, Z = [X;Y], where zn = [xn;yn] de-
notes the nth joint vector forming Z. GMM with K mixtures is first
employed to model the joint density. After that, a warping function
wk(f) is computed between the source and target of the joint mean
vector, µ(Z)

k = [µ
(X)
k ;µ

(Y)
k ] which is computed as

µ
(Z)
k =

N∑
n=1

zn · γn,k, (1)

where γn,k is the occupation probability of the nth vector belonging
to the kth Gaussian component.

In the conversion phrase, for each observation frame x, x(DFT)

denotes its spectrum, the warping function is calculated by interpo-
lating pre-computed warping functions {w(f), . . . wK(f)} as:

w(x, f) =

k∑
k=1

pk(x) · wk(f), (2)

where pk(x) is the posterior probability of x belonging the kth

Gaussian component. Hence, the converted spectrum y(DFT)
′

is
obtained by applying the warping function on the source spectrum
x(DFT) as

y(DFT)
′

= x(DFT)(w−1(x, f)). (3)

To further improve the performance, an amplitude scaling tech-
nique, proposed in [18], was used to compensate the amplitude dif-
ference between the warped and target spectra. As the difference
is usually computed in log-amplitude scale, and similar to residual
compensation (RC) in exemplar-based voice conversion [12], we de-
note it as RC throughout this paper. Given the frame xn, the resid-

ual spectrum rn between the warped y
(DFT)

′

n and reference y(DFT)
n

spectrum can be computed as

rn = logy(DFT)
n − logx(DFT)

n (w−1(xn, f)). (4)

Similar to Eq. (1) and (2), the residual compensation vector for
each observation frame x could be computed as

r′ =
K∑

k=1

pk(x) · µ(R)
k =

K∑
k=1

pk(x) ·
N∑

n=1

rn · γn,k, (5)

where µ(R)
k and pk(x) are the spectral residual vector and corre-

sponding posterior probability of kth Gaussian component respec-
tively.

The final converted spectrum is written as

logy(Conv) = logy(DFT)
′

+ r′ (6)

= logx(DFT)(

k∑
k=1

pk(x) · wk(f))
−1 +

K∑
k=1

pk(x) · µ(R)
k

Although current weighted frequency warping with residual
compensation works well and produces higher quality speech than

statistical parametric voice conversion, there are limitations in cur-
rent implementation as shown in Eq. (6): a) rely on low-dimensional
features to compute occupation probabilities γn,k and posteriori
probability pk(xn); b) problematic occupation probabilities will
distort the fine structures the mean vectors µ(X)

k and µ(Y)
k , which

lead to a inaccurate warping function; c) small number of mixtures
cannot introduce variation in the converted speech. These problems
are all rooted in GMM. This work, is hence, aimed for a high-quality
voice conversion framework for frequency warping without the use
of GMM.

3. PROPOSED SPARSE REPRESENTATION BASED
FREQUENCY WARPING

Motivated by the success of exemplar-based voice conversion [10,
11, 12], where each target spectrum is generated as a linear combi-
nation of a set of spectrum exemplars, an sparse representation based
weighted frequency warping is proposed in the following. Without
relying on GMM and low-resolution features, we preserve the spec-
tral details in both the warped spectrum and residual spectrum.

The proposed framework is presented in Fig. 1, which consists
of three stages: a) dictionary construction; b) frequency warping and
c) residual compensation. We will explain the details of each stage
in this Section.
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Fig. 1. Block digram of sparse representation based weighted fre-
quency warping with residual compensation system. WF stands for
warping function.

3.1. Dictionary construction
The dictionary construction stage is the only offline process in this
framework. Alternative to the conventional GMM-based WFW or
statistical parametric conversion approaches, there is no training
stage in this framework, but dictionary construction instead.

Given the parallel training data, the source A = [a1,a2,
· · · ,an, · · · ,aN ] and target B = [b1,b2, · · · ,bn, · · · ,bN ] dic-
tionaries can be obtained by dynamic time warping (DTW). We



note that an and bn, the exemplar version of x(DFT)
n and y

(DFT)
n ,

denote the spectra corresponding to xn, and yn, respectively. Note
that, during the conversion phrase, only voiced frames will be trans-
formed, thus the source and target dictionaries only contain voiced
frames. For each paired spectrum [an;bn], a warping function
wn(f) could be obtained. The warping function dictionary W can
be express as

W = [w1, w2, · · · , wn, · · · , wN ] (7)

Similarly, each source frame is associated with a spectral residual
vector rn, which is computed from the warped spectrum and ref-
erence spectrum in log-scale, similar to Eq. (4). In order to use
the matrix factorisation technique which is to be detailed in the next
section, we exponentiate rn as r(EXP)

n , denoted as

R(EXP) = [r
(EXP)
1 , r

(EXP)
2 , · · · , r(EXP)

n , · · · , r(EXP)
N ] (8)

Smoothed Warping Function: Because the spectrogram is
smooth as long as source and target exemplars are continuous in
time domain, the corresponding warping functions should be also
smooth in such regions. However, the quality of warping function
depends on other techniques as well, such as formant estimation.
Thus, abrupt transition may appear even in continuous frames. In
this work, a moving average filter is applied on the warping functions
in W in continuous time domain (sentence by sentence) to prevent
such discontinuity. The smoothing is applied before computing the
spectral residual.

3.2. Frequency warping based conversion through exemplars

Three dictionaries A, W and R(EXP) govern the runtime conver-
sion process, that is the frequency warping conversion. As there is
close correspondence between dictionaries, we assume that the same
activation weights for interpolation are shared among the them.

At runtime, each source spectrum x(DFT) can be factorised as
linear combination of source spectrum exemplars in A, express as

x(DFT) ≈ A · h, (9)

where h is the activation vector, each element of which is a weight of
the corresponding exemplar in source dictionary. As the constraint
of the dictionaries A, W and R(EXP) to be nonnegative, the activa-
tion vector can be estimated by the nonnegative matrix factorisation
technique [20, 21] with criteria of minimising the following objec-
tive function

h = argmin
h≥0

d(x(DFT),Ah) + λ‖h‖1, (10)

where λ is the sparsity penalty factor, and ‖h‖1 means L1 norm on
the activation vector. Technique details can be found in [21, 12].

The warping function of the source spectrum x(DFT) can be ob-
tained as

w
′
(f) = W · h, (11)

where W is the warping function dictionary, h is the corresponding
activation vector. After that, Eq. (3) can be applied directly to warp
the source spectrum.

As each frame can be factorised and warped independently, the
activation matrix H can be estimated directly by factorising the
whole spectrogram X(DFT), as illustrated in Fig. 1 (b). Similarly,
the warping functions W

′
(f) of the whole spectrogram can be

calculated as
W

′
(f) = W ·H, (12)

Then, the warped spectrogram Y(DFT)
′

could be obtained by ap-
plying the warping functions W

′
(f) to the corresponding source

spectrogram X(DFT).

3.3. Residual compensation

Similar to the warping function calculation in Eq. (12), the same
activation matrix H is used for the residual spectrogram calculation

R(EXP)
′

= R(EXP) ·H, (13)

The residual spectrogram compensates the warped spectrogram

Y(DFT)
′

to generate the final converted spectrogram Y(Conv) in
log-scale

logY(Conv) = logY(DFT)
′

+ logR(EXP)
′

(14)

4. EVALUATION

We used the VOICES database [2] to assess the proposed method.
Two male (jal and jcs) and two female (leb and sas) speakers were
selected to conduct inter-gender and intra-gender conversions, in-
cluding jal to jcs (M2M), jal to sas (M2F), leb to jcs (F2M) and
leb to sas (F2F). 20 parallel utterances of each speaker were used as
training data, while another non-overlapping 20 utterances for eval-
uation.

The speech signals were downsampled to 16 kHz. STRAIGHT
[22] was used to extract 513-dimensional spectrum, 5 band ape-
riodicity measures and logF0. 25-dimensional Mel-Cepstral Co-
efficients (MCCs) and 15-dimensional linear spectrum frequencies
(LSFs) were also used for the spectrum. In all the conversion meth-
ods, we used the same frame alignment, which was obtained by per-
forming DTW on the MCC feature sequence.

In the experiments, we considered several state-of-the-art meth-
ods as our baselines, including WFW with residual compensation1,
and joint density GMM (JD-GMM) with global variance (GV) en-
hancement [4]2.

• ML-GMM: The JD-GMM with maximum likelihood parameter
generation method as proposed in [4], was used as a reference
baseline. In subjective test, post-filtering based GV enhance-
ment as proposed in [23] was employed for better converted
speech quality. MCC features were used to train the model, the
optimal number of Gaussian mixtures was 64.

• WAMF: The classic weighted frequency warping (WFW) [17]
with GMM-based residual compensation (or amplitude scal-
ing) [18]. Automatic mapping of formants (AMF) method [17]
was used to map the formants of source and target spectral pair
with the constraint of minimum spectral distortion. Then, the
warping function was defined by aligned formant pairs. LSFs
feature was used for formant estimation, and the number of
Gaussian components was set to 32, which is empirically found
by the spectral distortion results.

• WCFW: The weighted correlation-based frequency warping
[16] with GMM-based residual compensation. Spectral en-
velopes were used to find the warping function, based on for-
mant segmentation. The segment boundary shift was constrained
within 100 Hz.

• NMF-AMF: A variation of our proposed sparse representation
based WFW with residual compensation, where the warping
function is based on AMF.

• NMF-CFW: Another variation of our proposed method, where
the warping function is based on our recently proposed CFW.

1As the difference is usually computed in log-amplitude scale, and similar
to residual compensation (RC) in exemplar-based voice conversion [12], we
denote it as RC rather than amplitude scaling, as in [18].

2Global variance (GV) enhancement was only applied in the listening test.



Only the performance with residual compensation will be re-
ported for the frequency warping based methods. In order to achieve
accurate activation weights as suggested in [12], in NMF-based ap-
proaches, NMF-AMF and NMF-CFW, a spectral compression factor
was set to 0.4, which is based on our experimental results, and used
in Eq. (9). In all the conversion methods, band aperiodicities (BAPs)
were not converted, while F0 was converted by a global linear trans-
formation in log-scale.

4.1. Objective Evaluation
We conducted objective evaluation to assess the proposed method.
The Mel-Cepstral Distortion (MCD) [4] was employed as the ob-
jective measure. The average MCD result over all evaluation pairs
was reported. A lower MCD value indicates smaller distortion. As
the frequency warping method was just applied on the voiced frame,
only voiced frames were used in the MCD calculation.

Table 1. Comparison of spectral distortions of different conversion
methods.

Conversion Method Unsmoothed WF Smoothed WF
WAMF 5.84 (dB) N/A
WCFW 5.55 (dB) N/A

NMF-AMF 5.85 (dB) 5.61 (dB)
NMF-CFW 5.14 (dB) 5.0 (dB)

Table 1 presents the MCD results for the frequency warping
based methods involved in this work. In the GMM-based weighted
frequency warping, as the single warping function was shared by
each Gaussian, hence it is impossible to apply further smooth func-
tion. Comparing with WAMF, WCFW achieves a lower MCD, that
is 5.55 dB over 5.84 dB of WAMF. It confirms the effectiveness of
the CFW, and is consistent with our previous work [16].

Next, in comparison with WAMF, NMF-AMF achieves a sim-
ilar MCD when the warping functions are not smoothed. How-
ever, a large improvement is observed then the warping functions
are smoothed, that is from 5.85 dB to 5.61 dB. This implies the im-
portance of smoothed warping functions to our sparse representa-
tion framework. Comparing with NMF-CFW and WCFW, the MCD
drops from 5.55 dB of WCFW to 5.14 dB of NMF-CFW in the
case of unsmoothed warping functions. Similarly, when the warp-
ing functions are smoothed, another 0.14 dB distortion reduction is
observed. It confirms the effectiveness of the proposed sparse repre-
sentation framework and the importance of smoothed warping func-
tions, which can only be implemented in our framework.

Within the sparse representation framework, NMF-CFW has a
0.71 dB improvement in the case of unsmoothed warping functions
over NMF-AMF, and a 0.61 dB improvement with smoothed warp-
ing functions. The improvement is much larger than that in the
GMM-based framework. It confirms the effectiveness of the CFW,
which is more efficient than AMF within the sparse representation
framework.

Although the proposed method improves the MCD considerably
in comparison to the other state-of-the-art frequency warping based
approaches, the MCD of ML-GMM method achieves further 0.46
dB reduction with an MCD of 4.54 dB. However, objective results
do not always correlate with subjective evaluation, especially be-
tween different categories of VC approaches, which was reported in
previous work [15, 17, 18]. This phenomenon is also observed in
our subjective evaluation, as detailed in next section.

4.2. Subjective Evaluation
We conducted listening tests to assess both speech quality and
speaker similarity. 10 subjects participated in all the listening tests.
The smoothed warping functions are used in both NMF-AMF and

NMF-CFW methods. Here, GV enhancement [23] is employed in
the ML-GMM method, which is proved slightly outperform than the
NMF voice conversion method mentioned in [12].

We first performed AB preference tests to assess speech quality.
20 pairs were randomly selected from the 80 paired samples. In each
pair, A and B were the samples from the proposed method and one of
the baseline methods, respectively, in a random order. Each listener
was asked to listen to both samples and then decide which sample is
better in term of quality.

We then conducted an XAB test to assess the speaker similarity.
In the test, similar to the AB preference test, 20 pairs were selected
from the 80 paired samples. In each pair, X was the reference target
sample, A and B were the converted samples of comparison methods
listed in the first column of Table 2, in a random order. We note that
X, A and B have the same language content. The listeners were
asked to listen to the sample X first and then A and B, after that, they
should decide which sample is closer to the reference target sample.

Table 2. Results of average quality and similarity preference tests
with 95% confidence intervals for different methods.

Conversion method Preference score(%) (95% confidence interval)
Quality test Similarity test

WAMF 23 (± 4.43) 29 (± 7.17)
WCFW 77 (± 4.43) 71 (± 7.17)

NMF-AMF 34 (± 7.31) 33.5 (± 7.47)
NMF-CFW 66 (± 7.31) 66.5 (± 7.47)

WCFW 21 (± 7.56) 38.5 (± 6.8)
NMF-CFW 79 (± 7.56) 61.5 (± 6.8)

ML-GMM (GV) 31.5 (± 10.09) 46.4 (± 10.75)
NMF-CFW 68.5 (± 10.09) 53.6 (± 10.75)

The subjective results are presented in Table 2. First, we com-
pare the CFW and AMF approaches. It is clear that, in both quality
and similarity tests, CFW approach achieves much higher prefer-
ence score than AMF method in both frameworks. Then, we make a
comparison between WCFW and NMF-CFW to examine the perfor-
mance of sparse representation and GMM based framework. It is ob-
served that NMF-CFW achieves significant improvement to WCFW
in both quality and similarity. The above results confirm the effec-
tiveness of the proposed method, and they were consistent with the
spectral distortion results in Section 4.1.

Finally, the quality and similarity performance is compared
between NMF-CFW and ML-GMM (GV), which is the state-of-
the-art voice conversion method. The results indicates that with
comparable speaker similarity to the ML-GMM (GV) method,
NMF-CFW achieves noticeable improvement in speech quality,
and the improvement is significant. This confirms the effectiveness
of our proposed method. (Converted samples are available via:
http://www.listeningtests.net/voiceconversion/xhtian2015icassp).

5. CONCLUSION

This paper proposed a sparse representation framework for fre-
quency warping based voice conversion. By using exemplar-based
framework, our proposed method not only preserves the speech qual-
ity but also bypasses the over-smoothing problem. The objective and
subjective evaluation results indicate that, proposed method achieves
lower spectral distortion and higher preference score in comparison
with frequency warping methods. Moreover, compare to ML-GMM
(GV) method, the proposed method produces significantly higher
quality speech without decreasing the similarity.

With the flexibility of the sparse representation framework,
we will include long-term contextual information for temporal
constraint for frequency warping and residual compensation as a
follow-up work.
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