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ABSTRACT
Unsupervised speech processing methods are essential for ap-
plications ranging from zero-resource speech technology to
modelling child language acquisition. One challenging prob-
lem is discovering the word inventory of the language: the
lexicon. Lexical clustering is the task of grouping unlabelled
acoustic word tokens according to type. We propose a novel
lexical clustering model: variable-length word segments are
embedded in a fixed-dimensional acoustic space in which
clustering is then performed. We evaluate several clustering
algorithms and find that the best methods produce clusters
with wide variation in sizes, as observed in natural language.
The best probabilistic approach is an infinite Gaussian mix-
ture model (IGMM), which automatically chooses the num-
ber of clusters. Performance is comparable to that of non-
probabilistic Chinese Whispers and average-linkage hierarchi-
cal clustering. We conclude that IGMM clustering of fixed-
dimensional embeddings holds promise as the lexical cluster-
ing component in unsupervised speech processing systems.

Index Terms— Lexical clustering, unsupervised learning,
fixed-dimensional embeddings, lexical discovery.

1. INTRODUCTION

In the last few decades, considerable advances have been made
in supervised speech recognition for several languages. How-
ever, for most of the approximately 6 500 languages spoken
in the world, speech applications are not being developed.
Despite audio data collection efforts for under-resourced lan-
guages,1 the transcription of audio remains a major obstacle
in system development. Unsupervised methods that can learn
linguistic structure directly from the speech signal would al-
low ‘zero-resource’ technology [1] to be developed without
transcriptions or pronunciation dictionaries.

Work from two different communities is relevant to this
problem. In speech technology, unsupervised techniques have
been applied to tasks such as phonetic discovery [2, 3], lexical
discovery [4, 5, 6], spoken document retrieval [7] and query-
by-example search [8, 9]. In this community, lexical discovery

1See e.g. www.oralliterature.org and www.endangeredlanguages.com.

involves finding repeated word-sized patterns while treating
the rest of the data as background [4]. Meanwhile in the scien-
tific cognitive modelling community, unsupervised techniques
are used to model how infants learn phonetic categories and a
lexicon for their native language [10]. Here, models of lexical
discovery perform full-coverage segmentation of data into a
sequence of words (proposing word boundaries for the entire
input), but take as input phonemic [11, 12] or phonetic [13, 14]
symbol sequences rather than speech audio.

In addition to the desired full-coverage segmentation, these
cognitive models can learn a language model during segmen-
tation; this has been shown to greatly improve the accuracy
of both segmentation and lexical discovery [11, 14]. Our ulti-
mate goal is therefore to extend this approach to the continuous
speech domain, developing what is essentially an unsupervised
speech recognition system. That is, our envisioned architec-
ture would jointly (i) hypothesize a complete segmentation of
the input speech into word-like segments (tokens); (ii) cluster
the tokens into lexical items (word types) and relate them to
the underlying acoustics; and (iii) estimate a language model
over the discovered types. Compared to current unsupervised
speech technology (which mostly focus only on finding re-
peated snippets), the proposed system would enable tasks such
as query-by-example search and unsupervised speech indexing
(grouping together related utterances in a speech database) to
be performed in a manner similar to their supervised counter-
parts. Furthermore, the system could be used as a cognitive
model that learns from acoustic input rather than transcribed
speech, and could thus be used to test hypotheses about the
connections between phonetic and lexical learning in infants.

Some of the subtasks needed for this complete system
have been investigated elsewhere. For example, [2] and [3]
considered tasks (i) and (ii), but at the phone rather than
word level; an additional layer would be required for the full
model. [13], [15] and [16] considered (iii), but took phone
lattices from supervised systems as input. The most complete
work similar to what we envision is [17], but their approach
was tested on small-vocabulary prompted speech and requires
pre-specifying the number of lexical items; we are working
towards a probabilistic model for conversational speech.

In this paper we consider the lexical clustering compo-
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nent (ii) in isolation, assuming perfect segmentation (i). The
aim of the clustering component is to cluster unidentified seg-
mented word tokens (i.e. different realizations of words) ac-
cording to the word types (i.e. the unique word-forms) to
which they belong. Since the clustering component provides
a mapping from the vectorized speech signal to a categorical
structure, it could be described as the acoustic model of an
unsupervised system (operating at the word level, in our case).

Dynamic time warping (DTW) is a standard way of mea-
suring the similarity between speech segments of differing du-
ration. However, Levin et al. [18] recently showed that embed-
ding variable-length speech segments in a fixed-dimensional
space can yield more efficient similarity comparisons that are
at least as accurate as DTW. A major advantage of embedding
in a fixed-dimensional space is that a wide variety of standard
clustering algorithms are then applicable. Two scenarios were
considered in [18]: in one a set of unidentified word exemplars
are available, in the other the exemplar labels are known.

We evaluate several clustering algorithms on embeddings
of segmented word tokens in these two settings. We focus
on probabilistic approaches since they can eventually be in-
tegrated into existing word segmentation models [11, 12] in
the probabilistic framework. For completeness and to better
understand the embeddings, we compare these to standard non-
probabilistic clustering algorithms. The aim of this paper is to
show that clustering fixed-dimensional acoustic embeddings
of word segments is viable as a lexical clustering model.

2. EMBEDDING SPEECH SEGMENTS IN A
FIXED-DIMENSIONAL SPACE

The goal in [18] was to find a function that maps variable-
length acoustic speech segments to a high-dimensional contin-
uous space in which smaller distances correspond to greater
similarity of linguistic content. We use the notation Y =
y1,y2, . . . ,yT to denote a vector time series of arbitrary
length, where each yt ∈ RK is the frame-level acoustic fea-
ture representation of the signal (e.g. MFCCs or PLPs). Given
two series Y1 and Y2, the goal is to find a mapping f into RD

such that the resulting vectors f(Y1) and f(Y2) are near each
other if and only if series Y1 and Y2 are linguistically similar.
As in [18], we restrict ourselves to word segments in this study.
Two relevant embedding scenarios were considered:

1. UnsupTrain: A set of unidentified exemplars are available
Ytrain = {Yi}Ntrain

i=1 .

2. SupTrain: In addition to Ytrain, the true word type of ev-
ery exemplar is known. An unsupervised word discovery
system [4, 6] could be used to construct such a labelled set.

In both cases a similar strategy is followed. For each vector
time series Y in Ytest, a reference vector is constructed by
calculating the DTW alignment cost to every exemplar in a
reference set Yref ⊆ Ytrain. Applying dimensionality reduction
to this reference vector then gives the desired embedding in

RD. The associated projection maps are estimated only on
Ytrain, and are then applied to the target out-of-sample set
Ytest. Although this still requires calculating a potentially large
number of DTW alignment costs, the number of calculations is
linear in the size of the test set if the reference set size is fixed.

Several dimensionality reduction techniques were com-
pared in [18] using the same-different task [19]. This task
quantifies the ability of a speech representation to associate
words of the same type and to discriminate between words of
different types. The same-different score of standard DTW
on the original speech feature vectors were used as a baseline
for comparing the different fixed-dimensional representations
resulting from different dimensionality reduction operations.
For UnsupTrain, Laplacian eigenmaps with a kernel-based out-
of-sample extension (a non-linear graph embedding technique)
performed similarly to DTW with 15-dimensional frequency-
domain linear prediction features as input. For SupTrain,
where the true word labels were used, linear discriminant
analysis outperformed DTW with 39-dimensional perceptual
linear prediction (PLP) features as input. In both cases cosine
distance outperformed Euclidean distance as similarity mea-
sure. In this study we use these best approaches from [18]. We
normalize all embeddings to the unit sphere so that Euclidean
is equivalent to cosine distance up to a static non-linearity.

In this paper we use the same data as in [18]. Two sets
Ytrain and Ytest were extracted from the Switchboard English
corpus, including only words of at least 6 characters and 0.5 s
in duration. Ytrain consists of 10 383 tokens with 5539 types.
This set was constructed to cover several word types; it was
extracted from 360 conversation sides with 156 unique speak-
ers, with at most 5 tokens from any word type and each token
for a given type from a different speaker. Ytest consists of
11 024 tokens with 3392 types. This set was constructed to re-
flect a content word distribution encountered in conversational
speech; it was extracted from 360 conversation sides with 236
unique speakers, none in the training set, by taking all words
with the minimum length requirement. The standard deviation
of the number of tokens per type is 7.06 for this set. We use
the full Ytrain as reference set and embed the tokens in Ytest to
obtain the set of embedding vectors X = {xi}Ni=1. In all cases
we use 50-dimensional embeddings.

3. CLUSTERING ALGORITHMS

Since our ultimate aim is a probabilistic unsupervised model
of segmentation, lexical category learning and language mod-
elling, we are primarily interested in probabilistic clustering
approaches. However, for comparison and to investigate the
properties of the embedding representation, we also consider
state-of-the-art non-probabilistic clustering approaches.

3.1. Probabilistic approaches

We explore three types of Gaussian mixture models (GMMs).
Each determines the posterior probability that an embedding
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vector xi belongs to the kth (of K) mixture component by
multiplying the mixture weight πk = p(zi = k), where zi
indicates the latent cluster to which xi is assigned, by the
likelihood p(xi|zi = k). The three GMMs differ in their
training algorithms and prior distributions over πk.

3.1.1. EM Gaussian mixture model (EMGMM)

The finite GMM has the form:

p(x) =

K∑
k=1

πkN (x|µk,Σk) (1)

where µk is the mean vector and Σk the covariance matrix
of the kth Gaussian component. Treating π = {πk}Kk=1,
{µk}Kk=1 and {Σk}Kk=1 as parameters, the expectation maxi-
mization (EM) algorithm can be used to fit the model under the
maximum likelihood criterion on training data X = {xi}Ni=1.
We refer to this model as the EMGMM (Figure 1, left).

3.1.2. Finite Bayesian Gaussian mixture model (FBGMM)

When dealing with high-dimensional data, fitting the param-
eters of the EMGMM can be difficult because of the many
free parameters. A Bayesian approach can alleviate this prob-
lem by treating Θ = (π, {µk}, {Σk}) as random variables
and working with distributions over Θ rather than point esti-
mates. Doing so requires specifying prior distributions on Θ.
To allow us to marginalize over the parameters (see below),
we use conjugate priors: a symmetric Dirichlet prior for the
mixture weights π and a Normal-inverse-Wishart (NIW) prior
for the component parameters µk and Σk. The finite Bayesian
Gaussian mixture model (FBGMM) is defined as:

π ∼ Dir (α/K1) (2)
zi ∼ π (3)
µk,Σk ∼ NIW(m0, κ0, ν0,S0) (4)
xi ∼ N (µzi ,Σzi) (5)

and is shown in Figure 1 (middle), with β = (m0, κ0, ν0,S0).
Given X , we infer the component assignments z =
(z1, z2, . . . , zN ) using a Gibbs sampler, which iteratively sam-
ples the value of each zi in turn, conditioned on the current
values of (z1, . . . , zi−1, zi+1 . . . zN ) and marginalizing over
Θ; see [20, §24.2.4], [21] for details. After convergence the
sampler returns samples from the posterior P (z|X , α,β).

3.1.3. Infinite Gaussian mixture model (IGMM)

For both the EMGMM and FBGMM we need to specify the
number of mixture components K. The infinite Gaussian
mixture model (IGMM; Figure 1, right) is a non-parametric
Bayesian model which extends the FBGMM so that the (po-
tentially infinite) number of components is inferred automat-
ically [22]. This is achieved by replacing the Dirichlet prior
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Fig. 1. From left to right: the standard EMGMM, the finite
Bayesian GMM (FBGMM), and the infinite GMM (IGMM).

with a Dirichlet process prior. In the mixture model formula-
tion, we define π ∼ GEM(α) to replace equation (2) (see [20,
§25.2.3] for details); equations (3) to (5) are unchanged. GEM
refers to the stick-breaking distribution, a particular construc-
tion of the Dirichlet process. Marginalizing over z reveals the
infinite mixture model, with the form of (1) but with K =∞.

We again use collapsed Gibbs sampling for inference [20,
§25.2], [21]. We found that both the FBGMM and IGMM
converge after about 15 iterations, but we used 25 iterations
for all experiments. For both models we set α = 1, as in [21].
The interpretation of the parameters of the NIW prior in (4)
is as follows [20, p. 133]: m0 is our prior mean for µk; κ0
is how strongly we believe this prior; S0 is proportional to
our prior mean for Σk; and ν0 is how strongly we believe
this prior for Σk. As in [21], we set m0 to the global sample
mean and set κ0 = 0.05. We set ν0 = 1000 after initial
experiments showed stable performance for values in the range
ν0 ∈ [850, 3000]. These values are large compared to those
reported elsewhere [20, 21], which indicates that our data
requires a strict prior on the cluster covariances. Performance
was found to be most sensitive to the S0 parameter. Selection
of this parameter is discussed in Section 4.3. The same hyper-
parameters were used for the FBGMM and IGMM.

3.2. Non-probabilistic approaches

We experimented with three non-probabilistic approaches:
K-means clustering: This method iteratively reassigns

each vector to the cluster with the closest mean. The number
of clusters must be specified beforehand. The algorithm results
as a special case of the EMGMM (Section 3.1.1) as σ2 → 0 if
all covariance matrices are set to σ2I [23, p. 446]. We use the
implementation in [24] which uses kmeans++ initialization.

Hierarchical clustering (HC): We use greedy agglomer-
ative clustering on the normalized embeddings, merging until
the desired number of clusters is reached The linkage function
we found to work best is average linkage, defined between clus-
ters A and B as 1

|A| |B|
∑

a∈A
∑

b∈B D(a,b), where D(·, ·)
is the (Euclidean) distance metric. Using cosine distance on
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the unnormalized embeddings gave identical results.
Chinese whispers (CW) algorithm: The CW algorithm

is a simple randomized graph clustering algorithm which has
become popular in the NLP community [25]. The algorithm
treats each word token as a node in a weighted undirected
graph, beginning with each node in a cluster of its own. Nodes
are then reassigned to the highest ranked cluster to which any
of its neighbours belongs. The rank of a cluster with respect
to a node is the sum of the edge weights from the cluster to
that node. This process is repeated for a few iterations or until
cluster assignments do not change. To construct a graph repre-
sentation of the embedding vectors we follow [26]: an edge
with weight 1/Dcos(a,b) is added between two word embed-
ding vectors a and b if the weight exceeds some threshold.
This threshold is the only parameter in the algorithm; as in the
IGMM, the number of clusters is automatically inferred.

4. EXPERIMENTS

We apply all the clustering methods to the fixed-dimensional
speech embeddings, focusing evaluation on the probabilistic
methods but using the non-probabilistic methods to gain deeper
insight into the former and the structure of the embedding
space. For k-means, HC, the EMGMM and the FBGMM the
number of clusters was set to the correct number of 3392 types.
For CW and the IGMM, hyper-parameters were chosen to yield
approximately the correct number of clusters (see Section 4.3).

4.1. Quantitative evaluation measures

Quantitative evaluation of a particular clustering is a non-trivial
problem and several measures have been proposed [27, 28].
To gain a full picture of results, we use several measures to
compare the induced lexical clusters to the ground truth word
types (labelled clusters). Apart from the standard deviation of
the cluster sizes, all values range between 0 and 1.

Cluster purity: Every cluster is mapped to the most com-
mon type in that cluster; the proportion of correctly mapped to-
kens is computed [29]. More than one cluster may be mapped
to a type, resulting in higher scores when there are more clus-
ters and a perfect score if every token is in its own cluster.

One-to-one mapping (1-to-1): Mapping clusters to true
types is done greedily and constrained so that at most one clus-
ter is mapped to any type (some clusters might be unassigned).
The proportion of correctly mapped tokens is calculated.

Adjusted rand index (ARI): For each pair of tokens, a
clustering predicts whether the pair belongs to the same or
different word types. The proportion of correct predictions
(rand index) is adjusted for chance to obtain the ARI [30]. This
measure is especially useful when the number of clusters and
the number of tokens are similar [28], as is the case here.

Standard deviation of cluster size (σsizes): The type fre-
quency distribution of our test set is broad as is inherently the

Table 1. Clustering evaluation on the SupTrain embeddings.

Algorithm Purity ARI 1-to-1 σsizes K

DTW HC 0.66 0.36 0.48 4.61 3392
EMGMM 0.67 0.17 0.42 2.43 3392
FBGMM 0.67 0.34 0.47 3.89 3199
IGMM 0.67 0.40 0.49 5.63 3411

K-means 0.66 0.17 0.41 2.49 3392
HC 0.69 0.48 0.54 5.39 3392
CW 0.70 0.44 0.53 8.73 3756

Table 2. Clustering evaluation on the UnsupTrain embeddings.

Algorithm Purity ARI 1-to-1 σsizes K

EMGMM 0.59 0.19 0.38 3.37 3392
FBGMM 0.59 0.23 0.40 4.09 3379
IGMM 0.60 0.27 0.41 5.54 3564

K-means 0.59 0.17 0.37 3.22 3392
HC 0.59 0.32 0.44 6.87 3392
CW 0.61 0.25 0.43 11.26 3941

case in natural language. Thus we quantify nonuniformity of
cluster size using standard deviation as an additional measure.

We also considered V-measure (VM), a widely-used infor-
mation theoretic metric [29]. However, it assigns high scores
to random cluster assignments when the average cluster size is
small [28], and was found to be uninformative for our task.

We evaluated the metrics for trivial assignments: randomly
assigning 11 024 tokens to 3392 word types gave purity, 1-to-1
and ARI scores of 0.30, 0.23 and 0.00, respectively; assigning
each token to its own cluster gave scores of 1, 0.31, 0.00; as-
signing all tokens to one cluster gave low scores for all metrics.

4.2. Results

Tables 1 and 2 show results for the SupTrain and UnsupTrain
embeddings. K is the inferred number of clusters. Purity
scores are high on both sets (about 70% and 60%, respectively)
and similar for all algorithms, so we focus on the other metrics.

As a baseline, Table 1 shows HC performed using DTW
costs calculated directly on the PLP vector time series of the
word segments, i.e. without embedding. Compared to the best
embedding clustering results using SupTrain, this baseline
performs worse; however, performance is better than the best
UnsupTrain results. Nevertheless, the fixed-dimensional em-
beddings have many useful properties that can be exploited in
downstream tasks, e.g. representation in a probabilistic model.

Of the probabilistic algorithms the EMGMM gives poor-
est ARI and 1-to-1 scores on both sets. By marginalizing
over the means and covariances, the FBGMM outperforms
the EMGMM on both sets. Although K = 3392 is specified
for the FBGMM, some clusters are emptied out, resulting in
fewer components. By extending the FBGMM to allow for
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recycle: 62
recycled: 28
recycles: 4

recyclable: 4
recyclables: 2
recyclings: 1
recycler: 1
medical: 1
residual: 1

hypothetical: 1

people: 50
default: 1

vacation: 43
medication: 3
dedication: 1
changing: 1

program: 36
programs: 10

expenses: 28
expensive: 14

experimented: 1
experiment: 1
inexpensive: 1

probably: 41
prevalent: 1
highway: 1

society: 29
society’s: 2
societies: 1
provide: 1

situation: 26
situations: 5
circulation: 1

subscriptions: 1

really: 26
rarely: 2
partly: 1

education: 7
reputation: 4
execution: 4

application: 2
executions: 1

electrocution: 1
electrocutions: 1

limitations: 1
modifications: 1
occupations: 1
obligations: 1
educational: 1
indication: 1

gratification: 1
ramifications: 1

obligation: 1
recognition: 1
restitution: 1

punishment: 28

Fig. 2. The number of tokens for each type in the biggest
clusters obtained using the IGMM on SupTrain.

an arbitrary number of components, the IGMM performs best
of the probabilistic approaches. K-means, like the EMGMM,
performs poorly on both sets. HC outperforms all the other
algorithms. The CW algorithm achieves the closest perfor-
mance to HC on SupTrain, and scores similar to the IGMM on
UnsupTrain. The three best algorithms (IGMM, CW, HC) also
yield the largest variance in cluster size, with CW’s variance
even larger than the true value of 7.06.

The biggest clusters obtained on SupTrain using the 3411-
component IGMM (Table 1) are shown in Figure 2. Although
the righthand cluster overclusters several different types, sub-
stantial phonetic and morphological similarities are evident.
Overall, despite some noise arising from large variations in sur-
face forms in conversational speech, qualitatively the clusters
are reasonable. HC yields similar biggest clusters. Despite the
good scores of CW, its biggest clusters tend to contain more
different types: for the 3756-component CW model in Table 1,
the five biggest clusters have 12, 41, 57, 25, 53 different types.

4.3. Discussion

As noted in Section 3.1.3, we found that IGMM performance
is sensitive to the hyper-parameter S0, which controls the prior
on the cluster covariance matrices. Based on [20, p. 133] we
set S0 such that the expected value of Σk is s ·diag(Σ̂), where
Σ̂ is the global sample covariance and s is a scaling param-
eter. We varied s to find approximately the correct number
of components, using values of s = 0.18 and s = 0.08 for
the IGMMs in Tables 1 and 2, respectively. Figure 3 shows
the sensitivity of ARI and 1-to-1 scores on SupTrain and Un-
supTrain as s is varied. The annotations indicate the number
of components of a model. We see that smaller covariance is
required on UnsupTrain than on SupTrain. The drop-off in
the scores for the 545- and 1429-component SupTrain and Un-
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Fig. 3. ARI and 1-to-1 scores achieved by the IGMM as the
scaling factor for setting the prior covariance S0 is varied. The
annotations indicate the number of components of a model.

supTrain models result from garbage clusters that capture the
majority of the tokens. The annotations show that s strongly
affects the number of components, yet performance remains
relatively stable over a range of model sizes. In particular, on
SupTrain the ARI and 1-to-1 scores of the IGMM are within
25% of the best performance for models ranging from 1857
to 5027 components; UnsupTrain models with 1845 to 5729
components give scores within 20% of the best performance.

By varying the graph construction threshold, the CW al-
gorithm was also evaluated across different model sizes. As
with the IGMM, adjusting the threshold results in very differ-
ent cluster numbers, yet performance is again stable over a
range of sizes: on SupTrain, CW models with 2755 to 7337
components give ARI and 1-to-1 scores within 25% of the
best; on UnsupTrain, models with 3354 to 8536 components
give scores within 30% of the best. HC also yields stable per-
formance over a range of model sizes: on both SupTrain and
UnsupTrain scores are within 20% of the best for models with
1000 to 5000 components. These results from the three best
algorithms indicate that there are some easily distinguishable
tokens which are consistently grouped correctly whether there
are few or many components. To further verify this, we cal-
culated the overlap of the tokens that are correctly one-to-one
mapped for IGMM SupTrain models with 1857 to 5739 com-
ponents: more than 74% of the tokens that are correct for the
3411-model are also mapped correctly by the other models.

The better scores of the CW and HC algorithms over the
IGMM demonstrate the limitations of the single Gaussian
per type assumption made by the latter. Indeed, the centroid
linkage function for HC, which makes a similar one centroid
per type assumption, performs very poorly on our evaluation.

Finally, comparing the scores in Tables 1 and 2 for the
three best algorithms, we see that ARI drops by 33–43% and
1-to-1 drops by about 20% when moving from SupTrain to
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UnsupTrain. This suggests that weak supervision in the form
of labelled exemplars could significantly improve the perfor-
mance of unsupervised speech processing systems (this was
also shown in [31]). However, this ‘supervision’ could actually
be obtained in an unsupervised fashion from a high-precision
spoken term discovery system, e.g. [4, 6].

5. CONCLUSIONS

We evaluated several methods for clustering fixed-dimensional
embeddings of word segments. The best probabilistic model is
an infinite Gaussian mixture model (IGMM), which automati-
cally selects its number of components and would fit naturally
into a complete probabilistic unsupervised model of segmen-
tation, lexical and language learning. Slight improvements
were obtained using the non-probabilistic Chinese Whispers
and average-linkage hierarchical clustering algorithms. These
approaches do not model every word type as a single Gaussian,
as the IGMM does. When not including supervision in learn-
ing the embeddings, performance drops by around 35%. Such
supervision could, however, be obtained using a high-precision
word discovery system. In future work we aim to incorporate
the IGMM in a joint model of word segmentation, lexical dis-
covery and language modelling. Ultimately, this would allow
zero-resource applications to be developed in languages for
which collecting transcribed speech data is not possible.
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