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Abstract. This paper presents the results of our participation to the
ninth eNTERFACE workshop on multimodal user interfaces. Our tar-
get for this workshop was to bring some technologies currently used in
speech recognition and synthesis to a new level, i.e. being the core of a
new HMM-based mapping system. The idea of statistical mapping has
been investigated, more precisely how to use Gaussian Mixture Mod-
els and Hidden Markov Models for realtime and reactive generation of
new trajectories from inputted labels and for realtime regression in a
continuous-to-continuous use case. As a result, we have developed sev-
eral proofs of concept, including an incremental speech synthesiser, a
software for exploring stylistic spaces for gait and facial motion in real-
time, a reactive audiovisual laughter and a prototype demonstrating the
realtime reconstruction of lower body gait motion strictly from upper
body motion, with conservation of the stylistic properties. This project
has been the opportunity to formalise HMM-based mapping, integrate
various of these innovations into the Mage library and explore the de-
velopment of a realtime gesture recognition tool.

Keywords: Statistical Modelling, Hidden Markov Models, Motion Cap-
ture, Speech, Singing, Laughter, Realtime Systems, Mapping.

1 Introduction

The simulation of human communication modalities, such as speech, facial ex-
pression or body motion, has always been led by the challenge of making the
virtual character look “more realistic”. Behind this idea of realness, there are
inherent properties that listeners or viewers have learnt to expect and track with
great accuracy. Empirical studies, such as the Mori’s vision for robotics [1], tend
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to demonstrate that this quest for human likelihood is highly non-linear, encoun-
tering a well-known phenomenon called the uncanny valley, i.e. an unexpected
shift from empathy to revulsion when the response of the virtual character has
“approached, but failed to attain, a lifelike appearance” [2].

1.1 A Content-Oriented Approach of Expressivity

For the last decades, research fields like sound synthesis, computer graphics or
computer animation have faced this issue of the uncanny valley in their own ways.
However common trends can be highlighted. The primary goal in producing
artificial human modalities has always been to “preserve the message”, i.e. what
is heard or seen is at least understood correctly. In speech synthesis, this is
called intelligibility [3]. We can transpose this property to images or motion,
as it refers to the readability of what is generated: a smile, a step, a laughter
sound, etc. Later the target has evolved to “make it look more natural”. This
trend of naturalness is what has brought nearly everybody in these fields to
use recordings of actual human performances, thus moving beyond explicit rule-
based modelling. We can retrieve this concept in the development of non-uniform
unit selection in speech synthesis [4], giga-sampling in music production [5], high-
resolution face scanning [6] or full-body motion capture [7] in animation.

Nowadays the target is to bring expressivity and liveliness to these virtual
characters. This idea goes further than naturalness as it expects the virtual
character to display a wide range of convincing emotions, either automatically
or by means of some authoring. For at least a decade, the typical approach to
this problem has been to extend the amount and variability of the recorded data,
hoping to gather enough utterances of the expected emotions so as to encompass
what we perceive as human. If this idea is meaningful, one might conjecture
that the way of representing and using this massive amount of data is not very
lively nor flexible. For instance, non-uniform unit selection in speech synthesis
concatenates very long utterances from the original recordings [4] and static or
dynamic postures in animation are often blended from original sequences without
a deep understanding of the production mechanisms.

1.2 Performative Control and Machine Learning

Although the use of a large amount of data has clearly improved some aspects of
virtual human-like character animation1, we could argue from the current results
that this approach on its own has not been able to fully climb the uncanny val-
ley. Indeed speech synthesis and face/body animation resulting from monolithic
transformations of original recordings keep having something inappropriate and

1 Our approach is really transversal to all the virtual character’s modalities: voice,
face and body. Therefore we tend to use the terms “rendering” and “animation” for
both sounds and visuals. This distinction is rarely done for sound, as “synthesis” is
often used for the whole process. Though a similar nuance can be found in speech,
when respectively referring to segmental and suprasegmental qualities [3].
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confusing [8]. In this research, we think that user interaction has a great role
to play in how a given virtual human-like character will be considered more ex-
pressive and lively. Indeed we agree that expressivity is a matter of displaying a
great variability in the rendered output, but we think that these variations need
to be contextually relevant. This “context” is a sum of elements surrounding the
virtual character at a given time and user interaction has a big impact on how
the rendering system should behave. Our way of reading the Mori’s law is that
a significant part of the perceived humanness sits in very subtle details. In this
work, we will focus on how the animation trajectories can reactively adapt to
the user interaction on the very short term, i.e. within milliseconds. We think
that there is a lack in the literature about how these trajectories should react
according to very short-term gestures, as most of the research is focusing on a
larger time window and the overall discussion of dialog systems.

Our approach towards bringing together large multimodal datasets and short-
term user interaction is to use machine learning. There is already a very large
body of literature on applying machine learning techniques in the fields of gesture
or voice recognition [9], gesture or voice synthesis [10], gesture or voice conversion
[11], and what is called implicit mapping, i.e. the use of statistical layers as a
way of connecting inputs to outputs in interactive systems [12]. Multimodal
animation of virtual characters brings two main constraints to take into account
when it comes to statistical modelling. On the one hand, dimensionality of the
data is very big (see Section 3 for details). On the other hand, we aim at creating
animation trajectories, which means that the temporal quality of the generated
outputs is crucial. Besides these specific animation-related constraints, we want
to enable short-term interaction with the virtual character. Therefore the way
of handling statistics in our system requires to be fully realtime.

1.3 A New Framework for GMM/HMM-Based Mapping

In this project, we have decided to investigate the use of Gaussian Mixture Mod-
elling (GMM) and Hidden Markov Modelling (HMM) as statistical tools to ab-
stract big collections of multimodal data, use such knowledge to animate virtual
characters in realtime and enable various kinds of user interactions to happen.
GMM/HMM offers great ability to cover complex feature spaces and HMM is
designed for taking care of the temporal structure of trajectories to be rendered.
Moreover the development of GMM/HMM-based machine learning techniques
has been greatly boosted by recent advances in speech technology research. Par-
ticularly the idea of HMM-based speech synthesis has emerged in the last decade
[10]. A synthesis system called HTS has become a reference in this field [13].
There are many pieces of innovative research surrounding GMM/HMM-based
generation. Three of them have particularly encouraged our team to envision a
new GMM/HMM-based framework for virtual character animation:

– the adaptation of the speech algorithms to motion capture data [14, 15];
– the modification of the core generation algorithms to be fully realtime [16];
– the integration of mapping functions inside the HMM framework [17, 18].
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As a result, we have decided to create a new framework that accepts and
decodes user interaction gestures in realtime, finds the appropriate statistical
context to apply mapping strategies and is able to generate new trajectories
to partially or totally animate a virtual character. In this work, this prototype
framework has been tested for a great amount of use cases, encompassing many
modalities: speech, singing, laughter, face and body motion.

1.4 Outline of the Paper

In this paper, we will first present a more detailed background theory on the
statistical models that are used in our system (cf. Section 2). In Section 3 we
describe the particularities of the datasets that we have been using: speech,
laughter, singing, facial and gait motion. Section 4 explains the various use cases
in which we enabled the realtime trajectory generation. Section 5 focuses on
use cases where mapping is the fundamental feature. Further details on the
architecture are given in Section 6. Finally we conclude in Section 7.

2 Statistical Feature Mapping: Theoretical Aspects of
GMM-Based and HMM-Based Mapping Techniques

The research described in this paper relies on a very specific use of machine
learning techniques based on Gaussian Mixture Models (GMMs) and Hidden
Markov Models (HMMs). The aim of this Section is to describe a set of back-
ground theories that are necessary to understand the following Sections. In the
next parts, we first recall the theoretical context of statistical feature mapping.
Then we give an overview on how to turn GMM and HMM into mapping layers.
We also give more details on how to generate the HMM-based trajectories in
realtime, as it is required for building an interactive system.

2.1 Statistical Feature Mapping

The problem of feature mapping refers to the prediction of a vector of target
variables ŷ (also called target features), from the observation of an unseen vector
of input variables x. This problem can be divided into three categories:

– regression, also referred to as continuous mapping, i.e. the case where both
y and x will comprise continuous variables;

– classification, i.e. the case where y will represent a discrete set of class labels
while x will comprise continuous variables;

– generation, also referred to as synthesis, i.e. the case where x will represent
class labels and y the continuous variables we want to estimate.

The feature mapping problem can be viewed from a probabilistic viewpoint.
It consists in finding the vector of target variables ŷ which maximises the con-
ditional probability p(y|x) of y given x, such as:
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ŷ = arg max
y
{ p(y|x) } (1)

In supervised machine learning, this conditional probability is estimated
during the training phase from a dataset x = [x1, ...,xN] comprising N ob-
servations of x together with the corresponding observations of the values of
y = [y1, ...,yN]. Two types of approaches can be envisioned to estimate this
conditional probability: the discriminative or the generative approach.

In a discriminative approach, this conditional probability distribution (also
referred to as the posterior probability distribution) is estimated directly from
the training data. In other words, such an approach provides a model only for
the target variables conditional on the observed variables and does not provide
a complete probabilistic model of all the variables (observed and hidden ones).
Examples of discriminative models include Linear Discriminant Analysis (LDA),
Conditional Random Fields (CRF), Artificial Neural Networks (ANN), etc.

In a generative approach, the conditional probability is not estimated directly,
but derived from the joint probability distribution p(x,y) using Bayes’ theorem:

p(x,y) = p(y|x)p(x) = p(x|y)p(y) (2)

where p(x|y) is the likelihood function, p(y) the prior probability – i.e. the
probability of y before seeing x – and p(x) is usually viewed as a normalisation
constant. Note that the joint probability p(x,y) can be either modelled explicitly
or implicitly via the separate estimation of the likelihood function and the prior
probability. Examples of generative models includes GMMs and HMMs.

Using Generative Models Generative and discriminative approaches have
their own advantages and drawbacks. An extensive discussion about which ap-
proaches would be more suitable for addressing a specific application is far be-
yond the scope of this paper. However we focused on generative models for two
main reasons.

The first advantage of the generative approach is that the inclusion of prior
knowledge arises naturally. This may be extremely convenient to address prob-
lems, considered as ill-posed, for which there is no clear one-to-one mapping
between input and target feature spaces. Furthermore, as prior probabilities do
not depend on the input observation x, they may be estimated on a much larger
dataset than the training set. Prior knowledges can be used to constrain the map-
ping process to generate acceptable outputs (as in speech recognition, where a
language model gives the probability of having a specific sequence of words in a
specific language, independently from the observed acoustic signal).

The second advantage is its flexibility. Estimating the joint probability distri-
bution over input and target variables p(x,y) allows to address several mapping
problems with the same model. As an example, let us consider a mapping prob-
lem between a continuous feature space x and a discrete space of k classes Ck.
The same approach which aims at estimating p(x,Ck) could be used to address
both the related classification problem by deriving the conditional probability
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p(Ck|x), and the symmetrical problem of trajectory generation, by sampling the
conditional probability p(x|Ck) – i.e. the likelihood function.

However we have to keep in mind that generative approaches are known
to require a lot of training data. In fact, the dimensionality of both input x
and target observations y may be high, and consequently a large training set is
needed in order to be able to determine p(x,y) accurately.

In this project, we focused on two generative approaches, which are GMMs
and HMMs. The theoretical aspects of these two techniques are mainly pre-
sented in the context of regression, plus a specific focus on realtime generation
and the Mage framework. Indeed more general aspects of GMM/HMM-based
classification [9] and generation [10] have already been extensively described.

From now on, sequences of input and target feature vectors are noted respec-
tively x and y, and are defined as: x = [x1, ..,xt, ...,xT ] and y = [y1, ..,yt, ...,yT ],
where xt are yt are respectively Dx and Dy dimensional vectors of input and
target features observed at time t (T is the sequence length).

2.2 GMM-Based Mapping

During the training phase, the joint probability density function (pdf) of input
and target features is modelled by a GMM such as:

p(z|λ) = p(x,y) =

M∑
m=1

αmN(z, µm, Σm) (3)

with

z = [x,y], µm =

[
µx
m

µy
m

]
, Σm =

[
Σxx
m Σxy

m

Σyx
m Σyy

m

]
(4)

where λ is the parameter set of the model, N(., µ,Σ) is a normal distri-
bution with mean µ and covariance matrix Σ, M is the number of mixture
components, and αm is the weight associated with the mth mixture component
(prior probabilities). Given a training dataset of input and target feature vec-
tors, the parameters of a GMM (weights, mean vectors and covariance matrices
for each component) are usually estimated using the expectation-maximisation
(EM) algorithm. The initial clustering of the training set can usually be obtained
using the k-means algorithm.

In the mapping phase, a conditional pdf p(yt|xt, λ) is derived, for each frame
t, from the joint pdf p(xt,yt) estimated during training, such as described in
Eq. 5 to 9. The mathematical basis of this derivation can be found in [19].

p(yt|xt, λ[xy]) =

M∑
m=1

p(cm|xt)p(yt|xt,m, λ[xy]) (5)

where λ is the model parameter set. The posterior probability P (cm|xt) of
the class cm given the input vector xt, and the mean and covariance of the
class-dependent conditional probability P (yt|xt,m, λ[xy]) are defined as:
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p(cm|xt) =
αmN(xt, µ

x
m,
∑xx
m )

M∑
p=1

αpN(x, µx
p ,
∑xx
p )

(6)

and

p(yt|xt,m, λ[xy]) = N(yt, E(m,t), D(m,t)) (7)

with

E(m,t) = µy
m +Σyx

m Σxx−1

m (xt − µx
m) (8)

D(m,t) = Σyy
m −Σyx

m Σxx−1

m Σxy
m (9)

Two approaches can then be envisioned to address a regression problem with
a GMM. In the first one, referred here to as the MMSE-GMR for “Gaussian
Mixture Regression based on the Minimum Mean Square Error Criterion”, the
target feature vector ŷt estimated from the given source vector xt observed at
time t, is defined as ŷt = E[yt|xt] (where E means expectation) and can be
calculated by solving Eq. 10. In particular, this approach has been described in
[20] and [21] in the context of statistical voice conversion.

ŷt =

M∑
m=1

p(cm|xt)Ey
m,t (10)

The second approach, proposed by Toda et al. [22], is here referred to as
MLE-GMR, for “Gaussian Mixture Regression based on Maximum Likelihood
Criterion”. The target feature vector ŷt is defined as the one which maximises
the likelihood function such as:

ŷt = arg max
yt

{ p(yt|xt, λ[xy]) } (11)

and can be estimated by solving Eq. 12:

ŷt =

[
M∑
m=1

p(cm|xt)Dy
(m,t)

]−1 [ M∑
m=1

p(cm|xt)Dy
(m,t)E

y
(m,t)

]
(12)

Trajectory GMM The MLE-GMR approach is commonly combined with a
constraint on the smoothness of the predicted trajectories. The GMM is then
referred to as a trajectory GMM. In that case, each target feature vector yt of
the training set is augmented by its N-order derivatives such as Yt = [yt ∆yt]
(the method is here presented with N = 1). The joint probability distribution
p(Y,x) is modelled similarly to the MLE-GMR approach. However the map-
ping process is done differently. The sequence of target feature vectors is not
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estimated on a frame-by-frame basis as in previous approaches, but rather “all-
at-once”. The estimated sequence of target feature vectors is defined as the one
that maximises the likelihood of the model, with respect to the continuity of its
first N derivatives:

Ŷ = arg max
Y

{ p(Y|x, λ[xY]) } (13)

which can be estimated by solving the closed-form equation in Eq. 14:

ŷ =
(
WTD−1

m̂ W
)−1

WTD−1
m̂ Em̂ (14)

where W is a [2DxT × DyT ] matrix representing the relationship between
static and dynamic feature vectors (Fig. 1) and m̂ = [m̂1, .., m̂t, ..., m̂T ] is the
sub-optimum sequence of mixture components defined as:

m̂ = arg max
m

{ p(cm|x, λ) } (15)

and determined using the Viterbi algorithm (in our experiment, and simi-
larly to what was reported in [22], similar results were obtained using a forward-
backward approach which takes into account in a probabilistic manner the con-
tributions of all mixture components).

Fig. 1. W is a [2DxT ×DyT ] matrix representing the relationship between static and
dynamic feature vectors. It is used in the computation of output trajectories of Eq. 14.

2.3 Realtime Trajectory Generation

If the “all-at-once” approach suggested by Eq. 14 can guarantee smooth trajec-
tories, it prevents these trajectories to be generated in realtime, and therefore
the system to be interactive. In Section 1, we have claimed that interactivity
was a required property for our system, in order to produce expressive virtual
characters. For the last few years, Astrinaki et al. have worked to find a new
trade-off between the smoothness and the system-wise reactiveness of generated
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trajectories [16, 17]. The idea of finding the Maximum Likelihood (MLE) over
the whole sequence as required to fill the whole W matrix in Eq. 14 has been
replaced by finding a sub-optimal version of the ML on a sliding window. This
new algorithm, called Short-Term Maximum Likelihood Parameter Generation
(ST-MLPG), enables the trajectory generation process to start when the system
receives the first class label and not at the end of a full sequence of class labels.

The ST-MLPG is a key feature of the open-source library called Mage [23].
The Mage software actually enables to create interactive systems that generate
smooth trajectories in realtime, which is the main reason why this software is
the trajectory generation engine in this project. However the Mage library was
very tied to the HMM-based approach – explained in the next part – and the
HTS architecture when we started the project, which explains why we have
significantly modified its architecture along the way (see 6 for details).

2.4 HMM-Based Mapping

Hidden Markov Modelling has been used for a long time in temporal pattern
recognition, as for instance in automatic speech recognition (ASR), handwriting,
or gesture recognition. More recently HMM has also been successfully used for
parameter generation, such as in HMM-based speech synthesis [10]. HMM can
be considered as a generalisation of GMM where the latent variables – i.e. the
hidden states – are derived from a Markov process rather than being indepen-
dent from each other. Latent variables are controlling the mixture component
to be selected for each observation. As HMM aims at representing explicitly the
temporal evolution of features, it is adapted to model data that can be clustered
not only by its distribution but also by its temporal evolution.

Due to this temporal structure, achieving a regression task (or mapping)
with a HMM requires a more complex framework. The algorithm proposed in
[18] combines a HMM-based classification and a HMM-based parameter gen-
eration, from the same trained models. The mapping operation can therefore
happen within the HMM currently in use and “passed” from the classification
to the generation operations. This process is illustrated in Fig. 2. We tradition-
ally assume that sequences of feature vectors which constitutes the training set
are temporally segmented and labeled. This segmentation can be obtained by
annotating the data, either manually, or by using an initial set of already-trained
HMMs and a forced-alignment procedure.

In the training phase, sequences of input and target feature vectors (com-
pleted with their first N derivatives) are modelled jointly, for each class, by a
“full-covariance” HMM, i.e. an HMM for which the emission probability distribu-
tion is modelled, for each state q, by a normal distribution with a full-covariance
matrix, as defined by Eq. 3 (with M = 1). After initialisation, models are typi-
cally trained using the following standard procedure: models are first trained sep-
arately, using the standard Baum-Welch re-estimation algorithm and then pro-
cessed simultaneously, using an embedded training strategy. Since input/target
features are often sensitive to context effects (for instance, co-articulation and an-
ticipation in speech), context-dependency is often introduced in the modelling.
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Fig. 2. Summary of the framework required to achieve a HMM-based mapping: HMM-
based classification of input features, query of models based on obtained class labels,
mapping routine from models and input features and generation of target features

Context-dependent models are created by adding information about left and
right contexts to the initial models. A tree-based state-tying technique is then
eventually used to tackle the problem of data sparsity (context-dependent mod-
els having only a few occurrences in the training dataset).

In the mapping phase, the sequence of target feature vectors ŷ is estimated
from the sequence of input feature vectors x such as:

ŷ = arg max
y
{ p(y|x) } (16)

with

p(y|x, λ) = p(Y|λ, q,x).p(λ, q|x) (17)

with Y = Wy (see Fig. 1), λ the parameters set of the HMM and q the HMM
state sequence. Eq. 17 is the product of two conditional probability terms which
can be maximised separately:

1. p(λ, q|x) which is related to the classification stage which aims at estimat-

ing the most likely HMM (or sequence of concatenated HMMs) λ̂ with the
corresponding sequence of states q̂ such as:

(λ̂, q̂) = arg max
(λ,q)

{ p(λ, q|x) } (18)

using the Viterbi algorithm. Using Bayes’ theorem, we obtain p(λ, q|x) =
p(x|λ, q).p(λ, q) and see that this classification stage allows the introduction
of external knowledges, via the use of prior probabilities on class sequences,
which could be used to constrain the mapping (in speech recognition, this
term would be related to the language model).

2. p(y|λ, q,x) which is related to the synthesis stage and could be maximised
similarly to as the GMM-based mapping technique, using Eq. 14. This is
similar to the trajectory GMM technique, but here a continuity constrain is
imposed on the estimated feature trajectories. The corresponding HMM is
thus often referred to as a trajectory HMM. The modification proposed in
the short-term MLPG can also be applied at this level.
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2.5 Classification vs. Mapping: A Modelling Trade-Off

The integration of HMM-based classification, mapping and generation within the
same framework gives us a chance to discuss about a specific modelling trade-off.
Indeed from the same feature space (input and target features), various modelling
strategies can be applied. On the one hand, we can create a large amount of small
clusters. In that case, the labelling is very precise, the classification task needs to
be very discriminative and the parameter generation has a very narrow area from
which to get its target values, limiting the influence of the mapping. On the other
hand, we can create a small amount of large clusters. In that case, the labelling
is looser, discrimination between classes is easier and the parameter generation
has a wide area from which to get its target values, hence much more relying
on the mapping to browse the subspace. A summary of this trade-off is given in
Fig. 3. The two approaches will lead to very different kinds of applications.

Fig. 3. Explanation of the modelling trade-off between classification, mapping and
generation. We can choose between many small clusters where mapping is limited or
few big clusters where mapping is primordial to browse the subspace.

3 Description of Data Types Used for Modelling

One main objective of this project was to design and develop a framework where
GMMs and HMMs can be applied to a very great variety of data types. In this
Section, we give a more exhaustive description of the data types that we have
addressed and the databases that we have used. It gives a solid ground for
understanding the feature spaces that we are manipulating.

3.1 Speech

The voice models that we used for speech are either identical or similar to the
ones found in the HTS software [13]. Indeed our work with the speech databases
has mainly used standard HTS training but it has also aimed at retraining some
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voices, such as the ones used by the incremental speech synthesis application
detailed in Section 4.1. For practical reasons, during development we generally
work with the standard voice model from HTS demo scripts which is SLT, an
American English female speaker from the CMU ARCTIC database [24], sam-
pled at 48 kHz, 16-bit PCM. The training parameters for these models are the
default ones in HTS for a sampling rate of 48 kHz. The input audio signals are
split into 1200-sample long frames with a frame shift of 240 samples. For each
frame, a parametric representation is extracted. The vocal tract is modelled by
a 35-order MLSA filter [25] whose parameters are α = 0.55 and γ = 0, whereas
the glottal source is described by a voiced/unvoiced decision and a pitch value,
if any. On a higher level, each file from the training dataset has a phonetic
transcription, from which phoneme duration models are trained, as well as ad-
ditional information about syllables, words, sentences, accentuations, etc. [26].
For each parameter, this contextual information is used to train binary decision
trees whose leaves are Gaussian models of the parameter.

3.2 Singing

Many similarities exist between speech and singing voice, though the differences
are significant, especially for analysis and modelling. Some of the more promi-
nent phenomena specific (though not necessarily exclusive) to Western classical
singing2 in contrast to regular speech are the higher voiced/unvoiced ratio, vi-
brato, higher range of loudness and pitch, singer’s formant and modification
of vowels at high pitches [27]. These and other differences between speech and
singing voice lead to some challenges in analysis modelling of singing.

The assumption of a decoupled source-filter is reasonably accurate especially
for speech, but source-filter interactions are known to occur in various situations.
For example, coupling effects increase by high pitch or high-impedance vowels
like [u] [28]. Another challenge is that speech analysis algorithms such as pitch
or Glottal Closure Instant (GCI) estimators often do not work as intended and
this results in loss of performance [29, 30]. Finally prosody models based on
linguistic and phonetic information are almost never applicable due to the nature
of singing. Instead different prosody models that take musical gestures and score
information into account may be necessary.

In order to capture these singing-specific stylistics, we designed and recorded
a new singing database for our purposes. The main challenge was to define the
stylistic space in a meaningful manner. After consulting different systems of
categorising singing voice, we decided that our approach is to set a cognitive
target for the singer. Consequently we only specified more abstract stylistic in-
formation in the database design and aimed to capture the singing phenomena
as they occur naturally. We contracted a professional female singer, EB, and
the recordings were done in a professional recording studio. Seven pieces were
recorded with multiple renditions in three different styles: neutral, classical and

2 In our work we constrain our domain to Western classical singing, because it is
well-formalised and a sizeable amount of previous technical work exists.
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belting. Since naturalness was high priority, the pieces were chosen from EB’s
repertoire of jazz, classical, folk and contemporary music, which she was com-
fortable and confident in performing. A limited amount of pure-vowel recordings
were also done, consisting of some selected pieces and specific pitch gestures
such as flat and constant ascent/descent. Contemporaneous electroglottography
(EGG) recordings were also made, in order to establish ground truth for pitch
and enable GCI-synchronous analysis methods. The resulting database is more
than 70 minutes long, containing a rich variety of singing samples.

3.3 Audio-Visual Laughter

For addressing laughter modelling, the AV-LASYN database was used. The AV-
LASYN database is a synchronous audio-visual laughter database built for the
purpose of audio-visual laughter synthesis. The next paragraphs give an overview
of the recording pipeline. Audio data was recorded at high sampling rate (96kHz)
for eventual study of the impact of sampling rate on audio synthesis results.
However, since it is a higher sampling rate than what common applications
and research such as the present work need, we downsampled to 44.1kHz. Visual
laughter was recorded using a marker-based motion capture system commercially
available and known as OptiTrack. A set of 6 infrared cameras were used to track
at 100 fps the motion of 37 markers glued on the subject. A seventh camera was
used to record a grayscale video synchronised with all others. Among the 37
tracked markers are 4 markers placed on a headband. These helped to extract
head motion from face deformation and make both available independently. After
this separation process, we end up with 3 values for each facial marker (xyz
coordinates) which corresponds to 99 values at each frame as well as 6 values at
each frame that represent head motion (xyz coordinates and rotations around
the same axes). This makes a 105-dimensional vector to represent overall face
motion for a given frame. Neutral pose and the whole set of data corresponding
to visual motion have been saved in the Biovision Hierarchy (BVH) format . The
final corpus is composed of 251 segmented laughs. This corresponds roughly to
48 minutes of visual laughter and 13 minutes of audible laughter. For each laugh,
the corpus contains: an audio file [44.1kHz, 16 bits], a BVH motion file that can
be loaded in common 3D software (with the neutral pose, 6 channels for head
motion, 3 channels for each of 33 facial markers), a binary motion file containing
the same data as in the BVH to make it easier to load, a HTK label file containing
phonetic transcriptions and temporal borders for each laughter phone.

3.4 Audio-Visual Affective Speech

Experiments were conducted on the BIWI 3D Audiovisual Corpus of Affective
Communication [40] comprising a total of 1109 sentences (4.67 seconds long on
average) uttered by 14 native English speakers (6 males and 8 females). The
dense dynamic face scans were acquired at 25 frames per second by a realtime
3D scanner and the voice signal was captured by a professional microphone at
a sampling rate of 16kHz. For the voice signals, fundamental frequency, signal
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intensity and segment duration are also provided. Along with the detailed 3D
geometry and texture of the performances, sequences of 3D meshes are provided,
with full spatial and temporal matching across all sequences and speakers. For
each speaker 80 utterances are recorded, half in a personal speaking style and
half in an “emotional” manner, as they are asked to imitate an original version
of the performance.

3.5 Stylistic Gait

In this work, we also used the Mockey database [31] as our stylistic gait motion
capture database. This database was recorded using a commercial inertial mo-
tion capture suit called IGS-190, from Animazoo [32]. This motion capture suit
contains 18 inertial sensors, which record the angles between “body segments”
corresponding to a simplified human skeleton representation. The output of the
motion capture suit are these angles, expressed in the Euler angle parameter-
isation, and the calculated 3D position of the root (hips), which is computed
given the angles and the lengths of the leg segments. In the database, the walk
of a professional actor impersonating different expressive styles was recorded.
The eleven styles represented in the database were arbitrarily chosen for their
recognisable influence on walk motions. These styles are the following: proud,
decided, sad, cat-walk, drunk, cool, afraid, tiptoeing, heavy, in a hurry, manly.
Each walk style is represented by a different number of steps in the database,
ranging from 33 to 80 steps. Fig 4 gives an overview of these walking styles.

Fig. 4. Generic skeleton frames extracted from the Mockey database [31] and corre-
sponding to different styles of gait, here: sad, afraid, drunk and decided

The Mockey mocap sessions are recorded in the Biovision Hierarchy (BVH)
format. The skeleton from the Animazoo software is defined by 20 body seg-
ments, and each data frame hence contains 66 values. Three of the segments are
in fact only added to make the simplified skeleton look closer to a real skeleton
but have no degree of freedom in the motion capture. There are hence finally
57 values to analyse and model in our data, among which 54 joint angle values
and 3 values for the skeleton root Cartesian coordinates. Since the Cartesian
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coordinates of the root are calculated a posteriori from the joint angles, we only
took into account the 54 joint angle values in our models. Furthermore, since the
Euler angle representation is seldom optimal, we converted it to the exponential
map angle parameterisation, which is locally linear and where singularities can
be avoided. The Mockey database has been recorded at a rate of 30 frames per
second. The walk sequences have been automatically segmented into left and
right steps, based on the evolution of the hip joints angles.

4 Realtime and Reactive HMM-Based Generation

The first step in creating our new framework was to validate the adaptation of
the realtime HMM-based parameter generation – such as described in Section 2
and implemented in Mage – to the new data types described in Section 3. It
brought us to implement a series of prototypes that are described in this Section.

4.1 Incremental Speech Synthesis

In several applications of Text-To-Speech (TTS) it is desirable for the output
to be created incrementally. Such applications include reactive dialogue systems
and speech devices for disabled people. However current TTS systems rely on full
pre-specified utterances provided before the synthesis process begins, severely
limiting the reactivity and realtime use of speech synthesis. While Mage is
capable of realtime synthesis, it is reliant on linguistic context labels which are
computed offline prior to synthesis. This means the utterance to be synthesised
is fixed and cannot be changed at run-time except to other pre-computed context
labels. There is, however, nothing to prevent Mage from synthesising from an
incrementally created set of labels. Hence a new realtime linguistic front-end was
created in order to allow for continuous incremental creation of the linguistic
context labels for synthesis. A new front-end was chosen as current front-ends
are simply nowhere near fast enough for realtime analysis – e.g. Festival takes
over 1000ms to process an utterance (even a single word) and MARY-tts slightly
above 200ms [33] – and they assume the full utterance is present at analysis time.

Linguistic Analysis The standard full-context labels used by the HTS engine
includes a large amount of varying contexts used in the decision tree context
clustering process. Many of these do not lend themselves to incremental pro-
cessing as they rely on the presence of the full utterance. Therefore a reduced
context set was decided upon based on the standard HTS set [34]. Any contexts
related to the full utterance or phrases were removed as these are not available.
Contexts regarding future syllables are included ‘if available’ and the system re-
quires two future phones. The decision to retain two future phones, making the
system in effect lagging two phones behind realtime, was made as informally lis-
tening to the speech when no future phones were included resulted in a significant
degradation of the speech intelligibility. The resulting context labels included 23
contexts down from 53. Informally no noticeable drop in quality was perceived
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on a voice re-trained on the reduced context set compared to a voice trained
on the standard HTS contexts. The system works with word-sized chunks, such
that every time a user inputs a complete word the system will provide the labels
necessary to synthesise the word, with a minimum of two phonemes. The words
are looked up in the CMUDict 0.4 dictionary from which stress patterns, syl-
lables and phones are retrieved and the labels created. No letter-to-sound rules
are included. If a word is not be in the dictionary, a filled pause is introduced
instead (“uh”).

Typing Interface A simple typing interface was implemented which allows a
user to type in the string to be synthesised. It is however incredibly difficult to
type as fast as the synthesis speed, so synthesis was slowed by a factor of 2.5 to
allow a skilled typer to type fast enough. To further enhance the ability of the
typist to type quickly, simple word prediction was added allowing the user to
press the F1 to F5-keys to instantly insert a word predicted by the system.

4.2 Reactive Control of Audio and Visual Laughter

In this part we explain how the modelling of the laughter has been approached
with HMMs, both for the sound and the face motion. Then we give a first
description on how we turned these two processes into an interactive application.

Reactive Acoustic Laughter Synthesis HMM-based acoustic laughter syn-
thesis is a problem that has been addressed recently [35, 36]. The same pipeline
has been applied in this work to train an acoustic model of laughter using
the AV-LASYN database described in Section 3.3. We have extracted 35 Mel-
cepstral coefficients and log F0 as features to represent the acoustic signal. We
used STRAIGHT [37] for this extraction process. Then, five-state, left-to-right
HMMs were trained to model a set of laughter phones (see [35] for more informa-
tion). From the synthesised F0, an excitation signal was derived and modified
by DSM [38]. Finally synthesised MFCC trajectories and modified excitation
signal were used to feed a source-filter model and generate the corresponding
waveforms. With the acoustic models obtained as explained above, we were able
to integrate acoustic laughter into Mage. Although there is still room for im-
provements, we have shown that reactive acoustic laughter synthesis is feasible
through Mage. Further investigation is needed to have a better understanding
of the behaviour of Mage for the synthesis of the specific signal of laughter, and
this work will serve as a basis for further studies.

Visual Laughter Synthesis A similar process has been applied to visual data
contained in the AV-LASYN database. As a reminder of Section 3.3, the visual
data consists of facial points trajectories. Thirty-three markers on the face repre-
sented at each frame by 3 spatial coordinates are used. Six other values represent
the head motion. The features that we used to train the HMMs were obtained
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Fig. 5. Illustration of the reactive control of laughter intensity by having a Mage
application to send trajectories to the 3D face model in Blender through OSC

as follows. First we subtracted the neutral face from each frame so that the data
represents only the facial deformation. Then a PCA analysis was performed and
showed that 97% of the variability in the data is contained in the 4 first principal
components. We hence decided to reduce the dimensionality of the data to 4.
However the PCA analysis did not include the 3 values representing the head
rotation for a matter of consistency of the data on which PCA was applied. We
thus end with a 7 dimensional feature space to represent visual data, instead
of the 105 dimensional original space. In order to train the HMMs, annotations
are needed. First the acoustic annotations provided in the AV-LASYN database
were used but we quickly came up with the conclusion that annotations based
on audio are not suitable for visual modelling. We then tried to annotate manu-
ally a subset of the database based on the visual behaviour. Three classes were
used: laugh, smile and neutral. The results of the training based on these new
annotations gave much better results. Since annotating manually is a highly time
consuming task, we have tried to do it automatically, using clustering techniques.
Gaussian Mixture Models were used for this purpose. A GMM was fitted to the
whole visual data and each frame was classified among 3 clusters based on this
fitting. From this classification, we derived visual annotations to be used in the
HMM training. The resulting trajectories appeared to be plausible facial laugh
motion.

Reactive Visual Laughter Synthesis As we did for audio, we then tried
to integrate these models into Mage to be able to synthesise facial motion
reactively. Therefore we had to add a module to Mage so as to be able to project
back the synthesised trajectories into the high dimensional original space. After
this projection, the data is available in a format which may be retargeted on a
3D face model. This was done by using Blender in which we loaded an already-
rigged 3D face model. Data is sent trough OSC from Mage to Blender where it
is read and applied to the 3D face with a python script. As a proof of concept,
we decided to synthesise a succession of neutral and laughing faces in a loop.
We also added a control parameter that allows to change the intensity of the
visual laughter in realtime. This control parameter amplifies or attenuates the
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generated trajectory dynamics. An illustration of the reactive visual laughter in
Blender is given in Fig. 5.

4.3 Reactive Exploration of a Stylistic Gait Space

Motion style is something difficult to capture since it is hardly describable. Our
human expertise enables us to decode effortlessly the emotion, quality or style
conveyed in otherwise functional motions. However it is almost impossible to
formally describe the alterations which, once applied to the functional basic
motion, give it its specific style. Furthermore, making the distinction between
the variability of human motion execution and the style of the motion itself is
an additional difficulty when aiming at modelling the style of a motion. Indeed,
when performing twice the same motion with the same style, the execution of the
movement will always slightly vary. In this work we implemented a framework
for stylistic exploration of motion, using the expressive walk case study as a
proof-of-concept. Our approach is to foster the generative exploration of styles,
from statistical models, as a way of highlighting their implicit properties.

Stylistic Gait Modelling and Synthesis The statistical nature of HMMs
enables them to take into account the intrinsic variability of execution of human
motion. Both the duration variation and the execution variation are modeled,
and a HMM trained on stylistic mocap data becomes a summary of that partic-
ular style. Using the Mockey database as training data, the walk was modelled
by one five-states left-to-right HMM per step (left and right), following the ap-
proach presented in [14]. In a first phase, a global model was trained using all
the database. In a second phase, an adaptive training was conducted in order
to adapt the generic walk model to each one of the eleven styles present in
the database, giving a total of eleven style-specific walk models and one neu-
tral global model. Such an approach corresponds to the left side of Fig. 3, as
described in Section 2. In these models, a diagonal covariance matrix is used
when modelling the pdfs of the observations, hence not taking into account the
interdependency existing between the different body joints motions. Each one of
these models can be used to synthesise new walk sequences of any chosen length,
and the generated walk sequences will display the style of the models from which
they have been generated.

Continuous Stylistic Gait Synthesis However in addition to style and mo-
tion variability, the alterations of the functional motions not only convey the
style of the motion, but also the intensity of expression of that specific style.
Since that intensity can vary continuously, it is impossible to capture the whole
range of intensity during motion capture sessions, even for one single style. With
our twelve gait models, we are able to generate walk sequences which display
the same styles as the ones present in the training database, plus one “neutral”
style trained on all the styles. However since all of our models present the same
structure, as they have all been adapted from the same generic model, we can
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take advantage of this alignment in order to produce new walk styles which have
not been recorded. The model parameters space (mean and variances of output
and duration pdfs) is considered as a continuous stylistic space, where the val-
ues corresponding to each recorded style can be viewed as landmarks which tag
the space. Through interpolation and extrapolation between these landmarks,
we are able to obtain new walk style models. The intensity of each style can
be controlled by interpolating between the original style and the neutral style
parameters, also enabling the production of exaggerated and opposite styles.
Completely new walk styles can also be built by combining any of the existing
styles, enabling the free browsing of the complete stylistic walk space. This ap-
proach has been validated in [39]. However in this work both the control of the
style and the walk synthesis were implemented as offline processes, preventing
the desired free interactive user exploration.

Fig. 6. Illustration of the application for gait style exploration: the Mage application
sends trajectories corresponding to interpolated gait models to Blender through OSC,
where the 3D character is animated. The Mage interface gives one slider per style.

Reactive Stylistic Gait Synthesis In the current work, we implemented a
reactive gait style exploration application, enabling the user to reactively control
the style of the synthesised walk thanks to Mage, and to visualise the resulting
motion sequence in realtime. In this application, the user browses this stylistic
space in realtime, through a set of sliders controlling the influence of each original
style, as illustrated in Fig. 6. These stylistic weights are sent to Mage, which
synthesises an infinite walk sequence (a loop of left and right steps), and the walk
model is adapted in realtime with the weights corresponding to the sliders, hence
modifying the style of the synthesised walk. The synthesised walk trajectories
are sent to Blender through OSC, where it is displayed in realtime on a virtual
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3D character. The user is hence given interactive control of the walk of a virtual
character, as he manipulates sliders to control the style, and can see the influence
of these stylistic modifications on the walk of the Blender virtual character. This
proof of concept application opens the doors to many possibilities as the size of
motion capture databases nowadays explodes and more and more applications
seek new possibilities for exploring motion style or compare motions.

5 Realtime HMM-Based Continuous Mapping

The second step in creating our new framework was to validate some mapping
strategies within the HMM-based approach – such as described in Section 2.
Therefore we have developed a few use case prototypes where the user control
was captured and decoded gestures. This Section explains these applications.

5.1 Audio-Visual Face Retargeting

Speaker identity conversion refers to the challenging problem of converting mul-
timodal features between different speakers so that the converted performance
of a source speaker can be perceived as belonging to the target speaker. We
addressed the problem of speaker conversion using audio and 3D visual infor-
mation. The speech signal and the 3D scans of a source speaker for a certain
utterance will be modified to sound and look as if uttered by a target speaker.
The speaker-specific features are mapped between a source and a target speaker
using GMMs, as described in Section 2.

In the offline version, the 3D BIWI dataset [40] is used to train the GMM
model between any two speakers. The training is done on 40 utterances per-
formed in a neutral manner by both speakers. Spectral features are extracted at
a segmental level using the STRAIGHT vocoder [37] which decomposes speech
into a spectral envelope without periodic interferences, F0 and relative voice ape-
riodicity. From the spectral envelope, we use the 1st through 24th Mel-cepstral
coefficients, a widely made choice in voice conversion and voice synthesis/analysis
systems. The speaker-specific facial articulation features are captured from a
dense mesh of 3D data. From the dataset, 7 speech and expressive movement
components are extracted following a guided PCA method [41]. As the mouth
opening and closing movements have a large influence on face shape, the first
jaw component is used as a first predictor, iterative PCA is performed on resid-
ual lips values and the next 3 lips components are obtained. The second jaw
component is used as the 5th predictor and the last two parameters are ex-
tracted as expressive components and represent the zygotic and eyebrow muscle
movements. These features are computed at the original video frame rate and
are later oversampled to match the audio frame rate. Both visual and spectral
features are concatenated with their first derivatives in order to be used for the
MLE-based mapping approach.

With the purpose of creating an interactive scene in which virtual actors are
able to interact in realtime as guided by a director, we are looking into the pos-
sibility of a realtime conversion framework. For this framework, a new system
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setup is used, involving a Primesense Carmine 1.09 camera to capture close-
range face expressions and a microphone for audio signal acquisition. Also new
approaches are needed for extracting relevant audio-visual features. Therefore
the Faceshift software [43] is used to generate a realtime 3D face mesh while
a speaker performs in front of the camera. For each frame, 48 parameters that
control different face movements (jaw opening, eye squint, puff, sneer etc) are
also generated. They are called blendshapes and can be used with the associ-
ated mesh of the user or retargeted to an existing mesh. In the case of audio
features, a realtime version of the SPTK tool and MLSA filter are implemented
for extracting MFCC coefficients and audio synthesis.

The GMM models are trained offline on a database composed of recorded
audio signals of two speakers and the associated blendshapes generated from
Faceshift. The converted blendshapes can also be sent to Blender to create a
realtime face animation using the 3D mesh of the target speaker. The communi-
cation between the different softwares in realtime is done in Max. Like the SPTK
and MLSA realtime tools, GMMmap is a module for gaussian mixture model
regression using the MMSE method implemented in Max. It uses the models
that were trained offline and saved in a suitable format and the audio-visual
features that are extracted in realtime to estimate the converted features.

5.2 Realtime Stylistic Full-Body Gait Reconstruction

In our application for exploring the stylistic gait space described in Section 4.3,
the ongoing motion is created by the linear combination of the twelve distinct
stylistic walk models, according to the weights given to each style on the GUI.
Such an approach requires that the stylistic space is explicitly tagged accord-
ing to the names used in the training database and proposes a vision of the
continuum between styles based on linear interpolation.

However considering that the various styles can be named and interpolated
within the feature space is a strong design decision. Many use cases might ben-
efit from more implicit approaches towards stylistic exploration. Particularly we
wanted to give the user the ability explore the stylistic space through HMM-
based mapping between his/her input gestures and the corresponding output.
With this idea, we refer to the right side of Fig. 3 where mapping plays the
important role in browsing the feature space, as described in Section 2.

In order to validate that the inherent style of a motion can be determined
from a subset of its dimensions and remapped in realtime on the remaining di-
mensions, we have built a prototype that will reconstruct the gait (step sequence
plus style) from the upper to the lower body. It means that each 54-channel (18
nodes, each with 3 angles) feature vector from the Mockey database is actually
split into inputs and outputs. We consider that the 36 channels corresponding
to the upper body (from head to hips) are inputs. The other 18 channels cor-
responding to leg joints are considered as outputs. They will be animated in
realtime by the system. The whole process is illustrated in Fig. 7.

To achieve the regression between upper and lower body dimensions, we
implemented a HMM-based mapping as explained in Section 2. The sequence
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Fig. 7. Illustration of the overall process used in the gait reconstruction example: con-
tinuous inputs are decoded with a realtime Viterbi algorithm. This decoding generates
a ongoing state sequence that is used for synthesis of the outputs. Before pdfs are used
for synthesis, means are modified by a mapping function based on covariance.

of inputs x are the channels of the upper body and the sequence of target
feature vectors ŷ to be estimated are the channels of the lower body. The gait
models used are trained on all the styles with full covariance matrices in the
pdf representation of the observations. We have a HMM for the right step and
a HMM for the left step. Each HMM owns four states.

The first stage in this process is the decoding of the input sequences. The
implemented solution for the decoding uses the HTK software toolkit [45]. A
realtime data stream is simulated by sending the input data with a specified
frame rate to the HRec algorithm, a HTK module that applies the Viterbi
algorithm. We added, in the pdfs of the observations, a mask vector to inhibit
the channels corresponding to the outputs of the mapping process. This decoding
stage provides the most likely HMM λ̂ that is being played by the streamed
data and the current state for this model. To ensure that this stage works in
realtime, we extract the partial results given by the Viterbi algorithm without
being sure to have the realisation of the complete states sequence for a given
model. Moreover, for a given frame xt, only its past [x1, ..,xt−1,xt] is taken
into account to establish the current state qt. It appears that it could be more
accurate to compute this state by introducing a delay in order to get some
information about the future of each sample to choose the best states sequence.

Once the decoded state is available, it can be used to query the HMM
database of the upper body dimensions so as to build the state sequence for the
synthesis stage. Before the stack of pdfs is accumulated for synthesis, the means
of each state are extracted and corrected according to the mapping function
described in Section 2. This process tends to influence the means so as to move
within the model and react to the covariance information which is expressed
between the input and output dimensions. As a result, the statistical properties
of the state sequence get modified. When this modified state sequence enters the
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synthesis stage, it reflects the stylistic influence of the inputs on the outputs. It
means that the style of the upper body transfers to lower body trajectories.

6 Architecture and Software

Based on the reactive properties of HMM-based speech synthesis framework,
as described in [26], we built a new speech synthesis library, called Mage [23].
Mage is based on the HMM-based parametric speech synthesis system (HTS),
which it extends in order to support realtime architecture and multithreaded
control. As it is based on HTS, it inherits its features, advantages and drawbacks
[26]. The contribution of Mage is that it opens the enclosed processing loop of
the conventional system and allows reactive user control over all the production
levels. Moreover, it provides a simple C++ API, allowing reactive HMM-based
speech synthesis to be easily integrated into realtime frameworks [46, 47].

6.1 Threaded Architecture of MAGE

One important feature of Mage is that it uses multiple threads, and each thread
can be affected by the user which allows accurate and precise control over the
different production levels of the artificial speech. As illustrated in Fig. 8, Mage
integrates three main threads: the label thread, the parameter generation thread
and the audio generation thread. Four queues are shared between threads: the
label queue, the model queue, the parameter queue and the sample queue.

Fig. 8. Mage: reactive parameter generation using multiple threads and shared queues

The label thread controls the phonetic labels, by pulling the targeted phonetic
labels from the label queue and pushing the corresponding models into the model
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queue. It is responsible for the contextual control of the system. The parameter
generation thread reads from the model queue a model that corresponds to one
phonetic label at a time. For that single label / model the speech parameters
are generated (static and dynamic features), which are locally-maximised using
only the current phonetic label / model (and if available, the two previous la-
bels). In other words, for every single input phonetic label, the feature vectors
are estimated by taking into account the HMMs of that specific label. The gen-
erated speech parameters are stored in the parameter queue. Finally, the audio
generation thread generates the actual speech samples corresponding to the in-
puted phonetic label and store them in the sample queue so that the system’s
audio thread will access them and deliver them to the user. Further details of
the Mage reactive parameter estimation can be found in [49].

6.2 Reactive Controls

Accessing and controlling every thread has a different impact over the synthe-
sised speech, as illustrated in Fig. 9. The label thread can provide contextual
phoneme control. Indeed, the context of the targeted output can be easily ma-
nipulated in realtime by simply controlling which of the available phonemes for
processing will be inputed into the system and in which sequence.

The parameter generation thread can reactively modify the way the available
models are used for the parameter sequence generation [49]. The user can re-
actively alternate between the available models, or interpolate between models
with different interpolation weights among the various feature streams. It is also
possible to manipulate the mapping between different feature streams, i.e. how
a given stream influences another [17].

Finally the audio generation thread manipulates reactively the vocoding of
every sample, resulting in prosody and voice quality controls. The delay in ap-
plying any received user control varies between a single speech sample and a
phonetic label depending on the thread that is being accessed. For every thread
it is also possible to enable the logging functionality, described hereafter, to store
the applied user controls as well as its generated output.

6.3 Reactive Control Through Regular Expressions

One new feature added in Mage is the support of regular expressions. As ex-
plained in [26], in order to describe a phoneme, additional linguistic specifica-
tions have to be taken into account. Therefore, every phonetic label in addition
to phoneme information, uses various linguistic contexts such as lexical stress,
pitch accent, tone, and part-of-speech information for the context-dependent
modelling. An example of the format of the phonetic labels can be found in [13].

Until now, it was possible to control the sequence of the labels inputed to
Mage be synthesised. However, there is need for more accurate and specific
control over the targeted context. In order to achieve that we use regular expres-
sions that describe the phonetic labels. The integration of regular expressions
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Fig. 9. Mage: reactive user controls over the multiple threads

“allows the user to query” every imputed label and accordingly to apply certain
controls, on every production level of the artificial speech.

For example, when it comes to the contextual control, that occurs in the
label thread, if the current phoneme is “ 6 ” the synthesis of that phoneme can
be skipped. Another example, while controlling the models themselves through
the regular expressions, a control that occurs respectively at the parameter gen-
eration thread, if the next phoneme is “ @ ” we want to interpolate speaking
style i with speaking style j using interpolation weight vector y . Finally, while
controlling the actual generated speech samples, accessing the audio generation
thread, if the phoneme is stressed then the pitch can be shifted, etc.

6.4 Reactive Mapping Control

In previous versions of Mage, the granularity of the controls that the user can
access for the parameter generation stopped at the model level. Indeed, through
the API, a user could only push left-to-right HMMs into the model queue and,
from there, compute the duration of each state and the sequence of corresponding
observations. This constrains the use case into a left-to-right pattern that does
not allow integration of the mapping control detailed in Section 5. Therefore, we
added a state queue into Mage as an alternative to the model queue.

While the model queue is usually filled with sequences of states corresponding
to models selected to match the labels in the label queue, the state queue is
fed directly with one state at a time. Each state corresponds to one frame of
observations and, as such, has a duration of one. If the system must remain
in a state for N frames, that state is simply pushed in the queue N times.
This enables arbitrary patterns and number of states for the HMMs and thus
overcomes the limiting effect of the model queue.
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As for the short-term computation of observation frames from the state
queue, it is achieved almost as for the model queue. The most significant differ-
ence is that one can set M , the number of frames to be computed whereas in the
model queue the frames are computed for one complete model at a time, and
the number of frames generated is equal to the duration of that model. The con-
text for the short-term parameter computation is set in the same fashion as for
the model queue, except that the user sets a number of states to be considered
before and after instead of a number of models. This notably allows to always
use a constant amount of contextual information, for instance 17 states in the
past and 3 states in the future of the M states that correspond to the M frames
to be computed. This contrasts with the model queue for which the amount of
contextual information is the sum of the durations of each model used as context
and thus can change at every step. Using the state queue with M = 1, one can
even make the computation for one state at a time. In other words, one can
generate one frame at a time, while still using surrounding states as the context
for the short-term parameter computation.

6.5 Logging of User Actions and Generated Output

One of the major complications when working with reactive applications is that
of detecting and explaining unexpected situations. Indeed, every action from the
user can cause an instant, or not so instant, reaction from the system. Depending
on many factors (which Mage’s thread it is applied to, OS process scheduling
policy, etc.), both the reaction and its time delay after the action occurs can
be different, even if the user reproduces the same set of interactions. Therefore,
when something unusual happens it can be very difficult to, first, realise it and
then reproduce it to eventually pinpoint the cause of the event. It could simply
be a normal, albeit surprising, answer to a one in a million combination of user
commands but it might as well be a bug in the application or in the core Mage
library. Added to this is the problem of detecting exactly when it happened.

In order to make it easier to solve these issues, we introduced a simple logging
system in Mage, as illustrated in Fig. 9. If enabled, it records the sequences of
controls sent to Mage by the user such as the labels, pitch, α, interpolation
weights, etc. Each of these values is recorded with a timestamp corresponding
to the index of the first sample to which it is actually applied inside of Mage.
Besides, the logging system also saves the evolution of the inner state of Mage.
This is currently limited to the content of the frame and sample queues but
could easily be extended to the model and state ones.

7 Conclusions

In this project we have gathered different approaches and backgrounds, with
the common aspect of being interested in applied statistical modelling, and we
have created a unified framework. This framework is based on trajectory GMMs
and HMMs and use a newly-created gesture recognition tool and a new version
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of Mage in order to enable the development of mapping strategies. The idea
of HMM-based mapping has been formalised and generalised to any kinds of
input and target stream of features. Such a reflexion had a significant impact
in how we were envisioning the use of generative models in this work. Therefore
we have been able to create a first set of new prototype applications to assess
our approach of parameter generation. Indeed we have created an incremental
speech synthesiser, generating speech audio right when the user is typing with
a limited delay. The current incremental synthesis system allows for a simple
analysis relying on a lexical look-up to provide simple lexical analysis and word
prediction. This sufficiently demonstrates the possibility of realtime incremental
TTS. Many possible future directions can be perceived, such as the implemen-
tation of better user interfaces for faster input to the system, the utilisation of
Mage’s realtime speech modifications capabilities (e.g. to adjust synthesis speed
to user input speed) and the prediction of future phones (and other contexts) to
allow the system to be truly realtime without a significant loss of synthesis qual-
ity. Also in the parameter generation improvements, we have created realtime
exploration of mocap-based trajectories. This idea has been applied to face and
body. For the face, it gave the first realtime audio and visual laughter prototype.
For the body, we created a new application for exploring the stylistics of gait
by blending together various identified one-style models and enable inhibition
and exaggeration of those styles. The second step in our work has been to de-
sign and assess more implicit statistical mapping applications, where the input
is a natural gesture. There we have developed a audio-visual speaker retargeting
prototype, where the expressive multimodal speech gestures of a given speaker
are remapped on another one in realtime. Also we have created the first gait re-
construction application, where the upper body gait (balancing arms and torso)
triggers the parameter generation corresponding to the lower body motion (legs)
in realtime. This prototype demonstrates that that HMM-based recognition of
stylistic data, its mapping and the corresponding parameter generation can be
achieved in a realtime scenario. Finally most of these developments have helped
the Mage software to head towards its third major release.
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