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ABSTRACT

This paper presents a new corpus comprising single and
overlapping speech recorded using digital MEMS and ana-
logue microphone arrays. In addition to this, the paper pre-
sents results from speech separation and recognition experi-
ments on this data. The corpus is a reproduction of the multi-
channel Wall Street Journal audio-visual corpus (MC-WSJ-
AV), containing recorded speech in both a meeting room and
an anechoic chamber using two different microphone types
and two different array geometries. The speech separation
and speech recognition experiments were performed using
SRP-PHAT-based speaker localisation, superdirective beam-
forming and multiple post-processing schemes, such as re-
sidual echo suppression and binary masking. Our simple,
cMLLR-based recognition system matches the performance
of state-of-the-art ASR systems on the single speaker task and
outperforms them on overlapping speech. The corpus will be
made publicly available via the LDC in spring 2013.

Index Terms— MEMS microphones, microphone array,
speech separation, WSJ, ASR

1. INTRODUCTION

This paper presents a new multiple microphone array corpus
of single and overlapping speech (2012 MMA), together with
speech separation and recognition experiments on the corpus.
Recordings were made using microphone arrays in two condi-
tions: a hemi-anechoic room and a meeting room. In each
of these settings twelve participants were recorded reading
Wall Street Journal (WSJ) sentences from prompts, both in-
dividually and overlapping in six same-gender pairs, exactly
as in the experiments presented by Lincoln et al. for the se-
cond PASCAL Speech Separation Challenge [1]. Five cir-
cular microphone arrays were used to make simultaneous re-
cordings: two different microphone types (digital MEMS and
analogue) were used and the arrays had diameters of 20 cm
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(16kHz sampling rate) and 4 cm (96kHz and 48kHz sampling
rates). We conducted speech separation and recognition ex-
periments on this corpus to investigate the effect of the re-
duced SNR of the digital MEMS microphones compared to
analogue microphones. In our experiments we looked at the
effect of post-filtering, echo suppression, and binary masking.

These experiments are, as far as we know, the first ever re-
cordings of single and overlapping speech in a meeting room
and hemi-anechoic environment using both conventional ana-
logue and newly available digital MEMS microphones, which
are being used increasingly in modern consumer devices.

2. PRIOR WORK

Overlapping speech poses a serious challenge for modern
ASR systems. The most systematic work in the field, using
recordings of overlapped speech, has used the multi-channel
Wall Street Journal audio visual (MC-WSJ-AV) corpus [1],
released for the second PASCAL Speech Separation Chal-
lenge. Initial experiments on these recordings [2, 3] demons-
trated that the ASR word error rate (WER) for overlapping
speech can easily be double or triple that of a comparable
single speaker scenario. More recent experiments on the
single speaker part of the MC-WSJ-AV corpus have shown
that it is important for distant speech recognition to use so-
phisticated front-end processing on multiple input channels
[4] rather than just back-end compensation on a single distant
channel [5, 6]. The ideal approach might therefore consist of
a combination of the two [7].

Although there has been a lot of recent research activity
in single speaker distant speech recognition, e.g. the CHiME
challenge [8], this has typically involved the artificial crea-
tion of data by convolving close-talking speech recordings
with a multi-channel room impulse response and then adding
noise. Ideally, however, the corpora would be recorded in
different natural environments in order to capture the way in
which speakers change their speaking style in noise and re-
verberation [9], and this has motivated our collection of the
2012 MMA corpus.



3. MEMS MICROPHONE ARRAY

MEMS microphones are replacing analogue microphones at a
fast pace in modern consumer devices. These MEMS micro-
phones have the advantages of easier manufacturing and bet-
ter sensitivity matching, at the cost of a significantly reduced
signal to noise ratio (SNR). We have previously demonstrated
that the reduced SNR of the MEMS microphone can be com-
pensated for by using MLLR adaptation techniques in speech
recognition, and that the automatic speech recognition per-
formance of the MEMS microphones can match conventional
analogue ones [10]. In those experiments we used circular
arrays of a diameter of 20 cm, similar to those used for data
collection in the AMI Meetings Corpus [11].

We have now developed a circular 8-channel micro-
phone array with a diameter of 4 cm which would fit easily
into many consumer devices, allowing mobile recording
of 8 synchronous channels of audio and therefore enabling
super-directive beamforming, state-of-the-art noise reduction,
speech separation and dereverberation. Our digital MEMS
microphone arrays are built using ADI ADMP441 omnidirec-
tional MEMS microphones with bottom port and I2S output
and the Rigisystems USBPAL, a USB 2.0 multi-channel
audio interface for Windows PC and MAC OS X. Detailed
information on the MC-WSJ-AV and 2012 MMA corpora in-
cluding the DMMA.3 can be obtained from http://www.
cstr.inf.ed.ac.uk/research/#corpora.

4. SPEECH SEPARATION

We separate overlapping speech using a combination of spa-
tial filtering and crosstalk cancellation methods [2, 3]. This is
achieved via a two-stage approach in which an initial beam-
forming stage separates the speech based on spatial diver-
sity (Section 4.1), followed by a cross-talk cancellation stage
which post-processes the beamformer outputs in order to im-
prove the separation (Section 4.2). We also discuss the spea-
ker localisation system (Section 4.3).

4.1. Superdirective Beamforming

Consider two speakers located at directions

ak = [cos θk cosφk sin θk cosφk sinφk]T , (1)

k = 1, 2, with θk and φk denoting the azimuth and eleva-
tion in relation to the array. The directions ak translate to
time delays τk,i = −aTkmi/c at the microphone positions
mi, i ∈ {1, . . . , N}, where c denotes the speed of sound.
Let xi(t) denote the signal at the i-th microphone and let
Xi(ω, t) be the corresponding short-time Fourier transforms.
Then defining X(ω, t) = [X1(ω, t) · · · XN (ω, t)], beamfor-
ming may be described as a multiplication by a weight vector
wk:

Yk(ω, t) = wH
k (ω) ·X(ω, t). (2)

For the delay-and-sum (DSB) beamformer, we set wk(ω) =
1
N vk(ω) where vk denotes the array manifold vector

vk(ω) = [e−jωτk,1 · · · e−jωτk,N ]. (3)

To optimise spatial filtering with respect to reverberant envi-
ronments, it has been proposed to minimise the total output
power under the assumption of a diffuse noise field [12]. This
leads to the superdirective beamformer (SDB) [13] whose
weight vector is:

wk(ω) =
T−1(ω)vk(ω)

vHk (ω)T−1(ω)vk(ω)
. (4)

Ti,j(ω) denotes the coherence of a spherically isotropic noise
field: Ti,j(ω) = sinc(ωc ‖mi −mj‖), i, j ∈ {1, . . . , N}. In
order to use SDB for speech separation, a beamformer is poin-
ted at each of the speakers. Y1(ω, t) and Y2(ω, t) are obtained
according to (2), and the corresponding separated speech si-
gnals y1(t) and y2(t) are recovered through inverse Fourier
transform followed by overlap-and-add.

4.2. Cross-Talk Cancellation

Since speakers tend to use different frequency bands at one
time [14], a post-processing step may be employed in which
the beamformer outputs Yk(ω, t) are multiplied by a binary
mask Mk whose components Mk(ω, t) identify which fre-
quencies a speaker uses at time t [2, 3]:

Ŝk(ω, t) = Mk(ω, t) · Yk(ω, t), k ∈ {1, 2}. (5)

Near perfect demixing would be possible if the true masks
were known [14]. In practice,Mk(ω, t) needs to be estimated.
This can be achieved by comparing the power at the beam-
former outputs Y1(ω, t) and Y2(ω, t) and then allocating the
time-frequency unit (ω, t) to the stronger output [2]:

M̂k(ω, t) =

{
1, |Yk(ω, t)|2 ≥ |Yl(ω, t)|2 ∀l
0, otherwise

. (6)

In this work, the |Yk(ω, t)|2 are smoothed in time by convol-
ving with a triangular filter kernel. The resulting masks
M̂k(ω, t) are further processed by Welsh averaging:

M̄k(ω, t) = αM̄k(ω, t− 1) + (1− α)M̂k(ω, t) (7)

with α = 0.9. Since the optimum window length for time-
frequency masking is about 1024–2048 samples (at a sam-
pling rate of F = 16kHz) [14], we use an FFT of length
L = 2log2(F/32), with a window shift of L/32.

4.3. Speaker Localisation with a Superdirective SRP

Speaker localisation is carried out using a superdirective va-
riant of the steered response power (SRP-PHAT) method from
[15, 16]. The main idea of this approach is to (1) steer an
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Fig. 1. Speech separation and ASR experiment

SDB in every possible direction and then (2) find the speaker
at that position where the output power is maximised. PHAT-
weighting is accomplished by applying the SDB to the pre-
whitened X̃i(ω, t) = Xi(ω, t)/‖Xi(ω, t)‖ instead of X.

Once the location of the first speaker has been found, we
perform a second SRP iteration in which one beamformer w1

is fixed on the position of the first speaker. A second beam-
formerw2 scans all possible directions for the second speaker.
During the calculation of the response power

∫
|Y2(ω, t)|2dω

in a particular direction, the effect of the first speaker is can-
celled by processing the output Y2(ωt) = w2(ω)X̃2(ω, t)
with the binary masking method from Section 4.2. This effec-
tively restricts the localisation to those time-frequency units
which are not used by the first speaker.

5. EXPERIMENTS

The 2012 MMA corpus contains recordings of two sets of
six male and six female speakers reading sentences from the
WSJCAM0 [17] test and development sets in a meeting room
(T60 = 180ms) and a hemi-anechoic room (virtually no re-
verberation), first alone and then in same-gender pairs. All
participants were native British English speakers. The set
of prompts for each speaker was selected from one of the
sets used in WSJCAM0 and typically contained 17 TIMIT
style sentences (for adaptation), 40 sentences from the 5k
word (closed vocabulary) sub corpus of WSJCAM0 and 40
sentences from the 20k word (open vocabulary) sub corpus.
Recordings were made using five circular microphone arrays
(diameter d, sampling rate Fs) in each environment:
• Analogue, d = 20 cm, Fs = 16 kHz
• Analogue, d = 4 cm, Fs = 96 kHz
• Digital, d = 20 cm, Fs = 16 kHz
• Digital, d = 4 cm, Fs = 96 kHz
• Digital, d = 4 cm, Fs = 48 kHz
The recordings were processed as follows (Figure 1).

First, sound source localisation was carried out using the
audio signal from the 8 channels. Beamforming and post-
filtering was then performed and two speakers were extracted
from the audio inputs. Speech recognition was carried out
on the post-filtered signal, and acoustic model adaptation
was performed using the adaptation recordings. Recogni-
tion and scoring were conducted using a context-dependent

Table 1. Overlapping speaker WER [%] of the ASR experi-
ments on the MC-WSJ-AV corpus

Adaptation None channel speaker & channel
WER [%] WER [%] WER [%]

SDB 90.3 67.2 67.2
SDB+ZPF 87.6 63.2 63.16
SDB+RES 81.7 55.3 58.9
SDB+BM 73.8 46.3 48.6

HMM-GMM system using the HTK toolkit [18].
There is an acoustic mismatch between the WSJCAM0

training data and the microphone array recordings which form
the test data. To address this we used the adaptation sentences
recorded to carry out a two pass constrained maximum like-
lihood linear regression (cMLLR) adaptation [19] of the mo-
del means and variances, similar to our previous experiments
[10]. We adapted the models to the individual channels and to
the speakers, pooling the 17 adaptation sentences recorded by
each speaker. The recognition experiments were then perfor-
med on the WSJ-5k data from the matched array. Modifica-
tions were necessary for the overlapping speaker experiments
because the identity and position of the individual speakers
were not known. cMLLR adaptation was therefore carried
out for a speaker pair and not the individual speakers.

6. RESULTS AND DISCUSSION

The results presented here were produced following the exact
setup described in [10] to ensure validity of the experimental
data and in order to be able to compare the results. Base-
line experiments were also carried out with the MC-WSJ-AV
corpus. This data was recorded with the 8-channel analogue
array with a diameter of 20 cm, the same array as used for a
subset of the new recordings presented here. The word error
rates (WER) achieved are presented in Table 1.

State-of-the-art speech recognition accuracy (WER) using
the single stationary speaker data of the MC-WSJ-AV corpus
is 12.2% [4]. For the overlapping speaker scenario Himawan
et al. [2] achieved 58% WER (40% for the better speaker).
McDonough et al. [3] achieved 39.6% WER using a different
ASR system.



Table 2. Results from the ASR experiments on the single (WSJ) and overlapping speaker (MSWSJ) corpus in a meeting room
and anechoic chamber

Corpus WSJ (IMR) WSJ (anechoic)
Microphone array Analogue Digital Analogue Digital
diameter [cm] 20 4 20 4 4 20 4 20 4 4
Fs [kHz] 16 96 16 96 48 16 96 16 96 48

WER WER WER WER WER WER WER WER WER WER
Adaptation [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

SDB None 23.2 26.3 45.3 32.3 29.4 18.0 20.6 37.1 21.1 20.8
cMLLR (channel) 17.9 18.2 29.7 21.4 20.0 16.4 17.6 26.3 17.9 17.9
cMLLR (speaker & channel) 16.1 17.3 25.6 19.7 18.2 14.4 15.8 24.9 15.0 15.6

SDB+ZPF None 21.8 26.3 35.3 33.0 29.6 18.0 20.5 36.1 21.0 20.7
cMLLR (channel) 16.8 18.1 19.3 21.7 20.0 17.0 16.8 25.9 17.9 18.0
cMLLR (speaker & channel) 13.9 17.0 18.7 20.1 18.2 14.7 14.9 23.8 14.9 15.6

Corpus MSWSJ (IMR) MSWSJ (anechoic)
SDB None 93.4 105.0 97.2 108.8 108.6 93.7 104.8 97.8 107.9 104.7

cMLLR (channel) 66.7 81.5 64.1 80.9 82.1 67.6 79.4 60.0 81.7 80.0
cMLLR (speaker & channel) 67.7 83.6 63.0 85.8 85.9 67.4 81.4 59.4 83.1 82.3

SDB+ZPF None 88.2 102.7 90.2 105.4 107.2 90.4 102.9 94.2 106.3 102.8
cMLLR (channel) 56.2 77.1 43.2 78.7 79.5 64.3 76.7 59.1 78.9 77.8
cMLLR (speaker & channel) 55.8 80.5 43.5 81.5 83.4 64.5 78.7 58.4 79.6 80.2

SDB+RES None 65.3 66.2 72.5 66.9 64.9 58.8 65.2 71.8 72.0 63.9
cMLLR (channel) 35.4 36.3 39.4 31.9 34.1 30.9 37.6 44.5 49.0 37.8
cMLLR (speaker & channel) 36.1 37.0 40.8 35.0 36.1 32.4 43.1 45.2 50.8 39.1

SDB+BM None 59.9 63.2 58.4 60.3 60.3 61.9 75.8 66.6 71.8 62.9
cMLLR (channel) 31.9 35.8 32.7 33.5 33.5 40.3 47.0 42.4 46.2 42.6
cMLLR (speaker & channel) 34.3 38.7 34.9 35.4 35.2 39.4 48.0 42.8 48.5 44.0

Our results on the single speaker data (2012 MMA, WSJ),
ranging from 13-25%, are in line with those with all five
microphone arrays using simple cMLLR adaptation1. Speech
recognition experiments on the recordings from the hemi-
anechoic chamber achieve similar results, as presented in
Table 2.

Results using superdirective beamforming (SDB) are si-
milar to our previous results [10], where we demonstrated
that the WER gap between the digital and analogue arrays can
be compensated for by channel (i.e. microphone array type)
adaptation. These results can be improved by a few percent
using Zelinski postfiltering [20] (SDB+ZPF). Using speaker
and channel adaptation the WERs obtained from the different
microphone arrays are almost identical.

For the multi-speaker WSJ speech separation task we
achieved a lowest WER of around 35%, again only using
simple cMLLR adaptation to the channel. These results were
obtained with both residual echo suppression [21] and binary
masking. The MSWSJ results are presented in Table 2.

The best results are achieved by using SDB and re-
sidual echo suppression (SDB+RES) or binary masking
(SDB+BM). Residual echo suppression appears to be more
efficient for analogue microphones, while binary masking
works better for the MEMS microphones. Speaker and chan-
nel adaptation is not efficient for overlapping speech recog-

1Note that the digital MEMS microphone array (d=20 cm, Fs = 16 kHz)
is a prototype only and shows increased noise and therefore also increased
WER. The issues have been resolved with the new array (d = 4 cm)

nition due to the data not being from one, but two speakers.
Channel-only adaptation is more efficient as there is more
adaptation data.

Results reported here are averages of 6 speaker pairs. We
observed that the WER for one speaker is usually significantly
better then for the other one, e.g. the reported WER of 31.9%
for the analogue microphone array of 20 cm diameter is a pro-
duct of the average of 24.4% WER for the first better speaker
and 39.3% WER for the second speaker. This was already ob-
served during speech separation experiments on the MCSJAV
corpus [2].

7. CONCLUSIONS AND FUTURE WORK

In this paper we have demonstrated that the 2012 MMA cor-
pus is a valuable extension to the existing MC-WSJ-AV cor-
pus, allowing research in speech separation on natural speech
using recordings from five different microphone arrays, in-
cluding (digital) MEMS microphones. Using state-of-the-art
speech separation, acoustic beamforming techniques, post-
filtering and simple constrained MLLR adaptation, we have
obtained baseline WERs in line with the state-of-the-art on
the distant single speaker task, and demonstrated improved re-
cognition accuracy on the overlapping speech separation and
recognition task.

We are currently working with the Linguistic Data Consor-
tium (LDC) to publish the 2012 MMA corpus in Spring 2013.
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