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Abstract
This paper presents an experimental comparison of a broad
range of the leading vocoder types which have been previously
described. We use a reference implementation of each of these
to create stimuli for a listening test using copy synthesis. The
listening test is performed using both Lombard and normal read
speech stimuli, and with two types of question for comparison.
Multi-dimensional Scaling (MDS) is conducted on the listener
responses to analyse similarities in terms of quality between
the vocoders. Our MDS and clustering results show that the
vocoders which use a sinusoidal synthesis approach are percep-
tually distinguishable from the source-filter vocoders. To help
further interpret the axes of the resulting MDS space, we test for
correlations with standard acoustic quality metrics and find one
axis is strongly correlated with PESQ scores. We also find both
speech style and the format of the listening test question may
influence test results. Finally, we also present preference test
results which compare each vocoder with the natural speech.
Index Terms: Speech Synthesis, Vocoder, Similarity, Quality

1. Introduction
The prominence of the hidden Markov model (HMM) based ap-
proach to speech synthesis has grown rapidly in recent years,
driven by its recognised advantages of convenient statistical
modelling and flexibility. However, more than just convenient
and adaptable speech synthesis alone, we desire the speech pro-
duced to be as close to natural speech as possible. For this,
the characteristics of the speech vocoder used to generate the
speech waveform from the vocoder parameters provided by the
HMM are of paramount importance.

Various types of source-filter vocoder have typically been
used for HMM-based speech synthesis Toolkit (HTS) [1] so
far, where the excitation source is modelled by a mixture of
pulse train and white Gaussian noise. Although the simplest
pulse/noise model is straightforward, it does not provide an ade-
quate model for the natural source and produces a characteristic
“buzzy” sound due to strong harmonics at higher frequencies.
Many more sophisticated source-filter vocoders have been pro-
posed to address this problem. STRAIGHT [3] uses aperiodic-
ity to weight the harmonic and noise components of the excita-
tion. Substituting the pulse train with a residual signal is another
way to retain a more detailed excitation signal, for example the
Deterministic plus Stochastic Model [4]. Similarly, Glottal In-
verse Filtering has been combined with HTS to model glottal
pulses [5]. Meanwhile, multiple sinusoidal vocoders, have also
been proposed. These depart from the strict source-filter ap-
proach to speech production, and generally differ in how they
model the noise component. The Quasi-Harmonic Model [6] is
an example of this sinusoidal class of vocoder.

Although a large number of good quality vocoders have

been proposed, the optimal choice of vocoder to use in an
HMM-based TTS system has not yet been clearly established.
There are two main reasons for this. First, studies introducing
a new vocoder are often limited to using a single baseline in
the experimental validation they present. Second, when intro-
ducing a new vocoder, attention is not always given to evaluat-
ing the suitability of the vocoder for TTS. To address this open
question, we attempt here a systematic comparison of a vari-
ety of vocoder types, and consider their suitability for HMM-
based synthesis systems. We can find some previous work with
a similar aim, for example different types of vocoder are intro-
duced in some detail in [7], but generally there has not been
a great deal of work in this direction. The aim of this paper,
then, is to evaluate different vocoders in a reasonably large-
scale listening test, using the same speech data and under con-
sistent controller experimental conditions. We then apply multi-
dimensional scaling and K-means clustering to analyse and vi-
sualise the responses and explore the relationship between the
different vocoders.

When interpreting the results of this comparison, it is nec-
essary to bear in mind certain caveats. First, the performance
of waveform vocoders (harmonic, quasi-harmonic, etc.) are
not distinguished from other vocoders, which are more suited
to TTS system modelling as they have a fixed low dimension
parameters for each frame. Moreover, this experiment is just
based on one single speaker and limited set of samples. Thus,
every vocoder may not be equally stretched in all ways possi-
ble, and so a truly even comparison may not be achieved. An-
other difficulty arises in differences in the parameters used by
each vocoder. As explained further in Section 2, rather than
implement every vocoder, this study uses the authors’ own im-
plementation for some vocoders (specifically, those proposed
by Degottex, Drugman, Erro and Raitio). This means some pa-
rameter settings (e.g. F0 tracking) may vary between systems,
which will affect the results. Nevertheless, the results of this
study may still offer useful insights in terms of: i) similarities
and differences between vocoder types; ii) whether any param-
eters greatly affect speech quality; iii) which vocoders are most
natural and which are most amenable to statistical modelling.

This paper is organised as follows. The vocoders selected
for comparison are briefly summarised in detail in Section 2.
A series of comparisons are analysed based on both subjective
and objective experiments in Section 3. Some discussion and
conclusions are listed in Section 4.

2. Vocoder systems
The vocoders included in the listening test are summarised in
Table 1, where each vocoder’s name, suitability and param-
eters for HTS modelling also shown. In terms of sinusoidal
vocoders, Harmonic plus noise model(HNM) vocoder based on
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Table 1: Summary of selected vocoders (k: number of sinusoids
per frame, HTS: the suitability for HTS modelling ).

Name Vocoder HTS Parameters per frame

MGC Mel - generalised
cepstral vocoder Yes MGC: 24 + F0: 1 , Pulse

plus noise excitation

SF
STRAIGHT
with full band
mixed excitation

No
Aperiodicity:1024,
spectrum: 1024+ F0:1,
Multi- band mixed excitation

SC

STRAIGHT-
MGC with
critical band
mixed excitation

Yes
Band aperiodicity: 25 +
MGC :39 + F0: 1, Multi-
band mixed excitation

Glot Glottal vocoder Yes
F0:1, Energy:1, HNR: 5,
Source LSF: 10, Vocal tract
LSF: 30, natural pulse

DSMR
MGC vocoder
with DSM-based
residual

Yes MGC: 30 + F0:1, DSM for
residual excitation

HM Harmonic model No 2*k harmonics + F0:1,
Harmonic excitation

HMF Harmonic with
fixed dimension No 2*k harmonics + F0: 1,

Harmonic excitation

HNM HNM-MGC
vocoder Yes

MGC:40 + F0:1, Multi- band
excitation, Maximum voiced
frequency

aHM Adaptive
harmonic model No 2*k + F0:1, Harmonic

excitation
OS Original speech

mel-cepstral coefficients and F0 [9], adaptive harmonic vocoder
[6], harmonic vocoder [8], harmonic vocoder with fixed pa-
rameters were selected. For the source-filter vocoders,the de-
terministic plus stochastic model for residual(DSMR) vocoder
[4], the mel-generalized cepstral vocoder, glottal vocoder [5],
and STRAIGHT [3] with both full-band and critical-band based
mixed excitation [10] were chosen for comparison.

2.1. Mel-generalized cepstral vocoder (MGC)

Here, a simple pulse/noise excitation is used for the MGC
vocoder. Although straightforward, this excitation model can-
not fully represent natural excitation signals and often generates
“buzzy” speech. Different types of coefficients may be used to
represent the spectrum. Mel-cepstra are often used, providing
a good approximation to the human auditory scale of speech.
Here, we use the Mel-Generalised Log Spectral Approximation
(MGLSA) digital filter to filter the excitation signal to synthe-
sise speech. We use the same parameter value in [4] α=0.42 and
γ=-1/3 for MGC extraction.

2.2. STRAIGHT with full-band mixed excitation (SF)

STRAIGHT (Speech Transformation and Representation using
Adaptive Interpolation of Weight Spectrum) [3] was developed
to better remove the periodicity effects of F0 on extracting the
vocal tract spectral shape. For spectral envelope extraction, both
F0 adaptive spectral smoothing and compensatory time win-
dows are used to transfer the time frequency-smoothing prob-
lem to frequency domain. Aperiodicity of the signal is com-
puted as the difference between the upper and lower envelope
of the spectrum. For voiced frame, noise is calculated by modu-
lating the randomness of the phase component according to ape-
riodicity. Finally, all parameters are sent to a minimum-phase
filter with group delay phase manipulation to synthesise speech.

2.3. STRAIGHT mel-generalised cepstal vocoder with crit-
ical band mixed excitation (SC)

Although STRAIGHT uses both aperiodicity and F0 adaptive
spectral smoothing to solve the “buzzy” problem, the number
of parameters for both the spectrum and aperiodicity compo-
nents is the same size as the FFT length used, which is not suit-
able for statistical modelling. [10] proposed to use other lower
dimensional parameters, such as Mel-generalized Cepstral Co-
efficients or Line Spectral Pairs to represent the spectrum in-
stead. Here, in order to compare with other vocoders with sim-
ilar spectral parameters, the Mel-generalised cepstral is chosen
as the intermediate spectral parameterization. Aperiodicity pa-
rameters are also compressed by averaging the whole points to
25 sub-bands. The same type of filter is chosen as used in the
STRAIGHT vocoder above.

2.4. Glottal vocoder (Glot)

[5] proposed a method to represent the glottal pulse signals in-
stead of using a pulse-train excitation to represent the voiced
excitation. For voiced speech frames, Interactive Adaptive In-
verse Filtering (IAIF) is used to separate the glottal source from
the vocal tract so that both the vocal tract and source signal may
be accurately estimated. For unvoiced frames, conventional in-
verse filtering is applied. Other parameters, such as energy and
harmonic-to-noise ratio (HNR), are calculated so as to weight
the noise component of the source. During synthesis, a pre-
stored library pulse is selected and interpolated to match the
target F0. The glottal spectrum, HNR and energy also have to
be set to match the target. Finally, a vocal tract filter as derived
from analysis part is applied to the excitation to generate the
speech signal.

2.5. MGC vocoder with DSM-based residual (DSMR)

In [4], a MGC vocoder with Deterministic plus Stochastic
Model for residual signal is proposed. The residual signal is first
obtained by applying inverse filtering using mel-generalised
cepstrum filters. Then, a Blackman window, centred on glottal
closure instants and of length equalling two F0 periods, is ap-
plied to obtain pitch-synchronous residual frames. In order to
model these, they are first length normalised, then the determin-
istic component at the lower frequencies is decomposed using
Principal Component Analysis (PCA) to obtain the first eigen
residual. The energy envelope and an autoregressive model are
used for the stochastic component. During synthesis, both these
parts are resampled to match the target pitch to produce the new
residual signal, which is used to drive a MGLSA filter to gener-
ate speech, so it is not strictly a sinusoidal vocoder.

2.6. Harmonic vocoder (HM)

Although real amplitude for the sinusoids were used for cal-
culating parameters in [11], complex amplitudes proposed by
[8], estimated by an algorithm operating in the time domain,
are used in our experiment here, as it is easier to deal with the
phase information (e.g. we can avoid problems such as phase
unwrapping). For voiced frames, we calculate the complex am-
plitude by minimising the error between the original and es-
timated speech signals. The number of harmonics k in each
frame is dictated by Fs/F0 (Fs: sampling frequency, F0: fun-
damental frequency). For unvoiced parts, Karhunen-Loeve ex-
pansion [12] shows we can use the same analysis as for voiced
frames. We suppose that the frequency are close enough and set
the F0 as 100Hz under the window length of 20ms to make the
power spectrum change more slowly. From the complex ampli-
tudes for a sequence of frames, we use the standard overlap and
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add technique to re-synthesis speech.

2.7. Harmonic vocoder with fixed dimension(HMF)

From the description of the Harmonic Vocoder in the previous
section, note the number of complex amplitude values in each
frame varies depending on F0. This varying number of param-
eters is not suitable to combine with HTS. So, we also include
a variant of the previous Harmonic vocoder in our experimental
comparison that uses a fixed number of parameters per frame,
which is labelled the “HMF” vocoder. To fix the number of
harmonics, one option is to use those harmonics in at lower fre-
quencies and add noise at higher frequencies. However, divid-
ing the spectrum into two in this way would be rather arbitrary.
For unvoiced speech in the “HM” vocoder, the number of har-
monics in each frame is fixed, even though there may be no
harmonics in fact. Similarly, here we suppose that the number
of harmonics is the same as used for unvoiced parts irrespective
of whether there are harmonics at higher frequencies or not.

2.8. HNM-MGC Vocoder (HNM)

A harmonic/stochastic waveform generator is presented by [9].
This method is based on the decomposition of the speech frames
into a harmonic part and stochastic part and uses MGC, F0 and
maximum voiced frequency (MVF) as an intermediate parame-
terization. This vocoder is thus suitable for statistical modelling
with a fixed frame size. For voiced frames,the entire spectral en-
velope may be obtained by interpolating the amplitudes at har-
monic points. Cepstral coefficients are obtained from the log
spectrum and then they are reduced in number [2] and warped
to the mel scale. Unvoiced part is just analysed through a fast
Fourier transformation (FFT) and no stochastic part is assumed
during analysis. MVF is caculated based on sinusoidal like-
ness measure. During synthesis, the cepstral envelope is re-
sampled according to the harmonic points. Noise component is
obtained by sampling the cepstral envelope at frequency above
MVF. Minimum phase is using here.

2.9. aHM-AIR vocoder (aHM)

For the “HMF” and “HM” vocoders, we represent the whole
band with harmonics alone. In principle, though, small er-
rors in F0 value could cause large mismatch error in the higher
frequencies. In order to solve this problem, [6] proposes a
full-band adaptive harmonic vocoder without using any shaped
noise. For analysis, it uses an Adaptive Iterative Refine-
ment (AIR) method and an adaptive Quasi-Harmonic vocoder
(aQHM) as an intermediate model to iteratively minimise the
mismatch of harmonic frequencies while increasing the number
of harmonics. Then, instantaneous amplitude and phase values
may be obtained by interpolation. During synthesis, the aHM-
AIR vocoder could represent the same structure by using only
F0 rather than a frequency value at each analysis instant.

3. Experiment
3.1. Subjective analysis

Our approach to comparing and analysing the vocoders sum-
marised in Section 2 relies upon multi-dimensional scaling
(MDS)[14]. This technique aims to map points within a high
dimensional space to a lower dimensional space while preserv-
ing the relative distances between the points. We can exploit
this to visualise relative distances between the vocoders which
indicate similarity in terms of perceptual quality. Listeners are
asked to judge whether a given pair of stimuli are the same in
terms of quality or different. Comparing a number of stimuli

Table 2: Parameters for each section

Section Speaking style Questions ratio
1 Normal Similarity 0.7943
2 Lombard Similarity 0.7760
3 Normal Preference 0.7500
4 Lombard Preference 0.7451

synthesised by all vocoders in this way, we obtain a matrix of
inter-vocoder distance scores. This high-dimensional similarity
matrix can be reduced to a 2- or 3- dimensional space to visu-
alise vocoder similarities in terms of listener perception. The
“Classical MDS” variant is used here, as we are comparing
the Euclidean distance between each vocoder. Note we have
found the natural speech is perceived as quite different from
the vocoded speech, so including natural stimuli can heavily
distort the relative distances between each vocoder if included.
Therefore, we have omitted it from our MDS analysis. Instead,
preference tests are subsequently used in order to compare the
quality of each vocoder against the original speech.

In the test, every vocoder is compared pairwise with
all others, giving a 9*9 similarity matrix. Phonetically
balanced speech data from a UK male speaker is used for
copy synthesis with each vocoder. The sampling rate is
16kHz. A total of 32 normal speaking style sentences and
another 32 different sentences with Lombard speaking style
are used. Several samples are available on the webpage
(http://homepages.inf.ed.ac.uk/s1164800/vocoder_com.html).
For each comparison unit and each listener, sentences are ran-
domly selected for the matrix. So, all possible sentences could
be heard for each comparison to mitigate sentence-dependent
effects. Forty one native English speakers participated in
the listening test, conducted in perceptual sound booth with
headphones. Moreover, we suspect that the questions used for
the listening test (same/different or better/worse/same) and
the type of sentences (Lombard or Normal) could affect the
MDS result as well. So, four sections are designed to test for
this effect. A summary of the speaking styles, questions for
comparing sentences and the eigenvalues (“ratio”) for the first
two dimensions found by MDS analysis are listed in Table 2.

The two-dimensional MDS spaces for the four test sections
are shown in Figure 3. At first sight, it seems the locations of
the vocoders differ in each section. However, by comparing the
four MDS figures, we can see that although the absolute x- and
y-coordinates for each point may vary, the relative positions of
each vocoder are similar. The approximate consistency between
the 4 different test sections indicates the relative layout of the
vocoders observed is to some extent general, and that sufficient
and adequate test stimuli have been selected, for example.

Next, we aim to analyse and interpret the relative layout
of the vocoder points in the MDS space. Different speaking and
question styles are used in each test section, and so we use Anal-
ysis of Variance (ANOVA) to ascertain whether these factors
explain the variations observed. The results of both one-way
and two-way ANOVAs are shown in Table 3. For the one-way
method, the F-values for both speaking and question style for
MDS are high. Meanwhile, both significances are less than 5
percent, which means these two factors greatly affect listener
judgement. The two-way ANOVA indicates there is no sig-
nificant interaction between the effects of speaking style and
question type on listener judgement. We conclude therefore that
speaking style and question format to some extent explain why
each section map differs. Furthermore, in Table 2, note the ratio
for the “same/different” question type is higher than that ob-
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Table 3: ANOVA for speaking style and question type

Type Anova F value Significance
One-way Data~Style 6.7775 0.00993
One-way Data~ Question 18.659 2.471e-05
Two-way Data~Style*Question

Style 7.3651 0.007243
Question 19.1647 1.949e-05

Style:Question 0.0006 0.980126

tained used the 3-way “better/worse/same” question type. We
believe therefore the first question type may yield more depend-
able results. So, for objective analysis, only section 1 and 2 are
used for Normal speech and Lombard speech separately.

Although proximity in the MDS map can be interpreted as
similarity, the relationship between the vocoders is not yet nec-
essarily clear, so it would be more obvious to merge similar
vocoders together. Thus, based on the 9*9 matrix of Euclidean
distance between each vocoders, we use K-means clustering to
identify emergent groupings. The “Silhouette” value [13] for
varying numbers of clusters is computed, and the highest value
is taken to indicate the optimum cluster number. The result
for each test section is shown in Figure 4. The MDS results
show that the SC, SF, MGC and Glot vocoders are very close to
each other, indicating listeners find they sound similar to one an-
other. A similar situation is observed for the DSMR and HNM
vocoders, and for the aHM and HM vocoders. The clustering re-
sult in Figure 4 is consistent with this. In test section 1, except
DSMR which uses DSM for residual siganl but is still based on
source-filter model, vocoders in cluster two (in red) all use har-
monics to describe speech. It is interesting that they all cluster
separately from cluster one (in blue), where the vocoders be-
long to the traditional source-filter paradigm. More specifically,
SC is merely a reduced dimension version of SF. Meanwhile,
the intermediate parameters transferred from spectrum is the
Mel Generalized Cepstrum, so it is also reasonable for MGC
vocoder to be close to SF and SC. For other test sections, the
situation is similar except for the relative change of the HM and
HMF vocoders. Thus, we conclude that in terms of quality, the
sinusoidal vocoders in this experiment sounds quite different
from source filter vocoders, and there may be other reasons for
DSMR clustering together with sinusoidal vocoders.

Having established similarities between vocoders, we also
assess their relative quality compared to natural speech. A pref-
erence test is conducted for this purpose. Thirty two normal sen-
tences and another 32 Lombard speech are surveyed separately.
The same 41 native listeners participated in this test to give their
preference in term of quality. The results given in Figure 1 show
that the sinusoidal vocoders give relatively good quality. To
further analyse the robustness of each vocoder for modelling
both Normal and Lombard speech, the difference in preference
scores between these 2 speech styles is presented in table 4. As
we can see, in general, sinusoidal vocoders like HMF, HM and
aHM give much less variable performance than the source/filter
vocoder type. Interestingly, the SF vocoder gives stronger per-
formance in terms of listener preference for Lombard speech
than it does for normal speech in Figure 1. The reason for this
is the subject of ongoing research.

3.2. Objective analysis

In this section, we explore why the vocoders cluster together
as observed and what potential factors underpin listener judge-
ments. A range of standard acoustic objective measures are cal-
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Figure 1: Preference Test Result (up: Normal, down: Lombard)
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Figure 2: Objective value result (blue: Normal , red: Lombard)

culated:

• HNR (Noise Harmonic Ratio)

• Jitter

• Shimmer

• LDS (Log distance of spectra using FFT)

• PESQ (Perceptual Evaluation of Speech Quality)

• Spectral Tilt

• Loudness (Based on Model of ISO 532B)

The mean values for these acoustic measures are shown in Fig-
ure 2. Unfortunately, we can find no obvious relationship be-
tween these measures and the distances between the different
vocoders. We attempt to interpret the significance of the MDS
map axes by using linear regression and stepwise regression be-
tween the two axes and the given acoustic measures. As space
is limited here, only the measure most highly correlated with
the axes is listed in Tables 5.

As Table 5 shows, the significance of the correlation be-
tween PESQ scores with one axis of the MDS map is strong.
In fact, combined with Figure 2, we can track vocoder quality
through the axis value in MDS to a certain degree. For exam-
ple, in test section 1 for normal speech, lower x-coordinates in-
dicate higher quality in the vocoder. A similar situation applies
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Table 4: Vocoder preference stability result (Lombard preference value minus that for normal speech)

vocoder type DSMR HNM aHM HM MGC SF SC Glot HMF
preference vaule (Lombard - Normal) 0.0976 0.0732 0.0244 0 -0.0732 0.1707 0.0244 0.0976 -0.0244

Table 5: linear regression result.

linear regression Significance R squared
Section1_x~PESQ 0.00174 0.7746
Section2_x~PESQ 0.00991 0.6372

to Lombard speech in test section 2. The aHM vocoder has
the best quality, followed by the HM vocoder. Note, though,
that neither of these are currently suitable for statistical mod-
elling. For the source-filter vocoders, the Glot, SF and SC ones
all sound much better than MGC, and they are suited to mod-
elling as well. Of the sinusoidal vocoders, not only are the HNM
and DSMR vocoders suitable for modelling, but also appear to
give good vocoded speech quality. The HMF vocoder also ap-
pears effective for producing speech with a fixed number of pa-
rameters. Finally, we consider which acoustic feature may be
most related with other MDS axis. Unfortunately, there is no
apparent pattern between any acoustic measure and the axis in
the stepwise multi-linear regression. Therefore, we conclude
that the listener perception judgements may be a more complex
combination of multiple potential features.

4. Discussion and conclusion
This paper examines a broad range of vocoders and presents
an experimental comparison to evaluate their relationship and
potential factors that correlate with perceived vocoder quality.
Both Lombard and normal read speech are used as stimuli pro-
duced by copy synthesis with each vocoder. MDS is conducted
on the listener responses to analyse similarities in terms of qual-
ity between the vocoders. Four combinations of speaking style
and listening test question format are tested. ANOVA results
shows both speaking style and question format greatly affect lis-
tener judgements. For the preference question type, the eigen-
values for the first two dimensions in MDS space are somewhat
reduced. Thus, we deem the similarity question type is more
suitable for MDS analysis, and Lombard and Normal speech
are surveyed separately in the subsequent analysis. Comparing
preference test results for Normal and Lombard speech, we also
find that sinusoidal vocoders give more consistent performance
than source filter vocoders.

To analyse their potential relationship in more depth, K-
means clustering is applied to the listener similarity judg-
ment matrix and combined with the MDS results. We find
in terms of quality, the sinusoidal vocoders cluster separately
from the source filter vocoders. Thus, we conclude that sinu-
soidal vocoders are perceptually distinguishable from source
filter ones. The preference test comparisons with the natural
stimuli presented here indicate sinusoidal vocoders can give su-
perior vocoded speech quality. In order to interpret the axes of
the obtained MDS space, a several objective acoustic measures
are tested for correlation with the MDS space axes. Linear re-
gression result shows that one axis is related with quality. How-
ever, no obvious acoustic measure could be found to explain
the other axis of the two dimensional MDS space, which we
interpret as implying that human perception of vocoded speech
quality may combine multiple factors.
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Figure 3: MDS results for each section(up to down 1,2,3,4)
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Figure 4: K-means clustering results for each section (up to down
1,2,3,4)
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