
Subspace Gaussian Mixture Models for

Automatic Speech Recognition

Liang Lu

Doctor of Philosophy

Institute for Language, Cognition and Computation

School of Informatics

University of Edinburgh

2013

Abstract

In most of state-of-the-art speech recognition systems, Gaussian mixture models (GMMs)

are used to model the density of the emitting states in the hidden Markov models

(HMMs). In a conventional system, the model parameters of each GMM are esti-

mated directly and independently given the alignment. This results a large number of

model parameters to be estimated, and consequently, a large amount of training data

is required to fit the model. In addition, different sources of acoustic variability that

impact the accuracy of a recogniser such as pronunciation variation, accent, speaker

factor and environmental noise are only weakly modelled and factorized by adaptation

techniques such as maximum likelihood linear regression (MLLR), maximum a pos-

teriori adaptation (MAP) and vocal tract length normalisation (VTLN). In this thesis,

we will discuss an alternative acoustic modelling approach — the subspace Gaussian

mixture model (SGMM), which is expected to deal with these two issues better. In an

SGMM, the model parameters are derived from low-dimensional model and speaker

subspaces that can capture phonetic and speaker correlations. Given these subspaces,

only a small number of state-dependent parameters are required to derive the corre-

sponding GMMs. Hence, the total number of model parameters can be reduced, which

allows acoustic modelling with a limited amount of training data. In addition, the

SGMM-based acoustic model factorizes the phonetic and speaker factors and within

this framework, other source of acoustic variability may also be explored.

In this thesis, we propose a regularised model estimation for SGMMs, which avoids

overtraining in case that the training data is sparse. We will also take advantage of

the structure of SGMMs to explore cross-lingual acoustic modelling for low-resource

speech recognition. Here, the model subspace is estimated from out-domain data and

ported to the target language system. In this case, only the state-dependent parameters

need to be estimated which relaxes the requirement of the amount of training data. To

improve the robustness of SGMMs against environmental noise, we propose to apply

the joint uncertainty decoding (JUD) technique that is shown to be efficient and effec-

tive. We will report experimental results on the Wall Street Journal (WSJ) database

and GlobalPhone corpora to evaluate the regularisation and cross-lingual modelling of

SGMMs. Noise compensation using JUD for SGMM acoustic models is evaluated on

the Aurora 4 database.

iii

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Steve Renals for his

expert guidance, deep insight in the speech technology, patience and encouragement

all the way through my doctoral study. It is a great pleasure to work with this wonderful

mentor. I also owe a huge gratitude to Dr. Arnab Ghoshal, a colleague, friend and

advisor, without whom, I would definitely have a much tougher experience to reach

this thesis. Thanks also to KK Chin — my industry supervisor in Toshiba Cambridge

research laboratory (CRL). It is a valuable and fruitful experience to work with KK

during my research visit which directly leads to the results reported in Chapter 6, and

lays the foundation for the work reported in Chapter 7.

I would like to express my gratitude to Dr. Michael Seltzer and Dr. Junichi Yam-

agishi to be my thesis examiners and for their insightful comments, and to Prof. Simon

King to be the chair of my oral defence committee. Thanks to all the folks in CSTR

for creating such a friendly and inspiring place to work. The coffee breaks and lunch

hours are always full of joy, and it helps me to improve my English as well. I’m par-

ticularly thankful to Peter, Cassia, Oliver and Michael for sharing office with me and

for all the technical and non-technical discussions. A big thank you also to the former

CSTR members, Dong, Le for answering me many questions and helping me to settle

down in my first year. The weekly pub with you is memorable. Thanks also to Ravi

for the help with my experiments.

The visit to CRL was wonderful and thanks to Drs. Kate Knill, Javier Latorre and

Masami Akamine for making it happen, and to Vincent for the help with the experi-

ments. I’m also grateful to the Marie Curie fellowship for the generous funding which

supports my living in Edinburgh as well as the conference travelling and research visit.

Thanks to other research fellows within the SCALE project. It’s an exciting experience

to work toward a Ph.D with you all together and share ideas in the SCALE workshops.

Also thanks to Prof. Dietrich Klakow and Cornelia Koeck for managing this project.

Thanks to the Kaldi research group for releasing the toolkit. It provides me a

platform to explore my own ideas. Thanks also to Caroline, Avril, Nicola, Julie and

Claire for the administrative support.

Finally, I owe too much to my parents for the lack of phone calls and visits. Thanks

for your understanding and support and also to my parents-in-law for the delicious

food. The biggest thanks goes to my wife Ji for always being there.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Liang Lu)

v

Table of Contents

1 Introduction 1

1.1 Contribution of the Thesis . 3

1.2 Structure of the Thesis . 5

1.3 Notation . 6

1.4 Abbreviation . 8

2 Automatic Speech Recognition 9

2.1 Front-end processing . 10

2.1.1 MFCC and PLP . 11

2.1.2 Dynamic features . 13

2.2 Acoustic modelling . 14

2.2.1 Likelihood evaluation . 16

2.2.2 Parameter estimation . 18

2.3 Language modelling . 20

2.4 Decoding . 21

2.5 Adaptation . 22

2.5.1 Maximum likelihood linear regression 23

2.5.2 Maximum a posteriori adaptation 24

2.6 Summary . 24

3 Subspace Gaussian Mixture Model 27

3.1 Introduction . 27

3.1.1 Related techniques . 28

3.1.2 Universal background model 30

3.2 Overview of SGMM acoustic model training 31

3.2.1 Model initialisation . 33

3.2.2 Likelihood and posterior evaluation 35

vii

3.3 Maximum likelihood estimation . 36

3.3.1 Update for sub-state vectors 36

3.3.2 Update for model projections 39

3.3.3 Update for weight projections 39

3.3.4 Update for speaker projections 41

3.3.5 Update for speaker vectors 41

3.3.6 Update for within-class covariances 42

3.3.7 Update for sub-state weights 42

3.4 Model extension . 43

3.4.1 Sub-state splitting . 43

3.4.2 Increasing the subspace dimension 44

3.5 Model size . 44

3.6 Adaptation . 45

3.7 Decoding . 45

3.8 Summary . 46

4 Regularized Subspace Gaussian Mixture Model 47
4.1 Introduction . 47

4.2 Regularization penalties . 48

4.2.1 Reformulation as a quadratic program 50

4.3 Gradient projection algorithms . 51

4.3.1 Basic gradient projection . 52

4.3.2 Barzilai-Borwein gradient projection 53

4.3.3 Termination criterion . 54

4.4 Experiments . 54

4.4.1 Baseline system . 54

4.4.2 SGMM results with smoothing and renormalization 55

4.4.3 SGMM results with regularization 55

4.4.4 Extensions . 57

4.5 Summary . 58

5 Cross-lingual Subspace Gaussian Mixture Model 59
5.1 Introduction . 59

5.1.1 Global phone set approach 60

5.1.2 Cross-lingual phone/acoustic mapping 60

5.1.3 Cross-lingual tandem features 60

viii

5.1.4 Cross-lingual KL-HMMs . 61

5.1.5 Overview of this chaper . 61

5.2 Cross-lingual model estimation . 62

5.3 Cross-lingual model adaptation . 64

5.3.1 Matrix variate Gaussian prior 65

5.3.2 Prior distribution estimation 66

5.4 Cross-lingual model regularization 67

5.5 Experiments . 68

5.5.1 Baseline monolingual systems 69

5.5.2 Cross-lingual system configuration 70

5.5.3 Cross-lingual experiments: baseline 71

5.5.4 Cross-lingual experiments: with regularization 74

5.5.5 Cross-lingual experiments: with MAP adaptation 74

5.5.6 Cross-lingual experiments: with speaker subspace 78

5.5.7 Cross-lingual experiments: summary 80

5.6 Conclusions . 82

6 Noise compensation for Subspace Gaussian Mixture Model 85

6.1 Introduction . 85

6.2 Mismatch function . 87

6.3 Joint uncertainty decoding . 91

6.3.1 Transformation estimation 93

6.3.2 Compensating subspace Gaussian mixture models 94

6.3.3 Noise model estimation . 95

6.3.4 Implementation Details . 97

6.4 Experiments . 98

6.4.1 Results of GMM based systems 98

6.4.2 Results of SGMM based systems 100

6.4.3 Analysis of the effect of phase factors 103

6.4.4 Analysis of speech and silence separation in UBM 104

6.4.5 Unsupervised noise model estimation 105

6.4.6 JUD with unscented transform 107

6.5 Discussion and Conclusion . 110

ix

7 Noise Adaptive Training for Subspace Gaussian Mixture Model 113
7.1 Introduction . 113

7.2 Generative form of JUD . 114

7.3 Noise adaptive training . 115

7.3.1 Optimisation . 115

7.3.2 Model update . 117

7.3.3 Training recipe . 118

7.4 Experiments . 119

7.4.1 Results . 119

7.5 Conclusions . 120

8 Conclusion 123

A MAP update of phone projection matrix 127

B Update the additive and channel noise mean 129

C Update the additive noise variance 133

Bibliography 137

x

List of Figures

2.1 Diagram of a standard speech recognition system. 10

2.2 Diagram for feature extraction. A window function is first applied to a

speech segment, followed by a feature processing function f (·). . . . 11

2.3 Flowcharts for MFCC and PLP feature extraction. The broken lines

link the similar processing steps between the two types of feature. . . 12

2.4 Critical-band and mel-filterbank basis functions used for PLP and MFCC

feature extraciton. 14

2.5 Topology of a 5-states left-right HMM with 3 emitting states and 2

non-emitting states. State 1 is the entrance state and state 5 is the exit

state and both of them are non-emitting. ai j denotes the state transition

probability from state i to state j. b(·) is the density funciton. 16

3.1 Model structure of a SGMM acoustic model, with total J HMM states,

and each has K j sub-states. Each sub-state is modelled by a GMM with

I components, whose parameters are derived from ΦΦΦi = {Mi,Ni,wi,ΣΣΣi}
and (v jk,v(s)) using Eq. (3.2) and (3.3), and for covariance ΣΣΣ jki =ΣΣΣi. . 28

3.2 An example of Gaussian selection using UBM model. For each acous-

tic frame yt , the UBM is used to select the active Gaussian components

in the SGMM acoustic models. For instance, in this figure, the second

Gaussian represented by µµµ2 is among the top P Gaussian components

according to its likelihood score for yt , thus all the second Gaussian in

each SGMM sub-state is active for this frame. 31

3.3 Block-diagram of SGMM acoustic model estimation. 32

xi

4.1 An example of `1/`2-norm penalty for a quadratic objective function

in two-dimensional space. The shaded areas denote the feasible region

defined by the regularization in terms of a constraint, and it is like a

square for `1-norm penalty, while a circle for `2-norm penalty. Without

the penalty, the solution of the quadratic function is denoted by the

point in the centre of the contour. With the penalty, the solution moves

to the tangent point between the contour and the feasible region. . . . 49

5.1 An example of multilingual estimation of the globally shared parame-

ters ΦΦΦi =(Mi,Ni,wi,ΣΣΣi) where we tie them across two source language

system A and B. 62

5.2 MAP adapation of Mi in SGMM acoustic model. (M̄i,ΩΩΩr,ΩΩΩc) denote

the hyper-parameters of the Gaussian prior P(Mi), in which the mean

M̄i is indexed by I while the covariances ΩΩΩr and ΩΩΩc are global. 65

5.3 WER of baseline cross-lingual systems, 1h training data, tested on the

development dataset. The “SGMM baseline” corresponds to the sys-

tem with optimal number of sub-states using the monolingual setting. 71

5.4 WER of baseline cross-lingual systems, 5h training data, tested on the

development dataset. The “SGMM baseline” corresponds to the sys-

tem with optimal number of sub-states using the monolingual setting. 72

5.5 WER of baseline cross-lingual systems, 15h training data, tested on

the development dataset. 73

5.6 WER of regularized cross-lingual systems, 1h training data, tested on

the development dataset. 73

5.7 WER of regularized cross-lingual systems, 5h training data, tested on

the development dataset. 75

5.8 WER of MAP-adapted cross-lingual systems, 1h training data, tested

on the development dataset. 76

5.9 WER of MAP-adapted cross-lingual systems, 5h training data, tested

on the development dataset. 76

5.10 WER of cross-lingual systems with global parameter update, 15h train-

ing data, tested on the development dataset. 77

5.11 WER of baseline (above) and regularized (below) cross-lingual sys-

tems using speaker subspace, 1h training data, tested on the develop-

ment dataset. 78

xii

5.12 WER of regularized cross-lingual systems using speaker subspace, 5h

training data, tested on the development dataset. 79

5.13 WER of cross-lingual systems using speaker subspace, 15h training

data, tested on the development dataset. 80

6.1 The relationship between clean speech x, additive and channel noise

(n,h) and noise corrupted speech y. 87

6.2 After the corruption of noise, the distribution of noisy speech may

not be Gaussian even though the original clean speech is Gaussian

distributed, but we still use Gaussian approximation for GMM- or

SGMM-based recognisers. 89

6.3 A comparison of VTS and JUD noise compensation. VTS is performed

on per component basis, while for JUD, a cluster of components share

the same compensation parameters. 90

6.4 Effect of phase term α for both GMM and SGMM system with VTS

or JUD style noise compensation. The best result for VTS/GMM is

17.3% (ααα = 1.0), JUD/GMM is 19.2% (ααα = 1.0) and JUD/SGMM is

16.8% (ααα = 2.5). 100

6.5 Average trace of covariance matrix ΣΣΣi +ΣΣΣ
(i)
b respect to the phase term

ααα for JUD/SGMM systems. ΣΣΣ
(i)
b is large when ααα is small (e.g. ααα = 0).

The value for ααα = −0.5 is much larger, and it is not shown here for

clarity. 103

6.6 A comparison between VTS and UT approximation: (a) VTS approx-

imates the nonlinear function y = f (x) by vector Taylor series expan-

sion, and results in a linear function by using first order VTS. (b) UT

draws sigma points from the distribution of x and synthesise the corre-

sponding samples of y by the nonlinear function f (x). 107

6.7 Average WER with respect to the phase term ααα for JUD with VTS and

UT compensation for SGMM systems. They achieve almost the same

accuracy after increasing the value of phase term. 109

7.1 Results of tuning the value of phase factor ααα in the decoding stage. . . 121

xiii

List of Tables

3.1 SGMM acoustic model size. Q denotes the total number of sub-sates.

Q = 24000, I = 400,S = 40,D = 39. 44

3.2 GMM acoustic model size. M denotes the total number of Gaussian

components. M ≈ 50000,D = 39. 44

4.1 The basic gradient projection algorithm. 52

4.2 The Barzilai-Borwein gradient projection algorithm. 53

4.3 Word error rates of SGMM acoustic model with ad-hoc smoothing or

renormalization, S = 40 . 56

4.4 Comparison of SGMM acoustic model with regularized (sub-)state

vector estimation, S = 40 . 56

4.5 Results of SGMM system with `1-norm regularization, S = 60 57

5.1 The number of parameters of an SGMM acoustic model. Q denotes

the total number of sub-sates. A large portion of the total parameters,

e.g. more than 60% for systems in Chapter 4, are globally shared. . . 64

5.2 The number of phones and speakers, the amount of training data (hours)

for the 4 languages used in this chapter. 68

5.3 WERs of baseline GMM and SGMM systems using 1 hour, 5 hour and

14.8 hour training data . 69

5.4 Total trace of covariance and subspace matrices given by the source

SGMM systems, S = 40. 69

5.5 Results of Cross-lingual SGMM systems with 1 hour training data on

the development (Dev) and evaluation dataset (Eval). 81

5.6 Results of Cross-lingual SGMM systems with 5 hour training data on

the development (Dev) and evaluation dataset (Eval). 81

5.7 Results of Cross-lingual SGMM systems with 15 hour training data for

development (Dev) and evaluation dataset (Eval). 82

xv

6.1 Procedure for JUD noise-compensation using gradient-based noise model

estimation. In this paper, we used the Viterbi alignment for the SGMM

system. Step 3 is required for the first loop, but can be skipped after

that which means only the alignment will be updated using the new

noise model. 95

6.2 WER of VTS and JUD based on GMM systems with ααα = 0. 99

6.3 WERs of noise compensation by JUD on SGMM systems with ααα = 0. 99

6.4 WERs of each test set with regards to the value of phase factor for

JUD/SGMM system. “restau.” denotes restaurant noise condition. . . 102

6.5 Confusion matrix of speech and silence separation by UBM model. . . 104

6.6 Comparison of UBM model with (‘yes/S’) and without (‘no/S’) speech

and silence separation for JUD/SGMM system. 104

6.7 WERs (%) of supervised (“SGMM-aux”) and unsupervised (“UBM-

aux”) and hybrid (“Hybrid”) noise model estimation for SGMM/JUD

system. “#pass” denotes the number of decoding passes. 105

6.8 Approximation of computational cost for VTS/GMM, JUD/GMM and

JUD/SGMM system. M′ and R denote the total number Gaussians and

regression classes in GMM systems. 106

6.9 WERs of noise compensation by JUD on SGMM systems with ααα = 0. 109

7.1 Word error rates (WERs) of SGMM systems with and without noise

adaptive training. 120

xvi

Chapter 1

Introduction

Automatic speech recognition (ASR) has achieved significant progress during the past

couple of decades, and applications have been deployed in personal computers, the

internet and mobile networks. The task of ASR is to transcribe the audio into the

text, and due to the sequential nature of speech signals, the hidden Markov model

(HMM) (Baum, 1972) has been proven to be an efficient framework for this task.

The HMM model attempts to address the characteristics of a probabilistic sequence

of observations that may not be a fixed function but instead changes according to a

Markov chain. In the early years of HMM-based speech recognition systems, simple

discrete density probabilistic function was used and the systems were mainly used to

handle isolated, small vocabulary and speaker-dependent tasks (Barker, 1975; Jelinek,

1976). However, the Sphinx system (Lee, 1988) demonstrated that it is possible to

build a HMM-based speech recogniser to perform continuous, large vocabulary and

speaker-independent speech recognition. Later on, the application of the Gaussian

mixture model (GMM) in the HMM-based speech recognisers was proven to be highly

successful for large vocabulary tasks (Woodland et al., 1994) and it is still used in most

of today’s speech recognition systems.

In an HMM-GMM based speech recognition system, the GMM is used to model

the state density which has several advantages. The acoustic variations introduced

by pronunciation variation, accent, speaker factor and environmental noise etc, can

be more accurately modelled by using mixtures of Gaussians compared to a single

form of density function. This is vital for continuous speaker-independent tasks. Due

to its relatively simple mathematical structure, an efficient model parameter estima-

tion algorithm is available, which plays an important role for the success of HMM-

GMM framework. In addition, advances within this framework in the 1990s including

1

2 Chapter 1. Introduction

model adaptation using techniques of the maximum a posteriori (MAP) and maxi-

mum likelihood linear regression (MLLR) families (Gauvain and Lee, 1994; Leggetter

and Woodland, 1995), adaptive training (Anastasakos et al., 1996), noise-robustness

(Moreno et al., 1996; Gales, 1995) etc, further improved the power of HMM-GMM

speech recognisers.

Despite of the success of HMM-GMM framework, there are several shortcom-

ings that need to be addressed. In a conventional system, the GMM parameters for

each HMM state are estimated independently given the alignment. This results in a

very large number of model parameters to be trained, especially for context-dependent

acoustic models, and consequently, a large amount of training data is required to fit

the model. Parameter tying techniques such as tree-based state tying (Young et al.,

1994) can reduce the number of effective parameters, but in order to maintain the dis-

crimination power of the model among states, it can not entirely solve the problem.

On the other hand, all kinds of acoustic variations caused by pronunciation variation,

speaker factors and environmental noise etc., which significantly affect the recogni-

tion accuracy, are not factorized in conventional GMM-based acoustic models. Model

adaptation techniques like MLLR only addresses this issue in a crude fashion regard-

less of the source of variation. Not surprisingly, factorizing the underlying acoustic

variations and coping with them accordingly would provide further gains as indicated

by recent works (Wang and Gales, 2011; Seltzer and Acero, 2011).

These issues lead us to investigate the subspace Gaussian mixture models (SG-

MMs) proposed by Povey et al. (2011a). This type of model uses the concept of basis

decomposition to reduce the model parameters. This has been extensively explored

in the field of speech processing through techniques such as eigenvoices (Kuhn et al.,

2000) and cluster adaptive training (CAT) (Gales, 1998a) for speaker adaptation and

maximum likelihood linear transformation (MLLT) (Gales, 1998b) as well as its ex-

tended version (Olsen and Gopinath, 2002), and SPAM model (Axelrod et al., 2005)

for full covariance modelling. It also borrows the idea of factor analysis from speaker

recognition (Kenny, 2005) to factorize the variations in the model. In an SGMM, the

model parameters are derived from the globally shared model subspace with very low-

dimensional state-dependent vectors. The model subspace captures the major varia-

tions among the phonetic states. With this informative prior, only a small number of

additional parameters are required to derive the state-dependent GMMs. This reduces

the total number of model parameters and allows more accurate model estimation with

a limited amount of training data. In addition, a speaker subspace can also be intro-

1.1. Contribution of the Thesis 3

duced which enable SGMMs to factorize the phonetic and speaker factors in the model

domain. Recent research has shown that an SGMM acoustic model may result in more

accurate speech recognition in both monolingual, multilingual and cross-lingual set-

tings (Povey et al., 2011a; Burget et al., 2010; Lu et al., 2011a). Recently, we have

also shown that it is possible for an SGMM to outperform its GMM counterpart in

noisy environment (Lu et al., 2012a).

1.1 Contribution of the Thesis

After giving a detailed review of the SGMM-based acoustic modelling method, we

first present the regularized model estimation for SGMMs (Lu et al., 2011b). In par-

ticular, we introduce a penalty to the original objective function of (sub-)state vectors

to improve the estimation accuracy when the amount of training data is very limited.

We studied both the `1-norm and `2-norm regularization penalties, as well as their

combined form, the elastic-net penalty, and compare their performance on the WSJ-5k

speech recognition task.

Following (Burget et al., 2010), we applied the SGMM acoustic model to the cross-

lingual task using the GlobalPhone corpus (Schultz, 2002). We took the advantage of

the structure of SGMM-based acoustic model (that the globally shared parameters do

not depend on the HMM topology) and we estimated these parameters from out-of-

domain data. We then applied them to the target language system with very limited

training data, and only the sate-dependent parameters were estimated. This approach

can significantly improve the recognition accuracy of the speech recognition system

in limited resource conditions (Lu et al., 2011a, 2013b). In addition, the method of

regularized (sub-)state vector estimation can also be applied which allows a larger

dimensional subspace been used. Finally, we adapted the model subspace using the

MAP criterion to reduce the mismatch between the out-domain and in-domain data

(Lu et al., 2012c).

The accuracy of speech recognition systems normally degrades dramatically in a

noisy environment. To improve robustness against background noise remains one of

the focuses of research on speech recognition. Recent research has indicated that an

SGMM acoustic model may result in more accurate speech recognition compared to its

GMM counterpart, in both monolingual and multilingual settings (Povey et al., 2011a;

Burget et al., 2010; Lu et al., 2011a), however, we will show in this thesis that the stan-

dard SGMM acoustic model suffers similar problems to conventional GMMs in noisy

4 Chapter 1. Introduction

conditions and that the gains disappear in this case. We improved the robustness of SG-

MMs against noise by applying the joint uncertainty decoding (JUD) approach (Liao

and Gales, 2005). We found that JUD can be successfully applied to SGMMs, result-

ing in state-of-the-art performance on the Aurora 4 corpus (Lu et al., 2012a, 2013a).

Unscented transforms were also studied for noise compensation of SGMMs (Lu et al.,

2012b). With multi-style training data, we also investigated the noise adaptive training

(NAT) technique for model training of SGMMs (Lu et al., 2013c).

Some of the ideas and results in this thesis have been published in reviewed con-

ference and journal papers as follows:

• L. Lu, A. Ghoshal and S. Renals, “Regularized subspace Gaussian mixture mod-

els for speech recognition”, in IEEE Signal Processing Letters, 2011.

• L. Lu, A. Ghoshal and S. Renals, “Regularized subspace Gaussian mixture mod-

els for cross-lingual speech recognition”, in Proc. ASRU, 2011.

• L. Lu, A. Ghoshal and S. Renals, “Maximum a posteriori adaptation of sub-

space Gaussian mixture models for cross-lingual speech recognition”, in Proc.

ICASSP, 2012.

• L. Lu, KK Chin, A. Ghoshal and S. Renals, “Noise compensation for subspace

Gaussian mixture models”, in Proc. Interspeech, 2012.

• L. Lu, A. Ghoshal and S. Renals, “Joint uncertainty decoding with unscented

transforms for noise robust subspace Gaussian mixture models”, in Proc. SAPA-

SCALE workshop, 2012.

• L. Lu, A. Ghoshal and S. Renals, “Noise adaptive training for subspace Gaussian

mixture models”, in Proc. Interspeech, 2013.

• L. Lu, KK Chin, A. Ghoshal and S. Renals, “Joint uncertainty decoding for

noise robust subspace Gaussian mixture models”, IEEE Transactions on Audio,

Speech and Language Processing, 2013

• L. Lu, A. Ghoshal and S. Renals, “Cross-lingual subspace Gaussian mixture

models for low-resource speech recognition”, IEEE Transactions on Audio, Speech

and Language Processing, 2013 (submitted).

1.2. Structure of the Thesis 5

1.2 Structure of the Thesis

The reminder of the thesis is organised as follows:

• In Chapter 2, we present an overview of an automatic speech recognition system

based on the HMM-GMM framework including front-end feature processing,

acoustic modelling and language modelling, as well as decoding and adaptation.

• Chapter 3 reviews SGMM-based acoustic modelling in detail. We start with a

discussion of related techniques, and then move on to presenting detailed model

training procedure. Model estimation based on the maximum likelihood cri-

terion is discussed for different parameter types in an SGMM. Possible model

extension techniques are also described.

• Chapter 4 describes the regularized estimation of SGMMs in which a regular-

ization penalty is introduced to the auxiliary function to avoid model overfitting.

We compare three types of regularization penalties and present the optimization

algorithm to solve the `1-norm problem.

• In Chapter 5, we study cross-lingual SGMM acoustic models for low-resource

speech recognition. We investigate the estimation of the globally shared pa-

rameter set in a multilingual fashion for the target language system and apply

`1-norm regularization to the state-dependent parameters to avoid overtraining.

MAP adaptation of model subspace and cross-lingual speaker adaptive training

using the speaker subspace are also investigated.

• Chapter 6 presents our implementation of joint uncertainty decoding for noise

compensation of SGMMs. We present detailed mathematical derivations of

gradient-based noise model estimation. We evaluate the performance of JUD/SGMM

system on the Aurora 4 database and compare it’s recognition accuracy to GMM-

based systems with both VTS and JUD noise compensation. The unscented

transforms (UT) based sampling technique is also investigated in the framework

of JUD for compensating SGMMs agains noise.

• In Chapter 7, we describe the noise adaptive training (NAT) algorithm for SGMM

acoustic models which is based on the generative reformulation of JUD. NAT al-

lows for acoustic model training with multi-style training data and brings further

improvement for the noise-robust speech recognition task.

6 Chapter 1. Introduction

• In Chapter 8, we summarise the thesis and point out directions for future works.

1.3 Notation

We try to maintain a consistency and avoid ambiguity over the mathematical notation

throughout the thesis. In some cases, however, a symbol is inevitably reused to repre-

sent a different parameter in order to be consistent with the reference. In these cases, it

will be made clear by the context. Overall, the following symbols are frequently used

throughout the thesis.

1.3. Notation 7

µµµ jm Mean vector of Gaussian m, state j in an GMM acoustic model

ΣΣΣ jm (Diagonal) covariance matrix of Gaussian m, state j in an GMM acoustic

model

w jm Weight of Gaussian m, state j in an GMM acoustic model

µµµ jki Mean vector of Gaussian i, sub-state k, state j in an SGMM acoustic model

ΣΣΣi (Full) global covariance matrix i in an SGMM acoustic model

Mi Model projection matrix i in an SGMM acoustic model

Ni Speaker projection matrix i in an SGMM acoustic model

wi Weight projection vector i in an SGMM acoustic model

v jk Sub-state vector of sub-state k, state j in an SGMM acoustic model

v(s) Speaker vector of speaker index s in an SGMM acoustic model

w jki Weight of Gaussian i, sub-state k, state j in an SGMM acoustic model

c jk Weight of sub-state k, state j in an SGMM acoustic model

γ jm(t) Posterior probability of Gaussian m of state j in an GMM acoustic model at

time t

γ jm Summed posterior probability over time index t: γ jm = ∑t γ jm(t)

γ jki(t) Posterior probability for Gaussian i, sub-state k, state j for an SGMM acoustic

model at time t

γ jki Summed posterior probability over time index t: γ jki = ∑t γ jki(t)

N (x|µµµ,ΣΣΣ) Multivariate Gaussian distribution for random variable x with mean µµµ and

covariance ΣΣΣ

Q (θ) Expectation-maximisation auxiliary function for a particular parameter θ

b j(·) Output density function of state j

nt Additive noise variable at time t

ht Channel noise variable at time t

µµµn Additive noise mean, only for static feature

ΣΣΣn (Diagonal) additive noise covariance, only for statice feature

µµµh Channel noise mean, only for static feature

yt (Noisy) speech observation at time t. yt is a concatenation of its static coeffi-

cients ys,t , delta coefficients ∆yt and delta-delta coefficients ∆2yt

xt Hidden clean speech variable at time t

qt State index at time t

Q State sequence Q = (q1, . . . ,qT)

8 Chapter 1. Introduction

1.4 Abbreviation

CMN Cepstral mean normalisaiton

CVN Cepstral variance normalisation

CMLLR Constraint maximum likelihood linear regression

DPMC Data-driven parallel model combination

DFT Discrete Fourier transform

DCT Discrete cosine transform

EM Expectation maximisation

GMM Gaussian mixture model

HMM Hidden Markov model

JUD Joint uncertainty decoding

JFA Joint factor analysis

MFCC Mel frequency cepstrum coefficient

MAP Maximum a posteriori

MLLR Maximum likelihood linear regression

MAPLR Maximum a posteriori linear regression

NCMLLR Noisy constraint maximum likelihood linear regression

NAT Noise adaptive training

PLP Perceptual linear prediction

PMC Parallel model combination

SGMM Subspace Gaussian mixture model

SPLICE Stereo piece-wise linear compensation for environments

UBM Universal background model

UT Unscented transform

VTS Vector Taylor series

WER Word error rate

WSJ Wall Street Journal

Chapter 2

Automatic Speech Recognition

The task of automatic speech recognition is to transcribe the audio speech S into its

word sequence W using a recogniser M . This can be done by solving the following

equation

Wh = argmax
W

P(W |S,M) (2.1)

where Wh denotes the most likely word sequence. However, it’s normally difficult to

derive the posterior of a word sequence directly. Bayes’ rule can be applied which

gives

Wh = argmax
W

P(W |S,M)

= argmax
W

p(S|W ,Ma)P(W |Ml)

p(S,M)

= argmax
W

p(S|W ,Ma)P(W |Ml) (2.2)

where the recogniser M is decomposed into the acoustic model Ma and the language

model Ml . p(S|W ,Ma) is the likelihood of the acoustic model parameters Ma given

the audio signal S for word sequence W , and P(W |Ml) denotes the prior probability of

W given the language model parameters Ml . The normalisation probability p(S,M)

is removed since it does not affect the search of the word sequence.

A diagram of a standard speech recogniser is shown in Figure 2.1. It can be seen

from equation (2.2) that the task of building a speech recogniser is composed of two

sub-tasks, i.e. acoustic modelling and language modelling. The aim of acoustic mod-

elling is to train a model Ma which can explain the speech signals S well given a

word sequence W . Due to the sequential nature of speech signals, hidden Markov

models (HMMs) are found to be effective for this task (Rabiner, 1989). However, the

9

10 Chapter 2. Automatic Speech Recognition

Front-end
processing

Model
training

Feature
vectorsTraining

data
· · ·

Y

Acoustic
Model

Unknown
utterance

Front-end
processing

Feature
vectors

· · ·

Y
Decoding

Lexicon Language
model

W

Figure 2.1: Diagram of a standard speech recognition system.

raw speech signal may not be suitable for acoustic modelling, hence there is a need

for a front-end processing step which transforms the speech signal S into feature vec-

tors Y. The ideal feature vectors Y should be invariant to extraneous factors to speech

recognition such as speaker factors, pronunciation variability and environmental noise.

However, in practice, the feature processing step can’t normalise all of the variability

and the acoustic models are expected to share the task. Language models, on the other

hand, try to predict the prior distribution of the word sequence W before the observa-

tion of speech signals. Conventional language models are based on the frequency of

n-grams which assume that the distribution of each word depends on the previous n−1

words. The rest of this chapter presents an overview of a standard speech recognition

system.

2.1 Front-end processing

As stated above, the aim of front-end processing is to extract the feature vectors Y suit-

able for speech recognition from the raw speech signals S. To extract the features, a

sliding window with overlaps is applied to the speech signals first. The speech signals

are assumed to be stationary within each window if the length of the window is suf-

ficiently small, and there are subjected to a series of feature transformation functions

to generate the feature vectors, as shown in Figure 2.2. According to the feature trans-

formation functions that been used, different types of feature vectors can be derived.

Currently, there are two popular forms of feature representation: mel frequency cep-

strum coefficients (MFCC) (Davis and Mermelstein, 1980) and perceptual linear pre-

2.1. Front-end processing 11

Overlapped
Windows

Speech Waveforms

· · · · · ·
y1 y2 yT

Feature
Vectors

f(·) f(·) f(·) f(·)· · · · · ·

Figure 2.2: Diagram for feature extraction. A window function is first applied to a speech

segment, followed by a feature processing function f (·).

diction (PLP) (Hermansky, 1990). MFCC analysis uses a mel-scale filterbank which is

designed to model the hair spacings along the basilar membrane. The left side column

of Figure 2.3 shows the extraction of MFCC features from speech signals.

PLP is formulated as a method for deriving a more auditory-like spectrum based

on linear predictive (LP) analysis of speech. Conventional LP analysis approximates

the high energy areas of the spectrum and smooths out the finer harmonic structures.

This estimate is applied equally to all frequencies which is inconsistent with human

hearing. The auditory-like spectrum in PLP is achieved by making some engineering

approximations of the psychophysical attributes of the human hearing process. The

right side column of Figure 2.3 shows the extraction of PLP features from speech

signals.

2.1.1 MFCC and PLP

The analysis of MFCC and PLP are similar in several stages, which are linked by the

broken arrows in Figure 2.3. A more detailed comparison is given as follows (Milner,

1993).

• Discrete Fourier transform (DFT) — Both MFCC and PLP analysis obtain a

short-term power spectrum by applying DFT to a frame of windowed speech.

• Critical-band analysis and mel-scale filterbank — Both MFCC and PLP anal-

ysis employ an auditory-based warping of the frequency axis derived from the

frequency sensitivity of human hearing. At regular points along the two scales,

12 Chapter 2. Automatic Speech Recognition

Preemphasize

DFT

Mel-scale
Filterbank

Log

DCT

static MFCC

Equal-loudness
Preemphasize

Intensity-loudness
pow law

AR Modelling

Cepstral
Analysis

static PLP

DFT

Critical-band
Analysis

Figure 2.3: Flowcharts for MFCC and PLP feature extraction. The broken lines link the

similar processing steps between the two types of feature.

windowing functions are applied which quantise the frequency spectrum. Mel-

scale filterbank analysis uses triangular shaped windows whereas in PLP analy-

sis the window shape is designed to simulate critical-band masking curves. Both

critical band analysis and mel-filterbank analysis can be viewed as applying a set

of basis functions to the power spectrum of the speech signal. Figure 2.4 shows

the shape of the windows used in PLP and MFCC analysis.

• Pre-emphasis — To compensate for the unequal sensitivity of human hearing

across frequency, PLP analysis scales the critical bands amplitudes according to

2.1. Front-end processing 13

an equal-loudness pre-emphasis function, for instance

E(ω) =

(
ω2 +56.8×106)ω4

(ω2 +6.3×106)2(ω2 +0.38×109)
(2.3)

where ω is the angular frequency. In MFCC analysis, pre-emphasis is applied in

the time-domain. For instance, a first-order high pass filter is normally used

H(z) = 1−αz−1 (2.4)

The pre-emphasis coefficient α is normally set to be 0.97.

• Intensity-loudness power law and log algorithm — This processing stage models

the non-linear relation between the intensity of sound and its perceived loudness

for both MFCC and PLP features. Cubic root compression of critical-band ener-

gies is used for PLP analysis whereas for MFCC, logarithmic compression of the

mel-filterbank channels is applied. Both operations have a very similar effect.

• Cepstral analysis and discrete cosine transform (DCT) — The spectral features

are normally converted into cepstral domain in order to de-correlate the feature

coefficients and reduce the dimensionality. MFCC analysis compute the cepstral

features form the log mel-filterbank using a DCT function. However in PLP, the

critical-band spectrum is converted into a smaller number of LP coefficients by

auto-regression (AR) modelling, and cepstral coefficients are computed form the

LP coefficients.

2.1.2 Dynamic features

As shown in previous section, the static MFCC and PLP features are extracted based on

the assumption that the speech within each window is independent of others. However,

this is not true since the windows are overlapped. Dynamic features can be appended

to capture this high order correlation between frames close to each other (Furui, 1986).

The delta coefficients may be computed by simple differences, e.g. ∆ys,t = ys,t+2−
ys,t−2, or a linear regression to approximate the temporal derivative:

∆yt =
∑

∆

δ=1 δ(ys,t+δ−ys,t−δ)

2∑
∆

δ=1 δ2
(2.5)

where ys,t is the static cepstral feature vector, indicated by the subscript s, and ∆yt is the

delta feature vector. A higher order delta-delta (acceleration) feature vector ∆2yt may

14 Chapter 2. Automatic Speech Recognition

kHz

kHz
Mel-filterbank basis funcitons

Critical-band basis funcitons

Figure 2.4: Critical-band and mel-filterbank basis functions used for PLP and MFCC

feature extraciton.

be computed in the same manner. The final feature vector used for speech recognition

is the concatenation of static and dynamic coefficients:

yt =




ys,t

∆yt

∆2yt


 (2.6)

Higher order dynamic coefficients can also be computed similarly, but they normally

do not bring additional notable gains in recognition accuracy.

2.2 Acoustic modelling

Given the feature vectors Y = {y1,yt , . . . ,yT} that are extracted for the speech signal

S, the acoustic model Ma is used to generate the score p(Y|W ,Ma) for the word se-

quence W . The hidden Markov model (HMM) has proven successful in acoustic mod-

elling since it can well estimate the time-varying nature of speech. Good reviews of

using HMMs for speech recognition can be seen in (Rabiner, 1989; Gales and Young,

2008). An example of a left-to-right HMM with 3 emitting states and 2 non-emitting

states are depicted by Figure 2.5, which is used as building blocks for most state-of-

the-art speech recognitions systems. Here, ai j = p(qt = j|qt−1 = i) denotes the state

transition probability where qt is the state at time t. This means that at every time

2.2. Acoustic modelling 15

instance, HMM makes a transition from the current state to one of its connected states

according to the transition probability. Given the current state qt = j, the observation

will be generated according to the probability density function (pdf) denoted as b j(yt).

For the majority of state-of-the-art HMM-based speech recognisers, the emitting den-

sity is modelled by a Gaussian mixture model (GMM). For state j, the model can be

expressed as

b j(yt) = p(yt |qt = j,Ma)

=
M

∑
m=1

w jmN (yt |µµµ jm,ΣΣΣ jm) (2.7)

where m is the Gaussian component index, w jm,µµµ jm and ΣΣΣ jm are mixture weight, mean

and covariance for component m.

The HMM depicted by Figure 2.5 is designed following two important assump-

tions, i.e. the first-oder Markov assumption is used which assume the probability of a

state qt at time t is only dependent on the previous state qt−1 as

p(qt |qt−1,qt−2, . . . ,q1) = p(qt |qt−1) (2.8)

and the conditional independence assumption which assumes that given the state se-

quence, the observations are conditionally independent as

p(yt |yt−1, . . . ,y1;qt , . . . ,q1) = p(yt |qt) (2.9)

These two assumptions significantly simplify the application of HMM to speech recog-

nition task. For instance, let’s Q = {q1,q2, . . . ,qT} is the possible state sequence for

transcription W , by HMMs, the likelihood p(Y|W ,Ma) can be computed as

p(Y|W ,Ma) = ∑
Q

p(Y|Q,Ma)p(Q|W ,Ma) (2.10)

This likelihood funciton is hard to be computed in general since the state sequence

Q is hidden and the space for Q may be large. However, using the previous two

assumptions, the likelihood function (2.10) can be decomposed as

p(Y|W ,Ma) = ∑
Q

T

∏
t=1

p(yt |qt ;Ma)p(qt |qt−1;Ma)

= ∑
Q

aq0q1

T

∏
t=1

bqt (yt)aqtqt+1 (2.11)

Here, q0 and qT+1 denote the non-emitting entry and exit states. The acoustic model

parameters can now be expressed as Ma =
(
{ai j},{b j(·)}

)
. To build a HMM-based

16 Chapter 2. Automatic Speech Recognition

2 3 4
a12

a22

a23

a33

a34

a44

a45

Y =

y1 y2 y3 y4 y5 y6

b(·)

1 5

Figure 2.5: Topology of a 5-states left-right HMM with 3 emitting states and 2 non-

emitting states. State 1 is the entrance state and state 5 is the exit state and both of

them are non-emitting. ai j denotes the state transition probability from state i to state

j. b(·) is the density funciton.

speech recognition system, there are three key issues that should be addressed: the

likelihood evaluation as equation (2.11); the parameter estimation of the model Ma

and decoding (Rabiner, 1989). The first two issues are briefly address in the following

subsections, while the last issue is addressed in section 2.4.

2.2.1 Likelihood evaluation

Since the state sequence (q0,q1,q2, . . . ,qT ,qT+1) for the observation Y is hidden, the

likelihood is obtained by summing over all possible state sequences in Q as in equation

(2.11). If there are N states in the HMM, the number of possible state sequences in Q
will be NT for T frames, and hence the evaluation of this likelihood using exhaustive

search has the complexity of O(T NT) which is computationally infeasible. However,

this problem can be addressed by using the forward-backword algorithm (Baum et al.,

1970) which is an example of the sum-product algorithm (Bishop, 2006). It can reduce

the computational complexity to O(T N2) which scales linearly, instead of exponen-

tially, with the length of the HMM as we will see later.

First, we denote the forward probability α j(t) and the backward probability β j(t)

as

α j(t) = p(y1, . . . ,yt ,qt = j|Ma) (2.12)

β j(t) = p(yt+1, . . . ,yT |qt = j;Ma) (2.13)

2.2. Acoustic modelling 17

These two probabilities can be computed recursively as

α j(t) = p(y1, . . . ,yt ,qt = j|Ma)

= p(yt |qt = j;Ma)
N

∑
i=1

p(qt = j|qt−1 = i;Ma)p(y1, . . . ,yt−1,qt−1 = i|Ma)

= b j(yt)
N

∑
i=1

ai jαi(t−1) (2.14)

β j(t) = p(yt+1, . . . ,yT |qt = j;Ma)

=
N

∑
i=1

p(qt+1 = i|qt = j;Ma)p(yt+1|qt+1 = i;Ma)p(yt+2, . . . ,yT |qt+1 = i;Ma)

=
N

∑
i=1

a jibi(yt+1)βi(t +1) (2.15)

where 1 < t ≤ T . The value of α and β are initialized as

αq0(0) = 1, α j(1) = aq0 jb j(y1), aq0 j = 1, (2.16)

βqT+1(T +1) = 1, β j(T) = a jqT+1 = 1, f or 1 < j < N (2.17)

As stated before, q0 and qT+1 denote the entry and exit states respectively. Now, we

can simply obtain the likelihood p(Y|Ma) as

p(Y|Ma) =
N

∑
j

p(y1, . . . ,yt ,yt+1, . . . ,yT ,qt = j|Ma)

=
N

∑
j

α j(t)β j(t) (2.18)

This formula can be evaluated for any convenient choice of t. For instance, we may just

run the α recursion from the start to the end of the HMM chain to obtain the forward

probabilities α•(T), and the likelihood can then be computed as

p(Y|W ;Ma) =
N

∑
j

α j(T) (2.19)

where we have made use of the fact that the β•(T) is a unit vector, and hence the

β recursion is not required. From the recursion formula of α, we can see that the

computation of α•(T) requires the cost of O(T N2). The forward-backward algorithm

will also be used to estimate the model parameters as discussed in the next subsection.

18 Chapter 2. Automatic Speech Recognition

2.2.2 Parameter estimation

Given a set of training data Y, the HMM model parameters can be estimated using the

Maximum Likelihood (ML) criterion which is

M̂a = argmax
Ma

log p(Y|W ;Ma)

= argmax
Ma

log∑
Q

p(Y,Q|W ;Ma) (2.20)

Where M̂a denotes the ‘new’ model parameters. This function can not be solved ana-

lytically since the latent variable space for Q maybe very large, but we can seek a local

maximum by using the expectation maximisation (EM) algorithm (Dempster et al.,

1977) which iteratively update the model parameters by maximising the lower bound

of the log-likelihood function log p(Y|W ;Ma), which is also normally referred as aux-

iliary function in the context of acoustic modelling. The key idea is that the ‘old’ model

parameters are used to estimate the posteriors of the latent variables, and given the pos-

teriors, we can use them as labels to derive the explicit ‘pseudo’ likelihood function,

i.e. the auxiliary function:

log p(Y|W ;Ma) = ∑
Q

P
(

Q|Y,W ;M̌a

)

︸ ︷︷ ︸
=1

log p(Y|W ;Ma)

= ∑
Q

P
(

Q|Y,W ;M̌a

){
log p(Y,Q|W ;Ma)− logP(Q|Y,W ;Ma)

}

︸ ︷︷ ︸
=log p(Y|W ;Ma)

= ∑
Q

P
(

Q|Y,W ;M̌a

)
log p(Y,Q|W ;Ma)

−∑
Q

P
(

Q|Y,W ;M̌a

)
logP(Q|Y,W ;Ma)

︸ ︷︷ ︸
≤0

≥∑
Q

P
(

Q|Y,W ;M̌a

)
log p(Y,Q|W ;Ma)≡ Q (Ma;M̌a) (2.21)

where M̌a is the ‘old’ model parameters. Since the auxiliary function Q (Ma;M̌a) is

the lower bound of the log-likelihood function, we can update the model parameters by

improving Q (Ma;M̌a), which is to improve the value of log p(Y|W ;Ma) implicitly.

Hence, we update the model parameters Ma as

M̂a = argmax
Ma

Q (Ma;M̌a) (2.22)

2.2. Acoustic modelling 19

For the next iteration, we will set M̌a← M̂a, and the EM steps are repeated until we

reach the convergence.

We now turn to the details of model estimation using EM algorithm. We unfold the

auxiliary function as

Q (Ma;M̌a) = ∑
Q

p(Q|Y,W ;M̌a) log p(Y,Q|W;Ma)

=
T

∑
t=1

{
N

∑
j=1

p(qt = j|Y,W ;M̌a) logb j(yt)

+
N

∑
i=1

N

∑
j=1

p(qt−1 = i,qt = j|Y,W ;M̌a) logai j

}
(2.23)

where p(qt = j|Y,W ;M̌a) and p(qt−1 = i,qt = j|Y,W ;M̌a) are the first-order and

second-order state posterior probabilities which can be obtained using the forward-

backward algorithm as

γ j(t) = p(qt = j|Y,W ;M̌a)

=
p(qt = j,Y|W ;M̌a)

p(Y|W ;M̌a)
=

α j(t)β j(t)

p(Y|W ;M̌a)
(2.24)

and

ζi j(t) = p(qt−1 = i,qt = j|Y,W ;M̌a)

=
p(qt−1 = i,qt = j,Y|W ;M̌a)

p(Y|W ;M̌a)
=

αi(t−1)αi jb j(yt)β j(t)

p(Y|W ;M̌a)
(2.25)

where α j(t) and β j(t) are defined in equation (4.18) and (C.8). The likelihood p(Y|W ;M̌a)

is obtained by equation (2.19). Using the notation of γ j(t) and ζi j(t), the auxiliary

function Q (Ma;M̌a) can be rewritten as

Q (Ma;M̌a) =
T

∑
t=1

{
N

∑
j=1

γ j(t) logb j(yt)+
N

∑
i=1

N

∑
j=1

ζi j(t) logai j

}
(2.26)

The acoustic model parameters Ma can be updated by maximizing the auxiliary func-

tion Q (Ma;M̌a). This includes the HMM state transition probability ai j and state

emitting model parameters b j(yt). If the GMM is used as the emitting state model,

then the posterior probability of Gaussian components for each state is also required.

For Gaussian component m in state j, the posterior can be computed as

γ jm(t) = γ j(t)
p(yt ,m|qt = j)

p(yt |qt = j)
(2.27)

20 Chapter 2. Automatic Speech Recognition

Hence, the auxiliary function for the GMM-HMM acoustic model can be represented

as

Q (Ma;M̌a) =
T

∑
t=1

{
N

∑
j=1

M j

∑
m=1

γ jm(t)
[
logw jm + logb jm(yt)

]
+

N

∑
i=1

N

∑
j=1

ζi j(t) logai j

}

(2.28)

By maximizing the auxiliary function with respect to the acoustic model parameters,

we can update the model as

âi j =
∑

T
t=1 ζi j(t)

∑
T
t=1 ∑

N
k=1 ζik(t)

(2.29)

ŵ jm =
∑

T
t=1 γ jm(t)

∑
M j
m=1 ∑

T
t=1 γ jm(t)

(2.30)

µ̂µµ jm =
∑

T
t=1 γ jm(t)yt

∑
T
t=1 γ jm(t)

(2.31)

Σ̂ΣΣ
f ull
jm =

∑
T
t=1(yt− µ̂ jm)(yt− µ̂ jm)

T

∑
T
t=1 γ jm(t)

(2.32)

In conventional GMM-based system, diagonal covariance matrices are normally used

since the amount of training data is constraint. This can be obtained by diagonalising

the full covariance matrix as

Σ̂ΣΣ jm = diag
(

Σ̂ΣΣ
f ull
jm

)
(2.33)

Diagonalisation results in lower modelling power to capture the intra-frame correla-

tions. This can be compensated by using mixtures of Gaussians for each HMM state.

In SGMM-based acoustic model, the full covariance matrices can be used which does

not have this issue.

2.3 Language modelling

In addition to the acoustic model score, the prior distribution of each word sequence

p(W |Ml) is also required to generate the hypothesis as is shown in equation (2.2). This

is normally referred as language modelling in the context of automatic speech recog-

nition, and Ml denotes the language model parameters. The probability p(W |Ml) can

be decomposed into the products of conditional probabilities as

p(W |Ml) = p(w1|Ml)
K

∏
k=2

p(wk|wk−1, . . . ,w1|Ml) (2.34)

2.4. Decoding 21

where K is the number of words in W . For large vocabulary speech recognition, the

conditioning word history in (2.34) is truncated to n−1 words which leads to n-gram

language model. Since this is a nonparametric modelling approach, we express it by

dropping Ml as

p(wk|wk−1, . . . ,w1)≈ p(wk|wk−1, . . . ,wk−n+1) (2.35)

The approximation is more accurate if using larger word history. However, due to

reasons of data sparsity, values of n in the range of 1−4 are typically used.

Estimates of probabilities in n-gram language models are commonly based on max-

imum likelihood estimates by counting n-gram occurrences on the training text which

gives

p(wk|wk−1, . . . ,wk−n+1) =
C(wk−n+1, . . . ,wk)

C(wk−n+1,...,wk−1)
(2.36)

where C(·) is the count of a given word sequence in the training text. However, due

to the data sparsity, the count for some word sequence may be very small or even zero

which is not reliable to estimate the n-gram probability. This can be address by some

simple smoothing and back-off schemes such as Katz smoothing (Katz, 1987). For

instance, for 3-gram language model

p(wk|wk−1,wk−2) =





d C(wk−2,wk−1,wk)
C(wk−2,wk−1)

if 0≤C ≤C′

C(wk−2,wk−1,wk)
C(wk−2,wk−1)

if C ≥C′

α(wk−1,wk−1)p(wk|wk−1) otherwise

(2.37)

where C′ is a count threshold, C denotes C(wk−2,wk−1,wk) for brevity. d is a dis-

count coefficient and α is a normalisation constant. There are many variants of this

back-off scheme, for instance, the Kneser-Ney smoothing (Kneser and Ney, 1995) is

particularly effective when the training data is very sparse.

2.4 Decoding

The decoding process is to generate the most likely word sequence Ŵ given a sequence

of feature vector Y1:T . This is done by searching all possible state sequences that arise

from all possible word sequence that have generated the observation Y1:T .

Ŵ = argmax
W

{
log p(Y|W ,Ma)+a logP(W)+ k |W |

}

= argmax
W

{
log

(
∑
Q

p(Y,Q|W ,Ma)

)
+a logP(W)+ k |W |

}
(2.38)

22 Chapter 2. Automatic Speech Recognition

where a and k are language model scale factor and insertion penalty. |W | indicates the

number of words in W . There are introduced to compensate that the acoustic model

and language model score may not be in the same range. Q denotes any possible

state sequence for W that contribute to the marginal likelihood. As mentioned before,

exhaustive search in the state sequence is computationally prohibitive. In practice,

Viterbi algorithm (Viterbi, 1967) may be applied, which only search the most likely

state sequence by an efficient recursive form:

Ŵ = argmax
W

{
log
(

max
Q

p(Y,Q|W ,Ma)

)
+a logP(W)+ k |W |

}
(2.39)

The search network may be expended statically prior to decoding, which is nor-

mally assumed not feasible for LVCSR tasks since the network would be huge. How-

ever, recent advances in weighted finite state transducer (WFST) (Mohri et al., 2002)

make it possible to compose the HMM topology, lexicon and language model in a

single, large, well optimised network. This approach offers an elegant unified frame-

work for representing all the required knowledge (acoustic model, pronunciation and

language model), and therefore is very useful for research and practical applications.

In the static network, the search can be performed in either a time-synchronous or a

time-asynchronous manner, though in practice, the first choice is often employed.

The other choice is to expend the network dynamically “on-the-fly”. The are sev-

eral decoding algorithms within this category depending on either a time-synchronous

or a time-asynchronous search strategy is used. The second choice leads to a stack de-

coding approach which may involve one or several stacks, and in this case, the search

is performed in a sequential, “depth-like” fashion. For the time-synchronous search,

there are two main ways of structuring the search space, either on the word histories

or on the start time of the words. The first choice leads to the re-entrant tree methods

where time is the independent variable and the expansion proceeds in a “breadth-first”

manner. The second way makes use of start-synchronous trees. A good review of the

decoding algorithms is given by (Aubert, 2002).

2.5 Adaptation

For a particular speech recogniser, the acoustic model Ma may be trained by tens or

hundreds hours of data from many speakers. Despite that, there will always new speak-

ers or environmental conditions that are poorly represented in the training data. This is

normally referred as the mismatch between training and testing condition. One of the

2.5. Adaptation 23

solutions to this problem is to use adaptation techniques to adapt the acoustic model

Ma toward the testing condition so that the mismatch can be alleviated. For speech

recognition, there are two main categories of adaptation techniques, namely, the max-

imum a posteriori (MAP) (Gauvain and Lee, 1994) family and maximum likelihood

linear regression (MLLR) (Leggetter and Woodland, 1995) family. We present a brief

review of these approaches in this section.

2.5.1 Maximum likelihood linear regression

Maximum likelihood linear regression (MLLR) adaptation estimates a set of linear

transforms to map the existing model set into a new adapted model set so that the

likelihood of the adaptation data is maximised. Since the amount of adaptation data

is usually limited compared to that used to train the acoustic model, a regression tree

is normally used to cluster the Gaussian components based on acoustic similarity and

each cluster shares the same MLLR transform. In this case, the MLLR adaptation may

be expressed as

µ̂µµm = A(rm)µµµm +b(rm), Σ̂ΣΣm = H(rm)ΣΣΣmH(rm)T (2.40)

where m denotes the Gaussian component and rm denotes the regression class that m

belongs to. (A(rm),b(rm),H(rm)) are the MLLR transform parameters for regression

class rm where A(rm) is a matrix and b(rm) is a vector which are used to adapt the

means. H(rm) which is usually constrained to be a diagonal matrix is used to adapt

the covariance matrix. Otherwise, the adapted covariance matrix Σ̂ΣΣm will be full even

though it was originally diagonal. This will significantly increase the computational

cost and not feasible for large vocabulary task.

For MLLR there is no constraints between between the transformation applied to

the means and covariances. If the two matrix transforms are constrained to be the same,

then this turns to be the constrained MLLR (CMLLR) (Gales, 1998b) or FMLLR (Saon

et al., 2001) as it can be applied in the feature space. The transform can be represented

as

µ̂µµm = Ã(rm)µµµm + b̃(rm), Σ̂ΣΣm = Ã(rm)ΣΣΣmÃ(rm)T (2.41)

In this case, the likelihood can be computed as

N
(

yt ;µ̂µµm,Σ̂ΣΣm

)
= |A(rm)|N

(
A(rm)yt +b(rm);µµµm,ΣΣΣm

)
(2.42)

24 Chapter 2. Automatic Speech Recognition

where

A(rm) = Ã(rm)−1, b(rm) =−Ã(rm)−1b̃(rm) (2.43)

Hence, with this constraint, the model parameters can be left untouched and the trans-

form can be applied in the feature space. This can reduce the computational cost as the

transformed frames can be cached.

2.5.2 Maximum a posteriori adaptation

Rather than using a set of affine linear transformations, maximum a posteriori adapta-

tion (MAP) adaptation introduces a prior P(λλλ) to the acoustic model parameters λλλ, and

given some amount of adaptation data Y, the adapted model is obtained by maximis-

ing the posterior distribution of the model parameters p(Y|λλλ)P(λλλ). For a GMM based

acoustic model, using MAP adaptation leads to the following formulae (Gauvain and

Lee, 1994) for the Gaussian component mean

µ̂µµ jm =
τµµµ jm +∑t γ jm(t)yt

τ+∑t γ jm(t)
(2.44)

where τ is the smoothing parameter that balance the weight between the model prior

and adaptation data. Similar formulas can be derived for MAP adaptation of weights

and covariance matrix of Gaussians in (Gauvain and Lee, 1994).

It can be seen that MAP adaptation interpolates the model parameters from the

priors and that can be obtained from the adaptation data alone. An attractive property

of MAP is that as the amount of adaptation data increases, the model parameters tend

asymptotically to the adaptation domain. However, since every Gaussian component

should be adapted individually, many of the model parameters will not be adapted if

the adaptation data is limited. This makes MAP unsuitable for rapid model adaptation.

2.6 Summary

In this section, we present a brief overview of the conventional HMM based speech

recognition framework. We have discussed several key components in a standard

system including feature extraction, acoustic modelling, language modelling, model

adaptation and decoding. The discussion of acoustic modelling is based on the use

of Gaussian mixture models (GMM) as the density function for HMM states. In the

next section, we will study a recently proposed acoustic modelling approach based

2.6. Summary 25

subspace Gaussian mixture models. In this approach, the HMM state density func-

tion is still modelled by GMMs, but the model parameters are derived by an implicit

approach. This leads to several advantages including the reduction of the number of

model parameters, factorisation of acoustic variability etc. The other components in

the standard ASR framework discussed in this section can remain in such acoustic

models.

Chapter 3

Subspace Gaussian Mixture Model

3.1 Introduction

As discussed in Chapter 2, in conventional hidden Markov model (HMM) based speech

recognisers, the emitting states are modelled by Gaussian mixture models (GMMs),

with parameters estimated directly from the training data. However, in a subspace

Gaussian mixture model (SGMM), the GMM parameters are inferred via a low dimen-

sional model subspace which capture the correlations among the triphone states and

speaker variabilities. In the SGMM acoustic model (Povey et al., 2011a), the HMM

state is modelled as:

p(yt | j,s) =
K j

∑
k=1

c jk

I

∑
i=1

w jki N (yt |µµµ(s)jki,ΣΣΣi) (3.1)

µµµ(s)jki = Miv jk +Niv(s) (3.2)

w jki =
expwT

i v jk

∑
I
i′=1 expwT

i′ v jk
(3.3)

where j is the HMM state index, s denote the speaker, k is a sub-state (Povey et al.,

2011a), I is the number of Gaussian components in a sub-state, and ΣΣΣi is the i-th covari-

ance matrix. v jk ∈RS is referred to as the sub-state vector, and S denotes the subspace

dimension. v(s) ∈ RT is referred to as the speaker vector, and T denotes the speaker

subspace dimension. The matrices Mi, Ni and the vectors wi span the model sub-

spaces for Gaussian means and weights respectively, and are used to derive the GMM

parameters given sub-state vectors. In particular, Mi models the correlations among

the triphone states while Ni models the correlations among the speakers.

Figure 3.1 shows the structure of a SGMM acoustic model. The total parameters

can be split into two sets, the globally shared parameters ΦΦΦi = {Mi,Ni,wi,ΣΣΣi} that do

27

28 Chapter 3. Subspace Gaussian Mixture Model

vjk

Mi

wi

ΣΣΣi

ΣΣΣjki

µµµjki

wjki

i = 1, . . . , Ii = 1, . . . , I

k = 1, . . . , Kj

j = 1, . . . , J

Ni

v(s)

Figure 3.1: Model structure of a SGMM acoustic model, with total J HMM states, and

each has K j sub-states. Each sub-state is modelled by a GMM with I components,

whose parameters are derived from ΦΦΦi = {Mi,Ni,wi,ΣΣΣi} and (v jk,v(s)) using Eq. (3.2)

and (3.3), and for covariance ΣΣΣ jki =ΣΣΣi.

not depend on the state, and the state dependent parameters v jk. The speaker vector

v(s) is used to adapt the model means based on the basis Ni. The sub-state weight c jk

is not presented in the figure for clarity. For each Gaussian component, the parameters

are derived from both the globally shared and state-dependent parameter sets. This

model is quite different from the conventional GMM based acoustic model, as a large

portion of the parameters are globally shared, and do not depend on the HMM state.

The number of state dependent parameters (v jk,c jk) is relatively small if we use a low

dimensional model space. This enables the model to be trained by a relatively small

amount of training data since the number of parameters in a SGMM acoustic model can

be much smaller that in its GMM based counterpart (Povey et al., 2011a). In addition,

since the globally shared parameters do not depend on the model topology, they may

be estimated by tying across multiple systems or entirely by out-domain data, which

inspires its application in multilingual and cross-lingual speech recognition (Burget

et al. (2010) and Chapter 5).

3.1.1 Related techniques

The essence of the SGMM acoustic model is that it factories the phonetic and speaker

factors using separate subspace (3.2). In addition, the GMM model parameters are de-

3.1. Introduction 29

rived from a group of basis vectors (e.g. Mi) together with their corresponding weights

v jk.These features are related to techniques used in the field of speaker verification and

speech recognition. In speaker verification, joint factor analysis (JFA) (Kenny, 2005) is

the most similar approach to SGMMs. In JFA, the Gaussian mean supervector (which

is a concatenation of all the Gaussian means) in a speaker and channel dependent GMM

model is factorized as

Ms,h = m+Vys +Uxs,h +Dzs (3.4)

where m denotes the model origin. s and h denote the speaker and channel index.

ys is referred as the speaker factor which lies in the subspace spanned by the matrix

V which is a low rank matrix, and is assumed to model the speaker variability. xs,h

is referred as the channel factor which lies in the subspace spanned by the matrix U
which is also a low rank matrix, and is assumed to model the channel variability. D is a

diagonal matrix which spans the whole model space. Together with zs, it is introduced

to capture the residual variability not contained in U and V.

Both JFA and SGMM factorize the whole model space of GMM means into differ-

ent subspaces, by which, the distribution of a particular acoustic factor can be modelled

a group of basis vectors which are expected to capture most of the corresponding vari-

ability. However, there are fundamental differences between the two models as they

are used for different tasks. In JFA, the speaker and channel factors are modelled

explicitly, in which, the channel factor is viewed as nuisance attribute for speaker veri-

fication. SGMMs, however, factorizes the phonetic and speaker factor, and the later is

viewed as a nuisance attribute. In addition, the subspace parameters in SGMMs model

the correlation among HMM state models, while JFA model the correlations among

speaker models.

In the field of speech recognition, closely related techniques to SGMMs include

Eigenvoices (Kuhn et al., 2000) and Cluster Adaptive Training (CAT) (Gales, 1998a).

They perform speaker adaptation using a basis model and the corresponding weight

for the Gaussians means

µµµ(s)ji =
K

∑
k=1

λ
(s)
k µµµ(k)ji (3.5)

where µµµ(s)ji denote the Gaussian mean of ith component in jth HMM state for speaker s.

The adaptation is performed using the speaker dependent weight (λ1, · · · ,λK) which is

similar to the role of sub-state vector v jk and a global basis model (µµµi, · · · ,µµµK) which

30 Chapter 3. Subspace Gaussian Mixture Model

is similar to the model subspace Mi in the SGMMs. The key difference, however, is

that SGMM is used to model the HMM state models while these two approaches are

only used to adapt a speaker-independent model to the speaker dependent counterpart.

There are also some similarities between an SGMM and semi-continous GMM

acoustic model (Huang and Jack, 1989). They both share some model parameters

among the HMM states. However, the main difference is that in a semi-continous

GMM acoustic model, all the Gaussian means and covariance matrices are state inde-

pendent, and only the weights are state dependent, while for an SGMM, the Gaussian

means are still state dependent, but they are inferred from globally shared projection

matrices. The number of active parameters of an SGMM is much larger than that of

a semi-continous GMM, and it can also obtain much higher recognition accuracy as it

was found in (Riedhammer et al., 2012).

The idea of using basis representation to reduce the number of model parameters

while improve the modelling power is also extensively investigated by many other

works in the field of speech recognition. To name a few, maximum likelihood linear

transformation (MLLT) (Gales, 1998b) and its extended version, EMLLT (Olsen and

Gopinath, 2002) approximate the full covariance matrices for HMM-GMM systems

using basis expansion of the precision matrix (i.e. inverse covariance). The SPAM

model (Axelrod et al., 2005) extends it further by including the basis representation

of the Gaussian means, in which, the product between the precision and mean of each

Gaussian is also represented by a linear combination of a set of basis. Hence, it is

fundamentally different to an SGMM. The recently proposed Bayesian sensing HMM

(Saon and Chien, 2011) can be viewed as another example within this category, which

is formulated in a full Bayesian probabilistic framework with different basis construc-

tion compared to SGMMs.

3.1.2 Universal background model

In SGMMs, the number of Gaussians in each sub-state is typically very large, i.e.

I = 400 for most of the system setups in this thesis. This can make direct likelihood

evaluation computationally infeasible for both training and decoding. To address this,

a universal background model (UBM) which is a mixture of Gaussians with I compo-

nents, is also introduced to prune the Gaussian indices and initialise the model. The

UBM partitions the acoustic space into I regions. The acoustics in region i are assumed

to lie in a subspace defined by Mi,Ni and wi. For each acoustic frame yt , the top P

3.2. Overview of SGMM acoustic model training 31




µµµj−1,1

µµµj−1,2

...
µµµj−1,I







µµµj,1

µµµj,2

...
µµµj,I







µµµj+1,1

µµµj+1,2

...
µµµj+1,I







µµµ1

µµµ2

...
µµµI




j − 1 j + 1j

����

frame t

yt
Gaussian
selection

UBM model

Figure 3.2: An example of Gaussian selection using UBM model. For each acoustic

frame yt , the UBM is used to select the active Gaussian components in the SGMM

acoustic models. For instance, in this figure, the second Gaussian represented by µµµ2 is

among the top P Gaussian components according to its likelihood score for yt , thus all

the second Gaussian in each SGMM sub-state is active for this frame.

(e.g. P = 15) Gaussian components with highest likelihood scores in the UBM are

selected, and only those Gaussians in SGMMs with the same indices are selected to

calculate the likelihood during both acoustic model training and decoding. Thus, the

UBM itself provides a clustering of the surface Gaussians in the SGMMs based on the

acoustic similarity. Figure 3.2 illustrates the roles of UBM used for Gaussian selection.

In Chapter 6, we also show that UBM can serve as the regression class model for joint

uncertainty decoding based noise compensation for SGMMs.

3.2 Overview of SGMM acoustic model training

Before going into details, Figure 3.3 presents an overview of SGMM acoustic model

training. The UBM model is firstly initialised from a baseline HMM-GMM system by

Gaussian clustering and EM re-estimation and then it is used to initialise the SGMM

acoustic model as discussed in Section 3.2.1. The baseline HMM-GMM system also

provides the alignment of the training data to supervise the model estimation of SGMM

acoustic model for the first several iterations. The alignment is updated by the SGMM

acoustic model after it is relatively well estimated, and in the following model estima-

tion steps, we optionally increase the number of sub-states (Section 3.4.1) or increase

the dimension of subspace (Section 3.4.2). The details are presented in following sec-

tions.

32 Chapter 3. Subspace Gaussian Mixture Model

HMM-GMM
system UBM Model

Clustering

 Initailised
SGMM model

Initialisation

Alignment

Aligning the
training data

Model update

Several
iterations

 SGMM
modelAlignment

Aligning the
training data

Model update optionally with:
1): substate-splitting

2): increase subspace dimension

Terminate?

Yes

No

End

Figure 3.3: Block-diagram of SGMM acoustic model estimation.

3.2. Overview of SGMM acoustic model training 33

3.2.1 Model initialisation

We have discussed the role of UBM model in SGMM acoustic model training and

evaluation in Section 3.1.2. Before training and evaluating the SGMM models, it is

necessary to initialise the UBM model parameters first. To this end, the following

approach is used in (Povey et al., 2011a), namely, a standard HMM-GMM system

with diagonal Gaussians is built with the training dataset. The Universal Background

Model (UBM), denoted as (µ̄µµi,Σ̄ΣΣi, w̄i, i = 1, . . . , I), is then initialised by the HMM-

GMM system. This is done by clustering the diagonal Gaussians in the HMM-GMM

system. Since this will normally results into a GMM with much larger number of

Gaussian than I, we then merge the pair of Gaussians i and j that would result in the

least log-likelihood reduction, computed as follows

∆L =
wi

2
log |ΣΣΣi|+

w j

2
log |ΣΣΣ j|−

wk

2
log |ΣΣΣk| (3.6)

wk = wi +w j (3.7)

µµµk = (wiµµµi +w jµµµ j)/wk (3.8)

ΣΣΣk = diag
(

wi

wk
(ΣΣΣi +µµµiµµµT

i)+
w j

wk
(ΣΣΣ j +µµµ jµµµT

j)−µµµkµµµT
k

)
(3.9)

where | · | denotes the determinant of a matrix, k is the index of the merged Gaus-

sian. After clustering, we train the resulting GMM with several EM iterations of full-

covariance re-estimation on all the available speech data1. In each update we set the

weight to all be the same, to encourage even distribution of data among the Gaussians.

After initialising the UBM, we need to initialise the SGMM acoustic model as

the starting point to train the model. This involves the initialisation of the globally

shared parameters ΦΦΦi and state-dependent parameters (v jk,c jk)
2. To this end, a feature

normalisation transformation matrix J is computed first, which is similar to the inverse

of an LDA transformation but without dimensionality loss. Given the UBM model

1Since training the UBM requires unlabelled data only, the out-domain data may be used if the
amount of in-domain training is limited. This idea is explored in multilingual and cross-lingual speech
recognition tasks using SGMMs (Burget et al. (2010) and Chapter 5)

2The number of sub-states K j is initialised to be 1 for every state j, and the number can be increased
during the model training stages as described in Section 3.4.1.

34 Chapter 3. Subspace Gaussian Mixture Model

parameters, we compute:

ΣΣΣW =
I

∑
i=1

w̄iΣ̄ΣΣi (3.10)

µµµ =
I

∑
i=1

w̄iµ̄µµi (3.11)

ΣΣΣB =

(
I

∑
i=1

w̄iµ̄µµiµ̄µµ
T
i

)
−µµµµµµT (3.12)

ΣΣΣW = LLT (Cholesky decomposition) (3.13)

S = L−1
ΣΣΣBL−T (3.14)

S = UDVT (Single value decomposition) (3.15)

J = LU (3.16)

where ΣΣΣW and ΣΣΣB are analogous to the within-class and between-class covariance ma-

trices. After we obtain J, we can initialise the model as

M j = 1 (3.17)

c j1 = 1 (3.18)

v j1 = e1 ∈ RS (3.19)

Mi = [µ̄µµi, j1, . . . , jS−1] (3.20)

Ni = [j1, . . . , jT] (3.21)

wi = 0 ∈ RS (3.22)

ΣΣΣi = Σ̄ΣΣi (3.23)

where we require S ≤ D+ 1 and T ≤ D, e1 = [10 . . .0] is a unit vector in the first

dimension, and ji is the ith column of the matrix J. The idea behind the initialisation is

that the initial values of µµµ j1i are the same as the UBM mean µ̄µµi, which is computed as

µµµ j1i = [µ̄µµi, j1, . . . , jS−1]




1

0
...

0



= µ̄µµ (3.24)

Hence, the matrix J does not affect the initialisation of the Gaussian component mean

value, however, it need to be of full rank so that it will not introduce numerical in-

stability when update the state vectors. The elements of the state vector v j1 and the

speaker vector v(s) are offsets on the means in the LDA-normalised space. vs can be

3.2. Overview of SGMM acoustic model training 35

initialised to be a zero vector. We are also able to optionally increase S or T during

model training stages as in Section 3.4.2.

3.2.2 Likelihood and posterior evaluation

Before we update the model parameters, we first show how to calculate the likelihood

and posterior of the model parameter given the data. We have mentioned that a UBM

model is used to prune the Gaussians to save computation. Another option to reduce

the computational cost is to pre-compute the global terms that does not depend on the

acoustic frame and cache them rather than compute them repeatedly for each frame.

For instance, the likelihood for state j, sub-state k and Gaussian component i is de-

composed as

log p(yt ,k, i| j) = ni(t)+n jki + zT
i (t)v jk (3.25)

where n jki is a global normalization term which does not depend on the acoustic

frames, while ni(t) and zT
i (t) depend on each acoustic frame. n jki can be expressed

as

n jki = logc jk + logw jki−0.5
(

log |ΣΣΣi|+D log(2π)+µµµT
jkiΣΣΣ
−1
i µµµ jki

)
(3.26)

where µµµ jki = Miv jk. It requires a large amount of computation to calculate this term.

However, it needs to be calculated only once and then it can be cached. The frame

dependent terms ni(t) and zT
i (t) are computed by

zi(t) = MT
i ΣΣΣ
−1
i yti ni(t) =−0.5yT

tiΣΣΣ
−1
i yti (3.27)

where yti = yt −Niv(s) are the speaker adapted features. If the speaker subspace Ni is

not used, then yti = yt . From this decomposition, only the frame dependent term ni(t)

and zT
i (t) are calculated for each new acoustic frame for both training and decoding.

This can significantly save computation. The total likelihood for state j can be obtained

by summing over the Gaussians and sub-states

log p(yt | j) = log∑
k,i

p(yt ,k, i| j) (3.28)

To update the model parameters, we need to compute the posterior probability of

state j, sub-state k and Gaussian component i. The Gaussian component posterior

probability can be obtained by

γ jki(t)≡ p(j,k, i|yt) = γ j(t)
p(yt ,k, i| j)

p(yt | j)
(3.29)

36 Chapter 3. Subspace Gaussian Mixture Model

where p(yt ,k, i| j) and p(yt | j) are given by Eq. (3.25) and (3.28). The state poste-

rior probability γ j(t) ≡ p(j|yt) can be obtained by the forward-backward or Viterbi

algorithm.

3.3 Maximum likelihood estimation

Having obtained the posteriors, in this section we present the model estimation algo-

rithms for SGMM using the maximum likelihood (ML) criterion (Povey, 2009). Simi-

lar to conventional GMM based acoustic models, no closed form solution is available

to estimate the model parameters since the labels for the HMM states j and Gaussian

components i are hidden. However, the standard expectation-maximization (EM) al-

gorithm can be used to address this issue by optimizing the lower bound of the ML

objective function, i.e. the auxiliary function. The parameters to be updated for an

SGMM acoustic model are Mi,Ni,wi,ΣΣΣi,v jk,v(s) and c jk. In the following sections,

we use the EM algorithm to update the model parameters of an SGMM.

3.3.1 Update for sub-state vectors

To update the sub-state vector v jk, the other SGMM model parameters are assumed to

be fixed. The same principle applies to the update for other model parameters. The

auxiliary function for the sub-state vector v jk can be obtained as

Q (v jk) =
T

∑
t=1

I

∑
i=1

p(j,k, i|yt)︸ ︷︷ ︸
=γ jki(t)

log p(yt , j,k, i|v jk)

=
T

∑
t=1

I

∑
i=1

γ jki(t)
(
−0.5vT

jkMT
i ΣΣΣ
−1
i Miv jk +yT

t ΣΣΣ
−1
i Miv jk + logw jki

)
+ const

(3.30)

where const denotes a constant value that does not depend on the parameter to be opti-

mized. γ jki(t) is the posterior of frame yt that defined in equation (3.29). To simplifiy

the derivation, we define

γ jki = ∑
t

γ jki(t) (3.31)

Hi = MT
i Σ
−1
i Mi (3.32)

q jk = ∑
i,t

γ jki(t)MT
i ΣΣΣ
−1
i yt (3.33)

3.3. Maximum likelihood estimation 37

Then

Q (v jk) =−0.5vT
jk

(
∑

i
γ jkiHi

)
v jk +qT

jkv jk +∑
i

γ jki logw jki + const. (3.34)

Apart from logw jki, the rest of the auxiliary function Q (v jk) is a quadratic function

which is simple to optimise. However, since the weight w jki is a softmax function

of the sub-state vector v jk as equation (3.3), this makes the auxiliary function Q (v jk)

nonlinear with respect to v jk. In order to simplify the optimisation, we approximate

the auxiliary function by a quadratic function as follows.

∑
i

γ jki logw jki = ∑
i

γ jki

(
wT

i v jk− log
I

∑
i′=1

expwT
i′ v jk

)

= ∑
i

γ jki

(
wT

i v jk− log
∑

I
i′=1 expwT

i′ v jk

∑
I
i′=1 expwT

i′ v̌ jk

)
−∑

i
γ jki log

I

∑
i′=1

expwT
i′ v̌ jk

︸ ︷︷ ︸
const

= ∑
i

γ jki

(
wT

i v jk + log
∑

I
i′=1 expwT

i′ v jk

∑
I
i′=1 expwT

i′ v̌ jk

)
+ const, (3.35)

where v̌ jk denotes the ‘old’ value of v jk. We then use the inequality 1− (x/x̌) ≤
− log(x/x̌) to get rid of the log function as

∑
i

γ jki logw jki = ∑
i

γ jki

(
wT

i v jk− log
∑

I
i′=1 expwT

i′ v jk

∑
I
i′=1 expwT

i′ v̌ jk

)
+ const

≥∑
i

γ jki

(
wT

i v jk−
∑

I
i′=1 expwT

i′ v jk

∑
I
i′=1 expwT

i′ v̌ jk

)
+ const. (3.36)

Since the exponential function is still nonlinear, we further approximate it by a quadratic

function using the second-order vector Taylor series approximation as

exp(x)≈ exp(x0)
(
1+(x− x0)+0.5(x− x0)

2)

= exp(x0)(x(1− x0)+0.5x2)+ const. (3.37)

38 Chapter 3. Subspace Gaussian Mixture Model

Then we will have

∑
i

γ jki logw jki

≥∑
i

γ jki

(
wT

i v jk−
∑

I
i′=1 expwT

i′ v jk

∑
I
i′=1 expwT

i′ v̌ jk

)
+ const

≈∑
i

γ jki

(
wT

i v jk−
I

∑
i′=1

expwT
i′ v̌ jk

∑
I
i′=1 expwT

i′ v̌ jk︸ ︷︷ ︸
=w̌ jki

(
wT

i′ v jk(1−wT
i′ v̌ jk)+0.5(wT

i′ v jk)
2
))

+ const

= ∑
i

γ jki

(
wT

i v jk−
I

∑
i′=1

w̌ jki

(
wT

i′ v jk(1−wT
i′ v̌ jk)+0.5(wT

i′ v jk)
2
))

+ const

=−0.5vT
jk

(
γ jk ∑

i
w̌ jkiwiwT

i

)
v jk +∑

i
γ jkiwT

i v jk− γ jk

I

∑
i=1

w̌ jkiwT
i v jk(1−wT

i v̌ jk)+ const

=−0.5vT
jk

(
γ jk ∑

i
w̌ jkiwiwT

i

)
v jk +∑

i

(
γ jki− γ jkw̌ jki(1−wT

i v̌ jk)
)

wT
i v jk + const,

(3.38)

where w̌ jki is the ‘old’ weight derived by v̌ jk. Now, we have approximated ∑i γ jki logw jki

in the auxiliary function Q (v jk) by a quadratic function, and therefore, Q (v jk) can be

approximated by a quadratic function as

Q (v jk) =−0.5vT
jkH jkv jk +vT

jkg jk + const (3.39)

where

g jk = q jk +∑
i

(
γ jki− γ jkw̌ jki(1−wT

i v̌ jk)
)

wi (3.40)

H jk = ∑
i

(
γ jkiHi + γ jkw̌ jkwiwT

i
)

(3.41)

If the matrix H jk is well conditioned, the updated value of v jk can be readily available

as

v̂ jk = H−1
jk g jk (3.42)

When H jk is poorly conditioned, namely, the condition number of H jk is large, directly

inversing the matrix H jk may introduces the numerical instability. In this case, a more

numerically stable estimation is given in (Povey et al., 2011a), where the eigenvalues

of the matrix H jk are floored before the inversion when they are below a pre-defined

threshold.

3.3. Maximum likelihood estimation 39

3.3.2 Update for model projections

The auxiliary function for the phonetic projection matrix Mi is

Q (Mi) = ∑
jkt

γ jki(t) log p(yt , j,k, i|Mi)

=−0.5∑
jkt

γ jki(t)vT
jkMT

i ΣΣΣ
−1
i Miv jk +∑

jkt
γ jki(t)yT

t ΣΣΣ
−1
i Miv jk + const

=−0.5tr
(

ΣΣΣ
−1
i MiQiMT

i

)
+ tr

(
MT

i ΣΣΣ
−1
i Yi

)
+ const, (3.43)

where Yi and Qi are accumulated statistics as

Yi = ∑
jkt

γ jki(t)ytvT
jk (3.44)

Qi = ∑
jkt

γ jki(t)v jkvT
jk (3.45)

The derivative of Q (Mi) with respect to Mi is

∂Q (Mi)

∂Mi
=−0.5QT

i MT
i ΣΣΣ
−1
i −0.5QiMT

i ΣΣΣ
−1
i +YT

i ΣΣΣ
−1
i

=
(
−QiMT

i +YT
i
)

ΣΣΣ
−1
i (3.46)

The second line of equation is obtained since Qi is symmetric. By setting the derivative

to be zero, Mi can be computed as

Mi = Q−1
i Yi (3.47)

if the matrix Qi is well conditioned. A more numerically stable algorithm is given in

(Povey et al., 2011a) in case that the matrix Qi is poorly conditioned.

3.3.3 Update for weight projections

The auxiliary function for the weight projection vector wi is

Q (w) = ∑
jkit

γ jki(t) log p(yt , j,k, i|wi)

= ∑
jkit

γ jki(t) logw jki + const. (3.48)

The derivation is analogous to that in section 3.3.1 where the nonlinear objective func-

tion is approximated by a quadratic function. Here, however, the parameters wi are to

40 Chapter 3. Subspace Gaussian Mixture Model

be optimized, rather than v jk. We rewrite the derivations with only several key steps.

First, the log function is removed using the previous inequality

Q (w) = ∑
jkit

γ jki(t)

(
wT

i v jk− log
I

∑
i′=1

expwT
i′ v jk

)

= ∑
jkit

γ jki(t)

(
wT

i v jk + log
∑

I
i′=1 expwT

i′ v jk

∑
I
i′=1 exp w̌T

i′ v jk

)
+ const

≥∑
jki

γ jkiwT
i v jk−∑

jki
γ jk

expwT
i v jk

∑
I
i′=1 exp w̌T

i′ v jk
+ const = Q ′(w), (3.49)

where w̌i′ are the ‘old’ values of wi. Since the new objective function Q ′(w) is still

nonlinear, we use Newton’s approach to optimize it as

ŵi = wi−
(

∂2Q ′(w)

∂2wi
|w̌i

)−1(
∂Q ′(w)

∂wi
|w̌i

)T

, (3.50)

where the gradient and Hessian matrix can be computed as

∂Q ′(w)

∂wi
|w̌i = ∑

jk
γ jkivT

jk− γ jk
exp w̌T

i v jk

∑
I
i′ exp w̌′iv jk︸ ︷︷ ︸

=w jki

vT
jk

= ∑
jk

(
γ jki− γ jkw jki

)
vT

jk (3.51)

∂2Q ′(w)

∂2wi
|w̌i =−∑

jk
γ jkw jkiv jkvT

jk (3.52)

In practice, however this approach is not stable and it is often necessary to halve

the step size many times (Povey, 2009). The reason is that Newton’s approach approx-

imates the nonlinear objective function by its second order Taylor series expansion

using the ‘old’ estimate as the expansion point. However, it is a very poor approxima-

tion to the exponential function if the step size is large. To make the estimation more

stable, the term γ jkw jki in equation (3.52) is replaced with max(γ jki,γ jkw jki). Since

without the subspace constraint, the ML estimate of w jki would be γ jki/γ jk, this means

that if the value of this term around the unconstrained ML solution would be larger

with the intuition that the weights will probably get closer to the unconstrained ML

solution. Taking the larger one will make the optimization more stable, as this makes

the Hessian more negative and consequently a smaller step size will be used for each

iteration. After this manipulation, the Hessian matrix is

∂2Q ′(w)

∂2wi
|w̌i =−∑

jk
max(γ jki,γ jkw jki)v jkvT

jk (3.53)

3.3. Maximum likelihood estimation 41

3.3.4 Update for speaker projections

The auxiliary function for the speaker projections Ni is analogous to that for the pho-

netic projections Mi, which can be expressed as

Q (Ni) = ∑
jkst

γ jki(t) log p(yt , j,k, i,s|Ni)

=−0.5 ∑
jkst

γ jki(t)v(s(t))NT
i ΣΣΣ
−1
i Niv(s(t))+ ∑

jkst
y jki(t)ΣΣΣ−1

i Niv(s(t))+ const

=−0.5tr
(

ΣΣΣ
−1
i NiRiNT

i

)
+ tr

(
NT

i ΣΣΣ
−1
i Zi

)
+ const, (3.54)

where s(t) is the speaker active in frame t, and

y jki(t) = yt−Miv jk (3.55)

If we use T (s) to denote the set of frames valid for the speaker s, then we can

represent Ri and Zi as

Zi = ∑
s

(
∑

t∈T (s), jk
γ jki(t)

)
y jki(t)v(s)T (3.56)

Ri = ∑
s

(
∑

t∈T (s), jk
γ jki(t)

)
v(s)v(s)T (3.57)

By setting the derivative of Q (Ni) with respect to Ni to be zero, we obtain

Ni = ZiR−1
i (3.58)

Again, a more numerically stable algorithm is given in (Povey et al., 2011a) in case

that Ri is not well conditioned.

3.3.5 Update for speaker vectors

The update for speaker vectors v(s) is analogous to that for the sub-sate vectors v jk

except that there is no extra term relating to the weight.

Q (v(s)) = ∑
t∈T (s), jki

γ jki(t) log p
(

yt , j,k, i,s|v(s)
)

=−0.5v(s)T H(s)v(s)+v(s)T y(s)+ const, (3.59)

where H(s) and y(s) are defined as

H(s) = ∑
i

(
∑

t∈T (s), jk
γ jki(t)

)
NT

i ΣΣΣ
−1
i Ni (3.60)

y(s) = ∑
t∈T (s), jki

γ jki(t)NT
i ΣΣΣ
−1
i y jki(t) (3.61)

42 Chapter 3. Subspace Gaussian Mixture Model

where y jki(t) is defined in equation (3.55). If the matrix H(s) is well conditioned, then

the update can be obtained as

v(s) = H(s)−1y(s) (3.62)

3.3.6 Update for within-class covariances

The auxiliary function for the within-class covariance matrix ΣΣΣi can be expressed as

Q (ΣΣΣi) = ∑
jkt

γ jki(t) log p(yt , j,k, i|ΣΣΣi)

=−0.5∑
jkt

γ jki(t)
(

log |ΣΣΣi|+ tr
(

ΣΣΣ
−1
i
(
yt−Miv jk

)(
yt−Miv jk

)T
))

+ const.

(3.63)

The update can be readily obtained as

ΣΣΣi =
1
γi

(
Si + S̄i−YiMT

i −MiYT
i
)

(3.64)

where Yi is defined in equation (3.44), γi = ∑ jk γ jki(t), and

Si = ∑
jkt

γ jki(t)ytyT
t (3.65)

S̄i = ∑
jk

γ jki(t)Miv jkvT
jkMT

i (3.66)

As with conventional GMM systems, the covariance matrix ΣΣΣi may be poorly con-

ditioned. Variance flooring can be applied to improve the numerical stability.

3.3.7 Update for sub-state weights

The auxiliary function for sub-state weight c jk is

Q (c jk,1≤ j ≤ J,1≤ k ≤ K j) = ∑
jk

γ jk logc jk + const (3.67)

The update is subjected to the constraint that the sub-state weights must sum to 1 over

all k for a particular state j, so the update formula is

c jk =
γ jk

∑
K j
k=1 γ jk

(3.68)

3.4. Model extension 43

3.4 Model extension

In the previous sections, we have shown the model parameter estimation using ML

criterion. This is based on a fixed number of triphone states J, Gaussian components

I as well as the subspace dimensionality, etc. For SGMMs, an important issue is to

extend the model capacity, or the number of effective parameters according to the

amount of available training data. This is found to improve the recognition accuracy

of SGMM based acoustic models. In general, there are two ways to extend the model

capacity: first by increasing the number of sub-states K j, and second by increasing the

dimensionality of model projections and speaker projections. This section describes

these two techniques.

3.4.1 Sub-state splitting

In order to increase the total number of sub-states to be the desired number N, a robust

way to assign the number of sub-states for each state and sub-state pair (j,k) is to

have them proportional to a small power p, typically 0.2, of the total data count γ jk

for that state. The target number of sub-states for state j, N(j) would be N(j) =

max(1, [0.5+αγ
p
j]), where γ j = ∑ki γ jki and α = N/∑ j γ

p
j so that ∑ j N(j) is close to

the target. Suppose we are splitting the sub-state vector v jki into two vectors v jk and

v jk′ , where k′ is a newly allocated sub-state index. We would split the weight and the

vectors as follows:

ĉ jk = 0.5c jk (3.69)

ĉ jk′ = 0.5c jk (3.70)

v̂ jk = v jk +0.1H(sm)−0.5r (3.71)

v̂ jk′ = v jk−0.1H(sm)−0.5r (3.72)

H(sm) =
1

∑i γi
∑

i
γiHi (3.73)

where r is a normally distributed random vector, Hi is defined in equation (3.32), and

H(sm)−0.5 is obtained by Cholesky decomposition of Hsm. This formula is analogous

to increasing the number of Gaussians in conventional GMM systems (Young et al.,

2002).

44 Chapter 3. Subspace Gaussian Mixture Model

Table 3.1: SGMM acoustic model size. Q denotes the total number of sub-sates. Q =

24000, I = 400,S = 40,D = 39.

Type globally shared state dependent

Mi wi ΣΣΣi(f ull) v jk c jk

#Parameters I ·D ·S I ·S I · (D2 +D)/2 Q ·D Q

Example count 6.24×105 1.6×104 3.12×105 9.36×105 1.6×104

Total 1.904×106

Table 3.2: GMM acoustic model size. M denotes the total number of Gaussian compo-

nents. M ≈ 50000,D = 39.

Type µµµ jm w jm ΣΣΣ jm(diag)

#Parameters D ·M M D ·M
Example count 1.95×106 5×104 1.95×106

Total 3.905×106

3.4.2 Increasing the subspace dimension

The dimension of model projection Mi and speaker projection Ni can be increased

during the model update. This can be done by

Mi← [Mi j1 . . . jS′−S] (3.74)

Ni← [Ni j1 . . . jT ′−T] (3.75)

where S′ and T ′ are the target dimension of model and speaker projection. j is defined

in equation (3.16). By this approach, the amount S′− S and T ′−T can not be larger

than the feature dimension D for each iteration. The sub-state vectors v jk and the

weight projections wi would be extended by appending S′− S zeros. If the speaker

vectors v(s) are being stored between iterations rather than being computed afresh each

time we would also append T ′−T zeros to the speaker vectors v(s).

3.5 Model size

The number of active parameters in an SGMM acoustic model can be much smaller

than its GMM based counterpart. The reason is that a large proportion of the model

parameters are globally shared, and the number of state-dependent parameters, i.e.

3.6. Adaptation 45

sub-state vectors v jk and sub-state weight c jk is small. We take the baseline systems

in Chapter 4 as an example to illustrate this perspective. The systems were built on

the WSJ0 dataset which contains around 14.8 hours training data. Both systems were

tuned to achieve their best performance. For reference, the word error rate (WER) of

the GMM system is 10.3% whereas for SGMM system, it is 8.3% which is significantly

better. Table 3.1 and 3.2 show the total number of parameters of these two systems.

It demonstrates that the total number of parameters in the SGMM system is around

half that of an equivalent GMM system and half of the SGMM parameters are globally

shared. Due to these features, SGMM acoustic model has a particular advantage for

low-resource speech recognition which will be discussed further in Chapter 5.

3.6 Adaptation

There are approaches to adapt an SGMM acoustic model. The first one is to use the

speaker subspace Ni as shown in equation (3.2). However, since the dimensional-

ity of the speaker vector v(s) is normally very low, this approach is more suitable for

adaptation with very limited adaptation data, e.g. only 1 or a few utterances. An-

other approach is to use the MLLR or CMLLR transformation which is the same as

adaptation of GMM acoustic models. The main difference is that SGMM normally

use full-covariance matrices, rather than diagonal-covariances usually used by GMM

acoustic models. Hence, full-covariance MLLR or CMLLR transformations have to

be used for SGMMs, and examples of this method can be found in (Povey and Saon,

2006; Ghoshal et al., 2010). Recently, Ghalehjegh and Rose (2013) applied a MLLR

type of transformation over the state vectors v jk for speaker adaptation and observed

some improvement.

3.7 Decoding

In principle, the same decoding algorithm which is used for conventional GMM acous-

tic models is applicable to an SGMM acoustic model. However, there is a minor dif-

ference from the engineering point of view. Since the number of Gaussian components

of an SGMM acoustic model is normally much larger than its GMM counterpart, eval-

uating all the Gaussian components will make the decoder very slow. To speedup the

decoder, the Gaussian selection algorithm using the UBM is applied in the decoding

step. This is the same as that used to train the SGMMs which is shown in Figure 3.2.

46 Chapter 3. Subspace Gaussian Mixture Model

The rationale behind this idea is that for each frame, most of the Gaussians will have

very likelihood score except a few which is close to this frame in the acoustic space.

In practice, if we only select a handful Gaussians for each frame, we can achieve a

comparable decoding speed without having any noticeable accuracy loss.

3.8 Summary

In this chapter, we have reviewed subspace Gaussian mixture model (SGMM) for

acoustic modelling, and shown the model estimation using ML criterion. Compared

to conventional GMM based acoustic models, SGMMs reformulate the model param-

eters into globally shared model subspace and low-dimensional state vectors. The

model subspace is introduced to capture the correlations among the phonetic states and

speakers. It can be used as informative priors to estimate the state dependent model,

especially when the amount of training data is limited. This will be discussed further

with experimental studies in the following chapters.

Chapter 4

Regularized Subspace Gaussian

Mixture Model

4.1 Introduction

Acoustic modeling for large vocabulary speech recognition often needs to address the

problem of robust model estimation from limited acoustic data. There has recently

been a renewed interest in regularization approaches to address this problem of data

sparsity and model complexity. For instance, Sivaram et al. (2010) introduced an ap-

proach to obtain sparse features from an auto-associative network using an `1-norm

regularization function, and Sainath et al. (2010a,b) combined `1 and `2 regularization

to obtain a sparse exemplar-based representation for phoneme recognition. Regularised

MLLR for speaker adaptation is proposed by Omar (2007).

In Chapter 3, we have described the SGMM based acoustic model, which reformu-

lates a conventional HMM-GMM system. Although such a formulation significantly

reduces the total number of parameters (Povey et al., 2011a), ML training may still

suffer from overfitting with insufficient training data. The state-dependent parameters

are especially prone to overfit, as the amount of acoustic data attributed to each state

tends to be small. To be specific, the log-likelihood function of a particular (sub-)state

vector v is approximated by a quadratic funciton which comes from the EM auxiliary

function of state vectors as equation (3.39):

Q (v)'−1
2

vT Hv+gT v+ const, (4.1)

where we have removed the subscript jk for brevity; g is a S-dimensional vector and

47

48 Chapter 4. Regularized Subspace Gaussian Mixture Model

H is a S× S matrix, representing the first- and second-order statistics respectively.1

Although the state vectors are normally low-dimensional, the amount of data for com-

puting the statistics H and g may still be insufficient. Some heuristic approaches may

be applied, for instance H and b may be smoothed by the global statistics:

Ĥ = H+ τHsm, ĝ = g+ τgsm (4.2)

where Hsm and bsm denotes the smoothing term calculated based on all the HMM

states (see (Povey, 2009) for details), and τ ∈ R is the tuning parameter. Povey et al.

(2011a) also discuss some numeric controls to tackle the poor conditioning of H. In

this chapter we address the problem using an explicit regularization function.

To regularize the estimation of the state vectors, we introduce an element-wise

penalty term to the original ML objective function in order to smooth the output vari-

ables, giving:

v̂ = argmax
v

Q (v)− Jλλλ(v). (4.3)

Jλλλ(v) denotes the regularization function for v parametrised by λλλ. We may interpret

−Jλλλ(v) as a log-prior for the state vector, in which case we can interpret (5.7) as a MAP

estimate. However, in this paper, we treat the problem more in terms of the design and

analysis of regularization functions, rather than giving an explicit Bayesian treatment

as used in JFA-based speaker recognition where Gaussian priors are applied to both

speaker and channel factors (Zhao et al., 2009).

In this chapter, we investigate `1- and `2-norm regularization (Hastie et al., 2005)

in this context, as well as a combination of `1 and `2, sometimes referred to as the

elastic net (Zou and Hastie, 2005). we introduce the regularization penalties in Section

4.2, and in Section 4.3, we present the optimisation algorithm based on gradient pro-

jection to solve the regularised objective function. Finally, in section 4.4, we present

experiments on the 5,000 word Wall Street Journal (WSJ-5k) speech transcription task.

4.2 Regularization penalties

We may formulate a family of regularization penalties in terms of a penalty parameter

λ, and an exponent q ∈ R:

Jλλλ(v) = λ∑
i
|vi|q s.t. λ≥ 0. (4.4)

1If the state is split, (4.1) should be the objective function of sub-state vectors—regularization is
employed at the sub-state level in this work.

4.2. Regularization penalties 49

Figure 4.1: An example of `1/`2-norm penalty for a quadratic objective function in two-

dimensional space. The shaded areas denote the feasible region defined by the reg-

ularization in terms of a constraint, and it is like a square for `1-norm penalty, while a

circle for `2-norm penalty. Without the penalty, the solution of the quadratic function is

denoted by the point in the centre of the contour. With the penalty, the solution moves

to the tangent point between the contour and the feasible region.

The case q = 1 corresponds to `1-norm regularization, sometimes referred to as the

lasso (Tibshirani, 1996), and the case q = 2 corresponds to `2-norm regularization,

which is referred to as ridge regression (Hastie et al., 2005) or weight decay.

Both `1- and `2-norm penalties perform an element-wise shrinkage of v towards

zero in the absence of an opposing data-driven force (Hastie et al., 2005), which en-

ables more robust estimation. The `1-norm penalty has the effect of driving some

elements to be zero, thus leading to a kind of variable selection, and inspiring its ap-

plication in basis pursuit denoising (Chen et al., 2001), compressed sensing (CS) in

the signal processing literature (Donoho, 2006) and sparse representation of speech

features (Sivaram et al., 2010; Sainath et al., 2010a). It is possible to seek a compro-

mise between the `1 and `2 penalties by simply setting 1 < q < 2 which is sometimes

referred to as a bridge penalty. However, the nonlinearity of the bridge penalty brings

increased computational complexity. Alternatively, the `1- and `2-norm penalties can

both be applied, as in elastic net regularization (Zou and Hastie, 2005):

Jλλλ(v) = λ1 ∑
i
|vi|+λ2 ∑

i
|vi|2,

s.t. λ1,λ2 ≥ 0.
(4.5)

This is much less computationally demanding than the bridge penalty. In this chapter,

50 Chapter 4. Regularized Subspace Gaussian Mixture Model

we investigate the `1-norm, `2-norm and elastic net regularization for the estimation of

SGMM state vectors.

4.2.1 Reformulation as a quadratic program

Given the regularized objective function for state vector estimation (5.7), a closed form

solution is readily available for the `2-norm penalty:

v̂ = argmax
v
−1

2
vT Hv+gT v−λ‖v‖`2

= (H+λI)−1g

However, there is no such closed form solutions for the `1-norm and elastic net penal-

ties as the derivatives of their objective functions are not continuous. In both the opti-

mization and signal processing fields, there have been numerous approaches proposed

to solve the `1-norm penalty problem and here we adopt the gradient projection algo-

rithm of Figueiredo et al. (2007). The same approach may be applied to the elastic net

penalty as it can be formulated in terms of the `1 penalty:

v̂ = argmax
v
−1

2
vT (H+λ2I)v+gT v−λ1‖v‖`1, (4.6)

given the regularization parameters λ1 and λ2. A proper scaling factor should applied

to the result of (4.6) to get the exact elastic net solution, but we did not do it in this

work which corresponds to the naive elastic net (Zou and Hastie, 2005).

Expressing (4.3) with the `1 penalty results in the following objective function:

v̂ = argmin
v

1
2

vT Hv−gT v+λ‖v‖`1 , λ > 0. (4.7)

As the derivative of the objective function is not continuous, which makes the search

of global optimum difficult, we introduce two auxiliary vectors x and y such that:

v = x−y, x≥ 0, y≥ 0, (4.8)

where, x = [v]+ which takes the positive entries of v while keeping the rest as 0, i.e.

xi = max{0,vi} for all i = 1, . . . ,S. Similarly, y = [−v]+. In this case, equation (4.7)

can be rewritten as

(x̂, ŷ) = argmin
x,y

1
2
(x−y)T H(x−y)

−gT (x−y)+λ1T
S x+λ1T

S y

s.t. x≥ 0,y≥ 0

(4.9)

4.3. Gradient projection algorithms 51

where 1S denotes an S-dimensional vector whose elements are all 1. We can reformu-

late (4.9) further as a more standard bound-constraint quadratic program

ẑ = argmin
z

1
2

zT Bz+ cT z s.t. z≥ 0 (4.10)

where we have set

z =

[
x
y

]
,c = λ12S +

[
−g
g

]
,and B =

[
H −H
−H H

]
.

The objective function (4.10) does not suffer the nonlinearity problem of the original

objective function (4.7). If we denote F (z) as the objective function

F (z) =
1
2

zT Bz+ cT z (4.11)

its gradient is readily available as

∇F (z) = Bz+ c, (4.12)

which forms the basis of the gradient projection algorithm as we discussed in the fol-

lowing section.

4.3 Gradient projection algorithms

To solve the constraint quadratic program of equation (4.10), the underlying principle

of the gradient projection algorithms described in this section is the same as the steepest

descent algorithm, by which we would update the value of z from iteration k to k+ 1

as

zk+1 = zk−αk∇F (z) (4.13)

where the positive scalar αk is the step length, and the negative gradient −∇F (z) is

the decent direction. However, since z is positive constraint, we would like to ensure

the updated zk+1 satisfies this constraint. To this end, we take the positive entries of

the updated estimate as

wk = [zk−αk∇F (z)]+ (4.14)

and then we interpolate between the ‘old’ and ‘new’ values by

zk+1 = (1−λk)zk +λkwk (4.15)

where λk ∈ [0,1] is chosen subjected to that the new value zk+1 will decrease the ob-

jective function F (z). The two approaches described next differ in their choices of αk

and λk.

52 Chapter 4. Regularized Subspace Gaussian Mixture Model

Table 4.1: The basic gradient projection algorithm.

Step 0 (Initialisation): Given z0, choose parameters β ∈ (0,1)

and µ ∈ (0,0.5); set k = 0.

Step 1: Compute α0 from (4.18), and replace α0 by mid(αmin,α0,αmax).

Step 2: (backtracking line search): Choose αk to be the first number

in the sequence α0,βα0,β
2α0, . . . such that

F (wk)−F (zk)≤ µ∇F (zk)
T (zk−wk)

which means we can decrease the objective function a sufficient amount

by updating z. We then set zk+1 = wk, i.e. λk = 1 in equation (4.15).

Step 3: Perform convergence test and terminate with zk+1 if it’s satisfied.

Otherwise set k← k+1 and go to Step 1.

4.3.1 Basic gradient projection

In the basic approach, we search from each iteration zk along the negative gradient

−∇F (z), projecting onto the nonnegative orthant, and performing a backtracking line

search of αk until a sufficient decrease is obtained in F (·). We use an initial guess for

αk that would yield the exact minimiser of F (·) along this direction if no new bounds

were to be encountered. Specifically, we define the vector pk by

(pk)i =

{
(∇F (zk))i, if(zk)i ≥ 0or(∇F (zk))i ≤ 0

0, otherwise
(4.16)

where (·)i denotes the ith element of the vector. Equation (4.16) means that after the

projection, (pk)i is non-zero unless it is in the positive orthant, or its value is negative,

which means it may switch sign by moving along this gradient direction even though

it lies in the negative orthant. We project the gradient since z is positive constraint.

We then choose the initial guess to be

α0 = argmin
α

F (zk−αpk) (4.17)

By setting the derivative of F (zk−αpk) with respect to α to be zero, we can compute

α0 explicitly as

α0 =
(pk)

T pk

(pk)
T Bpk

(4.18)

To avoid that values of α0 are too small or too large, we confine it to the interval

[αmin,αmax], where 0 < αmin < αmax. The complete algorithm is defined in Table 4.1.

4.3. Gradient projection algorithms 53

Table 4.2: The Barzilai-Borwein gradient projection algorithm.

Step 0 (initialisation): Given z0, choose parameters αmin,αmax,α0 ∈ [αmin,αmax],

and set k = 0.

Step 1: Compute step: δδδk = [zk−αk∇F (zk)]+− zk.

Step 2 (line search): Find the scalar λk that minimises F (zk +λkδδδk) on

the interval λk ∈ [0,1], and set zk+1 = zk +λkδδδk.

Step 3 (Update α): Compute γk = δδδT
k Bδk. If γk = 0, let αk+1 = αmax, otherwise

αk+1 = mid
(

αmin,
||δδδk||22

γk
,αmax

)
.

Step 4: Perform convergence test and terminate with zk+1 if it’s satisfied.

Otherwise set k← k+1 and go to Step 1.

4.3.2 Barzilai-Borwein gradient projection

The basic gradient projection algorithm described above ensures that the objective

function F (·) decrease at every iteration. Here, we describe another approach pro-

posed by Barzilai and Borwein (1988) which does not have this property but is still

efficient to search the optimum. This approach was originally developed in the context

of unconstrained minimisation of a smooth nonlinear function F (·). It calculates each

step by the formula δδδk = −H−1
k ∇F (zk), which is an approximation to the Hessian of

F (zk). Barzilai and Borwein (1988) set Hk to be a multiple of the identity Hk = ηkI,

where ηk is chosen so that Hk has similar behaviour to the true Hessian over the most

recent step, i.e.

∇F (zk)−∇F (zk−1)≈ ηk [zk− zk−1] (4.19)

with ηk chosen to satisfy this relationship in the least-squares sense. In the uncon-

strained setting, the update formula is

zk+1 = zk− (ηk)
−1

∇F (zk) (4.20)

and this step is taken even if it yields an increase in F (·).
The Barzilai-Borwein approach has been extended to solve the bound-constraint

quadratic optimisation problems (Serafini et al., 2005) and we have used this algorithm

for the study here. We choose λk in equation (4.15) as the exact minimiser over the

interval [0,1] and choose the value of αk where αk = (ηk)
−1. The complete algorithm

is given in Table 4.2.

54 Chapter 4. Regularized Subspace Gaussian Mixture Model

4.3.3 Termination criterion

For both of the basic and Barzilai-Borwein gradient projection algorithms, we need

to set a criterion to terminate the algorithms. Ideally, we wish for the approximated

solution z to be reasonably close the a solution z∗ and/or that the function value F (z)
be reasonably close to F (z∗). Figueiredo et al. (2007) discussed several termination

conditions. In this work, we used the following criterion that takes account of the

nonzero indices of z and of how these indices have changed in recent iterations. In

this criterion, termination is declared when the set of nonzero indices of an iterate zk

changes by a relative amount of less than a specified threshold ε. Specifically, we

define

Ik = {i|[zk]i 6= 0}
Ck = {i|i ∈ Ik and i /∈ Ik−1 or i /∈ Ik and i ∈ Ik−1}

Namely, Ik denotes the nonzero indices at iteration k and Ck denotes the indices that

have changed from/to zero from iteration k−1 to k. We terminate the algorithm if

|Ck|/|Ik| ≤ ε (4.21)

The value of ε should be set beforehand. In addition to this criterion, we also introduce

the minimum and maximum number of iterations for the algorithm.

4.4 Experiments

We use the WSJ-5k data for our speech transcription experiments. We follow the

setup described in (Woodland et al., 1994). The training set contains 7137 utter-

ances with a total duration of about 14 hours (after removing silence). For testing,

we use subset of the WSJ1-5k development set obtained by deleting sentences with

out-of-vocabulary words giving a total of 248 sentences from 10 speakers. We use the

standard 5k non-verbalised punctuation bigram language model (LM) for decoding.

Standard 13-dimension MFCC+∆+∆∆ features were used with cepstral mean and

variance normalisation. The following results were obtained by tuning the LM scaling

factor and word insertion penalty to get the best word error rate (WER).

4.4.1 Baseline system

We first train a conventional HMM-GMM baseline recognizer using the HTK speech

recognition toolkit (Young et al., 2002). The baseline system has 3093 tied cross-

4.4. Experiments 55

word triphone states, each with a 16-component GMM with diagonal covariance. Our

baseline result of of 10.3% WER on the test set is comparable to the 10.48% WER

reported in (Woodland et al., 1994) using a similar configuration. Starting from the

HTK baseline system, we train the SGMM system according to the recipe using the

Kaldi software described in (Povey et al., 2011a), using 400 Gaussian components in

the universal background model (UBM) and 40-dimensional phonetic subspace (i.e.,

S = 40). State splitting was applied to increase the number of sub-states for large

model capacity. The best performance of SGMM baseline is 8.6%, which gives more

than 15% relative improvement compared to the conventional system.

4.4.2 SGMM results with smoothing and renormalization

We first compare the performance of ad-hoc smoothing shown in equation (4.2). The

results are given in Table 4.3 for different values of the smoothing parameter τ. We also

present the results by renormalization (Appendix K in (Povey, 2009)) denoted as R(v)
in Table 4.3. While we do not observe much improvements from the ad-hoc smooth-

ing approach, from the results of using a small smoothing term (τ = 5) compared to

the non-smoothed case (τ = 0), the smoothing terms can indeed help to address the

overfitting issue, albeit rather mildly. Renormalization, however, is beneficial to both

system performance and model robustness. While theoretically, renormalization does

not change the model, in practice it makes a difference due to issues such as numerical

stability of the updates, flooring, and condition limiting of matrices.

4.4.3 SGMM results with regularization

Here the regularization is applied at the sub-state level for systems with sub-state split-

ting. The regularization parameter is set to be global and constant for different numbers

of sub-states, and except for regularized estimation of the sub-state vectors, the SGMM

training follows the recipe in (Povey et al., 2011a).

Table 4.4 shows the results of regularization with `1, `2 as well as elastic net

penalty for systems with and without renormalization. To simplify the tuning of the

two reguarization parameters for elastic net system, we set them to be equal. The

Barzilai-Borwein gradient projection optimization algorithm described in section 4.3.2

was used in our experiments. For the systems without renormalization, the regulariza-

tion parameters are set to be 10 for all `1, `2 and elastic net systems (i.e. λ1 = λ2 = 10

in equation 4.5). Compared to the baseline, the SGMM system with regularization is

56 Chapter 4. Regularized Subspace Gaussian Mixture Model

Table 4.3: Word error rates of SGMM acoustic model with ad-hoc smoothing or renor-

malization, S = 40

GMM baseline: 10.3

SGMM with ad-hoc smoothing or renormalization

#Substates R(v) τ = 0 τ = 5 τ = 10 τ = 20

3k 9.7 9.8 9.9 10.0 10.1

4.5k 9.7 9.6 9.7 9.7 9.8

6k 9.7 9.4 9.4 9.5 9.6

9k 9.2 9.1 9.2 9.2 9.2

12k 9.0 8.8 8.9 9.1 9.1

16k 8.8 8.6 8.8 8.9 8.6

20k 8.8 8.7 8.7 9.3 8.9

24k 8.3 8.8 8.6 9.1 8.8

28k 8.5 8.7 8.7 9.1 8.8

32k 8.7 9.0 8.5 9.4 9.7

Table 4.4: Comparison of SGMM acoustic model with regularized (sub-)state vector

estimation, S = 40

#Sub without renormalization with renormalization

-states - `1 `2 eNet - `1 `2 eNet

3k 9.8 9.7 9.9 9.9 9.7 10.2 9.7 9.9

4.5k 9.6 9.4 9.7 9.6 9.7 9.8 9.7 9.9

6k 9.4 9.4 9.4 9.4 9.7 9.7 9.4 9.6

9k 9.1 9.1 9.1 9.3 9.2 9.2 9.2 9.5

12k 8.8 9.0 8.8 8.9 9.0 8.8 9.1 9.5

16k 8.6 8.8 8.4 8.7 8.8 8.9 8.9 9.1

20k 8.7 8.3 8.8 8.6 8.8 8.7 8.4 9.2

24k 8.8 8.4 8.7 8.5 8.3 8.5 8.6 9.0

28k 8.7 8.4 8.5 8.5 8.5 8.4 8.7 9.2

32k 9.0 8.5 8.5 8.8 8.7 8.3 9.0 9.2

4.4. Experiments 57

Table 4.5: Results of SGMM system with `1-norm regularization, S = 60

#Sub-states 3k 4.5k 6k 9k 12k 16k 20k

Baseline 9.6 9.5 9.1 9.3 9.2 9.2 9.3

`1-norm 9.6 9.2 9.0 9.0 9.0 8.9 8.9

less likely to suffer from overfitting, as the best results are achieved by models with

large capacity, and also obtain moderate improvement, which agrees with the argument

of regularization in this chapter. We do not observe a significant difference between

the `1 and `2-norm penalties in terms of performance, and the elastic net does not give

further gains. In our experiments, the `1 penalty does not give sparse solution when the

number of sub-states is small, however, with further sub-state splitting, a considerable

amount of sub-state vectors are driven to be sparse, e.g. the proportion of zero entries

can be 10-20% for some of them.

With renormalization, the regularization is still efficient in avoiding model over-

fitting with larger models, as shown by the results in Table 4.4. However, we do not

observe performance gains in this case. This shows that, in the previous setting, reg-

ularization was providing better performance by improving the numerical stability of

the updates. It is worth noting that with renormalization, the regularization parame-

ters need to be much smaller, for example we use λ1 = λ2 = 2 for these experiments.

Also, the system is more sensitive to the choice of the regularization parameters. This

corroborates the assumption that without renormalization, the updates of the globally-

shared parameters M and w can ameliorate over-penalization of the state-vectors to an

extant.

4.4.4 Extensions

In this chapter, we focused on the regularized estimation of the state-dependent param-

eters. However, this approach can be extended to the estimation of the global shared

parameters, i.e. M, w and ΣΣΣ, which we will explore in future work. As in our experi-

ments, we observe that except for the state vectors, these state independent parameters

may also suffer from the data sparsity problem which limits the model capacity, espe-

cially for higher dimensional subspaces.

Table 4.5 shows the results of SGMM model with `1-norm regularization (without

renormalization), in which the dimension of state vector is increased to 60. Compared

to the 40-dimensional subspace SGMM systems in Table 4.4, we do not achieve any

58 Chapter 4. Regularized Subspace Gaussian Mixture Model

improvement but notable degradation for both baseline and `1 regularized systems,

which is partly due to the poor estimation of the globally shared parameters. Based

on the approach presented here, extending the regularized estimation to the state in-

dependent parameters is not difficult, as we can reformulate the objective functions of

these parameters into their quadratic forms, by which the code used for state vector

regularization can be shared.

4.5 Summary

In this chapter, we have investigated regularized state model estimation for the sub-

space GMM acoustic model. Given the original ML based objective function, we

added regularization penalties based on the `1-norm and the `2-norm, as well as their

combined form, the elastic net. From our experimental results on WSJ-5k speech tran-

scription task, we have observed reductions in word error rate and improved model

robustness by all the three types of regularization. While the performance gains are

found to be mostly due to improved numerical stability of the updates, which can also

be achieved by renormalizing the phonetic subspaces, regularization is shown to pre-

vent overfitting with larger models. This may prove helpful in training acoustic models

with lesser resources. This will be demonstrated in the cross-lingual experiments in

Chapter 5.

Chapter 5

Cross-lingual Subspace Gaussian

Mixture Model

5.1 Introduction

Large vocabulary continuous speech recognition systems rely on the availability of

substantial resources including transcribed speech for acoustic model estimation, in-

domain text for language model estimation, and a pronunciation dictionary. Building a

speech recognition system from scratch for a new language thus requires considerable

investment in gathering these resources. For a new language with limited resources,

conventional approaches to acoustic modelling normally result in much lower accu-

racy. There has been extensive amount of work to improve the accuracy of speech

recognizers in low-resource conditions, focusing on estimating models from limited

amounts of transcribed audio in the target language (Schultz and Waibel, 1997, 1998;

Byrne et al., 2000; Le and Besacier, 2005; Thomas et al., 2010) or lack of a pronunci-

ation dictionary (Slobada and Waibel, 1996; Singh et al., 2000; Goel et al., 2010). In

this chapter, we study cross-lingual acoustic modelling with the objective of porting

information from one or more source language systems, built using larger amounts of

training data, to build a system for a target language for which only limited amounts

of transcribed audio are available. However, owing to differences such as different sets

of subword units, sharing the knowledge among multiple languages is not a straight-

forward task. The main approaches to cross-lingual acoustic modelling, discussed

below, include the use of global phone sets, cross-lingual phone/acoustic mapping,

cross-lingual tandem features and the use of KL-divergence HMMs.

59

60 Chapter 5. Cross-lingual Subspace Gaussian Mixture Model

5.1.1 Global phone set approach

Schultz and colleagues (Schultz and Waibel, 1997, 1998, 2001; Schultz, 2002) investi-

gated the construction of language-independent speech recognition systems by pooling

together all the phoneme units, as well as the acoustic training data, from a set of mono-

lingual systems. The resultant multilingual acoustic model may be used to perform

transcription directly, or may serve as a seed model to be adapted to the target language

(Schultz and Waibel, 1997, 2001). However, an important problem with this approach

is that the number of phone units grows as the number of languages to be covered in-

creases. This may lead to inconsistent parameter estimation and, consequently, degra-

dation in accuracy (Kohler, 1996), especially in case of context-dependent modelling.

To overcome this problem, instead of using a universal phone set, a set of universal

speech attributes may be used which represent similar sounds across language than

phone units (Siniscalchi et al., 2012). The fundamental speech attributes which can be

viewed as a clustering of phonetic features, such as voicing, nasality and frication, can

be modelled from a particular source language and shared across many different target

languages. In practice, a bank of detectors using neural networks (Siniscalchi et al.,

2012), for instance, may be employed to extract the universal attributes.

5.1.2 Cross-lingual phone/acoustic mapping

Rather than constructing a global phone set, the mismatch of phone units between

source and target languages may be addressed by a direct cross-lingual mapping be-

tween phones or between acoustic models. Both knowledge-based (Byrne et al., 2000;

Le and Besacier, 2005) and data-driven (Sim and Li, 2008; Sim, 2009) approaches have

been investigated. Given a cross-lingual mapping, either the target acoustic model is

derived from the source acoustic model, or the transcription of target speech is per-

formed using the mapped source acoustic model (Sim, 2009).

5.1.3 Cross-lingual tandem features

Tandem features, based on phone posterior probability estimates, were originally pro-

posed to improve monolingual speech recognition (Hermansky et al., 2000), but they

have also proven effective in the cross-lingual setting. In this approach, multi-layer

perceptrons (MLPs), trained using source language acoustic data, are used to generate

MLP phone posterior features for the target language (Stolcke et al., 2006; Çetin et al.,

5.1. Introduction 61

2007; Thomas et al., 2010; Qian et al., 2011; Plahl et al., 2011; Lal, 2011). In addition,

the training data of the target language may also be used to adapt the MLPs to fit the

target system better (Thomas et al., 2010). Recent advances in using MLPs with mul-

tiple hidden layers (deep neural networks, DNNs) (Dahl et al., 2012) have shown great

promise for DNN-based cross-lingual acoustic modelling (Swietojanski et al., 2012).

5.1.4 Cross-lingual KL-HMMs

KL-divergence HMM based acoustic modelling (Aradilla et al., 2008) is a recently pro-

posed approach which has shown good performance in low-resource condition (Imseng

et al., 2011, 2012). In this framework, a global phone set is first obtained by manually

mapping the phones in the different languages to a common phone set (for example,

IPA or X-SAMPA). A multilingual MLP phoneme classifier is trained using the data

from all the source languages. For the target language system, the phoneme posterior

features are extracted given the MLP. Each HMM state is parameterised by a multi-

nomial distribution, and the model is estimated by minimizing the KL-divergence be-

tween the posterior features and HMM state multinomial coefficients. The benefits of

this approach are that the multilingual information can be explored by the MLP clas-

sifier and the number of multinomial parameters is much smaller than conventional

GMMs which is particular suitable for low-resource speech recognition.

5.1.5 Overview of this chaper

In this chapter, we will show that the SGMM acoustic model is particularly effective

for low-resource speech recognition (Lu et al., 2011a, 2012c) by utilising the struc-

ture of the model. The discussion in this chapter will focus on: 1) while the accuracy

of conventional speech recognizers degrade significantly in low-resource condition, a

cross-lingual SGMM acoustic model can achieve remarkable gain since a large pro-

portion of the model parameters can be estimated using the training data of source lan-

guages; 2) building systems with limited training data may encounter numerical and

overfitting, as we observed in cross-lingual SGMMs. To overcome it, `1-norm regu-

larization was developed to improve the robustness of model estimation, and higher

recognition accuracy was obtained; 3) a potential mismatch may exist between the

training data from the source and target languages owing to phoneme characteristic,

corpus recording conditions and speaking style. This may hurt the gain achieved by

sharing multilingual information in cross-lingual SGMMs. To address this issue, max-

62 Chapter 5. Cross-lingual Subspace Gaussian Mixture Model

vjk

Mi

wi

ΣΣΣi

ΣΣΣjki

µµµjki

wjki

i = 1, . . . , I

i = 1, . . . , I

vjk
ΣΣΣjki

µµµjki

wjki

i = 1, . . . , I

A

B

k = 1, . . . , K
(a)
j

k = 1, . . . , K
(b)
j

J = 1, . . . , J (b)

J = 1, . . . , J (a)

v(s)

v(s)
Ni

Figure 5.1: An example of multilingual estimation of the globally shared parameters

ΦΦΦi = (Mi,Ni,wi,ΣΣΣi) where we tie them across two source language system A and B.

imum a posteriori (MAP) adaptation is investigated to adapt the parameters toward

the target system using the training data; 4) in low-resource condition, the number of

speakers may be small and it is not sufficient to estimate the speaker subspace directly

for the SGMMs for speaker adaptive training. However, by utilizing the model struc-

ture, the speaker subspace can also be estimated from source languages and applied to

the target system.

5.2 Cross-lingual model estimation

As mentioned in Section 5.1, One of the main barriers preventing acoustic knowledge

being shared across different languages is the mismatch of phone units between lan-

guages. Conventional methods tackle this problem by using global phone units or

5.2. Cross-lingual model estimation 63

through the use of tandem features. However in an SGMM acoustic model the glob-

ally shared parameters ΦΦΦi = (Mi,Ni,wi,ΣΣΣi) do not depend on the HMM topology, and

hence are independent of the definition of the phone units. Therefore, when using

SGMMs for cross-lingual acoustic modelling, the phoneme unit mismatch problem is

to some degree bypassed, since we can estimate the globally shared parameters using

multilingual training data by tying the globally shared parameters across the available

source language systems.

Figure 5.1 demonstrates an example of the multilingual SGMM system in which

source language systems A and B may have different phone units and HMM topolo-

gies, provided that the acoustic feature parameterisation and the dimensionality of

model subspace are the same. By training a multilingual SGMM system in this way

the accuracy for each of the source languages may be improved (Burget et al., 2010),

and the multilingual globally shared parameters can be ported to a new target language

system with limited training data (Burget et al., 2010; Lu et al., 2011a). In an SGMM

the globally shared parameters typically account for a large proportion of the total

number of parameters (Table 5.1). The reuse of the globally shared parameters across

languages thus significantly reduces the required amount of acoustic training data —

only the state dependent parameters (v jk,c jk) need be estimated from target language

data.

Using multiple source language systems to estimate the globally shared parameters

ΦΦΦi involves some modifications in the SGMM training procedure. However, these

modifications are minor and relatively simple, since given ΦΦΦi each source language

system is independent — therefore the statistics for each source language system can

be accumulated in the standard fashion using either the Viterbi alignment or the Baum-

Welch algorithm. In each iteration, the corresponding statistics are then summed across

languages to update the globally shared parameters. The state dependent parameters

(v jk,c jk) are updated in the standard fashion, for each language separately. Consider

Mi: for the system of Figure 5.1, after obtaining the statistics for each source language

system (Y(a)
i ,Y(b)

i) and (Q(a)
i ,Q(b)

i), the final statistics are obtained simply by

Yi = Y(a)
i +Y(b)

i , Qi = Q(a)
i +Q(b)

i . (5.1)

Then Mi can be updated as usual (3.47). Similar approach can be used to update

Ni,wi and ΣΣΣi using the multilingual data. To build a cross-lingual SGMM system,

these parameters are ported into target language system directly, and only the state

dependent parameters v jk and c jk are estimated using the (limited) in-domain training

64 Chapter 5. Cross-lingual Subspace Gaussian Mixture Model

Table 5.1: The number of parameters of an SGMM acoustic model. Q denotes the total

number of sub-sates. A large portion of the total parameters, e.g. more than 60% for

systems in Chapter 4, are globally shared.

Type globally shared state dependent

Mi Ni wi ΣΣΣi v jk c jk

#Parm I ·D ·S I ·D ·T I ·S I · (D2 +D)/2 Q ·D Q

Total I(D2/2+DS+DT +S+D/2) Q(D+1)

data. Our previous experimental results (Lu et al., 2011a) indicate that this approach

can significantly reduce the WER in the low-resource condition.

5.3 Cross-lingual model adaptation

In the cross-lingual SGMM system, the globally shared parameters are trained using

the out-domain data. This may introduce a mismatch between the target language

system and these parameters, owing to differences in phonetic characteristics, corpus

recording conditions, and speaking styles. Since the amount of training data may not

be sufficient to allow the global parameters to be updated using maximum likelihood

(ML), the mismatch may be alleviated by adaptation approach based maximum a pos-

teriori (MAP) criterion. In particular, we have studied the adaptation of Mi using MAP

(Lu et al., 2012c).

In ML estimation of the phonetic subspace (Povey et al., 2011a), the auxiliary

function for Mi is given by equation (3.43). If a prior term is introduced, then the

auxiliary function becomes:

Q̃ (Mi) = Q (Mi)+ τ logP(Mi), (5.2)

where P(Mi) denotes the prior distribution of matrix Mi, and τ is the smoothing pa-

rameter which balances the relative contributions of the likelihood and prior. Although

any valid form of P(Mi) may be used, in practical MAP applications a conjugate prior

distribution is often preferred for reasons of simplicity. As in (Lu et al., 2012c), P(Mi)

is set to be a Gaussian distribution which is conjugate to the auxiliary Q (Mi).

5.3. Cross-lingual model adaptation 65

vjk

Mi

wi

ΣΣΣi

ΣΣΣjki

µµµjki

wjki

i = 1, . . . , Ii = 1, . . . , I

k = 1, . . . , Kj

j = 1, . . . , J

M̄i

ΩΩΩr ΩΩΩc

Figure 5.2: MAP adapation of Mi in SGMM acoustic model. (M̄i,ΩΩΩr,ΩΩΩc) denote the

hyper-parameters of the Gaussian prior P(Mi), in which the mean M̄i is indexed by I

while the covariances ΩΩΩr and ΩΩΩc are global.

5.3.1 Matrix variate Gaussian prior

The Gaussian distribution of random matrices is well understood (Gupta and Nagar,

1999). A typical example of its application in speech recognition is maximum a poste-

riori linear regression (MAPLR) (Siohan et al., 2001) for speaker adaptation, in which

a matrix variate prior was used for the linear regression transformation matrix. The

Gaussian distribution of a D×S matrix M is defined as:

logP(M) =−1
2

(
DS log(2π)+D log |ΩΩΩr|+S log |ΩΩΩc|

+ tr
(
ΩΩΩ
−1
r (M−M̄)ΩΩΩ−1

c (M−M̄)T)), (5.3)

where M̄ is a matrix containing the expectation of each element of M, and ΩΩΩr and ΩΩΩc

are D×D and S×S positive definite matrices representing the covariance between the

rows and columns of M, respectively. | · | and tr(·) denote the determinant and trace of

a square matrix. This prior distribution is conjugate to auxiliary function (3.43). This

matrix density Gaussian distribution may be written as:

Vec(M)∼N (Vec(M̄),ΩΩΩr⊗ΩΩΩc), (5.4)

where Vec(·) is the vectorization operation which maps a D× S matrix into a DS× 1

vector, and⊗ denotes the Kronecker product of two matrices. In this formulation, only

ΩΩΩr⊗ΩΩΩc is uniquely defined, and not the individual covariances ΩΩΩr and ΩΩΩc, since for

any α > 0, (αΩΩΩr,
1
α

ΩΩΩc) would lead to the same distribution. However, this is not of

66 Chapter 5. Cross-lingual Subspace Gaussian Mixture Model

concern in the current application to MAP adaptation. Figure 5.2 illustrates the concept

of using the Gaussian prior to adapt the model subspace Mi. In this case, the auxiliary

function for MAP adaptation would be

Q̃ (Mi) ∝ tr
(

MT
i ΣΣΣ
−1
i Yi + τMT

i ΩΩΩ
−1
r M̄iΩΩΩ

−1
c

)

− 1
2

tr
(

ΣΣΣ
−1
i MiQiMT

i + τΩΩΩ
−1
r MiΩΩΩ

−1
c MT

i

)
. (5.5)

5.3.2 Prior distribution estimation

To apply MAP, the prior distribution P(Mi) for each Mi, should be estimated first. This

requires the estimation of the mean matrices M̄i, and the row and column covariances

ΩΩΩr and ΩΩΩc. Given a set of samples generated by P(Mi), the ML estimation of the mean,

and the row and column covariances, is described by Dutilleul (Dutilleul, 1999). This

is used with some heuristic rules for cross-lingual SGMMs (Lu et al., 2012c), in which,

the MAP formulation is based on the assumption that the multilingual estimate of the

global subspace parameters serves a good starting point, which has been empirically

verified earlier (Lu et al., 2011a). To apply MAP adaptation, we set these multilingual

parameters to be the mean of the prior P(Mi) and update both the state-specific v jm and

the global Mi. With a sufficiently large value of τ in (5.2), we can shrink the system

back to the cross-lingual baseline, whereas τ = 0 corresponds to the ML update.

The covariance matrices for each P(Mi) are set to be global in order to reduce the

number of hyper-parameters in the prior distributions. In (Lu et al., 2012c), we com-

pared different forms of the two covariance matrices (ΩΩΩr,ΩΩΩc) and the experimental

results indicated that using the identity matrix I for ΩΩΩr and ΩΩΩc worked well. Using

this configuration, the MAP adaptation of Mi is equivalent to applying `2-norm reg-

ularizaiton by setting the multilingual estimate as the model origin. In this case, the

auxiliary function (A.1) will become

Q̃ (Mi) ∝ tr
(

MT
i ΣΣΣ
−1
i Yi + τMT

i M̄i

)
− 1

2
tr
(

ΣΣΣ
−1
i MiQiMT

i + τMiMT
i

)
. (5.6)

The solution can be obtained in (Povey, 2009; Lu et al., 2012c). In this work, this

configuration is adopted in the MAP adaptation experiments. The solution is given

in Appendix A. While the formula for the matrix form MAP adaptation has already

described by many others, e.g. (Povey, 2009; Siohan et al., 2001), the major novelty

here is its application to the cross-lingual setting.

5.4. Cross-lingual model regularization 67

5.4 Cross-lingual model regularization

As discussed before, in a cross-lingual SGMM system, the globally shared parameters

can be estimated from the out-domain or multilingual data. In this case, only the

state-dependent parameters should be estimated using the in-domain target training

data. This can significantly reduce the amount of data required to build the target

system, and hence, it’s suitable for low-resource speech recognition scenario (Lu et al.,

2011a, 2012c). However, when the training data is extremely sparse, e.g. with only

1 hour training data, estimating the state dependent parameter v jk directly may face

overtraining or numerical instabilities since only very few acoustic frames may aligned

to each HMM state. In this case, regularizing the estimation of state vectors has been

proven beneficial to avoid model overtraining (Lu et al., 2011b). In addition, with

regularizaiton it also enable us to use larger size of model subspace in the globally

shared parameters as the out-domain data may be rich. In this case, more informative

knowledge may be explored from the out-domain data and result in higher accuracy

for the cross-lingual system (Lu et al., 2011a).

In Chapter 4, we studied the regularized state vector estimation using `1-norm,

`2-norm as well as their combined form, the elastic net penalty. Regularization using

`1-norm penalty was found particular effective, and it will be shown that it’s also the

case for cross-lingual systems in this chapter. With the `1-norm penalty, the auxiliary

function for sub-state vector estimation becomes

v̂ = argmax
v

Q (v)−λ||v||`1, λ > 0. (5.7)

where we have dropped the subscript jk for brevity. λ is the global penalty parameter.

Intuitively, `1-norm penalty perform an element-wise shrinkage of v towards zero in

the absence of an opposing data-driven force (Hastie et al., 2005), which enables more

robust estimation. The `1-norm penalty also has the effect of driving some elements

to be zero, thus leading to a kind of variable selection, and has been used in sparse

representation of speech features (Sivaram et al., 2010; Sainath et al., 2010a), and

compressed sensing (Donoho, 2006) for signal processing due to this property. For

the case of cross-lingual SGMMs, `1-norm penalty can select the relevant basis in Mi

according to the amount of available data to estimate v jk while avoiding overtraining

led by ML criterion. However, with `1-norm penalty, the solution of the auxiliary

function is not readily available since the derivative of the auxiliary function is not

continuos. In (Lu et al., 2011b), we applied the gradient projection based optimization

approach proposed in (Figueiredo et al., 2007) to obtain the solution. Note that, the

68 Chapter 5. Cross-lingual Subspace Gaussian Mixture Model

Table 5.2: The number of phones and speakers, the amount of training data (hours) for

the 4 languages used in this chapter.

Language #Phones #Speakers Trn(h)

German (GE) 44 77 14.8

Spanish (SP) 43 97 17.2

Portuguese (PT) 48 101 22.6

Swedish (SW) 52 98 17.4

idea of regularization can also be applied to other types of parameters in SGMMs. In

fact, we has shown in Section 5.3 that, if we set the two covariance matrices (ΩΩΩr,ΩΩΩc)

to be I, applying MAP adaptation to Mi using the Gaussian prior is equivalent to the

`2-norm regularizaiton by using the prior mean as the model origin.

5.5 Experiments

Cross-lingual experiments using SGMMs were carried out on the GlobalPhone corpus

(Schultz, 2002), which contains 19 languages including Arabic, Chinese and a number

of European languages. The corpus comprises speech from about 100 speakers per

language, reading newspapers in their native language. Recordings were made under

relatively quiet conditions using close-talking microphones. Acoustic conditions may

vary within a language and between languages, hence acoustic mismatches may affect

the performance of cross-lingual systems. In our experiments, German (GE) was used

as the target language, and Spanish (SP), Portuguese (PT), and Swedish (SW) as the

source languages. Table 5.2 describes the data for each language used in the experi-

ments in terms of the number of phonemes and speakers, and the amount of available

audio.

To investigate of limited acoustic training data, we constructed two randomly se-

lected training subsets of the target language German data each containing 1 hour (8

speakers) and 5 hours (40 speakers) of data, both using 7–8 minutes of recorded speech

for each of the selected speakers. We used these data subsets, in addition to the full 14.8

hours (referred to as 15 hours) of German training data, as the three target language

training sets in the following experiments.

5.5. Experiments 69

Table 5.3: WERs of baseline GMM and SGMM systems using 1 hour, 5 hour and 14.8

hour training data

System 1 hour 5 hour 14.8 hour

dev eval dev eval dev eval

GMM 23.2 34.1 18.5 28.0 15.4 24.8

SGMM 20.4 31.4 14.9 24.9 13.0 22.1

#states 831 1800 2537

Table 5.4: Total trace of covariance and subspace matrices given by the source SGMM

systems, S = 40.

SP PT SW Multilingual

of states 1926 2929 2400 -

of sub-states 20k 20k 20k -

∑i tr(ΣΣΣi)/I 1037 1065 1056 1051

∑i tr(MiMT
i)/I 5997 3605 2735 2963

5.5.1 Baseline monolingual systems

We constructed baseline systems using the three training sets (1h / 5h / 15h) in a

monolingual fashion, using conventional GMM and SGMM acoustic modelling. The

systems were built using the Kaldi speech recognition toolkit (Povey et al., 2011b).

We used 39-dimensional MFCC feature vectors for the experiments. Each feature

vector consisted of 13-dimensional static features with the zeroth cepstral coefficent

and their delta and delta-delta components. Cepstral mean and variance normaliza-

tion (CMN/CVN) was then applied on a per speaker basis. The GMM and SGMM

systems shared the same decision tree to determine the tied state clustering used for

context-dependent phone modelling; therefore, the differences in recognition accura-

cies of the GMM and SGMM systems are purely due to the different parameterisation

of the GMMs. In the SGMM systems, we set the number of UBM Gaussians I = 400,

and phonetic subspace dimension S = 40 for 15 hour training data case, whereas we

use S = 20 when the training data is limited to 1 hour and 5 hours. Since the estima-

tion of UBM model does not require the labels, we estimated it on the whole training

dataset and use it for all German SGMM systems. Table 5.3 shows the word error rates

(WERs) of baseline systems. As expected, the WERs for both the GMM and SGMM

systems increase significantly as the amount of training data is reduced. The mono-

70 Chapter 5. Cross-lingual Subspace Gaussian Mixture Model

lingual SGMM system has a significantly lower WER than the monolingual GMM

system for each of the three training conditions.

There is a large gap between WERs achieved on the development and evaluation

dataset in Table 5.3. This is due to the language model that we used. In (Lu et al.,

2011a) we used a trigram language model obtained with an earlier release of the Glob-

alPhone corpus, and achieved accuracies on the development dataset that were com-

parable to these on the evaluation dataset. Here, we interpolated that previously used

language model with one estimated on the training corpus, and we obtained a signif-

icant reduction in WER on the development dataset (e.g. 24.0% in (Lu et al., 2011a)

to 13.1% for SGMM system with 15 hour training data). But the improvements disap-

pear on the evaluation dataset which indicates that the text in the training set matches

the text of the development set better than that of the evaluation dataset. In the cross-

lingual acoustic modelling presented in this chaper we observe similar trends on both

the development and evaluation sets (as will be shown in Section 5.5.7), so the linguis-

tic variation between training, development, and evaluation sets is not a confounding

factor.

5.5.2 Cross-lingual system configuration

Each cross-lingual SGMM used the same context dependent tied state clustering as

the corresponding monolingual SGMM trained on the same data set. Sharing global

parameters between source languages, together with the constraints imposed by the

structure of the SGMM, leads to better parameter estimates with limited amounts of

training data. This also allows bigger models to be trained, either using more context-

dependent tied states (Burget et al., 2010), or using a model with the same state clus-

tering, but with more substates per state. We do the latter in this chaper. In both cases,

the combination of improved parameter estimation and bigger models, is predicted to

lead to lower WER.

The UBM was the same as the one that used to train the globally shared param-

eters ΦΦΦi on the source language(s). This is important, since the globally shared pa-

rameters correspond to the segmentation of the acoustic space as determined by the

UBM (Povey et al., 2011a). First, we train ΦΦΦi for the source language systems in ei-

ther a monolingual or a multilingual fashion. We then ported the shared parameters

to the corresponding cross-lingual SGMM system. In the baseline SGMM systems,

all the parameters in equations (3.1–3.3) were updated: the sub-state vectors v jm and

5.5. Experiments 71

1.2k 2k 3.2k 5.6k 9.6k 16k 24k
16

17

18

19

20

21

22

23

24

25

W
ER

 (%
)

number of sub states

GMM baseline
SGMM baseline
Cross lingual: w/SW, S=20
Cross lingual: w/SP, S=20
Cross lingual: w/PT, S=20
Cross lingual: w/Mul, S=20

Figure 5.3: WER of baseline cross-lingual systems, 1h training data, tested on the

development dataset. The “SGMM baseline” corresponds to the system with optimal

number of sub-states using the monolingual setting.

the globally shared parameters ΦΦΦi. In a cross-lingual system, however, only the sub-

state vectors v jm were re-estimated, with the globally shared parameters fixed unless

stated otherwise. Table 5.4 shows the trace of covariance matrix and model subspace

obtained by monolingual and multilingual systems.

5.5.3 Cross-lingual experiments: baseline

The baseline results of the cross-lingual systems are shown for 1h, 5h, and 15h training

data (Figures 5.3–5.5). We contrast the shared parameters ΦΦΦi obtained from each of the

source language systems, as well as the tied multilingual system. In these initial ex-

periments, we do not use the speaker subspace NNNi. The dimension of sub-state vectors

is set to be S = 20. With 1 hour training data, we achieved a relative WER reduction

of up to 17% by reusing the globally shared parameters from source language systems

trained in either a monolingual or multilingual fashion, demonstrating that out-domain

knowledge can be used to improve significantly the accuracy of a target language sys-

tem. In addition, we also observe that the system with multilingually trained subspace

parameters “w/Mul” in Figure 5.3 results in considerably lower WERs compared with

72 Chapter 5. Cross-lingual Subspace Gaussian Mixture Model

2.2k 3.6k 5.6k 9.6k 16k 24k 40k 60k 96k
13

14

15

16

17

18

19

20

21

W
ER

 (%
)

number of sub states

GMM baseline
SGMM baseline, S=20
Cross lingual: w/SW, S=20
Cross lingual: w/SP, S=20
Cross lingual: w/PT, S=20
Cross lingual: w/Mul, S=20

Figure 5.4: WER of baseline cross-lingual systems, 5h training data, tested on the

development dataset. The “SGMM baseline” corresponds to the system with optimal

number of sub-states using the monolingual setting.

the other cross-lingual systems derived from a single source language. This may be-

cause that there is much larger amount of training data in the multilingual system,

and furthermore, the linguistic differences and corpus mismatch may be averaged out

by the multilingual estimation which alleviate the mismatch between the multilingual

parameters and target language system.

We observed the similar trend in the 5 hour training data case (Figure 5.4), although

in this case the WER reduction is smaller (up to 10% relative) which is expected as the

amount of training data increases. In order to evaluate if the cross-lingual frameworks

can achieve improvement when the target training data is more abundant, we carried

out the experiments using the entire 15 hour training data. Since we can drawn the

conclusion from the previous experiments that the multilingual ΦΦΦi perform better than

their monolingual counterparts, we only use the multilingual parameters for the cross-

lingual setups. Results are shown in Figure 5.5 where the dimensions of sub-state

vectors were set to be S= 40. In this case, the cross-lingual SGMM system still reduces

the WER by 8% relative (1% absolute).

5.5. Experiments 73

3.4k 5.6k 9.6k 16k 26k 40k 60k 96k 200k
11

12

13

14

15

16

17

W
ER

 (%
)

number of sub states

GMM baseline
SGMM baseline, S=40
Cross lingual: w/Mul, S=40
Cross lingual: w/Mul + regularization, S=40

Figure 5.5: WER of baseline cross-lingual systems, 15h training data, tested on the

development dataset.

1.2k 2k 3.2k 5.6k 9.6k 16k 26k 44k 56k
15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

W
ER

 (%
)

number of sub states

w/Mul baseline, S=20
w/Mul baseline, S=40
w/Mul + backtrack, S=40
w/Mul + regularization, S=40

Figure 5.6: WER of regularized cross-lingual systems, 1h training data, tested on the

development dataset.

74 Chapter 5. Cross-lingual Subspace Gaussian Mixture Model

5.5.4 Cross-lingual experiments: with regularization

With limited amounts of training data, it is often necessary to limit the dimensionality

of the state vectors v jk, since increasing the phonetic subspace dimension S increases

the number of both global and state-specific parameters. When the global parameters

ΦΦΦi are trained on separate data, state vectors of larger dimensionality may be used.

Comparing figures 5.3 and 5.6, we see that for the cross-lingual system trained on

1 hour of speech using a phonetic subspace dimension of S = 40 lowers the WER

compared to a subspace of dimension S = 201.

Figure 5.6 also compares the standard ML update with a more conservative one that

“backtracks” to the previous parameter values if the auxiliary function decreases due

to the update. Models trained using both these criteria are found to have larger WER

when the number of substates is increased, showing that the models tend to overtrain

when using very small amounts of training data. However, when the state vectors

are estimated with the `1-norm regularization, the updates are more stable and allow

models with larger number of substates to be trained leading to lower WER overall.

In fact, the WER of 15.5% achieved by the cross-lingual SGMM trained on 1 hour

of speech using `1-norm regularization is comparable to the GMM baseline with the

entire 15 hour training data.

Figure 5.7 shows the results with 5 hour training data. Not surprisingly, the differ-

ence between the regularized model and the one without regularization is smaller than

that seen when training on 1 hour of data. However, when the number of sub-states

is very large, regularization still helps to avoid model overfitting and results in a small

gain in terms of accuracy. Again, the more conservative update with backtracking did

not work better than the regularized update. After increasing the amount of training

data to be 15 hours, we did not obtain improvement by applying the `1-norm regular-

ization as shown in Figure 5.5. This is in agreement with our previous experience of

using `1-norm regulariation for SGMMs (Lu et al., 2011b) on a different task.

5.5.5 Cross-lingual experiments: with MAP adaptation

As discussed above, if ΦΦΦi is estimated from out-domain data, then there may be a

mismatch between the target language system and these parameters. One approach

to address this mismatch is via MAP adaptation of ΦΦΦi. We applied MAP adaptation
1In (Lu et al., 2011a), we used a preliminary version of Kaldi toolkit that was used in (Povey et al.,

2011a) and faced numerical instability when building the baseline system without regularization. We
did not have that experience using a more recent version of Kaldi (revision 710).

5.5. Experiments 75

2.2k 3.6k 5.6k 9.6k 16k 24k 40k 60k 96k 160k
12

12.5

13

13.5

14

14.5

15

15.5

16

16.5

17

W
ER

 (%
)

number of sub states

w/Mul baseline, S=20
w/Mul baseline, S=40
w/Mul + backtrack, S=40
w/Mul + regularization, S=40

Figure 5.7: WER of regularized cross-lingual systems, 5h training data, tested on the

development dataset.

of Mi to the systems “w/Mul baseline, S=40” and “w/Mul+regularization, S=40” to

the 1h and 5h training data conditions (Figures 5.8 and 5.9). As stated in section 5.3,

the two covariance matrices ΩΩΩr and ΩΩΩc are set to be the identity matrix I. For the 1h

training data case, we set smoothing parameter used in equation (5.2) τ = 500. By

using MAP adaptation, we obtained a small reduction in WER (2% relative) compared

to the regularized system. The improvement is not comparable to our previous results

(Lu et al., 2012c) since the baseline is much stronger here. When we applied MAP

adaptation to the baseline without regularization, we did not observe a reduction in

WER when the number of sub-states was large. This may be because the sub-state

vectors v jk are not well estimated due to overfitting and hence we do not have sufficient

and accurate statistics for equation (3.47) to adapt Mi.

In the 5h training data case (Figure 5.9), we did not observe any reduction in WER

for either the baseline of regularized systems, even though the amount of adaptation

data was increased. When applying MAP adaptation, the likelihood on the training

data increased, but the higher WER suggests that it overfits to the training data. We

also increased the smoothing term τ to much larger value but it only pushed the adapted

76 Chapter 5. Cross-lingual Subspace Gaussian Mixture Model

1.2k 2k 3.2k 5.6k 9.6k 16k 26k 44k 56k
15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

W
ER

 (%
)

number of sub states

w/Mul baseline, S=40
w/Mul baseline + MAP, S=40
w/Mul + regularization, S=40
w/Mul + regularization + MAP, S=40

Figure 5.8: WER of MAP-adapted cross-lingual systems, 1h training data, tested on the

development dataset.

2.2k 3.6k 5.6k 9.6k 16k 24k 40k 60k 96k
12

12.5

13

13.5

14

14.5

15

15.5

16

16.5

17

W
ER

 (%
)

number of sub states

w/Mul baseline, S=40
w/Mul baseline + MAP, S=40
w/Mul + regularization, S=40
w/Mul + regularization + MAP, S=40

Figure 5.9: WER of MAP-adapted cross-lingual systems, 5h training data, tested on the

development dataset.

5.5. Experiments 77

system closer to the baseline while no gain was observed. This may further demon-

strate that the multilingual parameters are more robust and match the target training

data well. Again we did not achieve gains by using MAP adaptation of Mi in the 15h

training data case.

For the 15h training data case, we investigated the update of globally shared pa-

rameters ΦΦΦi. We updated wi and Mi to maximize the likelihood for the cross-lingual

system. While this resulted in lower WER for models with less number of sub-states,

the results were worse for larger models (Figure 5.10). These results are not entirely

unexpected. The multilingual estimation of wi and Mi is expected to be more accurate

and robust than monolingual estimate. It is worth noting that while updating Mi and

wi makes the results worse than keeping them fixed at the multilingually estimated val-

ues, the results are comparable to the monolingual system in Figure 5.5, and in some

cases slightly better than those. This shows that starting the iterative ML updates of

the subspace parameters from a better starting point, that is the multilingually trained

parameters, makes no substantial difference eventually. We also carried out the exper-

iments where ΣΣΣi were updated but those showed similar trends as the ML updates of

Mi and wi.

3.4k 5.6k 9.6k 16k 26k 40k 60k 96k 200k
11

11.5

12

12.5

13

13.5

14

14.5

15

15.5

16

W
ER

 (%
)

number of sub states

Cross lingual: w/Mul, S=40
Cross lingual: w/Mul + update_w, S=40
Cross lingual: w/Mul + update_M, S=40
Cross lingual: w/Mul + update_wM, S=40

Figure 5.10: WER of cross-lingual systems with global parameter update, 15h training

data, tested on the development dataset.

78 Chapter 5. Cross-lingual Subspace Gaussian Mixture Model

1.2k 2k 3.2k 5.6k 9.6k 16k 26k 44k 56k
15

16

17

18

19
W

ER
 (%

)

number of sub states

w/Mul baseline, S=40
w/Mul baseline + SPK, S=40

1.2k 2k 3.2k 5.6k 9.6k 16k 26k 44k 56k
15

16

17

18

19

W
ER

 (%
)

number of sub states

w/Mul + regularization, S=40
w/Mul + regularization + SPK, S=40

Figure 5.11: WER of baseline (above) and regularized (below) cross-lingual systems

using speaker subspace, 1h training data, tested on the development dataset.

5.5.6 Cross-lingual experiments: with speaker subspace

Our final set of experiments concerned speaker adaptive training using the speaker

subspace for cross-lingual SGMM systems for the 1h, 5h, and 15h training data cases

(Figures 5.11–5.13). In the 1h training data case, there are only 8 speakers in the

training set, which is not sufficient to train the speaker subspace Ni on per speaker basis

for our baseline SGMM system. We trained Ni on per utterance basis for the baseline

but did not observe an improvement. However, we can estimate Ni in multilingual

fashion by tying it across the source language system as other types of globally shared

parameters. We then rebuilt the target system “w/Mul + regularization, S=40” by using

the resultant speaker subspace. Results are given in Figure 5.11. Here the dimension

of speaker vector was set to be T = 39. We can see that for the regularized system,

using the multilingual Ni results in significant gains when the number of sub-states

is relative small. The gains, however, vanish as we further increased the number of

sub-states. For the system without regularization, it is more prone to overtraining with

speaker subspace adaptive training.

5.5. Experiments 79

2.2k 3.6k 5.6k 9.6k 16k 24k 40k 60k 96k
12

12.5

13

13.5

14

14.5

15

15.5

16

16.5

17

W
ER

 (%
)

number of sub states

w/Mul + regularization, S=40
w/Mul + regularization + multi_SPK, S=40
w/Mul + regularization + mono_SPK, S=40

Figure 5.12: WER of regularized cross-lingual systems using speaker subspace, 5h

training data, tested on the development dataset.

In the 5h training data case, there are 40 speakers in the training set, enough to es-

timate Ni from the in-domain data. This system is referred as “w/Mul + regularization

+ mono SPK, S=40” in Figure 5.12. For the system using the multilingual speaker

subspace Ni, we refer it as “w/Mul + regularization + multi SPK, S=40”. In both sys-

tems, T = 39. We can see that both systems achieve large reductions in WER when

the number of sub-states is small — again, the gains vanish when using large num-

ber of sub-states. In addition, the multilingual speaker subspace Ni achieves a similar

WER to the monolingual one. This indicates that the speaker information from the

out-domain data can fit the target system well.

We did not observe notable WER differences when using either monolingual or

multilingual speaker subspace in the 15h training data case (Figure 5.13), as for the

5h training data case. Just as with 1 hour and 5 hours of training data, using the

speaker subspace lowers the WER for smaller model sizes, but the difference between

the adaptively trained and unadapted models vanish when using a very large number

of substates. Although the speaker adaptive training does not provide a overall reduc-

tion in WER, it provides a practical advantage: it is computationally cheaper to use a

smaller model with speaker subspace than a larger model without it. In the future, we

80 Chapter 5. Cross-lingual Subspace Gaussian Mixture Model

3.4k 5.6k 9.6k 16k 26k 40k 60k 96k 200k
11

11.5

12

12.5

13

13.5

14

14.5

15

15.5

16

W
ER

 (%
)

number of sub states

Cross lingual: w/Mul, S=40
Cross lingual: w/Mul + mono_SPK, S=40
Cross lingual: w/Mul + mult_SPK, S=40

Figure 5.13: WER of cross-lingual systems using speaker subspace, 15h training data,

tested on the development dataset.

plan to investigate using feature space (constrained) MLLR for cross-lingual speaker

adaptive training as a comparison to the results using the speaker subspace.

5.5.7 Cross-lingual experiments: summary

Table 5.5 summarizes the results on the development and evaluation datasets with 1h

training data. We observed a similar trend of results on both datasets. The lowest

WER on the evaluation set (26.7%) was achieved by using multilingual parameter

estimation with regularization, followed by speaker subspace adaptive training. This

is significantly better than the GMM and SGMM baseline using the same training data

(34.1% and 31.4%) and it is only 2% worse than the GMM baseline using the entire

15h training dataset (24.8%). Hence, by leveraging on the out-domain data, the cross-

lingual SGMM system can mitigate the performance loss due to the limitation of the

training data.

Table 5.6 summarizes the WERs of systems with 5h training data on both the devel-

opment and evaluation datasets. Using multilingual parameter estimation and `1-norm

regularization, the cross-lingual system obtains 12.7% on the development dataset and

22.1% on the evaluation dataset, a reduction of about 2% absolute compared to the

5.5. Experiments 81

speaker adaptively trained SGMM baseline using monolingual subspace.

A summary of the results using the entire 15h training data is given in Table 5.7.

In this condition, the cross-lingual system outperformed the baseline with speaker sub-

space adaptive training by 0.4% absolute on the development dataset and they achieved

around the same accuracy on the evaluation dataset.

Table 5.5: Results of Cross-lingual SGMM systems with 1 hour training data on the

development (Dev) and evaluation dataset (Eval).

System Dev Eval

GMM baseline 23.2 34.1

SGMM baseline 20.4 31.4

X-SGMM w/SP, S = 20 18.8 32.4

X-SGMM w/PO, S = 20 17.9 30.9

X-SGMM w/SW, S = 20 18.0 31.0

X-SGMM w/Mul, S = 20 16.8 29.3

X-SGMM w/Mul + `1, S = 40 15.5 26.9

+speaker subspace 15.3 26.7

Table 5.6: Results of Cross-lingual SGMM systems with 5 hour training data on the

development (Dev) and evaluation dataset (Eval).

System Dev Eval

GMM baseline 18.5 28.0

SGMM baseline 14.9 24.9

+speaker subspace 14.6 24.7

X-SGMM w/SP, S = 20 15.4 26.5

X-SGMM w/PO, S = 20 14.6 25.2

X-SGMM w/SW, S = 20 14.6 25.4

X-SGMM w/Mul, S = 20 13.4 24.5

X-SGMM w/Mul + `1, S = 40 12.7 22.1

82 Chapter 5. Cross-lingual Subspace Gaussian Mixture Model

Table 5.7: Results of Cross-lingual SGMM systems with 15 hour training data for devel-

opment (Dev) and evaluation dataset (Eval).

System Dev Eval

GMM baseline 15.4 24.8

SGMM baseline 13.0 22.1

+speaker subspace 12.4 21.5

X-SGMM w/Mul + `1, S = 40 12.0 21.6

5.6 Conclusions

In this chapter, we have studied cross-lingual speech recognition using SGMM acous-

tic models in low-resource conditions. We first present a systematic review of the

techniques used to build the cross-lingual SGMM system. We then carried out a set of

experiments using the GlobalPhone corpus with three source languages (Portuguese,

Spanish, and Swedish), using German as the target language. Our results indicate that

the globally shared parameters in the SGMM acoustic model can be borrowed from the

source language system. This leads to large reductions in WER when the amount of

target language training data is limited (e.g. 1 hour). In addition, estimating the glob-

ally shared parameters using multilingual training data is particularly beneficial. We

observed that the cross-lingual system using the multilingual parameters outperforms

other cross-lingual systems using the monolingual parameters.

Our results also demonstrate the effectiveness of regularization using an `1-norm

penalty for the state vectors. With a limited amount of training data, regularization is

able to improve the numerical stability of the system, enabling the use of a model sub-

space of higher dimension and with more sub-state vectors. The benefits were demon-

strated by experimental results using 1 hour and 5 hour training data in our study, in

which substantial reductions in WER were obtained by using a higher dimensional

model subspace together with regularization.

We also investigated the MAP adaptation of the model subspace, and cross-lingual

speaker adaptive training using a speaker subspace. In both cases, our findings indi-

cated that the resulting reductions in WER can also be achieved by multilingual pa-

rameter estimation and regularization. In addition, we compared the speaker adaptive

training using monolingual and multilingual speaker subspace and obtained compara-

ble recognition accuracy in 5 hour and 15 hour training data conditions. This indicates

that the speaker subspace may also be portable across languages. Although our work

5.6. Conclusions 83

has focused on speech recognition, we view this approach to cross-lingual modelling

and factorization as potentially useful across speech technology: such speaker and lan-

guage factorization has recently been studied — and proven beneficial — for the task

of speech synthesis (Zen et al., 2012).

Chapter 6

Noise compensation for Subspace

Gaussian Mixture Model

6.1 Introduction

Speech recognition accuracy is significantly degraded in the noisy environments that

are characteristic of many real world applications. There is an extensive literature on

methods to compensate for the mismatch between the speech recognition model and

noise-corrupted data (Droppo and Acero, 2008). There are two broad categories of

techniques for noise robust speech recognition, compensation in the feature domain

and compensation in the model domain. In the feature domain, approaches referred

to as feature enhancement or de-noising aim to estimate the unobserved clean speech

features given the observed noisy features. Many feature domain approaches have

been proposed including spectral subtraction, cepstral mean and variance normaliza-

tion (CMN/CVN), cepstral maximum mean square error (MMSE) estimation (Yu et al.,

2008), SPLICE (Deng et al., 2000), Algonquin (Frey et al., 2001) and feature space

vector Taylor series (VTS) compensation (Moreno et al., 1996). Conventional fea-

ture domain methods use a point estimate of the hidden clean speech features, which is

used as an observation vector for a speech recognition system. A number of approaches

have moved beyond point estimation of clean speech features and have considered the

observation uncertainties (Arrowood and Clements, 2002; Droppo et al., 2002; Deng

et al., 2005; Liao and Gales, 2005). Such approaches have been shown to be more

effective at improving recognition accuracy given the noisy observations.

In contrast, model domain techniques adapt the model parameters in order to better

explain the noisy observations. Purely data-driven model domain techniques include

85

86 Chapter 6. Noise compensation for Subspace Gaussian Mixture Model

approaches in the maximum likelihood linear regression (MLLR) family (Woodland

et al., 1996), such as noisy constrained MLLR (NCMLLR) (Kim and Gales, 2011).

These approaches are not affected by the parameterisation of the acoustic features,

since they use a generic compensation scheme—typically an affine transform—instead

of an explicit model of the distortion caused by the noise. Hence, they may be com-

bined with other feature-space compensation techniques. However, their performance

is normally limited by the sparsity of adaptation data. Knowledge-based model domain

approaches can overcome this limitation by estimating a mismatch function between

the clean and noise-corrupted speech features in order to estimate the compensation

parameters (Acero, 1990). Examples of such techniques include model space VTS and

joint uncertainty decoding (JUD) (Liao, 2007), parallel model combination (PMC)

(Gales, 1995) and a linear spline interpolation model (Kalgaonkar et al., 2009). These

approaches can achieve good results without requiring a large amount of adaptation

data, but are limited to only spectral or cepstral features, and combination with other

feature space techniques is challenging.

In this chapter, we present a model-based noise compensation scheme for subspace

Gaussian mixture models (SGMMs) (Povey et al., 2011a). As we have discussed in

the previous chapters, in an SGMM the parameters of each Gaussian component are

derived from a low dimensional model subspace. This allows a much larger number

of surface Gaussians to be used by each HMM state while the total parameters to be

estimated is typically smaller compared to conventional HMM/GMM acoustic models.

Recent research has shown that an SGMM acoustic model is more accurate than its

GMM counterpart in both monolingual and multilingual settings (Povey et al., 2011a,c;

Lu et al., 2011b; Burget et al., 2010; Lu et al., 2011a). However, uncompensated

SGMMs suffer similar problems to GMMs in noise mismatched conditions.

There are many more component Gaussians in a typical SGMM compared with a

conventional GMM. Model-based compensation schemes developed for conventional

GMMs which explicitly compensate the parameters of each component Gaussian, such

as standard VTS compensation, will be computationally expensive if applied directly

to SGMMs. Direct compensation of the surface Gaussians in an SGMM is also inele-

gant, since it does not take account of the structure of the model. JUD can address this

problem, since the entire set of Gaussian components in the model is clustered into

a small number of classes, typically using a regression tree (Gales, 1996). The map-

ping between a clean speech model and a noise-corrupted speech model is assumed

to be common to all the Gaussians belonging to the same regression class. Moreover,

6.2. Mismatch function 87

Channel noise
h

Clean speech
x

⊕

Additive noise

Noisy speech
y

n

Figure 6.1: The relationship between clean speech x, additive and channel noise (n,h)
and noise corrupted speech y.

JUD compensates the model using a feature space transformation (together with a bias

term for the covariances), which is compatible with the compact model structure of an

SGMM.

In this chapter, we develop model domain noise compensation for SGMMs, and

report on a number of experiments using the Aurora 4 corpus. These experiments

indicate that, by using a smaller regression model, the computational cost is relatively

low while the accuracy is significantly improved in noise mismatched conditions. In

addition, the SGMM system is more accurate than similar GMM systems using both

VTS and JUD noise compensation.

6.2 Mismatch function

In discrete time domain, the relationship between noise-corrupted speech y(t), clean

speech x(t), additive noise n(t) and the channel’s impulse response h(t) can be formu-

lated as

y(t) = x(t)∗h(t)+n(t). (6.1)

where t is the time frame index. This is shown in Figure 6.1. Applying the discrete

Fourier transform (DFT) to both sides, the equivalent relationship in the frequency

domain, for the k-th frequency bin of the Mel-scale warped filterbank, is

yk,t = xk,thk,t +nk,t (6.2)

≈ xk,thk +nk,t . (6.3)

88 Chapter 6. Noise compensation for Subspace Gaussian Mixture Model

The channel distortion is assumed to be time invariant1, so the subscript t may be

dropped from hk,t . The power spectrum of the noisy speech can then be obtained as

|yk,t |2 ≈ |xk,thk +nk,t |2

= |xk,t |2|hk|2 + |nk,t |2 +2|xk,t ||hk||nk,t |cosθkt (6.4)

where θkt denotes the (random) angle between the two complex variables (xk,thk) and

nk,t . By taking logarithm and multiplying by the truncated discrete cosine transform

(DCT) matrix C on both sides, the distortion function in cepstral domain can be ex-

pressed as

ys,t = f (xs,t ,h,nt ,αααt)

= xs,t +h+C log
[
1+ exp

(
C−1 (nt−xs,t−h)

)

+2αααt • exp
(
C−1(nt−xs,t−h)/2

)]
, (6.5)

where xs,t ,ys,t ,nt , and h are the vector-valued clean and noise-corrupted speech, addi-

tive noise, and channel noise, respectively, at time frame t; C−1 is the pseudoinverse

of the truncated DCT matrix C and 1 is a vector with each element set to 1; log(·),
exp(·), and • denote the element-wise logarithm, exponentiation, and multiplication,

respectively. αααt is a random variable that may be interpreted as a factor making the

mismatch function sensitive to the phase between the clean speech and noise (Deng

et al., 2004; Li et al., 2009). The interpretation of αααt as a phase factor suggests that the

possible range of values for each dimension of αααt is [−1.0,1.0] (Deng et al., 2004). In

many noise compensation applications, αααt is often assumed to be zero. We introduce

the subscript s to the speech variable to indicate it only relates to the static feature. This

is not done to the noise variable nt ,h as they are always relates to the static feature.

Following (Li et al., 2009), we make a simplifying assumption that the value of αααt

does not depend on t, and rewrite the mismatch function as

ys,t = f (xs,t ,h,nt ,ααα)

= xs,t +h+C log
[
1+ exp

(
C−1 (nt−xs,t−h)

)

+2ααα• exp
(
C−1(nt−xs,t−h)/2

)]
. (6.6)

Note that ααα = 0 corresponds to compensation in power domain, while ααα = 1 corre-

sponds to magnitude domain compensation (Gales and Flego, 2010). In subsequent

1This is a safe assumption since the noise compensation is applied on a per-utterance basis.

6.2. Mismatch function 89

Gaussian approximation

Figure 6.2: After the corruption of noise, the distribution of noisy speech may not be

Gaussian even though the original clean speech is Gaussian distributed, but we still

use Gaussian approximation for GMM- or SGMM-based recognisers.

sections, we drop the subscript t from the vectors xs,t ,ys,t and nt , in order to simplify

the notation, wherever the dependence on the time index is obvious. Note that while

the mismatch function is valid for Mel cepstra (static features), it is customary to ap-

pend the first and second order difference vectors (delta and acceleration features) to

obtain the complete observation vector. These dynamic coefficients are derived us-

ing a continuous-time approximation (Gopinath et al., 1995). For example, the delta

coefficients are given by:

∆∆∆yt ≈
∂ys

∂t
|t =

∂ys

∂xs

∂xs

∂t
|t +

∂ys

∂n
∂n
∂t
|t

≈ ∂ys

∂xs
∆∆∆xt +

∂ys

∂n
∆∆∆nt . (6.7)

and the acceleration coefficients, ∆∆∆2yt , are derived similarly. In model-based com-

pensation, the compensated dynamic mean and covariance parameters are obtained by

taking the expectation (cf. Section 6.3.1).

In most noise compensation schemes, the additive noise is assumed to be Gaussian

distributed, while the constant channel noise is represented by its “mean” for notational

symmetry:

nt ∼N (µµµn,ΣΣΣn), h = µµµh. (6.8)

The clean speech xt is normally assumed to be Gaussian distributed, and the noise-

corrupted speech yt is still approximated by a Gaussian distribution in order fit the

recognizers, although its “true” distribution may be very complex. This is illustrated

90 Chapter 6. Noise compensation for Subspace Gaussian Mixture Model

VTS vs. JUD

VTS

JUD

Figure 6.3: A comparison of VTS and JUD noise compensation. VTS is performed on

per component basis, while for JUD, a cluster of components share the same compen-

sation parameters.

by Figure 6.2. Under this Gaussianity assumption, the aim of noise compensation is to

estimate the mean µµµy and covariance ΣΣΣy of the noise-corrupted speech. However, as the

mismatch function (6.6) is highly nonlinear, no closed-form solution is available. A

solution may obtained either by using sampling techniques, such as data-driven parallel

model combination (DPMC) (Gales, 1995), unscented transform (UT) (e.g. (Julier and

Uhlmann, 2004; Hu and Huo, 2006; Xu and Chin, 2009a; Li et al., 2010)), or by using

a polynomial approximation such as vector Taylor series (VTS) (Moreno et al., 1996).

Sampling techniques draw samples from a noise model and a clean speech model to

synthesise the corresponding noisy speech samples using the mismatch function (6.6).

They can achieve very good results with a sufficiently large number of samples, but

this comes at a higher computational cost, thus limiting their applicability.

VTS approximates the nonlinear mismatch function by a truncated vector Tay-

lor series expansion, by which a closed-form solution can be obtained for the noisy

speech model. First order VTS is typically used, although recent results show that

improvements can be obtained by a second or higher order VTS expansion (Xu and

Chin, 2009b; Du and Huo, 2011). Compared to sampling, VTS compensation is rel-

atively effective and efficient. However, since the parameters for each Gaussian com-

ponent in the acoustic model are individually compensated in this approach, it is still

6.3. Joint uncertainty decoding 91

computationally demanding, especially when the number of Gaussians is large. Joint

uncertainty decoding (JUD) (Liao and Gales, 2005) provides a more efficient way of

performing noise compensation, by clustering the Gaussian components into a rela-

tively small number of classes, and sharing the compensation parameters among the

Gaussians in each class. This significantly reduces the computational cost without a

large sacrifice in accuracy. Figure 6.3 presents the general idea while the details are

given in the next section.

6.3 Joint uncertainty decoding

In the framework of joint uncertainty decoding (JUD) (Liao and Gales, 2005), the

relationship between the observed noisy speech y, the underlying clean speech vector

x, and Gaussian component m can be expressed as

p(y|m) =
∫

p(x,y|m)dx =
∫

p(y|x,m)p(x|m)dx (6.9)

where the conditional distribution p(y|x,m) models the effect of noise on clean speech

for Gaussian component m. If the dependency on m is removed from the conditional

distribution, that is:

p(y|x,m)≈ p(y|x), (6.10)

then it results in a simplified uncertainty decoding rule, used for many feature domain

approaches, such as SPLICE with uncertainty(Droppo et al., 2002).

Although each of the Gaussians in the model could be compensated using (6.9),

such an approach is not computationally feasible in practice. Instead, the Gaussians

are grouped into a relatively small number of classes based on their acoustic similar-

ities. One way of clustering the Gaussians is to use a regression tree (Gales, 1996),

first proposed in the context of speaker adaptation. Equation (6.9) is approximated by

replacing Gaussian component m with its regression class rm:

p(y|m)≈
∫

p(y|x,rm)p(x|m)dx (6.11)

The conditional distribution p(y|x,rm) is derived from the joint distribution of clean

and noise-corrupted speech which is assumed to be Gaussian. For rth regression class

p

([
x
y

]
| r
)

:= N

([
µµµ(r)x

µµµ(r)y

]
,

[
ΣΣΣ
(r)
x ΣΣΣ

(r)
xy

ΣΣΣ
(r)
yx ΣΣΣ

(r)
y

])
, (6.12)

92 Chapter 6. Noise compensation for Subspace Gaussian Mixture Model

which gives conditional distribution p(y|x,r), with parameters:

µµµ(r)y|x = µµµ(r)y +ΣΣΣ
(r)
yx ΣΣΣ

(r)
x
−1(

x−µµµ(r)x

)
(6.13)

ΣΣΣ
(r)
y|x =ΣΣΣ

(r)
y −ΣΣΣ

(r)
yx ΣΣΣ

(r)
x
−1

ΣΣΣ
(r)
xy (6.14)

By marginalizing out the clean speech distribution p(x|m) using (6.11), the likelihood

of corrupted speech for mth component may be expressed as a Gaussian with trans-

formed features and an additive covariance bias:

p(y|m)≈ |A(rm)|N
(

A(rm)y+b(rm);µµµm,ΣΣΣm +ΣΣΣ
(rm)
b

)
, (6.15)

where the JUD transform parameters are obtained as:

A(r) =ΣΣΣ
(r)
x ΣΣΣ

(r)
yx
−1
, (6.16)

b(r) = µµµ(r)x −A(r)µµµ(r)y , (6.17)

ΣΣΣ
(r)
b = A(r)

ΣΣΣ
(r)
y A(r)T −ΣΣΣ

(r)
c . (6.18)

The clean speech parameters, µµµ(r)x and ΣΣΣ
(r)
x , may be derived from the clean speech

model using a regression tree. The corresponding parameters for noise-corrupted

speech, µµµ(r)y , ΣΣΣ
(r)
y , and the cross covariance ΣΣΣ

(r)
yx , are obtained from the mismatch func-

tion (6.6). In practise, only the parameters for the static cepstral coefficients, µµµ(r)ys , ΣΣΣ
(r)
ys ,

and ΣΣΣ
(r)
ysxs , are computed using (6.6), given an estimate of the noise parameters µµµn,ΣΣΣn,

and µµµh. Certainly, the true noise parameters are unknown and they need to be estimated

jointly with the transform parameters. Details of noise model estimation are provided

in Section 6.3.3.

The means and covariances of the dynamic coefficients are computed using the

continuous time approximation (6.7), as described in the following section. Cross-

correlations between the static and dynamic components are assumed to be zero, which

leads to a block-diagonal structure for the matrices appearing in equations (6.16)–

(6.18). As an alternative to the continuous time approximation for dynamic features,

the static coefficients ys,t may be extended by appending the static coefficients of the

preceding and succeeding frames, and calculating the dynamic coefficients as a linear

transform of this extended vector. Although there is evidence that this approach im-

proves upon the continuous time approximation (van Dalen and Gales, 2009), it has a

much higher computational cost and hence not considered for this thesis.

6.3. Joint uncertainty decoding 93

6.3.1 Transformation estimation

In this thesis, we use a first-order VTS approximation (Moreno et al., 1996) to linearise

the mismatch function, around the expansion point {µµµ(r)x ,µµµh,µµµn} which results in:

ys|r ≈ f (µµµr
xs
,µµµh,µµµn,ααα)+G(r)

x

(
xs−µµµ(r)xs

)
+G(r)

n (n−µµµn) (6.19)

where G(r)
x and G(r)

n denote the Jacobian matrices

G(r)
x =

∂ f (·)
∂xs
|
µµµ(r)xs ,µµµh,µµµn

, (6.20)

G(r)
n =

∂ f (·)
∂n
|
µµµ(r)xs ,µµµh,µµµn

= I−G(r)
x . (6.21)

Here, note that the two Jacobian matrices Gr
x and Gr

n are functions of the phase factor

ααα. Hence, the tuning the value of ααα can lead to different Jacobian matrices, and conse-

quently control the value of JUD transformation parameters. Bearing in mind this will

help to understand the experiments on the phase factor ααα in section 6.4.3. The mean

and covariance of y can then be obtained by taking expectations:

µµµ(r)ys = E
[
ys|r
]

= f
(

µµµ(r)xs ,µµµh,µµµn,ααα
)
, (6.22)

ΣΣΣ
(r)
ys = E

[
ysyT

s |r
]
−µµµ(r)ys µµµ(r)Tys

= G(r)
x ΣΣΣ

(r)
xs G(r)T

x +G(r)
n ΣΣΣnG(r)T

n . (6.23)

To obtain the delta parameters, we similarly take expectations on both sides of

equation (6.7):

µµµ(r)
∆y ≈G(r)

x µµµ(r)
∆x , (6.24)

ΣΣΣ
(r)
∆y ≈G(r)

x ΣΣΣ
(r)
∆x G(r)T

x +G(r)
n ΣΣΣ∆nG(r)T

n . (6.25)

Here we have assumed E
[
∆∆∆n
]
= 0. This assumption was relaxed in (Li et al., 2009), but

the results showed no improvements when compensating the static or dynamic parts

of the variances. Similar expressions can be obtained for the acceleration coefficients,

where we assume E
[
∆∆∆2n

]
= 0 as well.

The cross covariance ΣΣΣysxs is calculated as:

ΣΣΣ
(r)
ys,xs = E

[
ysxT

s |r
]
−µµµ(r)ys µµµ(r)Txs . (6.26)

By substituting the VTS approximation of ys from equation (6.19) and µµµ(r)ys from equa-

tion (6.22) into (6.26), we obtain:

ΣΣΣ
(r)
ysxs ≈G(r)

x ΣΣΣ
(r)
xs . (6.27)

94 Chapter 6. Noise compensation for Subspace Gaussian Mixture Model

Again, a continuous time approximation can be used to derive the dynamic coefficients,

which gives

ΣΣΣ
(r)
∆y∆x ≈G(r)

x ΣΣΣ
(r)
∆x , ΣΣΣ

(r)
∆2y∆2x ≈G(r)

x ΣΣΣ
(r)
∆2x. (6.28)

Note that even if ΣΣΣ
(r)
x and ΣΣΣn are diagonal, ΣΣΣ

(r)
y and ΣΣΣ

(r)
yx are not, since the Jaco-

bian matrices G(r)
x and G(r)

n are full. This makes the covariance bias term ΣΣΣ
(r)
b block-

diagonal, which is incompatible with standard HMM/GMM based speech recognizers

that use diagonal covariance matrices. To obtain a final diagonal compensated co-

variance matrices, elements of the joint distribution are diagonalized for GMM based

systems (Xu et al., 2011) as

 diag

(
ΣΣΣ
(r)
x

)
diag

(
ΣΣΣ
(r)
xy

)

diag
(

ΣΣΣ
(r)
yx

)
diag

(
ΣΣΣ
(r)
y

)

 . (6.29)

Diagonalising is expected to limit the compensation power of JUD. For SGMMs, how-

ever, diagonalising is not applied since the model uses full or block-diagonal covari-

ance matrices.

6.3.2 Compensating subspace Gaussian mixture models

Since JUD noise compensation takes the form of a feature transform with an additive

covariance bias, it is well suited to the SGMM framework. By contrast, VTS compen-

sates each Gaussian individually, which is computationally infeasible (and inelegant)

for an SGMM system which has a large number of surface Gaussians—for instance, in

the experiments presented in this paper the models have 6.4 million surface Gaussians.

However, to apply JUD compensation, a regression model is needed which clusters

all the surface Gaussians of SGMMs. It is certainly possible to use a conventional

clustering algorithm, as in GMM based models, to derive the regression model, how-

ever, it is computationally expensive, and furthermore, the covariance matrices will not

be globally shared after compensation since the covariance bias term depends on the

regression class. This will also increase the computational cost. This can be circum-

vented by using UBM as the regression model.

Using JUD with the UBM as the regression model, the likelihood of noise-corrupted

speech becomes:

P(yt | j,Mn) =
K j

∑
k=1

c jk

I

∑
i=1

w jki |A(i)|N
(

A(i)yt +b(i); µµµ jki,ΣΣΣi +ΣΣΣ
(i)
b

)
(6.30)

6.3. Joint uncertainty decoding 95

Table 6.1: Procedure for JUD noise-compensation using gradient-based noise model

estimation. In this paper, we used the Viterbi alignment for the SGMM system. Step 3 is

required for the first loop, but can be skipped after that which means only the alignment

will be updated using the new noise model.

1. Given a test utterance U , initialize the noise model Mn.

2. Estimate the JUD transforms {A(i),b(i),ΣΣΣ(i)} using current Mn.

3. If required, decode U and generate the hypothesis Hu given the clean acoustic model Ms,

and the JUD transforms {A(i),b(i), ΣΣΣ(i)}.
4. Given U , Ms and Hu, accumulate the statistics λu by Viterbi alignment.

5. Update the noise model:

for i = 1; i≤ #iter1; i++

1) Given λu, Ms and the ‘old’ noise model Mn, update the noise model means µµµn,µµµh (6.35).

2) Compute the auxiliary function (6.31), and if its value decrease, back-off the noise

model means. (6.39, 6.40).

for j = 1; j ≤ #iter2; j++

3) Given λu, Ms and the ‘old’ noise model Mn, update the noise model variance ΣΣΣn (6.36).

4) Compute the auxiliary function (6.31), and if its value decrease, back-off the noise

model variance.

end

end

6. Go to step 2. if not converged.

7. Decode the utterance to obtain the final results.

where A(i),b(i) and ΣΣΣ
(i)
b correspond to the ith Gaussian in the UBM; and Mn = {µµµn,ΣΣΣn,µµµh}

denotes the noise model. Since the covariances are compensated using an additive

bias, the data-independent normalisation terms in the SGMM likelihood computation

(cf. (Povey et al., 2011a), section 3) need to be recomputed on a per-utterance basis.

This extra computation may be saved by using a predictive CMLLR method (Gales and

Van Dalen, 2007) that computes a set of feature transforms to minimise the Kullback-

Leibler divergence between the CMLLR-adapted and JUD-compensated distributions

(Xu et al., 2011). The effect of the covariance bias terms is subsumed in the second-

order statistics used for the estimation of the CMLLR transforms, thereby keeping the

original covariances unchanged.

6.3.3 Noise model estimation

Noise compensation using the mismatch function (6.6) requires knowledge of the noise

parameters µµµn,ΣΣΣn, and µµµh. Given the clean speech model, the noise parameters and the

96 Chapter 6. Noise compensation for Subspace Gaussian Mixture Model

JUD transforms can be estimated alternately following the procedure outlined in Table

6.1. The noise model may be estimated either using expectation-maximization (EM),

which treats the noise parameters as latent variables (Kim et al., 1998); or using a

gradient based optimization approach (Liao, 2007; Li et al., 2009). A comparison be-

tween the two approaches (Zhao and Juang, 2010) showed the gradient-based approach

to converge faster than EM, and to provide comparable or better recognition accuracy.

In this thesis we use the gradient-based approach. The auxiliary function for noise

model update is

Q (M̂n;M̌n) = ∑
jkit

γ jki(t)

[
log |A(i)|+ logN

(
A(i)yt +b(i); µµµ jki,ΣΣΣi +ΣΣΣ

(i)
b

)]
, (6.31)

where M̂n and M̌n are the ‘new’ and ‘old’ estimates of the noise model, respectively.

γ jki(t) is the Gaussian component posterior, which is defined as:

γ jki(t) = p(j,k, i|yt) . (6.32)

In (Liao, 2007), the derivatives of the objective function are computed numerically for

JUD/GMM based noise model estimation, while in this thesis, we derive the gradi-

ents and Hessian matrices using explicit mathematical derivation for the JUD/SGMM

based noise model estimation. However, these derivations are not new as they are

very similar to the VTS based noise model estimation in (Liao, 2007; Li et al., 2009),

except for a difference in estimating the additive noise variance ΣΣΣn since we use the

block-diagonal covariance matrices for SGMM acoustic model rather than diagonal

covariance matrices in GMMs (Liao, 2007; Li et al., 2009). We present the overview

of the estimation here while leaving the details to the appendixes.

6.3.3.1 Update the additive and channel noise mean

To update the additive and channel noise means, we first fix the Jacobian matrices G(r)
x ,

G(r)
n and the covariance bias terms ΣΣΣ

(r)
b . Taking the derivatives of Q (·) with respect to

µ̂µµn and µ̂µµh, we obtain

∂Q (·)
∂µ̂µµn

= d−Eµ̂µµn−Fµ̂µµh, (6.33)

∂Q (·)
∂µ̂µµh

= u−Vµ̂µµn−Wµ̂µµh, (6.34)

where d,E,F and u,V,W are defined in equations (B.7 - B.9) and (B.11 - B.13) in

Appendix B. By setting the two derivatives to zero, we obtain the additive and channel

6.3. Joint uncertainty decoding 97

noise means as a solution to the following linear system:
[

E F
V W

][
µ̂µµn

µ̂µµh

]
=

[
d
u

]
. (6.35)

Here, we jointly estimate µµµn and µµµh, which is similar to the VTS noise model estimation

in (Liao, 2007) (Chapter 4). This approach is slightly different from that used in Li

et al. (2009), in which µµµh is updated first, and µµµn is estimated using the updated µµµh. The

detailed derivation can be found in Appendix B.

6.3.3.2 Update the additive noise variance

Unlike the additive and channel noise means, there is no closed-form solution for ad-

ditive noise variance ΣΣΣn. In this paper, we use Newton’s algorithm to update it. Denote

σ2
n,d as the dth coefficient of ΣΣΣn,

σ̂
2
n,d = σ

2
n,d−ζ

(
∂2Q (·)
∂(σ2

n,d)
2

)−1(
∂Q (·)
∂σ2

n,d

)
, (6.36)

where ζ is the learning rate. The gradient and Hessian are defined as:

∂Q (·)
∂σ2

n,d
=−1

2

I

∑
i=1

(γiκid−βid), (6.37)

∂2Q (·)
∂(σ2

n,d)
2
=−1

2

I

∑
i=1

(2κidβid− γiκ
2
id), (6.38)

where κid,βid and ΩΩΩi are defined in equations (C.5), (C.8) and (C.7) in Appendix C,

and γi = ∑ jkt γ jki(t). Note that in practice, the variance may be negative if eq (C.18) is

applied directly. To enforce the positivity, the logarithm of variance is estimated as in

(Li et al., 2009; Kalinli et al., 2010). Details of derivation are given in Appendix C.

6.3.4 Implementation Details

Since the noise model only accounts for the static features and the Jacobian matrices

are fixed during estimation, updating µµµn and µµµh according to equation (6.35) does not

guarantee an increase in the auxiliary function (6.31). We used a simple back-off

scheme (Liao, 2007) that interpolates between the ‘old’ and ‘new’ model parameters:

µ̂µµh = ηµµµold
h +(1−η)µµµnew

h , (6.39)

µ̂µµn = ηµµµold
n +(1−η)µµµnew

n , (6.40)

98 Chapter 6. Noise compensation for Subspace Gaussian Mixture Model

where η ∈ [0,1] is chosen by line search such that the auxiliary function does not

decrease. A similar back-off scheme is also applied to additive noise variance ΣΣΣn.

In our experiments, we found that the back-off scheme is important for noise model

estimation, similar to (Liao, 2007). Finally, the auxiliary function (6.31) needs to be

efficiently computed, since it is evaluated multiple times during the iterative update of

the noise model. We do this by computing the sufficient statistics for each Gaussian

compoent in the UBM over the entire utterance and caching them.

6.4 Experiments

We performed experiments using the Aurora 4 corpus which is derived from the Wall

Street Journal (WSJ0) 5,000-word (5k) closed vocabulary transcription task. The clean

training set contains about 15 hours of audio, and Aurora 4 provides a noisy version,

which enables multi-condition training (MTR). The test set has 300 utterances from

8 speakers. The first test set, set A (test01), was recorded using a close talking mi-

crophone, similar to the clean training data. The data comprising set B (test02 to

test07) was obtained by adding six different types of noise, with randomly selected

signal-to-noise ratios ranging from 5dB to 15dB, to set A. Set C (test08) was record-

ing using a desk-mounted secondary microphone and the same type of noise used for

set B was added to this test set forming set D (test09 to test14). In the following

experiments for both GMM and SGMM based systems, we used 39 dimensional fea-

ture vectors: 12th order mel frequency cepstral coefficients, plus energy, with delta and

acceleration features. We used the standard WSJ0 5k bigram language model.

6.4.1 Results of GMM based systems

The GMM systems were built using the HTK software (Young et al., 2006). Table

6.2 shows the results of VTS and JUD noise compensation on a conventional GMM

system, without the phase term (ie ααα = 0). Here, the clean and MTR models each

have about 3,100 triphone states, with each speech state modelled using 16 Gaussian

components and 32 Gaussian components for the silence state model. As expected, the

clean model results in a high word error rate (WER) on the noisy test data, whereas the

MTR model can alleviate the mismatch, resulting in significant reductions in WER, on

average. For the JUD system, we used a regression model with 112 Gaussian compo-

nents, in which 48 components were used for silence and the remaining 64 for speech.

6.4. Experiments 99

Table 6.2: WER of VTS and JUD based on GMM systems with ααα = 0.

Methods A B C D Avg

Clean model 7.7 56.6 46.7 72.8 59.3

MTR model 12.7 18.6 31.7 36.8 26.9

VTS-init 8.7 22.4 43.0 48.0 33.9

+ 1st iter 7.1 15.8 17.3 28.6 20.8

+ 2nd iter 7.3 14.8 12.1 24.8 18.3

JUD-init 8.4 23.8 42.6 47.1 34.0

+1st iter 7.2 17.3 24.1 31.8 23.3

+2nd iter 7.0 16.6 16.3 28.7 21.1

Table 6.3: WERs of noise compensation by JUD on SGMM systems with ααα = 0.

Methods A B C D Avg

Clean model 5.2 58.2 50.7 72.1 59.9

MTR model 6.8 15.2 18.6 32.3 22.2

JUD-init 5.5 20.6 36.8 45.6 31.4

+1st iter 5.3 15.3 25.3 32.0 22.5

+2nd iter 5.3 14.7 20.7 28.4 20.3

Two separate regression trees were used. For comparison, we carried out VTS-based

noise compensation, which may be viewed as JUD when every Gaussian component

corresponds to a regression class.

The noise model was initialized by the first and last 20 frames of each test utterance,

corresponding to “VTS-init” and “JUD-init” in Table 6.2. The hypotheses generated

by the initial decoding were then used to update the noise model, and another decoding

pass was conducted, giving results shown as “1st iter”. The procedure was repeated to

give the results “2nd iter”. Table 6.2 indicates that updating the noise model leads to

considerable gains in accuracy for both VTS and JUD. In addition, VTS-based systems

consistently outperform their JUD counterparts as expected. However, the computation

cost for JUD is much lower than that for VTS. The lowest WER given by VTS is 18.3%

which is comparable to 17.8% reported in (Wang and Gales, 2011) with a similar

system configuration, and that for JUD is 21.1% which is a little better than 22.2% in

(Flego and Gales, 2011).

100 Chapter 6. Noise compensation for Subspace Gaussian Mixture Model

0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
16

18

20

22

24

26

28

The value of phase factor

W
or

d
Er

ro
r R

at
e

(\%
)

 VTS/GMM system
JUD/GMM system
JUD/SGMM system

Figure 6.4: Effect of phase term α for both GMM and SGMM system with VTS or JUD

style noise compensation. The best result for VTS/GMM is 17.3% (ααα = 1.0), JUD/GMM

is 19.2% (ααα = 1.0) and JUD/SGMM is 16.8% (ααα = 2.5).

6.4.2 Results of SGMM based systems

The SGMM systems were built using the Kaldi software toolkit (Povey et al., 2011b).

We used I = 400 components in the UBM and a subspace dimension S = 40 in the

SGMM-based systems. There were about 3,900 tied triphone states, and about 16,000

substates were used in total, resulting in a total of 6.4 million Gaussian components.

Similar to the GMM-based systems, we separated speech and silence in the regression

model, using 100 Gaussian components for silence and 300 for speech in the UBM.

Table 6.3 gives the baseline results using clean and MTR models. The SGMM sys-

tem has a lower WER than the GMM system on clean test data (A; 5.2% vs. 7.7%);

however, the improvement disappears in noisy conditions. For the MTR model, where

the mismatch is less serious, we observed that the SGMM system has a lower average

WER compared with its GMM counterpart (22.2% vs. 26.9%).

We then applied JUD noise compensation to a clean SGMM acoustic model. Table

6.3 shows the results without the phase term, i.e. ααα = 0. Again, the noise model is

initialised by the first and last 20 frames of each utterance, and then updated by the

algorithm described in section 6.3.3. The results show that JUD compensation lead to

lower WERs for SGMM systems in the presence of additive noise compared with the

MTR model. Overall, using a three-pass decoding, we achieve 20.3% WER, which is

about 2% absolute lower than that obtained using the MTR/SGMM, but is 2% absolute

6.4. Experiments 101

higher than that obtained by the VTS/GMM system.

We then investigated using a non-zero phase term. We did not optimize the value

of ααα (as in (Deng et al., 2004)) but set all the coefficients of ααα to a fixed value (Li

et al., 2009). As a comparison, we also investigated different values of the phase factor

for the GMM-based VTS and JUD systems. Figure 6.4 graphs the average WERs.

We find that the phase factor significantly affects both VTS and JUD compensation for

GMM and for SGMM systems, consistent with previously reported results (Deng et al.,

2004; Li et al., 2009). The phase factor has a large effect on the JUD/SGMM system:

tuning ααα achieves 16.8% WER, significantly lower than the baseline (20.3%), also

lower than the best performance of VTS/GMM by 0.5% absolute. Possible reasons

for this improvement may be the correlations between noise and speech captured by

the phase factor, and the systematic bias introduced by the VTS linearisation error

(equation (6.19)) (Deng et al., 2004; Li et al., 2009). In addition, ααα = 1 corresponds to

magnitude domain compensation, in contrast to power domain compensation (ααα = 0)

(Gales and Flego, 2010).

102 Chapter 6. Noise compensation for Subspace Gaussian Mixture Model

Ta
bl

e
6.

4:
W

E
R

s
of

ea
ch

te
st

se
tw

ith
re

ga
rd

s
to

th
e

va
lu

e
of

ph
as

e
fa

ct
or

fo
rJ

U
D

/S
G

M
M

sy
st

em
.“

re
st

au
.”

de
no

te
s

re
st

au
ra

nt
no

is
e

co
nd

iti
on

.

A
B

C
D

A
vg

αα α
cl

ea
n

ca
r

ba
bb

le
re

st
au

.
st

re
et

ai
rp

or
t

st
at

io
n

cl
ea

n
ca

r
ba

bb
le

re
st

au
.

st
re

et
ai

rp
or

t
st

at
io

n

-0
.5

5.
2

9.
0

20
.9

26
.3

21
.9

16
.6

23
.1

23
.3

29
.1

36
.4

41
.6

41
.1

36
.2

40
.1

26
.5

0.
0

5.
3

7.
6

14
.6

20
.1

15
.8

13
.4

16
.6

20
.7

18
.5

28
.0

32
.6

32
.4

28
.4

30
.7

20
.3

0.
5

5.
3

7.
1

13
.0

18
.6

14
.2

12
.4

15
.5

17
.8

14
.1

25
.6

30
.7

29
.2

24
.9

27
.9

18
.3

1.
0

5.
3

7.
2

12
.3

17
.5

14
.2

11
.6

15
.0

16
.2

12
.7

24
.0

30
.0

27
.1

23
.6

26
.2

17
.3

1.
5

5.
3

7.
1

12
.4

17
.5

14
.5

11
.1

15
.2

14
.2

12
.5

23
.9

28
.8

26
.3

23
.5

26
.3

17
.1

2.
0

5.
2

7.
1

12
.5

17
.3

14
.4

11
.2

15
.3

13
.1

12
.1

23
.3

28
.6

26
.0

23
.2

26
.0

16
.8

2.
5

5.
1

7.
3

12
.5

17
.5

14
.4

11
.5

15
.5

12
.0

12
.0

23
.4

28
.2

26
.1

23
.1

26
.2

16
.8

3.
0

5.
0

7.
4

12
.5

17
.4

14
.8

12
.0

15
.7

10
.8

12
.1

24
.0

28
.1

26
.0

22
.8

26
.5

16
.8

3.
5

5.
3

7.
6

12
.8

17
.5

14
.6

11
.8

15
.8

10
.7

12
.1

24
.5

28
.3

26
.3

23
.0

26
.5

16
.9

4.
0

5.
1

7.
6

13
.2

17
.8

14
.9

11
.7

16
.0

10
.4

12
.2

23
.8

28
.3

26
.4

23
.2

26
.7

16
.9

6.4. Experiments 103

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

0.5

1

1.5

2

2.5

3

3.5
x 107

The value of phase factor

Av
er

ag
e

va
lu

e
of

 tr
ac

e

 JUD/SGMM system

Figure 6.5: Average trace of covariance matrix ΣΣΣi+ΣΣΣ
(i)
b respect to the phase term ααα for

JUD/SGMM systems. ΣΣΣ
(i)
b is large when ααα is small (e.g. ααα = 0). The value for ααα =−0.5

is much larger, and it is not shown here for clarity.

6.4.3 Analysis of the effect of phase factors

To gain further insight to the effect of phase term, we calculated the total variance of

ΣΣΣi +ΣΣΣ
(i)
b and averaged it by I and the number of test utterances. The plot is shown in

Figure 6.5 for JUD/SGMM system. The average value of covariance shows a similar

trend to that of the WER when using different values of phase factors. This is not unex-

pected if one interprets the value of covariance as indicating the degree of uncertainty

of the model. A small covariance may indicate that the model is more confident in its

explanation of the data; if this confidence is gained from more accurate model com-

pensation, it is expected to result in lower WER. However, the absolute value in the

figure is not intuitive as the features were first transformed into another feature space

by the JUD transformation (A(i),b(i)). As shown in the table, we obtain large value

of ΣΣΣ
(i)
b when ααα is small. This is because that the Jacobian matrix G(i)

x (cf. equation

(6.20)) for component i is a function of the phase factor ααα, and we observe that when

ααα is small, G(i)
x has very small eigenvalues, which lead to large transformation matrix

A(i) since (Liao, 2007):

A(i) ≈




G(i)−1
x 0 0
0 G(i)−1

x 0
0 0 G(i)−1

x


 (6.41)

104 Chapter 6. Noise compensation for Subspace Gaussian Mixture Model

Table 6.5: Confusion matrix of speech and silence separation by UBM model.

sil speech

sil 64.8% 35.2%

speech 9.3% 90.7%

Table 6.6: Comparison of UBM model with (‘yes/S’) and without (‘no/S’) speech and

silence separation for JUD/SGMM system.

ααα 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

no/S 20.9 18.7 17.7 17.1 16.8 16.8 16.8 17.0

yes/S 20.3 18.3 17.3 17.1 16.8 16.8 16.8 16.9

and consequently, ΣΣΣ
(i)
b is also large (cf. equation (6.18)). A large value of phase fac-

tor is able to smooth the Jacobian matricx G(i)
x , resulting in smaller transformation

parameters (A(i),b(i),ΣΣΣ
(i)
b).

To investigate the effect of phase factors in different noise conditions, we show

the results of JUD/SGMM system on the 14 individual test sets in Table 6.4. For the

clean test set A, introducing a non-zero phase term does not improve accuracy notably

just as expected. However, for the test set C which is also clean but recorded using

a desk-mounted microphone, a large value of phase term increases the accuracy sig-

nificantly (about 50% relative compared to the result of system without phase term).

Since the training data is recorded using close-talking microphone, the mismatch be-

tween training and test data is mainly the channel noise including reverberation, which

is correlated with speech. This is consistent with the assumption that phase factors

model the correlations between noise and speech, and may explain the gains here.

Comparing the results of sets B and D in which 6 different types of noise were added

to the clean sets A and C respectively, the optimal values of the phase term, as well as

the reductions in WER, are larger for D, which is probably because that there is more

channel noise in set D which requires larger phase terms to capture the correlations.

6.4.4 Analysis of speech and silence separation in UBM

In the regression model of the JUD/GMM system, the Gaussian components for speech

and silence were estimated using different regression trees. The reason for this is that

speech and silence show different characteristics in the spectral domain, and the dis-

6.4. Experiments 105

Table 6.7: WERs (%) of supervised (“SGMM-aux”) and unsupervised (“UBM-aux”) and

hybrid (“Hybrid”) noise model estimation for SGMM/JUD system. “#pass” denotes the

number of decoding passes.

ααα 1.0 1.5 2.0 2.5 3.0 3.5 4.0 #pass

UBM-aux 18.2 17.7 17.5 17.4 17.3 17.2 17.3 1

SGMM-aux 17.7 17.1 16.8 16.8 16.8 17.0 17.1 3

Hybrid 17.5 17.1 16.8 16.8 16.7 16.8 16.8 2

tortions resulted from additive and channel noise are also different. This separation is

expected to reduce the mismatch between the regression class model and its component

Gaussians. We also separate the speech and silence in the UBM in the JUD/SGMM

system,. This was done by first identifying the speech and silence frames in the training

data using a baseline system, and then building the two UBM models for speech and

silence using 100 and 300 Gaussian components, respectively. They were combined

to derive the final UBM model. We then used the final UBM model to classify the

acoustic frame in the training data, and the results are shown in Table 6.5. We observe

that by this approach, we achieve high accuracy to identify the speech frames, but not

for silence (90.7% vs. 64.8%). The accuracy for noisy test data may decrease further

even after noise compensation. This may undermine the gains achieved by separating

speech and silence in the UBM. We compared the results of systems with and without

speech and silence separation, which is shown in Table 6.6. Without the phase term,

we achieved 0.6% gains relative by speech and silence separation in UBM, but the two

system achieve the same accuracy after tuning the phase factor.

6.4.5 Unsupervised noise model estimation

Model-based noise compensation is normally computationally expensive, and not suit-

able for real time applications. For instance, in our experiments, we performed three

decoding passes to obtain the final results, in which the first two were used to generate

the hypothesis for the noise model estimation. For applications with limited compu-

tational power, feature space noise compensation is normally preferred, but has lower

accuracy compared to its model-based counterpart (Li et al., 2012). We have investi-

gated reducing the computational cost of JUD/SGMM by unsupervised noise model

estimation. Instead of Equation (6.31), we used the UBM to update the noise model

106 Chapter 6. Noise compensation for Subspace Gaussian Mixture Model

Table 6.8: Approximation of computational cost for VTS/GMM, JUD/GMM and

JUD/SGMM system. M′ and R denote the total number Gaussians and regression

classes in GMM systems.

System Model Transform Estimation Compensation

VTS/GMM diag O(M′D3) O(M′D2)

JUD/GMM diag O(RD3) O(RT D+M′D)

JUD/SGMM blck O(ID3) O(IT D2 + ID2)

using the following auxiliary function:

Q (M̂n;M̌n) = ∑
it

γi(t)

[
log |A(i)|+ logN

(
A(i)yt +b(i); µµµ(i)x ,ΣΣΣ

(i)
x +ΣΣΣ

(i)
b

)]
, (6.42)

where µµµ(i)x and ΣΣΣ
(i)
x are the mean and covariance the ith UBM component, and γi(t) is

the posterior of the ith component. In this case, the noise model is estimated without

needing to generate the hypothesis by decoding the test utterance first, leading to a

significant reduction in computational cost. The motivation behind this is similar to

feature space VTS, in which a GMM is used to model the acoustic space, and to learn

the mapping between a clean model and its noise-corrupted model. However, we do

not use the mapping to de-noise the features, but to compensate the noise in the model

domain. It also differentiates from the front-end JUD (FE-JUD) (Liao, 2007), in which

a GMM is used to model the conditional distribution p(y|x) in equation (6.10) which

is independent of the acoustic model. The transformation for each acoustic frame is

globally shared by the whole Gaussian components of the acoustic model in FE-JUD

while it depends on the regression class here.

Table 6.7 shows that we can achieve just slightly worse accuracy by using unsuper-

vised noise model estimation (17.3% vs. 16.8% in terms of WER), while significantly

reduces the computational cost (with only one-pass decoding). We can also use the

unsupervised fashion to initialized the noise model, and then switch to supervised es-

timation to refine the noise model parameters. We denote this system as “Hybrid” in

Table 6.7, in which we only update the noise model once by the supervised fashion. We

achieved about the same accuracy compared to “SGMM-aux” but significantly reduced

the computational cost.

6.4. Experiments 107

x

y

f(x)

·

(a)

··
··

x

· ··
·

y

(b)

Figure 6.6: A comparison between VTS and UT approximation: (a) VTS approximates

the nonlinear function y = f (x) by vector Taylor series expansion, and results in a linear

function by using first order VTS. (b) UT draws sigma points from the distribution of x

and synthesise the corresponding samples of y by the nonlinear function f (x).

6.4.6 JUD with unscented transform

Recently, the unscented transform (UT) (Julier and Uhlmann, 2004) has been applied

to noise compensation in both feature and model domains (Hu and Huo, 2006; Faubel

et al., 2010; Xu and Chin, 2009a; Li et al., 2010), and has achieved good results.

Unlike DPMC, UT draws samples deterministically from the sigma points—a set of

points chosen to have the same mean and covariance as the original distribution. In

UT it assumed that the mean and covariance of the nonlinear system can be derived

from sigma points (Julier and Uhlmann, 2004), although a recent review (Gustafsson

and Hendeby, 2012) pointed out that this is not guaranteed depending on the nonlinear

system and parameterisation of UT. Based on GMM system settings, UT can result

in a more accurate estimate compared to first-order VTS, while its computational cost

is much lower than DPMC (Xu and Chin, 2009a; Li et al., 2010). Our final set of

experiments is to apply UT to compensate an SGMM against noise in the framework

of JUD.

Unlike VTS which approximates the nonlinear function by a linear function to

estimate the distribution of y, sampling approaches draw samples from the distributions

of x and n to synthesise noisy samples from which to estimate its distribution2. UT is

a deterministic sampling approach. Let z =

[
xs

ns

]
be the combined vector, then UT

2We don’t draw samples for h because we assume its distribution is a delta function.

108 Chapter 6. Noise compensation for Subspace Gaussian Mixture Model

draws samples as

z(r)0 = µµµ(r)z , (6.43)

z(r)i = µµµ(r)z +

[√
(2d +κ)ΣΣΣ

(r)
z

]

i
, (6.44)

z(r)i+d = µµµ(r)z −
[√

(2d +κ)ΣΣΣ
(r)
z

]

i
, (6.45)

where i= 1, . . . ,d, and
√

A and [A]i denote the Cholesky decomposition and ith column

of the matrix A respectively. κ is a tuning parameter, d is the dimensionality of z, and

µµµ(r)z =

[
µµµ(r)xs

µµµns

]
, ΣΣΣ

(r)
z =

[
ΣΣΣ
(r)
xs 0
0 ΣΣΣns

]
. (6.46)

After obtaining the noise and clean speech samples {n0, . . . ,n2d} and {x0, . . . ,x2d}, the

noise corrupted speech samples {y0, . . . ,y2d} can be derived by the mismatch function

(6.6) and the static parameters can be obtained by

µµµ(r)ys =
2d

∑
i=0

wiyi (6.47)

ΣΣΣ
(r)
ys =

2d

∑
i=0

wiyiyT
i −µµµysµµµ

T
ys
, (6.48)

ΣΣΣ
(r)
ysxs =

2d

∑
i=0

wiyixT
i −µµµysµµµ

T
xs
, (6.49)

where the weights are defined in UT as

w0 =
κ

d +κ
, wi =

1
2(d +κ)

. (6.50)

In this work, we set κ = 1/2 to give the equal weight to all the samples (Julier and

Uhlmann, 2004) . For the dynamic coefficients, we still use the continuous time ap-

proximation which requires linearisation as VTS. Unlike equation (6.20) and (6.21),

the Jacobian is obtained by all the samples rather than just the mean as

G̃(r)
x =

2d

∑
i=0

wi
∂ f (·)
∂xis
|zis,µµµhs, G̃(r)

n = I− G̃(r)
x (6.51)

In this work, however, we found that using the Jacobian (6.51) to linearise the static

covariance ΣΣΣys and ΣΣΣysxs can achieve better results, as the static and dynamic coeffi-

cients are derived in a consistent fashion. Figure 6.6 illustrates the principle ideas of

VTS and UT approximation.

6.4. Experiments 109

Table 6.9: WERs of noise compensation by JUD on SGMM systems with ααα = 0.

Methods A B C D Avg

Clean model 5.2 58.2 50.7 72.1 59.9

MTR model 6.8 15.2 18.6 32.3 22.2

JUD-VTS init 5.3 22.5 36.8 47.4 32.9

+1st iter 5.1 15.8 24.6 33.8 23.4

+2nd iter 5.1 15.0 19.8 29.7 20.9

+UT re-est 5.0 14.0 20.7 28.4 20.0

JUD-UT init 5.2 19.8 36.9 44.7 30.6

+1st iter 4.9 15.0 23.4 30.6 21.6

+2nd iter 4.9 14.3 18.4 26.9 19.3

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
16

17

18

19

20

21

22

The value of phase factor

W
or

d
Er

ro
r R

at
e

(\%
)

JUD VTS system
JUD UT system

Figure 6.7: Average WER with respect to the phase term ααα for JUD with VTS and

UT compensation for SGMM systems. They achieve almost the same accuracy after

increasing the value of phase term.

Table 6.9 gives the baseline results using clean and MTR models. In these experi-

ments, we initialised the noise model by the first and last 20 frames of each utterance,

and the results are shown by “JUD-VTS init” and “JUD-UT init”. Note that, we do not

perform speech and silence separation in the UBM, so the baseline results are different

with those in Table 6.3. We then updated the noise model by either UT or VTS using

the hypothesis from the previous decoding results. Here, we did not use the phase term,

i.e. ααα = 0. The results are shown in Table 6.9 in which, after two decoding passes, the

110 Chapter 6. Noise compensation for Subspace Gaussian Mixture Model

JUD-VTS system achieves the average WER of 20.9%, indicated by JUD-VTS “+2nd

iter”. Given these noise model, we re-estimate the JUD compensation parameters us-

ing UT and can reduce the WER to be 20.0%. This shows that UT can lead to more

accurate estimate in this condition given the same noise model compared to VTS. If

we update the noise model from scratch, we achieve 19.3% WER after two decoding

passes, which is considerably better than that of 20.9% for JUD-VTS system, and also

22.2% of MTR baseline.

We then tune the value of phase factor ααα. Figure 6.7 graphs the average WERs.

Similar to the JUD-VTS system and consistent with the observations in (Li et al.,

2010), the phase factor also affects JUD with UT system, and after increasing the value

of ααα, the gap between JUD-VTS and JUD-UT system shrinks, and both system achieve

the same lowest WER, 16.8%, when ααα = 2.0. Similar results were also obtained by

comparing VTS and UT on GMM based systems on another task (Li et al., 2010).

6.5 Discussion and Conclusion

This chapter addresses robust speech recognition based on subspace Gaussian mix-

ture models (SGMMs) using joint uncertainty decoding (JUD) noise compensation.

Compared to VTS, JUD reduce the computational cost significantly by sharing the

compensation parameters for Gaussian components within the same class. The ma-

jor computational cost lies in that multiple decoding passes are required to estimate

the noise model parameters and compensation parameters. In JUD, for each decoding

pass we did not adapt each surface Gaussian of the SGMMs, but used I regression

classes to generate I transformations {(A(i),b(i),ΣΣΣ
(i)
b), i = 1, . . . , I}. For each test ut-

terance with T frames, each frame is transformed by the I transformations with the

computational cost as O(IT D2). In this chapter, I was set to be 400, and T was be-

tween 100 to about one thousand. To update the variance, it requires O(ID2) and as

we also need to update the normalization term as in (Povey et al., 2011a), it requires

some additional computation. However, the total computational cost is still signifi-

cantly lower than VTS compensation which would require O(MD3) for blog-diagonal

covariance matrices used in this paper, in which M is the total number of surface Gaus-

sians of the SGMM acoustic model (6.4 million in this paper). As mentioned before,

further computation may be saved for JUD/SGMM by predictive CMLLR (Gales and

Van Dalen, 2007) to reduce the covariance bias term ΣΣΣ
(i)
b , so that the normalization

terms of SGMMs can be left untouched.

6.5. Discussion and Conclusion 111

In Table 6.8, we compare the computational cost in terms of transformation esti-

mation and compensation for VTS/GMM, JUD/GMM and JUD/SGMM systems. For

transform estimation, the main computational cost is to estimate the Jacobian matri-

ces (e.g. equation (6.20)), which is linear to the number of Gaussian for VTS/GMM

system, while it is linear to the number of regression classes for JUD/GMM and

JUD/SGMM systems. In this case, the cost of estimating transformations for JUD/SGMM

system is lower than that of VTS/GMM system. For compensation, the computational

cost lies in compensating the covariance (e.g. equation (6.23)) for VTS/GMM sys-

tem, and as we used diagonal covariances, the cost was reduced to O(M′D2). The

number of Gaussians in VTS/GMM system is about 3000, hence M′ < IT . Thus,

the overall computational cost of JUD/SGMM system may be still higher than that of

VTS/GMM system. However, the gap will shrink when using larger number of Gaus-

sians in VTS/GMM system for larger vocabulary tasks. To further reduce the compu-

tational cost of JUD/SGMM, we also investigated the unsupervised noise model esti-

mation using UBM which removes the need of multiple decoding passes by slightly

sacrificing the accuracy, or it can be used to initialize the noise model to reduce the

number of decoding passes for supervised fashion.

To summarise our experiments, by empirically tuning the phase factor, we achieved

16.8% WER for JUD/SGMM system on the Aurora 4 dataset, which slightly outper-

forms 17.3% WER by VTS/GMM system in our experiments, and it is comparable

to state-of-the-art results by noise compensation on this task (Wang and Gales, 2011;

Ragni and Gales, 2011). Further improvement has been observed by VTS-based noise

adaptive training (NAT) (Kalinli et al., 2010). For instance, from the baseline results

in (Ragni and Gales, 2011) on the same task, NAT-VTS improved over VTS alone

from 17.9% to 16.0% WER, and further gains were obtained by discriminative adap-

tive training using minimum phone error (MPE) criterion which achieved 15.3% WER

(Ragni and Gales, 2011). This points out the direction for our future work on adaptive

training for JUD/SGMM system.

Chapter 7

Noise Adaptive Training for Subspace

Gaussian Mixture Model

7.1 Introduction

In Chapter 6, we have investigated the noise compensation technique for an SGMM

acoustic model which is trained on clean data. However, modern state-of-the-art au-

tomatic speech recognition (ASR) systems are normally trained on a large amount

of heterogeneous acoustic data recorded from different speakers and in various envi-

ronmental conditions. This induces nuisance variability in the acoustic data which is

irrelevant to the task of speech recognition, and hence reduces the recognition accu-

racy of an ASR system. Adaptive training is an effective technique to normalise such

variability. A typical example is speaker adaptive training (SAT) (Anastasakos et al.,

1996), in which speaker-dependent transformations are trained jointly with the acous-

tic model parameters in order to account for speaker-related variability. The canonical

acoustic model trained in this fashion is a better model for the phonetic variabilities

in the acoustic data. Similar adaptive training schemes have also been proposed to

normalise the variability induced by environmental noise, which is referred to as noise

adaptive training (NAT) (Deng et al., 2000; Kalinli et al., 2010), including some vari-

ants such as irrelevant variability normalisation (IVN) (Hu and Huo, 2007) and joint

adaptive training (JAT) (Liao and Gales, 2007).

The application of NAT depends on the particular choice of the noise compensation

algorithms, which may be either feature-domain or model-domain. Several approaches

of this nature have been proposed, each with specific strengths and weaknesses. For

instance, the vector Taylor series (VTS) (Moreno et al., 1996) and model-based joint

113

114 Chapter 7. Noise Adaptive Training for Subspace Gaussian Mixture Model

uncertainty decoding (JUD) (Liao, 2007) approaches rely on a mismatch function that

models the relationship between clean and noise corrupted speech. Using such a mis-

match function has the advantage that the required amount of adaptation data is small,

which is suitable for rapid adaptation. But its applicability is limited to spectral or

cepstral features. SPLICE (Deng et al., 2000; Droppo et al., 2002) and front-end JUD

(Liao and Gales, 2005) remove this constraint by learning a mapping between clean

and noisy speech from stereo (both noisy and clean) training data. However, stereo

data is normally hard to obtain, and it may not generalise well to unseen noise condi-

tions. Noisy constrained maximum likelihood linear regression (NCMLLR) (Kim and

Gales, 2011), which is a purely data-driven method, is more flexible from this perspec-

tive. It relies neither on a mismatch function (as with VTS or JUD), nor on having

stereo training data (as with SPLICE), but estimates the noise compensation transfor-

mations using the maximum likelihood (ML) criterion for each homogeneous block of

acoustic data. However, it requires a larger amount of training data to achieve good

performance, and hence it is not suitable for rapid adaptation.

In Chapter 6, we extended JUD-based noise compensation to subspace Gaussian

mixture models (SGMMs). In this Chapter, we study the application of NAT to SG-

MMs using JUD transformations. The adaptive training algorithm is derived from the

generative nature of the JUD transformation (Kim and Gales, 2011), which leads to

an efficient EM-based algorithm to update the acoustic model parameters. Again, the

experiments of using the NAT algorithm were performed on the Aurora 4 dataset and

some of the results have been presented in (Lu et al., 2013c).

7.2 Generative form of JUD

An introduction of JUD has been given in Chapter 6.3, where it is generally derived

from the model adaptation perspective. As shown in (Kim and Gales, 2011), JUD may

also be represented as a generative model for each regression class r:

yt = H(r)xt +g(r)+ e(r)t , e(r)t ∼N
(

0,ΦΦΦ(r)
)

(7.1)

where H(r) is a linear transform, g(r) denote the bias term and e(r)t is a Gaussian ad-

ditive noise. From equation (7.1), the conditional distribution of yt given xt for each

regression class can be obtained as

p(yt |xt ,r) = N
(

yt ;H(r)xt +g(r),ΦΦΦ(r)
)
. (7.2)

7.3. Noise adaptive training 115

Given this distribution, the original JUD likelihood function (6.15) can be obtained by

substituting equation (7.2) into (6.11) by setting the JUD transformation parameters to

be A(r) = H(r)−1,b(r) =−H(r)−1g(r) and ΣΣΣ
(r)
b = A(r)ΦΦΦ(r)A(r)T .

The generative view of JUD is particularly useful, since it makes it possible to

estimate the JUD transforms in a data-driven fashion. It is more flexible as it gets rid of

the mismatch function (6.6). For instance, a successful example can be found in (Kim

and Gales, 2011) which is also known as noisy-CMLLR. Meanwhile, an EM algorithm

can also be derived to update the acoustic model parameter for adaptive training as in

(Kim and Gales, 2011; Flego and Gales, 2009). Our NAT algorithm for SGMMs is

also based on such kind of reformulation of JUD as detailed in the following sections.

7.3 Noise adaptive training

Noise adaptive training (NAT) of the acoustic model involves joint optimisation of the

acoustic model parameters M and the transformation parameters T . For an SGMM

acoustic model, the auxiliary function for NAT is

Q
(

M ,T ;M̃ , T̃
)
= ∑

jkit
γ jki(t) log

[
|A(r)|N

(
A(r)yt +b(r); µµµ jki,ΣΣΣi +ΣΣΣ

(r)
b

)]
(7.3)

where M̃ and T̃ denote the current estimate of the model and transformation param-

eters, and γ jki(t) is the posterior probability, computed based on M̃ and T̃ . This aux-

iliary function is for a particular training utterance that the transformation parameters

T depend on. The overall auxiliary function for the entire training set is obtained by

summing (7.3) over all utterances.

Directly optimising either M or T is computationally demanding, especially for

an SGMM, since the auxiliary function is complex. Analogous to SAT (Anastasakos

et al., 1996), a common practice is to interleave the update of M and T one after

another (Kalinli et al., 2010; Liao and Gales, 2007). In this paper, we adopt the same

principle for adaptive training of SGMMs. We have previously detailed the estimation

of T given M in Chapter 6; in this chapter, we focus on the estimation of the acoustic

model parameters M given the estimate of the transformation parameters T .

7.3.1 Optimisation

Two optimisation approaches for the update of the acoustic model parameters M in

NAT have been investigated: second-order gradient-based (Liao and Gales, 2007;

116 Chapter 7. Noise Adaptive Training for Subspace Gaussian Mixture Model

Kalinli et al., 2010) and EM-based (Kim and Gales, 2011).

In the second-order gradient-based approach a particular set of parameters θ in M
is updated by

θ = θ̃−ζ

[(
∂2Q (·)

∂2θ

)−1(
∂Q (·)

∂θ

)]

θ=θ̃

(7.4)

where θ̃ is the current value of θ, ζ is the learning rate and Q (·) denotes the auxiliary

function (7.3). Such gradient-based optimisation was used for JUD-GMM systems

(Liao and Gales, 2007) and for VTS-GMM systems (Kalinli et al., 2010). Depending

on the form of Hessian, it may yield faster convergence. However, the drawbacks of

this approach are that the computation of the gradient and Hessian terms in (7.4) can be

complex, especially for the SGMM-based acoustic models due to the compact model

representation. Furthermore, it is not simple to do gradient-based optimisation when

using a discriminative criteria (Flego and Gales, 2009).

The second type of optimisation is based on the EM algorithm, which is derived

from viewing the JUD transformation as a generative model (7.1). This method re-

quires computing sufficient statistics of the expected “pseudo-clean” speech feature xt ,

which is obtained by computing its conditional distribution given component m:

p(xt |yt ,r,m) =
p(yt |xt ,r)p(xt |m)∫

p(yt |xt ,r)p(xt |m)dxt
. (7.5)

As shown in (Kim and Gales, 2011), an analytical solution can be obtained from (7.2),

which gives the conditional expectations as

E[xt |yt ,r,m] = x̃(rm)
t (7.6)

E[xtxT
t |y,r,m] = Σ̃ΣΣ

(rm)
x + x̃(rm)

t x̃(rm)T
t (7.7)

where

x̃(rm)
t = Ã(rm)yt + b̃(rm)

Σ̃ΣΣ
(rm)
x =

(
ΣΣΣ
(m)−1
x +ΣΣΣ

(r)−1
b

)−1

Ã(rm) = Σ̃ΣΣ
(rm)
x ΣΣΣ

(r)−1
b A(r)

b̃(rm) = Σ̃ΣΣ
(rm)
x

(
ΣΣΣ
(m)−1
x µµµ(m)

x +ΣΣΣ
(r)−1
b b(r)

)

where µµµ(m)
x and ΣΣΣ

(m)
x are the mean and covariance of Gaussian component m. Given the

expectations, the statistics can be accumulated in the standard fashion to re-estimate

the acoustic model parameters. This method makes the implementation much simpler

and hence has been used in this work.

7.3. Noise adaptive training 117

7.3.2 Model update

Using the EM-based NAT, described above, it only involves minor changes in the origi-

nal model estimation formula of the SGMMs presented in (Povey et al., 2011a). Taking

the estimation of the Gaussian mean projection Mi for instance, the auxiliary function

is

Q (Mi) = tr
(

MT
i ΣΣΣ
−1
i Yi

)
− 1

2
tr
(

MT
i ΣΣΣ
−1
i MiQi

)
(7.8)

where the sufficient statistics Yi and Qi are now obtained as

Yi = ∑
jkt

γ jki(t)E[xt |yt ,r,m]vT
jk (7.9)

Qi = ∑
jkt

γ jki(t)v jkvT
jk. (7.10)

Note that in an SGMM, the Gaussian component index m is replaced by jki as in

(6.30), and the regression class index r is replaced by i. It also worth emphasising that

the posterior probability γ jki(t) needs to be computed using the noisy feature vector yt

using the likelihood function (6.30) during the adaptive training phase.

Likewise, other types of SGMM acoustic model parameters such as v jk and ΣΣΣi can

be estimated in the same fashion using the expectations of the “pseudo-clean” feature

vectors. The EM-based algorithm for NAT is similar to some feature enhancement

methods which also estimate xt given yt , e.g. (Moreno et al., 1996). However, a fun-

damental difference is that the conditional expectations directly relate to the acoustic

model structure as in (7.6) and (7.7), while for feature enhancement they are normally

derived using a front-end GMM. Due to the closer match to the acoustic model, NAT

was found to outperform its feature enhancement counterpart in (Li et al., 2012).

Finally, it is worthwhile to point out that the UBM associated with the SGMM

acoustic model also needs to be updated during adaptive training. After NAT, the

SGMM models the “pseudo-clean” features xt , while the UBM is originally trained on

the noise-corrupted features yt . Since the UBM provides the regression class for the

Gaussian components when applying JUD (Lu et al., 2013a), it needs to be in the same

space as the SGMM. In this work, the UBM is updated using the weighted average of

118 Chapter 7. Noise Adaptive Training for Subspace Gaussian Mixture Model

the corresponding Gaussian component in the SGMM as

ΣΣΣ
ubm
i =ΣΣΣi (7.11)

wubm
i =

∑ jkt γ jki(t)

∑ jkit γ jki(t)
(7.12)

µµµubm
i = ∑

jkt

γ jki(t)
∑ jkt γ jki(t)

Miv jk (7.13)

where wubm
i , µµµubm

i and ΣΣΣubm
i are the weight, mean and covariance matrix for component

i in the UBM respectively. Updating the UBM was found to improve the recognition

accuracy of the NAT system.

7.3.3 Training recipe

To sum up, the NAT recipe for an SGMM acoustic model used in this paper is as

follows.

1. Initialise the acoustic model M by the standard maximum likelihood training.

2. For each training utterance, initialise the noise model parameters for nt and ht in

(6.6).

3. Re-estimate the noise model parameters given M .

4. Obtain the JUD transformation parameters T .

5. Given M and T , compute the posterior probability γ jki(t) using (6.30).

6. Accumulate the statistics using the conditional expectations (7.6) (7.7) and up-

date M .

7. Go to step 5 until convergence.

8. Update the UBM using equations (7.11) - (7.13).

9. Go to step 2 until the number of iterations is reached.

While this paper focuses on the NAT algorithm for the SGMMs, more details about

noise model and JUD transform estimation used in step 2 to step 4 can be found in

Chapter 6.

7.4. Experiments 119

7.4 Experiments

As in Chapter 6, the experiments were performed on the Aurora 4 corpus. We used

39 dimensional feature vectors derived from 12th order mel frequency cepstral coef-

ficients, plus the zeroth order coefficient (C0), with delta and acceleration features.

Again, we used the standard WSJ0 5k bigram language model (Paul and Baker, 1992)

and the CMU pronunciation dictionary. Same as in Chapter 6, the SGMM systems

have about 3900 tied triphone states, 16,000 sub-states, and I = 400 Gaussians in the

UBM, which results in 6.4 million surface Gaussians. As mentioned before, the phase-

sensitive mismatch function (6.6) is used to estimate the JUD transforms. Based on

the previous findings in Chapter 6, all the entries in ααα are empirically set to 2.5 in both

training and decoding stages unless otherwise specified.

7.4.1 Results

The experimental results are given in Table 7.1 using the clean, MST and NAT acoustic

models. The NAT system is trained following the recipe in section 7.3.3, where we

perform 4 iterations in step 7 which yields convergence, and only 1 iteration in step

9. As expected, the MST system is significantly more accurate than the clean trained

system without JUD compensation since the mismatch between the training and testing

data is reduced. However, with JUD compensation we observe that the clean model is

more accurate than MST (16.8% vs. 17.6%). This may be due to the larger variability

in the MST model making it less suitable for rapid adaptation towards a particular

noise condition using limited adaptation data. The NAT system, on the other hand,

normalises the irrelevant variability in the training data using noise dependent JUD

transforms. Without JUD in the decoding stage, this model results in higher WER than

MST, since it does not match the testing data well. With JUD adaptation, however,

it is more accurate than the MST and clean systems with a WER of 15.7%, which is

slightly better than the adaptively-trained GMM system using VTS on the same dataset

(16.0%) (Flego and Gales, 2012).

Previous work on empirically tuning the phase factor ααα in (6.6) has shown that

it is able to bring significant gains in both VTS- and JUD-based noise robust speech

recognition systems (Deng et al., 2004; Li et al., 2009; Lu et al., 2013a). Interpreted as

a phase factor, the values of the elements of ααα should be in the range [−1,1] (Deng

et al., 2004). However, experimental studies have demonstrated that treating ααα as

additional model parameters tuned to mitigate the mismatch between the training and

120 Chapter 7. Noise Adaptive Training for Subspace Gaussian Mixture Model

Table 7.1: Word error rates (WERs) of SGMM systems with and without noise adaptive

training.

Methods A B C D Avg

Clean model 5.2 58.2 50.7 72.1 59.9

+JUD 5.1 13.1 12.0 23.2 16.8

MST model 6.8 15.2 18.6 32.3 22.2

+JUD 7.4 13.3 14.7 24.1 17.6

NAT model 6.5 20.3 19.8 39.7 27.6

+JUD 6.1 11.3 11.9 22.4 15.7

testing data (Gales and Flego, 2010) results in improved accuracy (Li et al., 2009; Lu

et al., 2013a). While previous studies on this issue were mainly based on systems

trained on clean data (Li et al., 2009; Lu et al., 2013a), we see similar trends with our

MST and NAT systems. Figure 7.1 shows the WER of the systems using the three

models by empirically tuning the values of ααα in the decoding stage as in (Li et al.,

2009; Lu et al., 2013a). It shows that tuning the value of ααα results in gains for all the

three systems, e.g. 15.5% (ααα = 2.0) vs. 17.0% (ααα = 0) for the NAT system. However,

compared to the MST and NAT systems that are trained on multi-condition data, the

improvement is much larger for the highly mismatched system that is trained on clean

data, e.g. 16.8% (ααα = 2.0) vs. 20.3% (ααα = 0). These results support the previous

argument that tuning ααα may help to reduce the mismatch between the training and

testing conditions. Note that, the results were obtained by tuning ααα in the decoding

phase only; future work will investigate the effect of ααα on the training stage for NAT

system.

7.5 Conclusions

We have investigated the noise adaptive training (NAT) algorithm for an SGMM acous-

tic model using multi-condition training data. Our method is based on the joint uncer-

tainty decoding (JUD) noise compensation technique. For adaptive training, an EM-

based optimisation algorithm is employed which is derived from reformulating JUD

adaptation into a generative model. This algorithm has proven to be simple for im-

plementation, and effective in terms of recognition accuracy. Evaluation was carried

out using the Aurora 4 dataset; using NAT, the SGMM system achieved the lowest

7.5. Conclusions 121

0 0.5 1.0 1.5 2.0 2.5
15

16

17

18

19

20

21

The value of phase factor

W
or

d
Er

ro
r R

at
e

(\%
)

JUD SGMM with Clean model
JUD SGMM with MST model
JUD SGMM with NAT model

Figure 7.1: Results of tuning the value of phase factor ααα in the decoding stage.

WER (15.5%) which is considerably better than systems without adaptive training.

These experiments are also helpful to understand the effect of phase factor parameter

in the mismatch function. Future work will be on applying a discriminative criterion to

the adaptively trained system that has been found effective with GMM based systems

(Flego and Gales, 2009; Gales and Flego, 2010).

Chapter 8

Conclusion

This thesis investigates the subspace Gaussian mixture model (SGMM) for automatic

speech recognition. This type of model differs from the conventional GMM/HMM

system for speech recognition in that the state dependent GMM parameters are derived

from globally shared model subspace and low-dimensional state-dependent vectors.

One of the benefits is that the total number of model parameters may be reduced which

makes the model more efficient for low-resource speech recognition task. In addition,

acoustic factorisation can be performed by using separated model subspaces which

leads to more elegant acoustic modelling and higher recognition accuracy. For in-

stance, phonetic and speaker factors can be modelled in the current framework. Chap-

ter 3 presents an overview of this model.

Chapter 4 describes the regularized model estimation for SGMMs that we proposed

in (Lu et al., 2011b), where a regularization penalty was introduced to the maximum

likelihood objective function in order to avoid the model overfitting. In this work, regu-

larized estimation was employed on the state vectors, and there different regularization

penalties — `1-norm, `2-norm penalty, as well as their combined form, the elastic net

penalty — were investigated. Experimental results indicate that the `1-norm penalty

leads to better performance in terms of recognition accuracy and model robustness.

Regularization is particularly effective when the amount of training data is very lim-

ited, as was demonstrated in the experiments in Chapter 5, where significant gains was

achieved by using `1-norm regularization in the cross-lingual systems.

A typical feature of SGMM acoustic model is that a large proportion of model

parameters are globally shared, which do not depend on the HMM topology. This

property is particularly useful for cross-lingual settings, in which, the globally shared

parameters are estimated from source language systems which are data rich. These pa-

123

124 Chapter 8. Conclusion

rameters can be reused in the target language system and reduce the amount of training

data that is required to train the model. In Chapter 5, a comprehensive investigation of

using SGMMs for cross-lingual speech recognition is presented including multilingual

parameter tying, regularization and cross-lingual model adaptation and speaker adap-

tive training. This method can achieve excellent results for low-resource task. For in-

stance, our experiments on the GlobalPhone shown that, the cross-lingual SGMM sys-

tem obtained 26.7% WER with only 1 hour training data, significantly outperformed

the GMM and SGMM baseline with WER as 34.1% and 31.4% respectively.

Chapter 6 addresses the issue of noise robustness for SGMM acoustic model using

joint uncertainty decoding (JUD) technique. In JUD, the noise compensation parame-

ters are shared among Gaussian components within the same regression class instead

of per component noise compensation. This significantly saves the computational cost

with only slightly sacrifice on the recognition accuracy. In Chapter 6, JUD with vector

Taylor series (VTS) approximation was implemented and studied for SGMM acoustic

models. Experimental results on the Aurora 4 corpus indicate that JUD/SGMM system

can achieve the state-of-the-art performance with 16.8% WER which is comparable to

the conventional VTS/GMM system. We also investigated the unscented transform

(UT) approximation with JUD instead of VTS for noise-robust SGMMs. It was found

that UT results in higher recognition accuracy than VTS when the phase term between

noise and speech was not considered. After introducing the phase term, UT and VTS

achieved the same recognition accuracy on the Aurora 4 task.

Chapter 7 investigates the noise adaptive training (NAT) algorithm based JUD for

SGMMs. By normalising the noise variability in the multi-style training data, NAT

achieves more than 1% absolute WER reduction on the Aurora 4 dataset. As a highly

structured model, SGMM provides much room for innovations for future work. Fol-

lowing the work in this thesis. the promising future research directions within the

SGMM framework include

• Multilingual speaker adaptive training

The aim of multilingual speech recognition is hard to achieve mainly because of

the mismatch in phone units between languages. However, the SGMM acoustic

model can avoid this issue since the globally shared parameters do not depend

on the HMM topology and therefore, these parameters can be reused among lan-

guages or estimated by multilingual data. Previous work on multilingual SGMM

acoustic models does not consider the speaker variance inter- and intra-language

(Burget et al., 2010). We expect further gains maybe achieved by performing

125

multilingual speaker adaptive training to normalise the variance and make the

system robust against the mismatch among the corpus of different languages.

This can be done by tying the speaker subspace in SGMMs or the speaker linear

transforms across multilingual systems and estimate these parameters by multi-

lingual data.

• Log-spectral domain noise compensation

Log-spectral domain noise compensation aims at getting rid of the DCT and

inverse DCT transforms in the mismatch function (6.6). This can be simply

done by using log-spectral features rather than cesptral features as MFCCs. This

leads to several benefits. For instance, the mismatch function is simplified and

may lead to more accurate approximation by either VTS or UT. Furthermore, the

Jacobian matrix is diagonal which will results in significant reduction in terms

of the computational cost. However, this idea is hard to employ in conventional

GMM based acoustic models using diagonal covariance matrices which require

the features to be de-correlated by the DCT. An SGMM does not have this con-

straint since full covariance matrices can be used. This makes the idea feasible

to be explored.

• Speaker and noise factorisation

Chapter 6 and 7 explores noise compensation and adaptive training for an SGMM

acoustic model. Though good results have been obtained, the speaker-dependent

variability is not considered, which is another one of the major impacts that af-

fect ASR systems. Speaker and noise factorisation has been investigated with

standard GMM-based system (Wang and Gales, 2011; Seltzer and Acero, 2011),

and have shown promising results. It is interesting to explore this topic with

SGMM acoustic models which is more structured. In addition, some unsuper-

vised methods may be worth looking at, which is inspired from our results on

unsupervised noise compensation in Chapter 6.

Appendix A

MAP update of phone projection

matrix

Here, we present the detailed analytical solution of the MAP estimate of subspace

parameters with Gaussian prior by solving the following auxiliary function:

Q̃ (Mi) ∝ tr
(

MT
i ΣΣΣ
−1
i Yi + τMT

i ΩΩΩ
−1
r M̄iΩΩΩ

−1
c

)

− 1
2

tr
(

ΣΣΣ
−1
i MiQiMT

i + τΩΩΩ
−1
r MiΩΩΩ

−1
c MT

i

)
. (A.1)

The original formulation is given by Povey (Povey, 2009) (App. J), and we summarize

the main ideas.

The solution is not readily available by taking the derivative of Q̃ (Mi) with respect

to Mi and setting it to be zero. Instead, we introduce an intermediate transform T =

UT L−1 that simultaneously diagonalises ΣΣΣ
−1
i and ΩΩΩ−1

r , where

ΣΣΣ
−1
i = LLT (Cholesky decomposition), (A.2)

S = L−1
ΩΩΩ
−1
r L−T , (A.3)

S = UΛUT (Eigenvalue decomposition). (A.4)

It is the case that TΣΣΣ
−1
i T = I and TΩΩΩ−1

r T =ΛΛΛ, where I is the identity matrix, and ΛΛΛ is a

diagonal matrix holding the eigenvalues of matrix S. If we further define Mi = TT M′
i,

then equation (A.1) can be rewritten as

Q̃ (M
′
i) ∝ tr

(
M
′T
i T
(
ΣΣΣ
−1
i Yi + τΩΩΩ

−1
r M̄iΩΩΩ

−1
c
))

− 1
2

tr
(

M
′
iQiM

′T
i + τΛΛΛM

′
iΩΩΩ
−1
c M

′T
i

)
. (A.5)

127

128 Appendix A. MAP update of phone projection matrix

Now we can take the derivative of Q̃ (M′
i) with respect to M′

i:

∂Q̃ (M′
i)

∂M′
i

= T
(
ΣΣΣ
−1
i Yi + τΩΩΩ

−1
r M̄iΩΩΩ

−1
c
)
−M

′
iQi− τΛΛΛM

′
iΩΩΩ
−1
c . (A.6)

Setting this derivative to be zero, we obtain the row by row solution of M′
i as

m
′
n = gn

(
Qi + τλnΩΩΩ

−1
c
)−1

, (A.7)

where m′
n is the nth row of M′

i, λn is the nth diagonal element of ΛΛΛ, and gn is the nth

row of matrix T
(
ΣΣΣ
−1
i Yi+τΩΩΩ−1

r M̄iΩΩΩ
−1
c
)
. The final solution of Mi can then be obtained

by Mi = TT M′
i. The results of using ΩΩΩr =ΩΩΩc = I are also readily available.

Appendix B

Update the additive and channel noise

mean

The following derivations are for the static features; the delta and acceleration coeffi-

cients may be obtained using a continuous time approximation, as discussed in Chapter

6 (Section 6.2), in which the static and dynamic coefficients are assumed to be inde-

pendent. Likewise, the JUD transforms (A(i),b(i),ΣΣΣ
(i)
b) in these derivations correspond

to the static coefficients only.

We denote the clean and noisy UBM models as {µµµ(i)x ,ΣΣΣ
(i)
x ; i= 1, . . . , I}, and {µµµ(i)y ,ΣΣΣ

(i)
y ; i=

1, . . . , I}, respectively. As stated before, the derivations here are similar to the VTS

noise model estimation (Liao (2007), Chapter 4), but with a different accumulation

of statistics for the SGMM. We use a similar notations to (Liao, 2007) in order to

make clear the relations and difference between the two. We first rewrite the auxiliary

function (6.31) for the static coefficients as

Q (·) = ∑
jkit

γ jki(t)
[
logN

(
yt ; A(i)−1

(
µµµ jki−µµµ(i)x

)
+µµµ(i)y ,Σ̃ΣΣ

(i)
y

)]

=−1
2 ∑

jkit
γ jki(t)

(
log |Σ̃ΣΣ(i)

y |+ ỹT
jkitΣ̃ΣΣ

(i)−1
y ỹ jkit

)
(B.1)

where

ỹ jkit =
(

yt−A(i)−1
(

µµµ jki−µµµ(i)x

)
−µµµ(i)y

)
, (B.2)

Σ̃ΣΣ
(i)
y = A(i)−1

(
ΣΣΣi +ΣΣΣ

(i)
b

)
A(i)−T

=ΣΣΣ
(i)
y +A(i)−1

(
ΣΣΣi−ΣΣΣ

(i)
x

)
A(i)−T . (B.3)

To update the noise model, we first fix the VTS expansion point, so that the Jaco-

bian matrices are also fixed, and µµµ(i)y is a function of the additive and channel noise

129

130 Appendix B. Update the additive and channel noise mean

means, µµµn and µµµh, only. Using the first order VTS expansion around the old noise

model parameters (µ̌µµn,µ̌µµh), µµµ(i)y can be expressed as

µµµ(i)y ≈ E
{

f
(

µµµ(i)x ,µ̌µµn,µ̌µµh,ααα
)
+G(i)

x

(
x−µµµ(i)x

)
+G(i)

n (n− µ̌µµn)+G(i)
h (h− µ̌µµh)

}

= µ̌µµ(i)y +G(i)
n (µ̂µµn− µ̌µµn)+G(i)

h (µ̂µµh− µ̌µµh) , (B.4)

where G(i)
x and G(i)

n are the Jacobian matrices (6.20) and (6.21). G(i)
h is defined as

G(i)
h =

∂ f (·)
∂µ̌µµh
|
µµµ(i)x ,µ̌µµh,µ̌µµn

. (B.5)

Taking the derivative of Q (·) w.r.t. µ̂µµn, we obtain

∂Q (·)
∂µ̂µµn

= ∑
jkit

γ jki(t)G
(i)T
n Σ̃ΣΣ

(i)−1
y ỹ jkit

= ∑
jkit

γ jki(t)G
(i)T
n Σ̃ΣΣ

(i)−1
y

(
yt−A(i)−1

(
µµµ jki−µµµ(i)x

)

− µ̌µµ(i)y −G(i)
n (µ̂µµn− µ̌µµn)−G(i)

h (µ̂µµh− µ̌µµh)
)

= d−Eµ̂µµn−Fµ̂µµh, (B.6)

where

d = ∑
jkit

γ jki(t)G
(i)T
n Σ̃ΣΣ

(i)−1
y

(
yt−A(i)−1

(
µµµ jki−µµµ(i)x

)
− µ̌µµ(i)y +G(i)

n µ̌µµn +G(i)
h µ̌µµh

)
, (B.7)

E = ∑
i

γiG
(i)T
n Σ̃ΣΣ

(i)−1
y G(i)

n , (B.8)

F = ∑
i

γiG
(i)T
n Σ̃ΣΣ

(i)−1
y G(i)

h , (B.9)

and γi = ∑ jkt γ jki(t). Similarly, taking the derivative of Q (·) w.r.t. µ̂µµh gives

∂Q (·)
∂µ̂µµh

= ∑
jkit

γ jki(t)G
(i)T
h Σ̃ΣΣ

(i)−1
y ỹ jkit

= u−Vµ̂µµn−Wµ̂µµh, (B.10)

where

u = ∑
jkit

γ jki(t)G
(i)T
h Σ̃ΣΣ

(i)−1
y

(
yt−A(i)−1

(
µµµ jki−µµµ(i)x

)
− µ̌µµ(i)y +G(i)

n µ̌µµn−G(i)
h µ̌µµh

)
,

(B.11)

V = ∑
i

γiG
(i)T
h Σ̃ΣΣ

(i)−1
y G(i)

n , (B.12)

W = ∑
i

γiG
(i)T
h Σ̃ΣΣ

(i)−1
y G(i)

h . (B.13)

131

Setting the two derivatives to be zero we obtain
[

E F
V W

][
µ̂µµn

µ̂µµh

]
=

[
d
u

]
, (B.14)

which gives

[
µ̂µµn

µ̂µµh

]
=

[
E F
V W

]−1[
d
u

]
. (B.15)

In our implementation, we cached the statistics that are independent of the noise

parameter so that they were not computed repeatedly. For instance, d can be decom-

posed as follows:

d = ∑
i

γiG
(i)T
n Σ̃ΣΣ

(i)−1
y

(
G(i)

n µ̌µµn +G(i)
h µ̌µµh− µ̌µµ(i)y

)
+∑

i
G(i)T

n Σ̃ΣΣ
(i)−1
y ∑

jkt
γ jki(t)yt

︸ ︷︷ ︸
cached

−∑
i

G(i)T
n Σ̃ΣΣ

(i)−1
y A(i)−1

∑
jkt

γ jki(t)
(

µµµ jki−µµµ(i)x

)

︸ ︷︷ ︸
cached

Caching was also used for the computation of u in (B.11).

Appendix C

Update the additive noise variance

The derivation here is similar to the estimation of the additive noise variance ΣΣΣn for

VTS (Liao (2007), App. C). To update ΣΣΣn, we first fix the value of µµµn and µµµh. Again,

the derivations are for static features only. For the dynamic coefficients of ΣΣΣn, the

derivations are similar. We rewrite the auxiliary function (B.1):

Q (·) =−1
2 ∑

jkit
γ jki(t)

(
log |Σ̃ΣΣ(i)

y |+ ỹT
jkitΣ̃ΣΣ

(i)−1
y ỹ jkit

)
(C.1)

where ỹ jkit and Σ̃ΣΣ
(i)
y are defined in (B.2) and (B.3). Note that that Σ̃ΣΣ

(i)
y is full rather

than diagonal (unlike Liao (2007)). Therefore, the derivations are slightly different.

Since ỹ jkit does not depend on ΣΣΣn, by taking derivative Q (·) w.r.t. to the dth diagonal

element of ΣΣΣn, we obtain:

∂Q (·)
∂σ2

n,d
=−1

2 ∑
jkit

γ jki(t)

[
∂ log |Σ̃ΣΣ(i)

y |
∂σ2

n,d︸ ︷︷ ︸
first part

+ ỹT
jkit

∂Σ̃ΣΣ
(i)−1
y

∂σ2
n,d

ỹ jkit

︸ ︷︷ ︸
second part

]
(C.2)

The first part of the derivative is

∂ log |Σ̃ΣΣ(i)
y |

∂σ2
n,d

=
1

|Σ̃ΣΣ(i)
y |

∂|Σ̃ΣΣ(i)
y |

∂σ2
n,d

= Tr


Σ̃ΣΣ

(i)−1
y

∂Σ̃ΣΣ
(i)
y

∂σ2
n,d


 . (C.3)

It can be seen from (B.3) that only ΣΣΣ
(i)
y depends on σ2

n,d , and from (6.23)

ΣΣΣ
(i)
y = G(i)

x ΣΣΣ
(i)
x G(i)T

x +G(i)
n ΣΣΣnG(i)T

n .

Hence

∂Σ̃ΣΣ
(i)
y

∂σ2
n,d

=
∂ΣΣΣ

(i)
y

∂σ2
n,d

= [G(i)
n]d[G

(i)
n]Td , (C.4)

133

134 Appendix C. Update the additive noise variance

where [G(i)
n]d denotes the dth column of G(i)

n . Substituting (C.4) into (C.3), we obtain

the first part of the derivative as

κid ≡
∂ log |Σ̃ΣΣ(i)

y |
∂σ2

n,d
= Tr

(
Σ̃ΣΣ
(i)−1
y [G(i)

n]d[G
(i)
n]Td

)

= [G(i)
n]Td Σ̃ΣΣ

(i)−1
y [G(i)

n]d (C.5)

Similarly, for the second part of the derivative

∂Σ̃ΣΣ
(i)−1
y

∂σ2
n,d

=−Σ̃ΣΣ
(i)−1
y

∂Σ̃ΣΣ
(i)
y

∂σ2
n,d

Σ̃ΣΣ
(i)−1
y

=−Σ̃ΣΣ
(i)−1
y [G(i)

n]d[G
(i)
n]Td Σ̃ΣΣ

(i)−1
y (C.6)

Hence, we can compute it as

∑
jkit

γ jki(t)ỹT
jkit

∂Σ̃ΣΣ
(i)−1
y

∂σ2
n,d

ỹ jkit =−∑
jkit

γ jki(t)ỹT
jkitΣ̃ΣΣ

(i)−1
y [G(i)

n]d[G
(i)
n]Td Σ̃ΣΣ

(i)−1
y ỹ jkit

=−∑
jkit

γ jki(t)[G
(i)
n]Td Σ̃ΣΣ

(i)−1
y ỹ jkit ỹT

jkitΣ̃ΣΣ
(i)−1
y [G(i)

n]d

=−∑
i
[G(i)

n]Td Σ̃ΣΣ
(i)−1
y ΩΩΩiΣ̃ΣΣ

(i)−1
y [Gi

n]d,

where we have accumulated all the statistics indexed by j,k, t as

ΩΩΩi = ∑
jkt

γ jki(t)ỹ jkit ỹT
jkit . (C.7)

Again, we decompose ΩΩΩi and cache the statistics that do not depend on the noise

parameters in order to save the computation, but we omit the details here for brevity.

If we denote

βid ≡ [G(i)
n]Td Σ̃ΣΣ

(i)−1
y ΩΩΩiΣ̃ΣΣ

(i)−1
y [Gi

n]d, (C.8)

then the gradient can be expressed as

∂Q (·)
∂σ2

n,d
=−1

2

I

∑
i=1

(γiκid−βid). (C.9)

As stated before, to enforce positivity, the logarithm of the variance is estimated by

Li et al. (2009):

σ̃
2
n,d = log(σ2

n,d), (C.10)

σ
2
n,d = exp(σ̃2

n,d). (C.11)

135

Then we can obtain

∂Q (·)
∂σ̃2

n,d
=

∂Q (·)
∂σ2

n,d

∂σ2
n,d

∂σ̃2
n,d

=
∂Q (·)
∂σ2

n,d
σ

2
n,d

=−1
2

I

∑
i=1

(γiκid−βid)σ
2
n,d. (C.12)

Next, we calculate the Hessian matrix of Q (·) w.r.t. the noise variance ∂2Q (·)/∂(σ2
n,d)

2.

From the gradient (C.9) we can obtain:

∂2Q (·)
∂(σ2

n,d)
2
=

∂

∂σ2
n,d

(
∂Q (·)
∂σ2

n,d

)

=
∂

∂σ2
n,d

(
−1

2

I

∑
i=1

(γiκid−βid)

)

=−1
2

I

∑
i=1

(γi
∂κid

∂σ2
n,d
− ∂βid

∂σ2
n,d

). (C.13)

From (C.5) and (C.6), we can obtain the first part of the derivative as:

∂κid

∂σ2
n,d

= [G(i)
n]Td

∂Σ̃ΣΣ
(i)−1
y

∂σ2
n,d

[G(i)
n]d

=− [G(i)
n]Td Σ̃ΣΣ

(i)−1
y [G(i)

n]d︸ ︷︷ ︸
κid

[G(i)
n]Td Σ̃ΣΣ

(i)−1
y [G(i)

n]d︸ ︷︷ ︸
κid

=−κ
2
id. (C.14)

Using (C.8) and (C.6), we can compute the second part of the derivative ∂βid/∂σ2
n,d:

∂βid

∂σ2
n,d

=
∂

(
[G(i)

n]Td Σ̃ΣΣ
(i)−1
y ΩΩΩiΣ̃ΣΣ

(i)−1
y [G(i)

n]d

)

∂σ2
n,d

= [G(i)
n]Td

∂Σ̃ΣΣ
(i)−1
y

∂σ2
n,d

ΩΩΩiΣ̃ΣΣ
(i)−1
y [G(i)

n]d +[G(i)
n]Td Σ̃ΣΣ

(i)−1
y ΩΩΩi

∂Σ̃ΣΣ
(i)−1
y

∂σ2
n,d

[G(i)
n]d

=− [G(i)
n]Td Σ̃ΣΣ

(i)−1
y [G(i)

n]d︸ ︷︷ ︸
κid

[G(i)
n]Td Σ̃ΣΣ

(i)−1
y ΩΩΩiΣ̃ΣΣ

(i)−1
y [G(i)

n]d︸ ︷︷ ︸
βid

− [G(i)
n]Td Σ̃ΣΣ

(i)−1
y ΩΩΩiΣ̃ΣΣ

(i)−1
y [G(i)

n]d︸ ︷︷ ︸
βid

[G(i)
n]Td Σ̃ΣΣ

(i)−1
y [G(i)

n]d︸ ︷︷ ︸
κid

=−2κidβid .

(C.15)

By summing the two parts we obtain

∂2Q (·)
∂(σ2

n,d)
2
=−1

2

I

∑
i=1

(
2κidβid− γiκ

2
id
)
, (C.16)

136 Appendix C. Update the additive noise variance

and the Hessian of the logarithm of the variance can be estimated as

∂2Q (·)
∂(σ̃2

n,d)
2
=

∂

∂σ̃2
n,d

(
∂Q (·)
∂σ̃2

n,d

)

=
∂Q (·)
∂σ2

n,d
σ

2
n,d +

∂2Q (·)
∂(σ2

n,d)
2

σ
2
n,dσ

2
n,d

=−1
2

I

∑
i=1

(γiκid−βid)σ
2
n,d−

1
2

I

∑
i=1

(
2κidβid− γiκ

2
id
)

σ
2
n,dσ

2
n,d. (C.17)

After obtaining the gradient (C.12) and Hessian (C.17) of the logarithm of the variance

σ̃2
n,d we can update the estimate similar to (C.18) as

ˆ̃σ2
n,d = σ̃

2
n,d−ζ

(
∂2Q (·)
∂(σ̃2

n,d)
2

)−1(
∂Q (·)
∂σ̃2

n,d

)
. (C.18)

Then we use equation (C.11) to compute the original variance.

Bibliography

Acero, A. (1990). Acoustic and Enviromental Robustness in Automatic Speech Recog-

nition. PhD thesis, Carnegie Mellon University.

Anastasakos, Y., McDonough, J., Schwartz, R., and Makhoul, J. (1996). A compact

model for speaker-adaptive training. In ICSLP Proceedings.

Aradilla, G., Bourlard, H., and Doss, M. (2008). Using KL-based acoustic models in

a large vocabulary recognition task. In Proc. INTERSPEECH.

Arrowood, J. and Clements, M. (2002). Using observation uncertainty in HMM de-

coding. In Proc. ICSLP.

Aubert, X. (2002). An overview of decoding techniques for large vocabulary continu-

ous speech recognition. Computer Speech & Language, 16(1):89–114.

Axelrod, S., Goel, V., Gopinath, R., Olsen, P., and Visweswariah, K. (2005). Subspace

constrained gaussian mixture models for speech recognition. Speech and Audio

Processing, IEEE Transactions on, 13(6):1144–1160.

Barker, J. (1975). The DRAGON system–An overview. IEEE Transactions on Acous-

tics, Speech and Signal Processing, 23(1):24–29.

Barzilai, J. and Borwein, J. (1988). Two point step size gradient methods. IMAJ.

Numer. Anal., 8:141–148.

Baum, L. (1972). An equality and associated maximization technique in statistical

estimation for probabilistic functions of Markov processes. Inequalities, 3(1–8).

Baum, L., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique

occurring in the statistical analysis of probabilistic functions of markov chains. The

annals of mathematical statistics, pages 164–171.

137

138 Bibliography

Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer New York:.

Burget, L., Schwarz, P., Agarwal, M., Akyazi, P., Feng, K., Ghoshal, A., Glembek, O.,

Goel, N., Karafiát, M., Povey, D., Rastrow, A., Rose, R., and Thomas, S. (2010).

Multilingual acoustic modeling for speech recognition based on subspace Gaussian

mixture models. In Proc. IEEE ICASSP, pages 4334–4337.

Byrne, W., Beyerlein, P., Huerta, J., Khudanpur, S., Marthi, B., Morgan, J., Peterek, N.,

Picone, J., and Wang, W. (2000). Towards language independent acoustic modeling.

In Proc. ICASSP, pages 1029–1032. IEEE.

Çetin, O., Magimai-Doss, M., Livescu, K., Kantor, A., King, S., Bartels, C., and

Frankel, J. (2007). Monolingual and crosslingual comparison of tandem features

derived from articulatory and phone MLPs. In Proc. ASRU, pages 36–41. IEEE.

Chen, S., Donoho, D., and Saunders, M. (2001). Atomic decomposition by basis

pursuit. SIAM review, pages 129–159.

Dahl, G., Yu, D., Deng, L., and Acero, A. (2012). Context-Dependent Pre-Trained

Deep Neural Networks for Large-Vocabulary Speech Recognition. IEEE Transac-

tions on Audio, Speech, and Language Processing, 20(1):30–42.

Davis, S. and Mermelstein, P. (1980). Comparison of parametric representations for

monosyllabic word recognition in continuously spoken sentences. Acoustics, Speech

and Signal Processing, IEEE Transactions on, 28(4):357–366.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incom-

plete data via the em algorithm. Journal of the Royal Statistical Society. Series B

(Methodological), 39(1):1–38.

Deng, L., Acero, A., Plumpe, M., and Huang, X. (2000). Large-vocabulary speech

recognition under adverse acoustic environments. In Proc. ICSLP.

Deng, L., Droppo, J., and Acero, A. (2004). Enhancement of log mel power spectra

of speech using a phase-sensitive model of the acoustic environment and sequen-

tial estimation of the corrupting noise. IEEE Transactions on Speech and Audio

Processing, 12(2):133–143.

Deng, L., Droppo, J., and Acero, A. (2005). Dynamic compensation of HMM

variances using the feature enhancement uncertainty computed from a parametric

Bibliography 139

model of speech distortion. IEEE Transactions on Speech and Audio Processing,

13(3):412–421.

Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory,

52(4):1289–1306.

Droppo, J. and Acero, A. (2008). Environmental robustness. In Benesty, J., Sondhi, M.,

and Huang, Y., editors, Handbook of Speech Processing, pages 653–679. Springer.

Droppo, J., Acero, A., and Deng, L. (2002). Uncertainty decoding with SPLICE for

noise robust speech recognition. In Proc. ICASSP. IEEE.

Du, J. and Huo, Q. (2011). A feature compensation approach using high-order vector

Taylor series approximation of an explicit distortion model for noisy speech recogni-

tion. IEEE Transactions on Audio, Speech, and Language Processing, 19(8):2285–

2293.

Dutilleul, P. (1999). The MLE algorithm for the matrix normal distribution. Journal

of Statistical Computation and Simulation, 64(2):105–123.

Faubel, F., McDonough, J., and Klakow, D. (2010). On expectation maximization

based channel and noise estimation beyond the vector Taylor series expansion. In

Proc. ICASSP, pages 4294–4297. IEEE.

Figueiredo, M., Nowak, R., and Wright, S. (2007). Gradient projection for sparse re-

construction: Application to compressed sensing and other inverse problems. IEEE

Journal on selected topics in Signal Processing, 1(4):586–597.

Flego, F. and Gales, M. (2009). Discriminative adaptive training with vts and jud. In

Automatic Speech Recognition & Understanding, 2009. ASRU 2009. IEEE Work-

shop on, pages 170–175. IEEE.

Flego, F. and Gales, M. (2011). Factor analysis based VTS and JUD noise estimation

and compensation. In Proc. ICASSP, pages 4792–4795. IEEE.

Flego, F. and Gales, M. (2012). Factor analysis based VTS discriminative adaptive

training. In Proc. ICASSP, pages 4669–4672. IEEE.

Frey, B., Deng, L., Acero, A., and Kristjansson, T. (2001). ALGONQUIN: Iterating

Laplace’s method to remove multiple types of acoustic distortion for robust speech

140 Bibliography

recognition. In Seventh European Conference on Speech Communication and Tech-

nology.

Furui, S. (1986). Speaker-independent isolated word recognition using dynamic fea-

tures of speech spectrum. Acoustics, Speech and Signal Processing, IEEE Transac-

tions on, 34(1):52–59.

Gales, M. (1995). Model-based techniques for noise robust speech recognition. PhD

thesis, Cambridge University.

Gales, M. (1996). The generation and use of regression class trees for MLLR adapta-

tion. Technical report, Univeristy of Cambridge, Department of Engineering.

Gales, M. (1998a). Cluster adaptive training for speech recognition. In Proc. ICSLP.

Gales, M. (1998b). Maximum likelihood linear transformations for HMM-based

speech recognition. Computer Speech and Language, 12:75–98.

Gales, M. and Flego, F. (2010). Discriminative classifiers with adaptive kernels for

noise robust speech recognition. Computer Speech & Language, 24(4):648–662.

Gales, M. and Van Dalen, R. (2007). Predictive linear transforms for noise robust

speech recognition. In Proc. ASRU, pages 59–64. IEEE.

Gales, M. and Young, S. (2008). The application of hidden markov models in speech

recognition. Foundations and Trends in Signal Processing, 1(3):195–304.

Gauvain, J. and Lee, C. (1994). Maximum a posteriori estimation for multivariate

Gaussian mixture observations of Markov chains. IEEE transactions on speech and

audio processing, 2(2):291–298.

Ghalehjegh, S. H. and Rose, R. C. (2013). Phonetic subspace adaptation for automatic

speech recognition. In Proc. ICASSP.

Ghoshal, A., Povey, D., Agarwal, M., Akyazi, P., Burget, L., Feng, K., Glembek, O.,

Goel, N., Karafiát, M., Rastrow, A., et al. (2010). A novel estimation of feature-

space mllr for full-covariance models. In Proc. ICASSP, pages 4310–4313. IEEE.

Goel, N., Thomas, S., Agarwal, M., Akyazi, P., Burget, L., Feng, K., Ghoshal, A.,

Glembek, O., Karafiát, M., Povey, D., Rastrow, A., Rose, R., and Schwarz, P. (2010).

Approaches to automatic lexicon learning with limited training examples. In proc.

ICASSP, pages 5094–5097. IEEE.

Bibliography 141

Gopinath, R., Gales, M., Gopalakrishnan, P., Balakrishnan-Aiyer, S., and Picheny, M.

(1995). Robust speech recognition in noise—Performance of the IBM continuous

speech recogniser on the ARPA noise spoke task. In Proc. ARPA Workshops Spoken

Lang. Syst. Technol., pages 127–130.

Gupta, A. and Nagar, D. (1999). Matrix Variate Distributions, volume 104 of Mono-

graphs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC.

Gustafsson, F. and Hendeby, G. (2012). Some relations between extended and un-

scented Kalman filters. IEEE Transactions on Signal Processing, 60(2):545–555.

Hastie, T., Tibshirani, R., and Friedman, J. (2005). The elements of statistical learning:

data mining, inference and prediction. Springer.

Hermansky, H. (1990). Perceptual linear predictive (plp) analysis of speech. The

Journal of the Acoustical Society of America, 87:1738.

Hermansky, H., Ellis, D., and Sharma, S. (2000). Tandem connectionist feature extrac-

tion for conventional HMM systems. In Proc. ICASSP, pages 1635–1638. IEEE.

Hu, Y. and Huo, Q. (2006). An HMM compensation approach using unscented trans-

formation for noisy speech recognition. Chinese Spoken Language Processing,

pages 346–357.

Hu, Y. and Huo, Q. (2007). Irrelevant variability normalization based HMM training

using VTS approximation of an explicit model of environmental distortions. In Proc.

INTERSPEECH.

Huang, X. and Jack, M. (1989). Semi-continuous hidden markov models for speech

signals. Computer Speech & Language, 3(3):239–251.

Imseng, D., Bourlard, H., and Garner, P. (2012). Using KL-divergence and multilin-

gual informaiton to improve ASR for under-resourced languages. In Proc. ICASSP,

pages 4869–4872. IEEE.

Imseng, D., Rasipuram, R., and Doss, M. (2011). Fast and flexible Kullback-Leibler

divergence based acoustic modelling for non-native speech recognition. In Proc.

ASRU, pages 348–353. IEEE.

Jelinek, F. (1976). Continuous speech recognition by statistical methods. Proceedings

of the IEEE, 64(4):532–556.

142 Bibliography

Julier, S. and Uhlmann, J. (2004). Unscented filtering and nonlinear estimation. Pro-

ceedings of the IEEE, 92(3):401–422.

Kalgaonkar, K., Seltzer, M., and Acero, A. (2009). Noise robust model adaptation

using linear spline interpolation. In Proc. ASRU, pages 199–204.

Kalinli, O., Seltzer, M., Droppo, J., and Acero, A. (2010). Noise adaptive training

for robust automatic speech recognition. IEEE Transactions on Audio, Speech, and

Language Processing, 18(8):1889–1091.

Katz, S. (1987). Estimation of probabilities from sparse data for the language model

component of a speech recognizer. Acoustics, Speech and Signal Processing, IEEE

Transactions on, 35(3):400–401.

Kenny, P. (2005). Joint factor analysis of speaker and session variability: theory and

algorithms. Technical report, CRIM-06/08-13.

Kim, D. and Gales, M. (2011). Noisy constrained maximum-likelihood linear regres-

sion for noise-robust speech recognition. IEEE Transactions on Audio, Speech, and

Language Processing, 19(2):315–325.

Kim, D., Kwan Un, C., and Kim, N. (1998). Speech recognition in noisy environments

using first-order vector Taylor series. Speech Communication, 24(1):39–49.

Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language modeling.

In Proc. ICASSP, pages 181–184. IEEE.

Kohler, J. (1996). Multi-lingual phoneme recognition exploiting acoustic-phonetic

similarities of sounds. In Proc. ICSLP, pages 2195–2198.

Kuhn, R., Junqua, J., Nguyen, P., and Niedzielski, N. (2000). Rapid speaker adaptation

in eigenvoice space. IEEE Transactions on Speech and Audio Processing, 8(6):695–

707.

Lal, P. (2011). Cross-lingual Automatic Speech Recognition using Tandem Features.

PhD thesis, The University of Edinburgh.

Le, V. and Besacier, L. (2005). First steps in fast acoustic modeling for a new target

language: application to Vietnamese. In Proc. ICASSP, pages 821–824. IEEE.

Bibliography 143

Lee, K. (1988). On large-vocabulary speaker-independent continuous speech recogni-

tion. Speech communication, 7(4):375–379.

Leggetter, C. and Woodland, P. (1995). Maximum likelihood linear regression for

speaker adaptation of continuous density hidden Markov models. Computer speech

and language, 9(2):171.

Li, J., Deng, L., Yu, D., Gong, Y., and Acero, A. (2009). A unified framework of

HMM adaptation with joint compensation of additive and convolutive distortions.

Computer Speech & Language, 23(3):389–405.

Li, J., Seltzer, M., and Gong, Y. (2012). Improvements to VTS feature enhanecement.

In Proc. ICASSP, pages 4677–4680. IEEE.

Li, J., Yu, D., Gong, Y., and Deng, L. (2010). Unscented transform with online distor-

tion estimation for HMM adaptation. In Proc. INTERSPEECH.

Liao, H. (2007). Uncertainty decoding for noise robust speech recognition. PhD thesis,

University of Cambridge.

Liao, H. and Gales, M. (2005). Joint uncertainty decoding for noise robust speech

recognition. In Proc. INTERSPEECH. Citeseer.

Liao, H. and Gales, M. (2007). Adaptive training with joint uncertainty decoding for

robust recognition of noisy data. In Proc. ICASSP, volume 4, pages IV–389. IEEE.

Lu, L., Chin, K., Ghoshal, A., and Renals, S. (2012a). Noise compensation for sub-

space Gaussian mixture models. In Proc. INTERSPEECH.

Lu, L., Chin, K., Ghoshal, A., and Renals, S. (2013a). Joint uncertainty decoding

for noise robust subspace Gaussian mixture models. IEEE Transactions on Audio,

Speech, and Language Processing.

Lu, L., Ghoshal, A., and Renals, S. (2011a). Regularized subspace Gaussian mixture

models for cross-lingual speech recognition. In Proc. IEEE ASRU.

Lu, L., Ghoshal, A., and Renals, S. (2011b). Regularized subspace Gaussian mixture

models for speech recognition. IEEE Signal Processing Letters, 18(7):419–422.

Lu, L., Ghoshal, A., and Renals, S. (2012b). Joint uncertainty decoding with unscented

transforms for noise robust subspace Gaussian mixture models. In Proc. SAPA-

SCALE Workshop.

144 Bibliography

Lu, L., Ghoshal, A., and Renals, S. (2012c). Maximum a posteriori adaptation of

subspace Gaussian mixture models for cross-lingual speech recognition. In Proc.

ICASSP.

Lu, L., Ghoshal, A., and Renals, S. (2013b). Cross-lingual subspace Gaussain mixture

models for low-resource speech recognition. IEEE Transactions on Audio, Speech,

and Language Processing (submitted).

Lu, L., Ghoshal, A., and Renals, S. (2013c). Noise adaptive training for subspace

Gaussian mixture models. In Proc. INTERSPEECH.

Milner, B. (1993). A comparison of front-end configurations for robust speech recog-

nition. In Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE

International Conference on, volume 1, pages I–I. IEEE.

Mohri, M., Pereira, F., and Riley, M. (2002). Weighted finite-state transducers in

speech recognition. Computer Speech & Language, 16(1):69–88.

Moreno, P., Raj, B., and Stern, R. (1996). A vector Taylor series approach for

environment-independent speech recognition. In Proc. ICASSP, volume 2, pages

733–736. IEEE.

Olsen, P. and Gopinath, R. (2002). Modeling inverse covariance matrices by basis

expansion. In Proc. ICASSP.

Omar, M. (2007). Regularized feature-based maximum likelihood linear regression for

speech recognition. In Proc. INTERSPEECH.

Paul, D. and Baker, J. (1992). The design for the Wall Street Journal-based CSR

corpus. In Second International Conference on Spoken Language Processing.

Plahl, C., Schluter, R., and Ney, H. (2011). Cross-lingual portability of Chinese and

English neural network features for French and German LVCSR. In Proc. ASRU,

pages 371–376. IEEE.

Povey, D. (2009). A tutorial-style introduction to subspace Gaussian mixture models

for speech recognition. Technical report, MSR-TR-2009-111, Microsoft Research.

Povey, D., Burget, L., Agarwal, M., Akyazi, P., Kai, F., Ghoshal, A., Glembek, O.,

Goel, N., Karafiát, M., Rastrow, A., Rose, R., Schwarz, P., and Thomas, S. (2011a).

Bibliography 145

The subspace Gaussian mixture model—A structured model for speech recognition.

Computer Speech & Language, 25(2):404–439.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann,

M., Motlıcek, P., Qian, Y., Schwarz, P., Silovský, J., Semmer, G., and Veselý, K.

(2011b). The Kaldi speech recognition toolkit. In Proc. ASRU.

Povey, D., Karafiát, M., Ghoshal, A., and Schwarz, P. (2011c). A symmetrization of

the subspace Gaussian mixture model. In Proc. ICASSP, pages 4504–4507. IEEE.

Povey, D. and Saon, G. (2006). Feature and model space speaker adaptation with full

covariance gaussians. In Proc. INTERSPEECH.

Qian, Y., Xu, J., Povey, D., and L, J. (2011). Strategies for using MLP based features

with limited target-language training data. In Proc. ASRU, pages 354–358. IEEE.

Rabiner, L. (1989). A tutorial on hidden markov models and selected applications in

speech recognition. Proceedings of the IEEE, 77(2):257–286.

Ragni, A. and Gales, M. (2011). Derivative kernels for noise robust ASR. In Proc.

ASRU, pages 119–124. IEEE.

Riedhammer, K., Bocklet, T., Ghoshal, A., and Povey, D. (2012). Revisiting semi-

continuous hidden markov models. In Proc. ICASSP, pages 4721–4724. IEEE.

Sainath, T., Carmi, A., Kanevsky, D., and Ramabhadran, B. (2010a). Bayesian com-

pressive sensing for phonetic classification. In Proc. ICASSP, pages 4370–4373.

Sainath, T., Ramabhadran, B., Nahamoo, D., Kanevsky, D., and Sethy, A. (2010b).

Sparse representation features for speech recognition. In Proc. INTERSPEECH,

pages 2254–2257.

Saon, G. and Chien, J. (2011). Bayesian sensing hidden Markov models for speech

recognition. In Proc. ICASSP, pages 5056–5059.

Saon, G., Zweig, G., and Padmanabhan, M. (2001). Linear feature space projections

for speaker adaptation. In Proc. ICASSP, pages 325–328. IEEE.

Schultz, T. (2002). GlobalPhone: a multilingual speech and text database developed at

Karlsruhe University. In Proc. ICLSP, pages 345–348.

146 Bibliography

Schultz, T. and Waibel, A. (1997). Fast bootstrapping of LVCSR systems with multi-

lingual phoneme sets. In Proc. Eurospeech, pages 371–374. Citeseer.

Schultz, T. and Waibel, A. (1998). Multilingual and crosslingual speech recognition.

In Proc. DARPA Workshop on Broadcast News Transcription and Understanding.

Citeseer.

Schultz, T. and Waibel, A. (2001). Language-independent and language-adaptive

acoustic modeling for speech recognition. Speech Communication, 35(1):31–52.

Seltzer, M. and Acero, A. (2011). Separating Speaker and Environmental Variability

Using Factored Transforms. In Proc. INTERSPEECH.

Serafini, T., Zanghirati, G., and Zanni, L. (2005). Gradient projection methods for

quadratic programs and applications in training support vector machines. Optimiza-

tion Methods and Software, 20(2-3):353–378.

Sim, K. (2009). Discriminative product-of-expert acoustic mapping for cross-lingual

phone recognition. In Proc. ASRU, pages 546–551. IEEE.

Sim, K. and Li, H. (2008). Robust phone set mapping using decision tree clustering

for cross-lingual phone recognition. In Proc. ICASSP, pages 4309–4312. IEEE.

Singh, R., Raj, B., and Stern, R. (2000). Automatic generation of phone sets and lexical

transcriptions. In Proc. ICASSP, pages 1691–1694. IEEE.

Siniscalchi, S., Lyu, D., Svendsen, T., and Lee, C. (2012). Experiments on cross-

language attribute detection and phone recognition with minimal target-specific

training data. IEEE transactions on audio, speech, and language processing,

20(3):875–887.

Siohan, O., Chesta, C., and Lee, C. (2001). Joint maximum a posteriori adaptation

of transformation and HMM parameters. IEEE Transactions on Speech and Audio

Processing, 9(4):417–428.

Sivaram, G., Nemala, S., Elhilali, M., Tran, T., and Hermansky, H. (2010). Sparse

coding for speech recognition. In Proc. ICASSP, pages 4346–4349.

Slobada, T. and Waibel, A. (1996). Dictionary learning for spontaneous speech recog-

nition. In Proc. ICSLP, pages 2328–2331.

Bibliography 147

Stolcke, A., Grézl, F., Hwang, M., Lei, X., Morgan, N., and Vergyri, D. (2006). Cross-

domain and cross-language portability of acoustic features estimated by multilayer

perceptrons. In Proc. ICASSP, pages 321–324. IEEE.

Swietojanski, P., Ghoshal, A., and Renals, S. (2012). Unsupervised Cross-lingual

knowledge transfer in DNN-based LVCSR. In Proc. IEEE Workshop on Spoken

Language Technology.

Thomas, S., Ganapathy, S., and Hermansky, H. (2010). Cross-lingual and multi-stream

posterior features for low resource LVCSR systems. In Proc. INTERSPEECH, pages

877–880.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B (Methodological), 58(1):267–288.

van Dalen, R. and Gales, M. (2009). Extended VTS for noise-robust speech recogni-

tion. In Proc. ICASSP, pages 3829–3832. IEEE.

Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically opti-

mum decoding algorithm. Information Theory, IEEE Transactions on, 13(2):260–

269.

Wang, Y. and Gales, M. (2011). Speaker and noise factorisation on the Aurora 4 task.

In Proc. ICASSP, pages 4584–4587. IEEE.

Woodland, P., Gales, M., and Pye, D. (1996). Improving environmental robustness

in large vocabulary speech recognition. In Proc. ICASSP, volume 1, pages 65–68.

IEEE.

Woodland, P., Odell, J., Valtchev, V., and Young, S. (1994). Large vocabulary contin-

uous speech recognition using HTK. In Proc. ICASSP, pages 125–128.

Xu, H. and Chin, K. (2009a). Comparison of estimation techniques in joint uncer-

tainty decoding for noise robust speech recognition. In Proc. INTERSPEECH, pages

2403–2406.

Xu, H. and Chin, K. (2009b). Joint uncertainty decoding with the second order approx-

imation for noise robust speech recognition. In Proc. ICASSP, pages 3841–3844.

IEEE.

148 Bibliography

Xu, H., Gales, M., and Chin, K. (2011). Joint uncertainty decoding with predic-

tive methods for noise robust speech recognition. IEEE Transactions on Acoustics,

Speech and Signal Processing, 19(6):1665–1676.

Young, S. et al. (2002). The HTK Book. Cambridge University Engineering Depart-

ment.

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell,

J., Ollason, D., Povey, D., et al. (2006). The htk book (for htk version 3.4).

Young, S., Odell, J., and Woodland, P. (1994). Tree-based state tying for high ac-

curacy acoustic modelling. In Proceedings of the workshop on Human Language

Technology, page 312. Association for Computational Linguistics.

Yu, D., Deng, L., Droppo, J., Wu, J., Gong, Y., and Acero, A. (2008). Robust speech

recognition using a cepstral minimum-mean-square-error-motivated noise suppres-

sor. Audio, Speech, and Language Processing, IEEE Transactions on, 16(5):1061–

1070.

Zen, H., Braunschweiler, N., Buchholz, S., Gales, M., Knill, K., Krstulovic, S., and

Latorre, J. (2012). Statistical parametric speech synthesis based on speaker and lan-

guage factorization. IEEE Transactions on Acoustics, Speech and Signal Processing,

20(6):1713–1724.

Zhao, X., Dong, Y., Zhao, J., Lu, L., Liu, J., and Wang, H. (2009). Variational bayesian

joint factor analysis for speaker verification. In Proc. ICASSP, pages 4049–4052.

IEEE.

Zhao, Y. and Juang, B. (2010). A comparative study of noise estimation algorithms for

VTS-based robust speech recognition. In Proc. INTERSPEECH.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic

net. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

67(2):301–320.

