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Abstract

Ibibio is a Nigerian tone language, spoken in the south-east coastal region of

Nigeria. Like most African languages, it is resource-limited. This presents a

major challenge to conventional approaches to speech synthesis, which typi-

cally require the training of numerous predictive models of linguistic features

such as the phoneme sequence (i.e., a pronunciation dictionary plus a letter-

to-sound model) and prosodic structure (e.g., a phrase break predictor). This

training is invariably supervised, requiring a corpus of training data labelled

with the linguistic feature to be predicted. In this paper, we investigate what

can be achieved in the absence of many of these expensive resources, and also

with a limited amount of speech recordings. We employ a statistical para-

metric method, because this has been found to offer good performance even

on small corpora, and because it is able to directly learn the relationship

between acoustics and whatever linguistic features are available, potentially
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mitigating the absence of explicit representations of intermediate linguistic

layers such as prosody.

We present an evaluation that compares systems that have access to vary-

ing degrees of linguistic structure. The simplest system only uses phonetic

context (quinphones), and this is compared to systems with access to a richer

set of context features, with or without tone marking. It is found that the use

of tone marking contributes significantly to the quality of synthetic speech.

Future work should therefore address the problem of tone assignment using

a dictionary and the building of a prediction module for out-of-vocabulary

words.
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1. Introduction

1.1. Approaches to speech synthesis

Speech synthesis or text-to-speech (TTS) is the process of transforming a

textual representation of an utterance into a speech waveform (Taylor, 2009).

This transformation is generally achieved in two phases, first the front end

transforms the text into an intermediate linguistic specification, and then

waveform generation produces an appropriate speech signal. The first phase

is necessarily language-specific and typical systems employ a great deal of

language knowledge, which is embedded in resources such as a manually-

written pronunciation dictionary or in the form of numerous predictive mod-

els, which have been previously learned from manually-annotated data. The

second phase is less language-resource intensive, but still requires recordings

of speech in the language in question. These recordings are most commonly
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used on one of two ways: they are used directly, through a process of seg-

mentation, re-ordering and concatenation to render the waveform (the unit

selection method); or they are used to train a generative model of speech

which can later be used to generate novel utterances (the statistical paramet-

ric method).

1.2. Speech synthesis in resource-limited situations

In this work, we use the statistical parametric method and present a

comparison between several different systems which have access to a linguistic

specification of varying richness. Methods which offer good performance

without needing predictive models to explicitly predict prosody and other

such “expensive” features, instead relying on “cheap” features which can

be obtained reasonably directly from the text, are of particular interest in

resource-limited languages. Here, we can interpret “resources” in a very

broad sense: the limitations may be in terms of cost (e.g., we cannot afford

to annotate training data), skills (e.g., we do not have access to people with

the skills to annotate data or build predictive models), or more fundamental

problems such as knowledge of the language (e.g., we do not have a definitive

phoneme inventory, or a good description of the tone system, etc.).

1.3. Specific problems in resource-limited languages

Most problems lie in the front end, since this is where – in conventional

systems – most of the language-specific components are to be found. A subset

of these problems parallel those of text-to-speech in well-resourced languages.

In text processing, we need lists of acronyms, methods for expanding number

expressions, information about the possible punctuation symbols and their
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functions, etc. These can be laborious to obtain for languages without large

amounts of available text. Most languages require a manually-constructed

pronunciation dictionary, created by skilled phoneticians. Languages without

a strong written tradition may be more likely to suffer from inconsistencies

in written language (e.g., spelling variation), compounding the problems of

dictionary creation. The other category of problem includes those that are

not generally encountered in the well-resourced case. The underlying cause

in this case is usually incomplete knowledge of the language’s properties (e.g.,

what is the phoneme inventory? is it a tone language? how many tones does

it have?).

1.4. Some problematic properties of Ibibio

Although speech synthesisers for a few tone languages do exist (notably

for Chinese), it is not obvious how to adapt a system from another tone lan-

guage because of typological differences: Chinese has phonemic tone, whereas

African languages have a broad range of morphological tone functionalities

in addition to phonemic tone. For instance, in Ibibio, the subcategory of

proximal/distal (temporally near or far) tense is marked by LH/HL tones on

the tense morphemes. Pitch therefore has a hard mandatory semantic func-

tion rather than a soft pragmatic function in intonation languages (Gibbon

et al., 2006).

If tone were orthographically marked, various techniques that have been

employed for other tone languages could be used to realise the marked sym-

bolic tone acoustically. Most straightforwardly, tone-morpheme combina-

tions could be used within a conventional state-tying system, albeit at the

potential cost of a large inventory of required units or models. Possible
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refinements that have been employed in systems for other tone languages

include using separate decision trees for units marked with the various tones

(Chomphan and Kobayashi, 2008), or a two-stage approach to the generation

of F0 designed to improve the consistency of tone realisation (Chunwijitra

et al., 2012). However, most such work on synthesis of tone phenomena as-

sumes the availability to the system of correct annotation of tone. In Ibibio,

however, there is no orthographic tone marking, making morphological tone

assignment effectively an AI complete problem (Gibbon et al., 2006) in that

it requires extensive background world knowledge.

The positional dependence of tone values in the terraced tone pattern-

ing generated by automatic and non-automatic downstep in many African

languages leads to a further combinatorial explosion of pitch patterning (Gib-

bon, 2001). In African languages, the number of inflected word forms is far

larger than for languages like English or Chinese due to agglutinative inflec-

tional morphology and complex subject-verb-object person agreement, which

presents further challenges to morphological tone assignment and of course

problems of data sparseness.

1.5. Prior work in speech synthesis for Ibibio

The Local Language Speech Technology Initiative (LLSTI) project pro-

vided the platform for the creation of an initial prototype adaptation proce-

dure for a TTS system for Ibibio. A small speech database was collected, an

existing Spanish text analyser was ported to Ibibio, and a waveform genera-

tion module using selection and concatenation was built. Database collection

is described in (Ekpenyong et al., 2008; Ekpenyong, 2009), and mentioned

again in Section 3.1 in the context of the current work. This preliminary
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attempt at building a voice revealed a number of previously-unconsidered

problems, mainly related to front-end processing (Gibbon et al., 2006). The

method of porting a system between languages employed may be usable

to some extent when the source and target languages are prosodically and

phonemically similar, but severe problems arise when the languages are ty-

pologically dissimilar. For instance, intonation languages pose very different

problems from tone languages. The synthesiser resulting from this initial

work is unable to handle contextual variations in tone. The project sum-

mary presented in (Tucker and Shalanova, 2005) shows that of the languages

considered by the LLSTI project, Ibibio is the most difficult language to de-

velop TTS for, due to its complex morpho-syntactics and the fact that it is

a tone language where tone is not marked orthographically.

1.6. Our approach

Developing sufficient knowledge of a language is a hard problem, probably

taking decades to complete. Given this knowledge, creating the manually-

annotated data resources for training predictive models is still non-trivial.

An alternative approach is to attempt to use machine learning to obviate the

problem of data annotation. In an ongoing line of research, we have been

investigating this from a variety of angles, such as using grapheme units

instead of phonemes, replacing a part-of-speech tagger with an unsupervised

Vector Space Model, or relying on decision-tree based model clustering to

discover patterns in the data that are the analogue of explicit manually-

annotated intermediate linguistic layers – see Watts (2012) for an extended

discussion. The work reported here is a simple instantiation of this approach.

The problems of tone assignment appear to be very complex indeed and
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we are not claiming a solution to these. Rather, the contribution of the

work presented here is to quantify the contributions to speech quality and

intelligibility of different aspects of the linguistic specification, including the

presence or absence of a large set of shallow positional features, and the

presence or absence of tone marking.

2. The front end

Before system construction, the text of the training and test utterances

was prepared as follows:

1. The removal of all punctuation except “,”

2. manual correction of spelling errors in the transcript and spelling nor-

malisation for certain words

3. loan words were transliterated to conform to Ibibio phontactics

4. manual expansion of non-standard word (NSW) tokens (e.g., numbers,

acronyms)

5. manual marking of phrase boundaries

The automated text processing pipeline contained in the synthesiser front

end performs the following steps:

1. tokenisation based on whitespace

2. marking of word boundaries

3. grapheme-to-phoneme conversion and syllabification using hand-crafted

rules

4. simple part-of-speech (POS) tagging, using a list of known function

words, with all other words being tagged as ‘content word’
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2.1. Phone set

We employed the Speech Assessment Phonetic Alphabet (SAMPA), a

machine readable format for representing the phonemes of a language.

The phonetics of the Ibibio language are described by Essien (1990) and

we represent them in Ibibio SAMPA (Gibbon et al., 2006). Ibibio has a 10

vowel system (a, e, E, i, I, o, O, V, u, U), of which 6 also occur as long

vowels (aa, ee, ii, oo, OO, UU), making a total of sixteen. There are 23

consonants: 6 oral stops (p, b, t, d, k, kp), 6 nasal stops (m, mN, n, J, N,

Nw), 3 syllabic nasals (n, m, N), 1 trill (R\), 1 tap (r), 3 fricatives (B, f, s)

and 3 approximants (j, r, R).

2.2. Pronunciation dictionary

The dictionary used was from (Gibbon et al., 2004) and includes tone

specifications. However, it does not mark syllabification and lexical stress.

The syllabification of the utterances was therefore done automatically using

rules described in (Gibbon et al., 2004).

Tone information. Ibibio is tonal and has high (H), low (L), downstepped

high (DH), high-low contour (HL) and low-high contour (LH) tones. In

the current implementation of our system, tones are annotated manually

for both the training corpus and the test utterances. Native speakers of

Ibibio performed the annotation on an utterance-by-utterance basis using the

audio recordings for reference. This is because the only available dictionary

(Gibbon et al., 2004) did not give good coverage of our data.
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Positional features Name Description
Phoneme p1 phoneme identity before previous phoneme

p2 previous phoneme identity
p3 current phoneme identity
p4 next phoneme identity
p5 phoneme after next phoneme identity
p6 current phoneme identity in current syllable (forward)
p7 current phoneme identity in current syllable (backward)

Syllable b4 current syllable in current word (forward)
b5 current syllable in current word (backward)
b6 current syllable in current phrase (forward)
b7 current syllable in current phrase (backward)

Word e3 current word in current phrase (forward)
e4 current word in current phrase (backward)

Phrase h3 current phrase in utterance (forward)
h4 current phrase in utterance (backward)

Vowel b16 name of vowel in current syllable
Frequency features label Description
Phoneme a3 in previous syllable

b3 in current syllable
c3 in next syllable

Syllable d2 in previous word
e2 in current word
f2 in next word
g1 in previous phrase
h1 in current phrase
i1 in next phrase
j1 in utterance

Word g2 in previous phrase
h2 in current phrase
i2 in next phrase
j2 in utterance
e5 content word before current word in current phrase
e6 content word after current word in current phrase
e7 from previous content word to current word
e8 from current word to next content word

Phrase j3 in utterance
POS features Name Description
Guess part of speech d1 in previous word

e1 in current word
f1 in next word

Tone features Name Description
Tone t1 of previous phoneme

t2 of current phoneme
t3 of next phoneme

Table 1: Context features9



2.3. Handling linguistic context

In HMM-based synthesis, linguistic context is represented as a set of

features attached to the phoneme, leading to context-depending models of

phone-sized units. The full set of linguistic context features used in our

system are given in Table 1. The systems compared in the evaluation use

various subsets of this feature set.

This method of dealing with context is flexible, in that any level of lin-

guistic information, from the segment up to the utterance, can easily be in-

corporated simply by appending a feature to the context-dependent phoneme

specification. The method is potentially efficient too, because only those fea-

tures that influence the acoustics should be used during model clustering

(Section 3.3). In a typical text-to-speech system, several intermediate layers

of information (for example, symbolic prosodic information) are used, many

of them predicted from previously-predicted information. This has two disad-

vantages: 1) the supervised learning of these predictive models requires data

labelled with the intermediate representations (e.g., ToBI symbols), which

is difficult, expensive and error-prone; 2) errors are propagated through the

pipeline, potentially multiplying at each stage. An alternative approach is

to include only relatively shallow features – that is, features close to the text

itself that can be estimated easily and robustly – and use these directly as

context without attempting explicit prediction of intermediate representa-

tions.

An extreme form of this approach would be to directly use letters and not

even to predict phonemes, as was done by Watts (2012). Here, we do predict

phonemes, but do not attempt any explicit prediction of prosody, except for
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the (currently manually annotated) phrase breaks.

Implementation. The Speect multilingual text-to-speech framework (Louw,

2008) was used to implement the front end. Speect produces a Heterogeneous

Relation Graph (HRG), representing the structure (letter, word, syllable and

phrase relations) of each utterance. We flatten this structure to obtain a

string of context-dependent phone labels.

3. Acoustic modelling

The Hidden Markov-based Text-to-Speech (HTS) synthesis framework

(Zen et al., 2009a) was used to train the acoustic models and perform syn-

thesis. The toolkit uses a statistical parametric method based on HMMs.

The theory behind this approach is well-described in the literature and so

we do not provide it again here; instead, please refer to Zen et al. (2009b) or

Zen et al. (2007), for example.

3.1. Speech data and feature extraction

The database used here contains a total of 1,140 utterances, amounting

to about two hours of speech material, read by a professional speaker. The

recordings were made at the Communications Arts Studio of the University

of Uyo, Nigeria, using a Marantz Professional PMD660 DAT recorder and

Sony F-V420 dynamic microphone at a sampling rate of 44.1kHz. Record-

ings had to be conducted over several sessions because of intermittent power

availability. Due to errors in the recording process, some waveforms were

clipped; this was remedied as far as possible after the fact using the click,

noise removal and peak restoration functions of Soundforge Pro version 10.0c.
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The prompts for the speaker were sentences taken from various sources

including written text (textbooks, stories, news readings and formulated sen-

tences) and transcribed speech. The first 100 utterances were excluded from

training and retained as a test set. Some examples from the test set are given

in Figure 1.

The text of the sentences was determined as follows: an initial 162 sen-

tences were selected from a corpus of transcribed news readings and few other

available texts. This corpus was specially compiled for this purpose as there

was no electronic text in Ibibio available. The criterion for selection was op-

timal diphone coverage, and this resulted in coverage of all all phonemes in

our Ibibio phoneme inventory. However, initial attempts at synthesis using a

concatenative voice built on this small database revealed problems in synthe-

sising sentences containing the three rarest phonemes. Phoneme frequencies

were therefore computed on the basis of these initial 162 sentences, and the

rest of the 1,140 sentences in our corpus were selected and constructed to

improve coverage of rare phonemes. Details can be found in Ekpenyong

(2009).

Speech features. The STRAIGHT spectral analysis method was used to ex-

tract 55th order Mel-cepstral co-efficients at a 5ms frame-shift. For F0 es-

timation, we employed a procedure that involves voting across three differ-

ent F0 trackers (instantaneous-frequency-amplitude-spectrum (IFAS), a fixed

point analysis (TEMPO), and the ESPS tool “get f0”), following Yamagishi

et al. (2009). F0 was transformed onto the Mel scale before acoustic mod-

elling.
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ke ntak ami ammO ekemiaha akepkep akai
ekIt ebo ke ideen isaanake mbiomo ukama ufOk
ifiik ibaan ikpOON
owo ndomokeet iJVNNO ibIp ibaan ibo mme
eka ekON mme ke ekaa
mma kres ekpeJON akeboijoiso ke isaN eke-
saNake eseet mme nsio nsio NkpO ibaan eke-
naNNake eben ediwOt idVN
atie iwuot okpokoro Nka rattawu ke eboJi sted
njobio owo umOataN amaabo ke afIt nti NkpO
owo anieehe oto ubOk abasi
bastO maksweed osamO amaataN OsOONO
ke ufOk utom kOppa adiisVk ikakaiso iNwam
ammiiJVNNO ido ukara enie
akpodo krais ama anekke ajiire
ke mme idaha ufOk ake imO ikiide ke aNwa
ufOkNwet odo

Figure 1: Sample input utterances from the test set, given in SAMPA notation

3.2. Model configuration

The modelling unit used was, as is common in statistical parametric

speech synthesis, the context-dependent phone. Section 2.3 describes this

approach to handling linguistic context. The amount of context used was

varied in the experiments reported in Section 5, from quinphones up to “full

context with tone”.

3.3. Training procedure

The training utterance text is processed by the front end, resulting in a

sequence of context-dependent phone labels for each utterance. These labels

and the corresponding parameterised speech are used to estimate a set of

acoustic models. The training process is summarized in Figure 2, showing
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Figure 2: The training procedure

that the models are incrementally trained and refined in an iterative fashion,

starting from a set of context-independent monophone models and ending

up with a set of parameter-tied context-dependent models.

Decision-tree parameter clustering. A crucial step in model training is the

clustering of model parameters. This is because the number of possible com-

binations of context feature values is very large, and only a small fraction

of these will be seen in training. We used the standard decision-tree-based

context clustering algorithm available in the HTS toolkit (Zen et al., 2009a),

which uses the minimum descriptive length (MDL) criterion (Shinoda and

Watanabe, 2000). This process of clustering – in other words, finding sets

of context feature values that lead to the same model parameter value –

amounts to learning the relationship between the linguistic specification and

the acoustic properties of the speech. By using relatively simple linguistic
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Figure 3: Examples of F0 contours for each of the 4 systems evaluated in the listening
test. The Ibibio utterance (given here in SAMPA) is [eJe amaanam aNwaNa ke mme owo
enie ntreubOk ke usVN OmmO keed keed] (translation in English: “S/he made it clear
that people have limitations/challenges.”)

features, and omitting the explicit prediction of intermediate features like

prosody, the burden of predicting the acoustics rests heavily on the decision

trees.

4. Synthesis

The test utterances are processed by the front end in the same was as

the training utterances, resulting in a sequence of context-dependent phone

labels for each utterance. From this label sequence, a corresponding sequence
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of models is assembled and the waveform generation procedure is carried out.

This involves two phases: first, the statistical models generate a sequence of

speech features; second, this sequence is passed through the output stage of

the vocoder to render the waveform.

5. System Evaluation

5.1. Dealing with tone

The aim of our experiments is to evaluate the contribution of various

context factors and to understand how important each is. The prediction of

tone, as discussed earlier, appears to be a very challenging problem. But there

is little point in tackling that problem unless we are sure that accurate tone

specification has a substantial impact on speech quality and intelligibility.

This is what we will ascertain here. Therefore, all systems evaluated employ

manual assignment of tone on both the training and test material (see Section

2.2 for details of tone annotation).

Before presenting quantitative results, we can compare in Figure 3 the

F0 contours for each system. We observe that system A (natural speech)

and system D (synthesised speech with tone labels) are relatively similar,

suggesting the important of tone information.

5.2. Method

Whilst objective methods for speech synthesis quality are available, they

are only useful in limited situations. Overall judgements about naturalness

and intelligibility can only be reliably evaluated using subjective methods.

The methods we employ are well-established and widely used, including in

16



System Description Features
A Natural speech -
B Phonetic context only p1 to p5
C Full context, no tone all except t1 to t3
D Full context plus tone all

Table 2: The systems compared in the listening test. The features referred to are explained
in Table 1.

U1 U2 U3 U4
L1 A B C D
L2 B C D A
L3 C D A B
L4 D A B C

Figure 4: The Latin Square used to assign stimuli to listening groups. Rows correspond
to listener groups (L1 to L4) and columns correspond to utterance groups (U1 to U4).

the Blizzard Challenge, e.g., Podsiadlo (2007). To evaluate naturalness, we

asked listeners to respond to individual utterance stimuli and respond using

a 5-point scale, from which we calculated the Mean Opinion Score (MOS)

for each system. Intelligibility was evaluated using two paradigms. Overall

intelligibility was measured by asking listeners to transcribe Semantically

Unpredictable Sentences (SUS) (Benoit et al., 1996).

Three systems, listed in Table 2 were trained on the speech database

described in Section 3.1. The only difference between the synthesisers (sys-

tems B, C and D) was in the waveform generation component: the context-

dependent acoustic models used different subsets of the available linguistic

specification. System A used natural speech recorded by the same speaker,

but not used for acoustic model training.

A Latin Square design was employed to ensure that no listener heard

the same utterance twice but that all listeners heard the same number of
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Figure 5: The grammar used to generate Semantically Unpredictable Sentences in Ibibio

utterances from each system, and that all systems were evaluated on the

same set of utterances. Figure 4 shows the Latin Square. Twenty-eight

listeners were used, partitioned into 4 groups (L1 to L4) corresponding to

the rows of the Latin Square.

In the MOS test, listeners were requested to rate the utterances according

to a 5 point scale where the points were labelled as follows: 1 - Not natural,

2 - Poorly natural, 3 - Fairly natural, 4 - Sounds natural, 5 - Highly natural.

5.3. Materials

Naturalness (MOS). Twenty sentences selected from a held-out portion of

the corpus were used to evaluate naturalness.
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Intelligibility (SUS). Utterances for the SUS test were generated by from a

set of templates that we devised, inspired by the original paper (Benoit et al.,

1996) and shown in Figure 5. The various slots were populated randomly2

from word lists extracted from an existing Ibibio dictionary (Urua et al.,

2001). Example sentences generated from the grammar are shown in SAMPA

notation in Figure 6. The SUS section of the listening test involved listeners

typing in the sentence they heard3; they were permitted to hear the utterance

no more than twice.

Due to poor Internet connectivity in Nigeria and an erratic electricity

supply, it was not possible to use a web-based evaluation system to ease

the collation of results. We resorted to implementing the tests in Microsoft

Excel.

5.4. Results and analysis

The statistical analysis and conventions for presenting the results used

here closely follow those proposed by Clark et al. (2007) and used in all

recent Blizzard Challenges.

Naturalness (MOS). A boxplot presenting the results of this section is shown

in figure 7. Table 3 gives the median, mean and standard deviation of the

naturalness scores for each system. Pairwise Wilcoxon signed-rank tests were

used to test for significant difference between the systems. All pairs of sys-

2We used the same software tool as the Blizzard Challenges, kindly provided by Tim
Bunnell of the University of Delaware, to do this.

3Or dictating it to an assistant, in the case of illiterate subjects.
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mmeikua ami ekeme emianna ini mfen afIre aso
itiokeet.
ideep ado ata ntok.
mmeunam ado ekId eduJeN idiONNO ademme
ammo.
abVk nsiON abere ubOkubOk mmeNkukId
ako.
mama a-si daap o nsO a -ma a -kVkO mme-
ekON.
nsoo NkOm sabOt a-nam a-fIke mbIre.
mme-utom tVNNO ako e-ja e-fuup ifia eta.
wOOt mfa ube ikie idak sika
idIm sioNNo mma akikere ado a-kpOOn a-
weeme kIraN.
ee miak nsin ami funO
mmi a-na a-tInnO utuke abiojai ake mi.
NkO akpOk i-biaNa-ke abON.
anie i-jIpO i-kpaja ekpuk.
n-faaNa i-seeRe utu mmOO ame ammO e-fan
akikaak nta ako e-naa.
ajop a-do andi saN edeNNE ikiben.

Figure 6: Examples of Semantically Unpredictable Sentences in Ibibio, generated by the
grammar from Figure 5 and given here in SAMPA notation, as used in the listening test
to measure intelligibility.

tems (A to D) are significantly different in naturalness, except B and C,

which do not differ significantly.

Intelligibility (SUS). Although the original formulation of SUS (Benoit et al.,

1996) suggests scoring entire sentences as correct or incorrect, it is common

practice to score at the word level, taking into account insertions, deletions

and substitutions (see King and Karaiskos (2009) for details), leading to

Word Error Rate (WER) scores. Figure 8 presents the results as a bar chart
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Figure 7: Boxplot showing the results of the listening test for naturalness. The median is
represented by a solid bar across a box showing the quartiles, with a cross indicating the
mean; whiskers extend to 1.5 times the inter-quartile range and outliers beyond this are
represented as circles
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Figure 8: Bar chart showing the results of the listening test for overall intelligibility,
measured as Word Error Rate on Semantically Unpredictable Sentences.
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System Median Mean SD
A 5 4.786 0.477
B 2 1.893 1.016
C 2 2.229 0.932
D 3 2.964 0.985

Table 3: Statistics summarising the results of the naturalness test. (SD = standard
deviation)

Systems S I D C WER
A 87 1 52 712 16.45123
B 218 2 432 322 67.07819
C 195 1 472 326 67.2709
D 214 1 287 425 54.21166

Table 4: The results of the intelligibility test using SUS. (S = substitutions; I = insertions;
D = deletions; C = correct)

and Table 4 gives the scores.

6. Discussion

Whilst no system approached the naturalness of real speech (this is also

always the case in Blizzard Challenge evaluations, for example), adding the

tone information (system D) significantly improved perceived naturalness.

Adding only the shallow context features (based on positions and frequen-

cies – see Table 1) did not significantly improve naturalness over the naive

quinphone system. Likewise, intelligibility is improved by adding the tone

labels.

Word error rates (see Figure 8) are high in absolute terms, but this is

because of the use of SUS, which are designed to avoid the ceiling effect

that is found when using ‘normal’ sentences. However, the intelligibility of

the synthetic speech is far worse than that of the natural speech and there
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is much room for improvement here. In recent Blizzard Challenges, some

synthetic systems have been found to be as intelligible as natural speech, on

well-resourced languages with large databases (King and Karaiskos, 2009).

This milestone should is yet to be met for Ibibio, but is not unreachable.

7. Conclusions and future work

We have presented the first statistical parametric speech synthesiser for

Ibibio and evaluated three configurations of the system by varying the avail-

able linguistic context. It was found that tone specification makes a signifi-

cant difference. Therefore, future work should include the use of a dictionary

which marks tone and the more difficult problem of automatic prediction for

novel words.

African languages present a challenge for speech synthesis. They exhibit

morphological complexity which compounds the effects of a lack of resources.

The lack of large datasets presents difficulties in applying either a conven-

tional approach or a more data-driven approach. The data-driven, machine

learning approach remains attractive though, since it can be applied immedi-

ately more data become available and we can reasonably expect more data to

automatically lead to better quality. In the current work, a particular barrier

was the lack of a large machine-readable text corpus for Ibibio. If this was to

become available, then the unsupervised approach from Watts (2012) could

be applied. In the shorter term, the use of a larger speech database is likely

to give the most rapid improvements.
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