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Abstract

This thesis introduces a general method for incorporating the distributional analy-

sis of textual and linguistic objects into text-to-speech (TTS) conversion systems.

Conventional TTS conversion uses intermediate layers of representation to bridge

the gap between text and speech. Collecting the annotated data needed to pro-

duce these intermediate layers is a far from trivial task, possibly prohibitively so

for languages in which no such resources are in existence. Distributional analysis,

in contrast, proceeds in an unsupervised manner, and so enables the creation of

systems using textual data that are not annotated. The method therefore aids

the building of systems for languages in which conventional linguistic resources

are scarce, but is not restricted to these languages.

The distributional analysis proposed here places the textual objects analysed

in a continuous-valued space, rather than specifying a hard categorisation of those

objects. This space is then partitioned during the training of acoustic models for

synthesis, so that the models generalise over objects’ surface forms in a way that

is acoustically relevant.

The method is applied to three levels of textual analysis: to the characteri-

sation of sub-syllabic units, word units and utterances. Entire systems for three

languages (English, Finnish and Romanian) are built with no reliance on manu-

ally labelled data or language-specific expertise. Results of a subjective evaluation

are presented.
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Chapter 1

Introduction

1.1 Goals and Approach

The social value of speech synthesis technology is obvious: it is an indispensi-

ble ingredient, for example, of devices that allow the blind to interpret written

documents and allow the mute to ‘speak’. Systems for performing the automatic

conversion of text to speech are making steady improvements year after year, and

speaker-adaptive methods now allow the swift creation of personalised speaking

aids for those that are losing the ability to speak, so long as the target language

belongs to the small group for which synthesisers already exist. Moving to a new

language, however, is more problematic, as typically the linguistically-labelled

data necessary to build a synthesis system in that language (in the conventional

supervised way) will not exist. Collecting such resources for a new language is

time-consuming and represents the major bottleneck in developing systems for

new languages. Collecting speech and unlabelled text data, and transcribing a

small quantity of speech using standard orthography, in contrast, are not difficult

tasks. The goal of this thesis is to formulate and test a framework for exploiting

this data directly, side-stepping to some extent the need for expensive labelled

data.

The central claim which this thesis examines is the following:

A corpus of speech transcribed in standard orthography provides the

basis for the construction of a high-quality automatic text-to-speech

(TTS) conversion system, without the explicit representation of inter-

mediate layers derived from linguistic knowledge, provided that:

• Orthographic units are not too sparsely represented in the cor-

1



2 Chapter 1. Introduction

pus;

• An appropriate method of finding representations that generalise

over these orthographic units is specified.

The representations should rely on speech and text data along

with general notions of context and similarity, and not on some

manually-specified intermediate layers of representation.

The rest of this introduction will give a brief overview of the contents of this thesis,

with particular reference to how individual chapters relate to the individual points

of this central claim.

1.2 Organisation of this thesis

Chapter 2 provides background information on which the rest of the thesis

builds. It starts with an overview of the speech synthesis framework which forms

the basis of the experiments presented in this thesis. Central to learning a model

for TTS in this framework is what is termed the primary corpus : a corpus of

speech recordings associated at the utterance level with plain orthography tran-

scriptions. This is the corpus of speech transcribed in standard orthography in the

claim stated above. The collection of a reasonably sized primary corpus presents

little difficulty. However, the conventional approach to TTS conversion that is

described relies on intermediate layers of representation to bridge the gap between

the two halves (text and speech) of this primary corpus. These intermediate layers

are founded on linguistic knowledge and made up of elements such as phonemes,

part of speech tags and intonational phrases. To be able to predict these repre-

sentations from text, statistical models are generally used. To train these models

in the conventional way requires expert-annotated data (for example, text an-

notated with phrase-breaks or with part of speech tags). These data are here

termed secondary data, and their collection represents the major difficulty and

expense in building TTS systems for new languages. The difficulty of obtaining

these labelled data is the problem addressed by this thesis. After describing the

conventional approach, therefore, some possible alternatives are described. Then

the approach adopted in this thesis is briefly sketched: this approach makes no

use of secondary data, relying on a corpus of relatively simple-to-collect primary

data, and on a resource even simpler to collect which will be called tertiary data:

unlabelled text data. Some of the assumptions made in this thesis about the tar-

get language script are stated. For example, languages with ideographic scripts
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are beyond the scope of this thesis, as they do not meet the first condition made

in the claim stated above for a speech corpus of reasonable size: orthographic

units are not too sparsely represented in the corpus.

Before seeking to replace the hard-to-obtain features of a conventional syn-

thesiser, however, it is clearly desirable to know what they contribute to system

performance in cases where they are available. Chapter 3 therefore seeks to

determine what the different elements of a conventional TTS system add to the

quality of the speech it generates. This is done through a series of three experi-

ments, each of which focuses on a different area of the representation used by a

conventional TTS system. The first focuses on the relatively high-level features

derived from part of speech, phrase-break and symbolic intonation annotation.

The second and third focus on the sub-syllabic level, looking at the impact of

a phonemic transcription and of phonetic categories on the quality of synthetic

speech, respectively. Experiments 2 and 3 also include initial attempts at induc-

ing richer representations automatically from the primary corpus, of letters-in-

context and phoneme types respectively. These initial attempts meet with some

success, but some of their shortcomings are also discussed.

An unsupervised approach to learning representations for orthographic objects

and incorporating them into a TTS conversion system is introduced in Chapter

4. This distributional–acoustic method is what is called a method of finding rep-

resentations that generalise over orthographic units in the claim made above. It

overcomes problems with the methods presented in Chapter 3 and underpins the

work presented in the rest of the thesis. Importantly, the representations out-

put by distributional analysis are points in a continuous vector space rather than

category labels. These continuous features leave hard categorisation of textual

objects open until later stages, when decision tree-based clustering can find divi-

sions of the space of objects that are acoustically relevant and therefore pertinent

to TTS.

The following two chapters describe the implementation of vector space mod-

els (VSMs) on two different levels of textual analysis, their incorporation into

TTS systems, and their evaluation. Sub-syllabic units (letters and phonemes)

are the focus of Chapter 5 where an experiment using vector space model fea-

tures for acoustic state-tying is described. Word-level units are the focus of two

experiments in Chapter 6, where VSM-derived features are used for phrase-

break prediction and for acoustic state-tying. The experiment of chapter 5 and

the first one of chapter 6 both produce promising results, where automatically-

generated features close most of the performance gap between baseline systems
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and systems using expert-encoded linguistic knowledge.

Chapter 7 considers developments to the techniques already described. An

obvious attraction of the distributional–acoustic method is that the quantity of

data used in the distribuational phase is unrestricted by the need for manual

annotation. First, therefore, the ability of the VSM of word types described in

Chapter 6 to exploit larger quantities of training data is examined. In the second

experiment using word-level features in Chapter 6, results were mixed and did not

conform to predictions. It is hypothesised that a more robust method of feature

selection than that provided by conventional decision-tree building algorithms

is needed to exploit the numerous, noisy, and often irrelevant features provided

by distributional analysis. This hypothesis is tested in Chapter 7: a method of

feature selection using ensembles of trees is developed, and applied to the same

task attempted in the second experiment of chapter 6, with good results. Chapter

7 concludes with the extension of the distributional method to the level of the

utterance. This part of the thesis is particularly relevant given current trends

in TTS research, where large, continuously-recorded databases are starting to be

tackled, in which utterances occur in some genuine discourse context. However,

a full evaluation of the incorporation of utterance-level features into actual TTS

systems is not undertaken. Instead, the ability of a space representing utterances

to separate known types of utterance is evaluated.

Throughout the first 7 chapters of this thesis, the techniques described are

tested with reference to a single language, English. Furthermore, evaluations

are done in a piecemeal fashion, where the systems tested combine experimental

modules with ones from conventional systems in order to make controlled com-

parisons. Chapter 8, in contrast, applies the distributional–acoustic approach

developed in this thesis to all modules of systems for three languages. These

systems use the distributional–acoustic approach in an end-to-end fashion: this

technique is used to obtain features on the three levels of analysis convered in

Chapters 5–7 (letter, word and utterance), and only minimal human intervention

is made in the construction of entire systems. Listening tests are conducted in

three languages, and results presented.



Chapter 2

Background

2.1 Conventional Systems

In essence, the challenge of text-to-speech (TTS) conversion can be expressed as

the following problem: given a sample of text, what is an appropriate waveform?

In the most general terms, a TTS conversion system can be viewed as specifying a

mapping from any arbitrary text to an appropriate waveform. The learning sam-

ple, from which this mapping can be learned during the training of a corpus-based

TTS system, takes the form of a collection of recordings of spoken utterances,

associated at the utterance level with transcriptions in plain orthography of the

contents of those recordings. This is the type of database fundamental to conven-

tional approaches to corpus-based speech synthesis, and will here be called the

primary corpus.

However, in conventional systems, this mapping is not attempted directly: the

formidable gap between text and speech is bridged by what will here be called a

linguistic specification. This specification is given in terms of features based on

linguistic knowledge, such as phonemes, syllables, intonational phrases, etc. TTS

systems are therefore made up of two components: a textual–linguistic analyser

(which will here be called a front-end) and a waveform generator (here called a

back-end). The front-end accepts text as input and returns a linguistic specifica-

tion of the utterance to be synthesised (a sequence of feature vectors representing

prosodically enriched phonemes). The back-end takes this specification and con-

verts it into an appropriate acoustic waveform. In modern corpus-based systems,

both these components are typically trained on data. The purpose of this section

is to give an overview of some methods commonly used to build these two major

components of conventional speech synthesis systems. Emphasis will be placed

5
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upon the type and quantity of data that are required for each component, as it is

the limitations imposed by the need to collect this data that motivates the work

presented in this thesis.

2.1.1 Synthesiser Front-end: Linguistic modelling

The term topline systems will here be used to denote the conventional benchmark

systems for English that are used in the experiments presented in the rest of this

thesis. The front-end used in a topline system accepts the text of an utterance

that is to be synthesised and returns a list of context-dependent representations

of speech segments to be synthesised. The representation of each segment consists

of a set of Boolean values, that can be considered answers to yes–no questions

about the environment in which it occurs.1 Take for example, the second instance

of a in the word Batavia, as it occurrs in the utterance (from Twain, 1880):

We came in the Batavia – Cunard, you know.

The front-end used in these experiments associates a phonetic–prosodic segment

with this letter, which can be expressed as a set of almost 2000 Boolean values.

These values can be thought of as the system’s answers to questions such as:

1. Is the phoneme to the left /t/?

2. Is the phoneme to the left alveolar?

3. Is the left-hand neighbouring word a pronoun?

4. Is it less than 3 syllables till the end of the prosodic phrase?

5. Is the syllable in which this segment belongs pitch-accented?

A summary of these features is given in Table 2.1. To provide answers to

these questions, the front-end must obviously perform some analysis of the text

input, using some established sets of linguistic features. To answer each of the five

1It should be noted that this description of the division of systems built into front- and
back-end abstracts away from some details of implementation for clarity. However, this may be
initially confusing to readers who have worked with similar systems. To further clarify there-
fore, it should be pointed out that each of the context-dependent representations of phonetic
segments mentioned here is the set of yes–no answers to each of the questions in a context
clustering question set that are true of the segment in question. Devising this question set is
here considered a front-end task. The context labels used to interface between the output of the
front-end (in the form of a Heterogeneous Relation Graph, for example (Taylor et al., 2001))
and this question set are simply an arbitrary set of strings, whose role is to compactly encode
the set of Boolean values that constitutes this context-dependent representation.
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Table 2.1: Standard set of linguistic contexts used in English topline systems.
Features are divided into classes with identifiers for ease of reference elsewhere in
the thesis.

F Features relating to phonemes

F1 Monophone (identity of current phoneme)
F2 Triphone (identities of immediate neighbours)
F3 Quinphone (identities of neighbours-but-one)

FC Features relating to classes of phoneme

FC1 Monophone (phonetic categories of current phoneme)
FC2 Triphone (phonetic categories of immediate neighbours)
FC3 Quinphone (phonetic categories of neighbours-but-one)

S Features relating to syllables

S1 Number of segments {since, until} syllable boundary
S2 Lexical stress of syllable
S3 Size of syllable in segments
S4 Position of syllable in word
S5 Vowel of syllable
S6 Number of syllables {since, until} stress
S7 Size of word in syllables

W Features relating to words

W1 Guess parts of speech of the current word and its neighbours
W2 Distance (in words) {since, until} a content word

P Features relating to phrase

P1 Number of syllables {since, until} phrase boundary
P2 Number of stressed syllables {since, until} phrase boundary
P3 Number of words {since, until} phrase boundary
P4 Number of content words till phrase boundary
P5 Number of syllables in phrase
P6 Number of words in phrase
P7 Number of phrases {since, until} utterance boundary
P8 Number of phrases inutterance

T Features relating to tone and accent

T1 Boundary tone of phrase
T2 {Previous, current, next} syllable has a pitch accent
T3 Number of syllables {since, until} pitch accent
T4 Number of accented syllables {since, until} phrase boundary

U Features relating to utterance

U1 Number of syllables in utterance
U2 Number of words in utterance
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questions given above, for example, the following is a non-exhaustive list of some

of the tasks the system must perform (matched point-for-point). Following each

task in parentheses is the module that a system might make use of to perform

that task:

1. Letter-to-phoneme conversion (using lexicon and letter-to-sound rules)

2. Associate phonemes with phonetic categories (phoneme set)

3. Associate surface forms of words with their part of speech (POS tagger)

4. Segment utterances into prosodic phrases (phrase-break predictor)

5. Associate syllables with pitch-accents (pitch-accent predictor)

More details will now be given about the modules mentioned in connection with

each of these tasks.

Typical modules of a front-end

Lexicon and letter-to-sound rules For languages using scripts with an opaque

orthography–pronunciation relationship such as Mandarin and English, look-up

in a dictionary of pronunciations is generally performed. The construction of

a quality lexicon of a decent size involves considerable work. The Unilex lex-

icon used for some topline systems consists of 150,000 entries derived from an

expert-compiled database (Fitt and Isard, 1999). Even where a quality lexicon

is available, the inventory of a living language’s words is ever-changing, and new

words are constantly appearing. For example, relatively recently coined words like

polyamory and cryonaut and names like Ahmadinejad and Torquay are absent

from the latest version of the Carnegie Mellon University Pronouncing Dictio-

nary used in other experiments presented here (CMU). Even if a lexicon is used,

therefore, a system which is to perform TTS conversion on arbitrary input text

must supplement its pronunciations with a method for predicting the pronunci-

ations of unseen words. These can be hand-written, but can also be determined

automatically by using the spelling–pronunciation correspondences in the lexicon

as a learning sample.

Phoneme set A phoneme set that associates phonemes in the lexicon with

phonetic categories is another expert-compiled resource. The list used for topline
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systems in experiments presented in this thesis includes approximately 90 cate-

gories, many of which are compounds such as voiced consonant, labiodental frica-

tive, long back vowel, etc.

Part of speech taggers The part of speech (POS) taggers used for the topline

systems of this thesis are statistical taggers trained in a supervised way on c. 1

million words of POS-annotated newstext. Collection of such resources involves

obvious effort and expense, and also means that a POS inventory must be de-

signed if none exists for the target language. Note that reference is made to

POS indirectly also in question 4 above, because POS tagging is generally used

as a first step towards phrase-break prediction. Approximations of full POS tag-

ging can be made, by compiling a list (or lists) of function words, labelling these

function words in incoming text as such and labelling everything not in the list

simply as a content word. However, a direct comparison of these approaches on

the phrase-break prediction task in Section 6.3 of this thesis shows that full POS

tagging gives better results.

Phrase-break predictor The phrase-break predictor used in the topline sys-

tems of this thesis is trained on data from 40 BBC radio news stories hand-

annotated with phrase-breaks by two linguists (SEC/MARSEC: Knowles et al.,

1996a,b; Roach et al., 1993). Again, the collection of such resources involves

obvious expense.

Pitch-accent and boundary tone predictors The pitch-accent and bound-

ary tone predictors used in the topline systems are trained on news stories from

the Boston Radio News Corpus (Ostendorf et al., 1995) which are hand-annotated

using ToBI (Silverman et al., 1992). Again, this is an expensive resource to col-

lect, particularly as it is likely that a ToBI-style annotation system for a given

target language has not been devised, and that annotating prosodic structure

symbolically in the way that ToBI dictates would involve first devising such a

system. ToBI has formed the basis for systems in languages other than English

(for example, Greek: Arvaniti and Baltazani (2000), Japanese: Maekawa et al.

(2002), Russian: Odé (2008)), but the creation of such new systems is obviously

an expensive activity.
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Supervised Learning for Prediction from Text

The major components of the front-end used in the topline systems in this thesis

have now been outlined, along with the resources needed to obtain them. With

the exception of the phoneme set, all of these components incorporate modules

that are trained using supervised machine learning, but nothing has been said so

far about how this training is actually done. The Classification and Regression

Tree method will be outlined as a method representative of the sort of supervised

learning used to train these modules. Note that tree-based techniques were actu-

ally used to train the letter-to-phoneme converter and tone and accent predictors

used in the topline systems. Decision trees could potentially also be applied to

the other tasks that must be performed: phrase-break prediction (see Section 6.3)

and POS tagging (see e.g. the baseline system in Ushioda, 1996).

Decision Trees

The Classification and Regression Tree (CART: Breiman et al., 1993) technique

is commonly applied to the task of automatically inducing a set of rules for per-

forming letter-to-sound conversion for unseen words. The use of the classification

variety of this technique will be described with reference to this task, although

the areas of a TTS front-end where it can be applied are numerous. The pro-

nouncing dictionary is treated as a learning sample: the goal of the learning

algorithm is to capture general patterns of correspondence between the two sides

(standard orthography and phonemic transcription) of the learning sample which

generalise to unseen words. This allows the resulting predictor to produce likely

pronunciations for novel sequences of letters in the language.

The stimulus and response of the learning sample in this case are aligned at

the word level, but not at the level on which we wish to model correspondences –

that of letters and phonemes. A finer-grained letter–phoneme alignment must

therefore be created. This can be done in an automatic or semi-automatic way:

Black et al. (1998) give examples of both types of method.

Take the following toy vocabulary:

lisp, flick, file, lice, excite

This toy data-set set gives us five examples of the letter i in context, which our

dictionary, once aligned, tells us correspond either to the phoneme /ih/ or /ay/:
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fight

lisp

flick

file

lice

excite

Is the left-hand 
neighbour an <l>?

Is the letter two places
to the right an <e>?

Figure 2.1: Examples of two questions to split a toy dataset for constructing a
letter-to-sound conversion tree. Words in which <i> is labelled /ay/ are shown
in bold type; words in which <i> is labelled /ih/ are shown in italics.

Word Realisation of <i>

lisp ih

flick ih

file ay

lice ay

excite ay

From such examples, a model to predict how the letter i is realised in unseen

words can be induced, based on the reasonable assumption that a little context

of an occurrence of this letter will give useful cues as to its realisation. In the

training set, we will specify a set of features that are answers to questions like: Is

the preceding letter an <f>?, Is the letter two places to the right a <k>?. There

are 12 such possible questions about four neighbouring letter contexts in our

examples. To start with, all examples are placed at the root node of a decision

tree. From the set of questions we have defined, we choose one and branch the

tree so that it has two new nodes. Examples for which the answer to the question

is false end up in one new node, examples where the answer is true end up in the

other. The question used to split the examples in this way is chosen so that it puts

examples with similar labels together. This is achieved by defining a measure of

the impurity of a node. A common measure is the Gini index, although others

can be used to similar effect. The Gini impurity of node t, i(t), is defined as

follows, where the labels can take m classes, and ti is the fraction of examples in

the node labelled with class i:
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i(t) =
m∑
i=1

ti(1− ti) (2.1)

This measure is 0 where all items in a node belong to the same class. The root

node formed by the toy dataset will here be denoted the ‘parent node’ tP (as

splitting it will create child nodes). The Gini index for this tP (where 2 i ’s are

labelled /ih/ and 3 are labelled /ay/) is:

i(tP ) = 2
5
(1− 2

5
) + 3

5
(1− 3

5
) = 0.48 (2.2)

The best question to split a node is the one that minimises: i(tL) + i(tR)− i(tP )

where tL and tR are the left and right child nodes respectively of tP . The question

shown on the left of Figure 2.1 achieves a score of -0.036; the one on the right,

-0.48 – this is in fact the best score associated with any of the 12 questions, and

the associated question is therefore chosen. The impurity of the resulting tree

is 0, because it is now 0 in either leaf node – all the examples labelled /ih/ are

together, and all those labelled /ay/. The tree captures the generalisation that an

<i> with an <e> two places to its right is pronounced /ay/, but that otherwise

the pronunciation /ih/ is used. The tree will therefore predict the vowels of words

like tin and tine correctly.

Node-splitting is performed recursively on the child-nodes resulting from par-

titions. Trees with more than two leaves generally result from training sets of a

proper size. A fully-grown tree characterises the learning sample well, but may

not generalise well to new data. To see why this might be so, let us imagine

that the example for the word lice is absent from the data set depicted in Figure

2.1. In this case, the two questions shown would split the data in identical ways,

and the tree-building algorithm might choose either of them. If the question Is

the left-hand neighbour an <l>? were chosen, a 2-leaf tree would result, with no

impurity in the nodes. However, the feature chosen for the split is spurious, and

won’t generalise properly to new data like the <i> in line. Splitting the data set

on spurious features is particularly a problem in the more leafward nodes of large

trees, where splits are chosen on the basis of only a few data points.

To remedy this, a process called cost complexity pruning is used. The idea

is to find a tree which is large enough to fit the learning sample well, but not

so big that it overfits it. Fit to the learning sample for a tree T is quantified by

R(T ), the fraction of training samples that are misclassified by the tree. A tree’s

size is measured by the number of its leaf nodes, |T |. The cost–complexity of a
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tree Rα(T ) is found as an average of these two terms weighted by a complexity

parameter α:

Rα(T ) = R(T ) + α|T | (2.3)

The fully grown tree is progressively pruned (leaf nodes are removed). Each

successive subtree minimises Rα(T ) for progressively larger values of α. A good

value of α to select the final pruned tree can be found by cross-validation. To

do this, multiple auxiliary trees are built from the learning sample, but data

are held out from each to allow the auxiliary trees to be evaluated when pruned

with different values of α. The value of α that gives the lowest cross-validated

error can be used to select the final pruned subtree trained on the whole learning

sample. Alternatively, the largest value of α giving a cross-validated error within

1 standard deviation of the lowest error score can be used.

Note that the decision tree methodology explained here in the context of

LTS conversion could be applied to any supervised learning task that needs to be

performed in a synthesiser front-end. For example, tree classifiers are built for the

task of phrase-break prediction in Chapter 6. The only difference is that instead

of a training set which matches features of letters with the appropriate phoneme,

features over words – like POS or distance to punctuation – are associated with

labels indicating whether a phrase-break is present. Given the data, exactly the

same CART-building procedure can be followed.

2.1.2 Synthesiser Back-end: Acoustic Modelling

It has been shown that although the front-ends of synthesis systems can be trained

on what is here called secondary data, this data is hand-annotated and so incurs

considerable expense in the building of a system. The collection of primary data

in contrast presents fewer difficulties. As in the case of secondary data, the

collection of this data can be considered as a type of annotation: either existing

audio is annotated with a plain orthography transcription, or else a text prompt

is ‘annotated’ by a speaker with an appropriate acoustic realisation. Unlike in

the case of secondary data, however, this annotation is non-specialist: neither the

annotation of audio or the reading-out of text require skills more specialised than

literacy. Although the use of specialised facilities (such as purpose-built recording

booths) and specialised personnel (such as professional voice talents) would be

expected to improve the quality of the data collected, a laptop in a quiet room

and non-professional voice talent can give adequate results (Kominek and Black,
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2004).

Given the text and speech of a primary corpus and a synthesiser front-end,

the training of a back-end can be done automatically in a statistical parametric

framework. Linguistic specifications can be made for utterances in the speech

database by passing the corresponding text through the front-end, and using the

front-end’s predictions about how the speaker has realised the text as annotation

for the audio signal. The sequences of context-dependent phonemic segments out-

put by the front-end can be aligned in time with the signal using well-established

techniques associated with hidden Markov models (HMMs), as will be explained

here. Also, extensions of HMMs allow models whose parameters can be automat-

ically and robustly estimated from the data to generate appropriate speech for

novel pieces of text. Some details of the application of HMMs and variants of

them to speech synthesis are given here.

In statistical parametric speech synthesis, the parameters of a statistical model

of speech units are inferred automatically from some suitably coded speech cor-

pus. This model can then be used to generate novel speech. It should be noted

that this is not the only approach that can be taken to data-driven speech syn-

thesis. In concatenative synthesis, for example, sections of speech are lifted out

of the training corpus and joined together to form new utterances. A statisti-

cal parametric approach has been adopted in the work presented here because

of its robustness and ability to build reasonable systems on small quantities of

data. There is also less manual tuning of parameters necessary with this ap-

proach compared with unit selection synthesis, which is an attractive quality in

work that seeks to lessen the dependence of synthesis system training on manual

intervention. It should also be noted that the statistical parametric approach

outlined here, based on HMMs, is not the only one that is possible. For example,

techniques for acoustic modelling using decision trees (Black, 2006) and neural

networks (Karaali et al., 1998; Raghavendra and Prahallad, 2010) have been pro-

posed. The HMM-based approach is presented here as it is the one used for the

work presented in this thesis.

Hidden Markov Models for Speech Modelling

Hidden Markov models (HMMs: Gales and Young, 2007) are the most widely-used

statistical models for mapping between acoustic and phonetic representations of

speech, both in speech recognition and speech synthesis. HMMs of speech operate

on some representation of speech that is more compact and smoothly-evolving
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than the original waveform. The requirement of this representation for speech

recognition is that it must allow a system to discriminate between phonetically

different segments. An additional requirement of this representation in speech

synthesis is that it contains enough information that a waveform acceptable to

listeners can be reconstructed from it. In either case, utterances are represented as

a sequence of vectors representing the acoustics of a short segment of speech. This

sequence will be called the observation sequence, and denoted O = (o1,o2, ...oT )

where T is the length of the sequence and ot is a vector of values (or frame of

speech) observed at time t.

In HMM-based modelling of speech, the observed sequences are considered

to have been emitted by a statistical model. N states are defined for a model;

when an observation sequence of length T (e.g. a piece of speech) is generated

by the model, the model passes through a sequence of these states. Such a state

sequence will be denoted Q = (q(1), q(2) . . . q(T )) – where q(t) is the identity

of the state which the model is in at time t. A transition matrix A is defined

for a model (which will be called λ), where aij is a transition probability : the

probability that the model will make the transition to state j given that it is in

state i. The placement of 0’s in this matrix determines the model topology, and

thus the allowable state sequences for a model. A common topology for speech

recognition and synthesis can be seen in the following transition matrix:


0 1 0 0 0

0 0.5 0.5 0 0

0 0 0.5 0.5 0

0 0 0 0.5 0.5

0 0 0 0 0


The model is forced to start in the first state, then progress from left to right

with no skips to the final state, where it ends. The process of an N -state HMM

emitting an observed sequence of T frames can be thought of as a path through

an N × T lattice. The model starts in the top left corner of this lattice (in state 1

and time 1), and takes a path to the bottom right corner (state N at time T ). At

each time frame from 2 till T −2, the model has two possibilities: remaining in its

current state (a rightward horizontal move in the lattice) or moving to the next

state (a diagonal downwards move). Every path through the lattice is a different

state sequence, and – ignoring for a moment the probability of the model emitting
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the observations – a probability can be given for each one using A. Note that

many state sequences can generate the same observation sequence, but different

sequences can have different probabilities attached to them. A probability of some

state-sequence Q given a model λ is computed as the product of the transition

probabilities between each pair of consecutive states:

P (Q|λ) = aq(1)q(2)aq(2)q(3) . . . aq(T−1)q(T )

=
T∏
t=2

aq(t−1)q(t)

(2.4)

As it passes through a sequence of states Q, the model emits observations

stochastically. For modelling continuously-varying values like speech features,

continuous emission probability density functions are usually used to determine

the probability of a given state generating a given observation vector. The prob-

ability density function for state j will here be denoted bj(.). In the present work,

Gaussian density functions will be used: each bj(.) has a vector of mean and a

matrix of covariance parameters that can be used to determine the probability

of an observed vector having been emitted by state j. These are denoted here as

µj and Σj.

Given a state sequenceQ and a model λ, the probability of the model emitting

the observations is computed as the product of state emission probabilities for

each state in the sequence:

P (O|Q,λ) = bq(1)(o1)bq(2)(o2) . . . bq(T )(oT )

=
T∏
t=1

bq(t)(ot)
(2.5)

Note that any state can emit any observation; but some will do so with higher

probability than others. By the same token, any of the many possible state

sequences can emit a given observation sequence, but some will do so with higher

probability than others.

The probability P (O|λ) of a sequence of observations given a model is com-

puted by summing the probability of the observation given the model by all

possible state sequences, weighted by the probability of those state sequences:

P (O|λ) =
∑
∀Q

P (O|Q,λ)P (Q|λ) (2.6)
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Computing this by explicitly enumerating all state sequences that could account

for the possible alignments of an N -state model with an observed sequence of

T frames would be computationally infeasible. However, efficient methods for

making this computation exist, and they will be introduced in the course of

discussion on the estimation of HMM parameters.

HMM Training

Model Update Given an observation sequence (e.g. a sentence of speech on

which we would like to train a synthesiser), how can we adjust the parameters

of an HMM so that the model better describes that sequence? This can be done

using an iterative procedure known as the Baum-Welch algorithm. This algorithm

takes a (possibly poor) set of model parameters λ, and estimates a new model λ̂

so that P (O|λ̂) ≥ P (O|λ).

In Baum-Welch training, the new model’s parameters (λ̂) are estimated as

weighted averages of values in the observation sequence. The weight used to

update state j’s parameters with frame ot of the training data is the posterior

probability of state j generating that frame under the old model parameters λ.

This posterior will be denoted γj(t). For example, the formula for updating the

mean vector of state j, µj, is:

µj =

∑T
t=1 γj(t)ot∑T
t=1 γj(t)

(2.7)

The update of state covariance matrices and transition probabilities is based on

the same principle of expectation (calculation of posteriors) and maximisation of

likelihood using those posteriors. (Equations for the covariance and transition

probability updates can be found in e.g. Gales and Young (2007).)

Forward and Backward Probabilities How are the posterior probabilities

used in Equation 2.7 obtained? A brute-force method would involve enumerating

all possible state sequences explicitly. Due to the great number of possible state

sequences, this is infeasible. A more efficient way of computing γj(t) is based on

the fact that this value can be represented as the normalised product of two other

variables. The first is the probability of the model generating (o1...ot) and being

in state j at time t; this is denoted αj(t) and called the forward probability. The

second is the probability of the model being in state j at time t and generating

(ot+1...oT ); this is denoted βj(t) and called the backward probability. These values
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account for all partial paths into the node of the state–time lattice representing

state j at time t and emitting ot, and all partial paths out of that node of the

lattice until the end of the sequence. Values of αj(t) can be found efficiently,

because once the values for all states at time 1 have been set, the following

recursion can be used to compute values for each state at later times:

αj(t) =

[
N−1∑
i=2

αi(t− 1)aij

]
bj(ot) (2.8)

The recursion explains the efficiency of the procedure: indirectly or directly,

calculation of values at time t reuses calculations made at all previous times. The

values βj(t) for all states j at all times t are computed with a similar recursion,

but working backwards from time T to time 1.

With αj(t) and βj(t) computed in this way at every time t for every state j,

the posterior probability γj(t) of being in state j at time t given the observation

sequence and the model can be computed as:

γj(t) =
αj(t)βj(t)∑N
i=1 αi(t)βi(t)

(2.9)

The denominator normalises γj(t) into a probability so that γj(t) for all states j

at time point t sums to one.

Given this tractable way of computing posteriors, model parameters can be

adjusted as already mentioned. Iterating between these two steps – calculation

of posteriors and adjustment of model parameters – yields a gradual refinement

of model parameters. The two steps are iterated until convergence. Nothing has

been said here so far about finding parameters for an initial model. Converging on

a good set of model parameters depends in part on how this initialisation is done,

as the algorithm only guarantees convergence to a locally maximum likelihood.

All the experiments presented in the present work begin with a so-called flat start

where the parameters of emission densities of a model are all set to the global

mean and variance of the data on which it is to be trained.

Forced Alignment

The sequence (γj(1), γj(2), ...γj(T )) can be thought of as a soft alignment of state

j with a sequence of training data. A hard segmentation – where the probability

of each state j emitting each observation ot is either 1 or 0 – can be obtained using

a recursion similar to the one given in Equation 2.8, except that the summation
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operation is replaced with taking the maximum. From this recursion, the single

most likely state sequence of the model for some observation can be found. This

is useful for aligning linguistic events such as words or phonemes (which are

associated with states of the model) with an acoustic signal in a so-called forced

alignment. The algorithm used to determine this optimal state sequence is called

the Viterbi algorithm.

Duration Modelling

Using a transition matrix to model temporal structure is computationally ef-

ficient, but if this is done the probability of occupying a state is modelled as

decreasing exponentially with time. This does not provide a good representation

of the duration probability distibutions of real speech segments. A better (but

still not ideal) representation is provided by modelling state duration explicity

with a Gaussian distribution (Yoshimura et al., 1998). Forward, backward and

Viterbi recursions are more computationally expensive when explicit durations

are used as the HMMs no longer have the Markov property (i.e. that what they

will do next depends only on which state they are in), and are more properly

called hidden semi-Markov models (HSMMs). Explicit duration modelling was

used for all synthesis models built for the experiments presented in this thesis.

Speech Parameter Generation

It has been shown how the parameters of an HMM can be estimated from an

observation of speech. A question that must be answered for TTS is: given

these learned parameters, how can trajectories of speech acoustic features be

generated, from which in turn a waveform can be resynthesised? As a very simple

example, imagine that the following is a sequence of values of some acoustic

feature naturally occurring in speech, plotted against time:

0 1 2 3 4 5 6 7 8 90.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

This might represent any useful acoustic measurement such as F0 or energy,

in arbitrary units. For the sake of simplicity in the following explanation, 1-

dimensional vectors of observations are used. Also, we here assume deterministic

assignment of observations to three states, whose boundaries are shown by dotted
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lines. There is therefore nothing hidden about the model in this example; we

compute means and variances of single Gaussians for the segments directly: the

means and variances of the emission distributions for the three states are 0.06,

1.5, 2.94 and 0.0144, 0.25, 0.0144, respectively.

Given the model represented by these six parameters computed from the data,

what is the most likely sequence of observations? The state durations observed

in the training data will be used in resynthesis for this toy example. As the

model represents the speech using Gaussian distributions, the most likely value

for every frame of a state will be the state mean. This resynthesised trajectory is

plotted here with a solid line – the dashed line shows the natural trajectory for

comparison:

0 1 2 3 4 5 6 7 8 90.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

This is obviously a bad reconstruction of the data, as the acoustic values

seen in speech tend to evolve much more steadily than the ‘stepped’ trajectory

here. This stepped quality is due to the Markov property of the model, where

observations are conditionally independent given the state. To circumvent this

conditional independence, observed values are commonly supplemented with dy-

namic values, specifying not the current value of the parameter, but the rate at

which that value is changing over a small window. The dynamic value at frame

t will here be denoted ∆os
t and calculated very simply for the purposes of this

example as the difference between left and right static values, os
t+1 and os

t−1.2

The combined static and dynamic observation (ot) can therefore be obtained by

linearly transforming static parameters:3

ot =

(
os
t

∆os
t

)
=

(
0 1 0

−1 0 1

)o
s
t−1

os
t

os
t+1

 (2.10)

The combined static and dynamic features O are shown here in the upper and

lower panels respectively:

2The following explanation quite closely follows that given by Gales and Young (2007, §3.6)
3Note that D × D identity matrices should replace the 1’s here for D-dimensional vectors

of observations, and zero matrices should replace the 0’s. From now on, 1-dimensional static
observations will be assumed in this discussion.
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0 1 2 3 4 5 6 7 8 90.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0 1 2 3 4 5 6 7 8 90.5
0.0
0.5
1.0
1.5
2.0

These combined static and dynamic features will be modelled here using a 2-

dimensional Gaussian with diagonal covariance. Assuming the state sequence Q

is known (q(1)...q(T)), a single 2DT -dimensional Gaussian distribution for the

whole sequence can be composed from the state-level distributions, where T is

the length of the state sequence, D is the dimensionality of the observations and

the 2 accounts for the fact that the model has parameters for both static and

dynamic features. For the 1-dimensional sequence of 10 elements plotted above,

this gives a 20-dimensional distribution. Its mean vector and covariance matrix

will be denoted µQ and ΣQ respectively, and they are composed as follows:

µQ =


µq(1)

...

µq(T )

 (2.11)

ΣQ =


Σq(1) . . . 0

...
. . .

...

0 . . . Σq(T )

 (2.12)

The most likely sample from this Gaussian is the same as its mean vector: a

sequence of 20 values in which values corresponding to static and dynamic values

are interleaved. Both the values for static and dynamic features will have the

type of ‘stepped’ trajectory already shown.

Using the principle shown in Equation 2.10, a 2T × T matrix W can be

devised that expresses the combined static–dynamic features of augmented ob-

servation O (consisting of alternating static and dynamic values) as a linear

transformation of the static observation (denoted Os):

O = WOs (2.13)

For the toy example already shown, this is as follows:
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

0.00
0.00
0.00
0.00
0.00
0.30
0.30
1.00
1.00
1.70
2.00
1.70
2.70
1.00
3.00
0.30
3.00
0.00
3.00
−3.00


=



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 −1 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 −1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 −1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 −1 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 −1 0




0.00
0.00
0.00
0.30
1.00
2.00
2.70
3.00
3.00
3.00

 (2.14)

In the same way as it can relate static acoustic features to the corresponding

static–dynamic features, this matrix W can relate the parameters of our 20-

dimensional utterance-level Gaussian (µQ and ΣQ) with the parameters of a

10-dimensional Gaussian distribution, also over the whole utterance. The mean

vector and covariance matrix of this second distribution will be denoted µs
Q and

Σs
Q; this is a 10-dimensional distribution over static features, but one which

properly incorporates the constraints of the dynamic features. The following

relationships exist between the parameters of the standard HMM utterance-level

distribution and the parameters of this distribution over static parameters:

Σs
Q
−1 = W TΣ−1

Q W (2.15)

Σs
Q
−1µs

Q = W TΣ−1
Q µQ (2.16)

Note that the covariance of the standard HMM utterance-level distribution ΣQ is

block diagonal (in our case, diagonal, as we are using diagonal covariance for state

distributions). The covariance matrix of this distribution over the utterance’s

static features – Σs
Q – on the other hand, is not diagonal or block diagonal because

of the multiplication with W , which is not block diagonal. The assumptions of

conditional independence that are implicit in ΣQ are not implicit in Σs
Q. But

Σs
Q and µs

Q represent a Gaussian distribution, so the most likely sample from it

will simply be the mean, µs
Q. This must be found to determine a static feature

trajectory that respects both static and dynamic parameters of the original model.

Equation 2.16 can be rearranged to:

µs
Q = Σs

QW
TΣ−1

Q µQ (2.17)

Plugging Equation 2.15 in gives:
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µs
Q = (W TΣ−1

Q W )−1W TΣ−1
Q µQ (2.18)

All terms on the right hand side are known, both W and the utterance distribu-

tion parameters (µQ and ΣQ) whose elements were estimated from data.

Working through this parameter generation algorithm using the toy example

already shown yields µs
Q whose elements are plotted here:

0 1 2 3 4 5 6 7 8 90.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

As before, the values of the originally observed sequence are shown with

dashed lines for comparison. Note that the generated trajectory is smooth like

the original from timepoints 3–6, unlike the naive ‘stepped’ trajectory shown

above. However, the inflection points at time 3 and 6 are sharper for the regen-

erated trajectory than the original. This is because only static and delta (speed)

statistics are respected in this example; in practice the principle is extended to

also respect delta-delta (acceleration) statistics to avoid such unnaturally sudden

accelerations and decelerations.

In this toy example, the state sequence was treated as visible. This is the

approach taken for all speech generated for the experiments presented in this

thesis, where the mean values of explicit state duration distributions are used

to provide a state sequence (see Section 2.1.2). Note however that parameter

generation algorithms that jointly optimise state sequence and state emissions

have also been proposed (Tokuda et al., 2000).

Linguistic Context in Acoustic Modelling

Some of the basic techniques of acoustic modelling have been sketched, but as yet

no mention has been made of the way that the rich contexts predicted for segments

by the front-end as described in Section 2.1.1 are handled in acoustic model

estimation. There it was mentioned that in the topline systems presented in this

thesis, each segment associated with a phoneme is characterised by almost 2,000

contextual binary features. This context-dependency results in a vast number

of possible units: nearly every unit in the training corpus will be of its own

unique type and at synthesis time, the majority of models that are required to be

synthesised will be of unseen types. Therefore, a method is needed to map from
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the vast set of possible context-dependent models that could be predicted by the

front-end to a set that is small enough that there are sufficient data to estimate

model parameters during training, and general enough to represent unseen units

at synthesis time. The technique employed for this purpose in all systems built for

the experiments described in this thesis is decision-tree based clustering (Odell,

1995).

Acoustic models which are to be clustered consist of distributions over acoustic

values associated with a set of linguistic–prosodic attribute values for c unique

contexts. These distributions represent the data in the training set, and might

generally be thought of as a synthesis model, but in the present context will be

termed the learning sample for a decision tree. This learning sample, which will

here be denoted Z, is of the form {(x1, γ1,µ1,Σ1), . . . (xc, γc,µc,Σc)}, where xj

is a q-dimensional vector of binary values for the jth context, whose kth element

specifies whether the kth linguistic–prosodic attribute is true or false of context j.

µj and Σj are the (possibly poorly estimated) parameters of distributions over

acoustic values associated with the jth context. γj is the quantity of frames of the

training corpus attributed to context (context-dependent state) j in a forward–

backward alignment of the model with the observations:

γj =
∑
∀t

γj(t) (2.19)

where γj(t) is defined in Equation 2.9.

As with the CART example given in Section 2.1.1, the aim of tree-building

is to build a binary branching tree, down which linguistic units can be passed

appropriately by answering questions about their linguistic features (values of

xj). The model parameters in each of the leaves of this tree will be tied; these

tied states S are then the model which is considered as having generated the

acoustic observations.

The criterion by which splits of the data are chosen to build the tree is based

on an approximation of the log-likelihood of the data given the tied model. The

method presented in Odell (1995, pp. 37–38) works by assuming that the align-

ment of states with observations and model transition probabilities are unaffected

by the clustering, and that the log-likelihood of observation ot being generated

from tied model S can be computed as the average of the log-likelihoods of it be-

ing generated by each tied state s in S weighted by the respective posterior γs(t).

Given these assumptions, an approximation of the true likelihood can be derived

that relies only on knowing the covariance matrices and state occupancies of each
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tied state s. These in turn can be calculated from the means, covariances and

state occupancies of the unclustered model Z. The best split of a node during

tree building is the one that will increase this approximation of likelihood the

most.

As with the classification tree example given in Section 2.1.1, the goodness of

the model as measured by this objective function based on the learning sample

will never worsen as tree size increases. As in Section 2.1.1, over-large trees will

generalise badly to new data. Additionally in the case of state-tying, each node

of the tree needs to represent enough frames of acoustic data that the parameters

of its tied states can be well estimated after tree-building. Unlike in Section 2.1.1

where pruning an over-large tree structure was performed to obtain a suitable

tree, early termination of tree-growing is used for the state-tying trees built for the

work presented in this thesis. For these systems, the Minimum Description Length

approach described in Shinoda and Watanabe (2000) is used to determine when

tree-building should cease. Essentially, finding the description length of a model

involves combining the likelihood approximation with a term that penalises large

model size. When description length ceases to decrease, splitting is terminated.

2.1.3 Training Recipes Used

Details are given here of the actual recipes used to build the voices in the course

of the work presented in this thesis. Two different training recipes were used,

which will be called HTS-2005 and HTS-2010. The former is the procedure used

for the HTS group’s entry in the Blizzard Challenge 2005 (Zen et al., 2007),

while the latter training procedure is similar (although not identical) to that

used for the CSTR/EMIME entry to the Blizzard Challenge in 2010 (Yamagishi

and Watts, 2010). Both are speaker-dependent training recipes which are very

similar in outline, although HTS-2010 introduces numerous small improvements.

The annotation of training data is identical for both recipes, and much of the

procedure for acoustic model building is also shared. What is common to both

recipes will first be described, followed by details of how the two recipes differ.

Annotation Recipe

The annotation for standard topline English voices is obtained in a similar way for

all voices, using version 2.0 of the Festival Speech Synthesis System (Black et al.,

1999), and in particular the voice-building tools associated with its Multisyn

module (Clark et al., 2007).
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A phonemic transcription is first produced from a plain orthography tran-

scription of the data by performing lexical look-up from a pronouncing dictionary.

For the experiments reported in this thesis, either the Carnegie Mellon University

Pronouncing Dictionary (CMU) or the Unilex Received Pronunciation Lexicon

(Fitt and Isard, 1999) was used.

Transcriptions of out-of-lexicon words in a training corpus are produced man-

ually and the lexicon augmented. This initial transcription is then refined by

forced alignment with the audio, allowing reduction of vowels and the insertion

of pauses between words where supported by the audio data. Syllabification is

taken from the lexicon and incorporated into the annotation, as are lexical stress

and word boundaries.

Part of speech tags are assigned by the pre-trained model distributed with

Festival, which had been trained on the Wall Street Journal data of the Penn

Treebank (Marcus et al., 1993), using n-grams to assign tags to word sequences

probabilistically.

Phrase breaks are assigned on the basis of Festival’s predictions from text.

Predictions are provided by the pre-trained probabilistic model distributed with

Festival, trained on data from the the Lancaster/IBM Spoken English Corpus

(SEC: Knowles et al., 1996a,b) and its machine-readable extension, MARSEC

(Roach et al., 1993). The model uses n-grams over POS sequences to assign

phrase breaks (Taylor and Black, 1998).

Pitch accents and boundary tones are assigned on the basis of Festival’s

predictions from text, provided by the pre-trained CART models distributed with

Festival. These two CARTs had been trained on data from speaker f2b of the

Boston University Radio News Corpus (Ostendorf et al., 1995), which is annotated

in ToBI notation.

Acoustic Model Building Recipe

Speech units corresponding to phonemes are modelled with HMMs with 5 emit-

ting states in the left-to-right topology described earlier. Single mixture compo-

nent Gaussian distributions with diagonal covariance matrices are used to model

state output probabilities. Model training begins with the estimation of mono-

phone models (models of phones where all features except those regarding the

phoneme’s identity are ignored). These are then cloned and used as the basis for

the full-context models. They are trained slightly to reflect their rich contexts

before decision-tree based context clustering is applied. Clustering is done sepa-
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rately for each state of the spectral envelope, F0 and aperiodicity (see below) parts

of the model and a single tree for duration is made for all five states, resulting in

16 trees for each voice built. The separate clustering of e.g. spectral envelope and

F0 parameters means that these can be modelled using different context features.

This is important, as different aspects of context obviously affect spectral quality

from those that affect F0. The Minimum Description Length approach described

above is used to determine suitable tree sizes. The parameters of states pooled

in the leaf nodes of trees are then tied and re-estimated. This procedure can

be repeated: parameters are untied and re-estimated a little, clustered, tied and

re-estimated. For the HTS-2005 procedure, the number of iterations of this loop

is fixed at 2. For HTS-2010, it is variable, and is specified at each point in the

thesis where use of HTS-2010 is mentioned.

In the HTS-2005 procedure, 16kHz waveforms are parameterised as sequences

of vectors consisting of of 40 Mel-cepstral coefficients, log F0 and the energy of

aperiodic components in 5 frequency bands, as well as the dynamic and accelera-

tion features derived from all of these. Vectors are extracted from 25 ms windows

of speech with a 5 ms frame-shift. F0 is extracted robustly by using a commit-

tee of pitch trackers that vote on the value of each frame. Spectral analysis is

performed using the high quality vocoder STRAIGHT (Kawahara et al., 1999),

after which the STRAIGHT spectra are converted to the Mel-cepstral coefficients

already mentioned.

For the HTS-2010 systems, the static acoustic features described in Yamagishi

and Watts (2010) were used: Bark cepstrum instead of Mel cepstrum, auditory-

scale motivated frequency-bands for aperiodicity features, and Mel F0 instead

of log F0. In other respects, features were the same as for HTS-2005. That is,

16kHz waveforms were used and 40 cepstral coefficients derived from STRAIGHT

spectra.

2.2 Types of Alternative Approach

Aspects of the conventional approach which can make it difficult and time-

consuming to apply to a new target language have been mentioned in the course

of its description. The principal difficulty is that collecting the resources neces-

sary for building the synthesiser’s front-end is expensive and hard to do. Previous

work has addressed this problem, but mainly with the strategy of providing frame-

works to ease the collection of the necessary resources. For example, Kominek
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et al. (2007) describe SPICE, a project designed to ‘reduce the difficulty of build-

ing and deploying speech technology systems’ in any language. This is done by

integrating tasks such as phoneme set definition and lexicon building in a user-

friendly development environment. The related work of Kominek (2009) explores

ways of optimally using non-expert but native speaker input for the iterative con-

struction of a phoneme set. A related approach is taken in the work of the Local

Language Speech Technology Initiative: a project with the goal of enabling peo-

ple in the developing world to access information using voice technology (Tucker

and Shalonova, 2005). The focus of the project is to provide:

[. . . ] training and on-going support to enable a non-expert to pro-

duce a good quality system in a reasonable time frame (Tucker and

Shalonova, 2005).

Scarcity of acoustic resources is not considered in this thesis to be the main

bottleneck to system development. As already explained, the ‘labelling’ of a text

utterance with a waveform by a speaker is a very naive sort of annotation com-

pared with that required to build a full front-end in the conventional supervised

manner. It should be noted, however, that work has been done which could

address the lack of a primary corpus. For example, Anumanchipalli and Black

(2010) explore model adaptation as a means of reusing acoustic data between

languages for TTS training. Latorre et al. (2006) and Zen (2010) present similar

ideas, although the aim there is to enable polyglot synthesis rather than synthe-

sis in scarcely-resourced languages. Another approach is the wholesale reuse of

systems or system modules between languages, in what is usually presented as a

stop-gap or prototyping approach (examples for several language pairs are Black

and Lenzo (2004): Spanish and Basque; Dijkstra and Pols (2004): Dutch and

Frisian; Somers et al. (2006): German and Somali).

The approach taken here, on the other hand, assumes that the collection of a

reasonably sized primary corpus presents little difficulty. Even easier to collect are

what are here called tertiary corpora: unannotated speech or text (i.e. not aligned

with anything, even at the utterance level). Given this easy-to-collect data, the

approach pursued in this thesis is to attempt to learn a synthesis model with

minimal supervision. Such an approach depends on the assumption that similar

structures to those which are labelled explicitly in a secondary corpus are inherent

in language data. Three broad classes of approach that fit this description are

here described: a naive approach that attempts to use textual units directly as

speech modelling units, a speech-driven approach where structure is induced in
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an unsupervised way from audio, and a text-driven approach where structure is

induced from text. The conventional approach to HMM-based speech synthesis

that has already been presented in this chapter will be briefly reviewed for ease

of comparison with these three unsupervised approaches. This section will be

concluded with an overview of the approach taken in the work presented in the

rest of this thesis.

2.2.1 Conventional Approach

The conventional approach already described can be summarised as follows:

1. A front-end is trained in a supervised fashion: modules are trained to predict

linguistically-motivated features which prior knowledge suggests will have

an influence on speech segments’ characteristics.

2. The predictions of this front-end are used to label the training data from

its text part only.

3. The predictions obtained in the previous step are refined by means of forced

alignment with the acoustic part of the database. For example, insertion

of silent segments and reduction of vowels might be incorporated into the

linguistic specification where evidence from the audio supports this.

4. The combinations of features assigned by the front-end that delimit the

members of each modelled unit are decided during decision-tree building

for state-tying. Features are selected and combinations of them are found

in a data-driven fashion using distributions over the audio data. Features

that do not affect the acoustic representation will not be used. Ideally,

our representation of the signal will align closely enough with a perceptual

representation that only factors relating to perceptually relevant differences

will be used in the model.

A key point of the conventional approach just described is the following: a

great number of features are predicted from text; linguistic knowledge suggests

that they will be useful in acoustic (acoustic–perceptual) modelling, but if some

are not it does not matter, as the ‘chaff’ will be ‘winnowed’ from the representa-

tion produced by the front-end during the building of acoustic models.
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2.2.2 Naive Approach

The simplest approach imaginable is to naively use orthographic units in place of

linguistically motivated ones. For example, letters might be used to stand in for

phonemes, and surface word-forms for part of speech tags. The standard state-

tying mechanism which the synthesis system uses for handling context is required

to do extra work – handling letter-to-sound correspondences, for example, in

addition to coarticulation effects. Such an approach does much of the work of

synthesis in what is step 4 of the conventional approach; its success is dependent

in particular on the ability of decision tree-based clustering to ‘winnow away’

irrelevant and useless features, and to find useful combinations of the relevant

ones.

The sort of units that can be used in this approach depend on the language

and its writing system. This approach has obvious application to languages that

use alphabetic scripts, and some form of it might be made to work for languages

using any type of script except an ideographic one (see Section 2.3). Where word

boundaries are marked by a script, orthographic words can provide modelling

contexts. The naive approach has been used in speech recognition as a means

of managing without a phoneme set (e.g. Killer et al., 2003) and has also been

attempted for speech synthesis, using both unit selection (Black and Font Llitjos,

2002; Anumanchipalli et al., 2008; Aylett et al., 2009) and HMM-based synthesis

(Aylett et al., 2009). Kominek (2009) uses plain orthographic units as the starting

point for the creation of a phoneset via the iterative application of split and

merge operations. Whether such methods can be applied at levels other than the

subword unit is not clear from previous work.

2.2.3 Speech-Driven Approach

One set of approaches to the unsupervised acquisition of a front-end is to place

emphasis on step 3 of the conventional approach: to assign more (or all) linguistic

features on the basis of extraction from acoustics rather than prediction from

text. In the most extreme case, the audio part of the database is examined

in isolation from any transcription, and language-independent constraints are

used to segment audio into e.g. segment (Černocký, 1998; Aylett et al., 2009) or

syllable-sized (Mermelstein, 1975; Xie and Niyogi, 2006) units. Units are then

clustered in an unsupervised manner into e.g. phoneme-like classes (Černocký,

1998; Aylett et al., 2009). Similar approaches have been proposed also for levels
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of analysis above the word such as intonation events (Hirst and Espesser, 1993;

Hirst, 2005).

An obvious weakness of this type of approach for TTS is that it only produces

an inventory of units, and no way of predicting these from text. A front-end

must additionally be constructed to do this prediction. Furthermore, in discard-

ing transcription when deriving an inventory of units, cues are discarded that

could prove valuable in producing a useful inventory. Aylett et al. (2009) ar-

gue that acoustic parameterisations typically used for this work do not relate

closely enough to a perceptually-relevant representation of speech for this type of

approach to be successful.

2.2.4 Text-Driven Approach

Much work has been done on the unsupervised induction of linguistic classes

and structures from data, for example, morphological segmentation (Creutz and

Lagus, 2007), POS-like categories (Christodoulopoulos et al., 2010), and parse-

trees (D’Ulizia et al., 2011). This work suggests a second possible type of approach

to TTS where a conventional front-end is missing: induce some structure from

the text part of the corpus, without reference to the acoustics, and then train a

system in the conventional way, but using this induced representation in place of

the conventional linguistic representation.

A very appealing characteristic of this approach is that it enables us to harness

large untagged text corpora (tertiary corpora). The problem with following a

strictly text-based approach is that (often categorical) representations are found

without regard to the acoustic data available in the primary corpus. Although

decision-tree-based context clustering allows us to some extent to select features

from a large potential set that are relevant for the acoustic modelling task, it

is desirable to delay the sort of hard decisions that are inherent in categorical

representations until acoustic features have been observed.

2.2.5 Approach Taken in this Thesis

The approach taken here is to start with a naive system where textual units are

used as acoustic modelling units. Such systems are evaluated against topline sys-

tems in Chapter 3. The remainder of the thesis seeks to strengthen this naive

approach with representations of textual units that are derived using elements

of the text-driven approach. Importantly, the representations used are continu-
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ous rather than categorical. These continuous features leave hard categorisation

of textual objects open to later stages, where for example, decision tree-based

clustering can find divisions of the space of objects that are pertinent for TTS.

2.3 Naivety, language independence, and lan-

guage typology

As explained in the previous paragraph, the approach on which the techniques

developed and tested in this thesis are based is a linguistically naive one. Ben-

der (2009) warns against making claims for the language-independence of NLP

systems without testing on a range of typologically varied languages, observing

that linguistically naive systems can make implicit assumptions about language

structure and overfit the languages on which they are developed. In this thesis,

techniques are developed mainly in one language and tested on a further two

in Chapter 8: hardly a large and varied sample of the world’s languages. A

few words should be said, therefore, about the extent to which the techniques

developed are anticipated to be more widely applicable.

Basic assumptions made about the target language in this thesis are that it

uses an alphabetic script and that word boundaries are marked orthographically.

For the Local Language Speech Technology Initiative project (see Section 2.2),

a publically-accessible database containing script and language information for

107 languages especially relevant for TTS purposes was compiled (Shalonova and

Tucker, 2003; Tucker and Shalonova, 2005).4 The criterion for inclusion in the

database is that ‘official newspapers’ are published in the language in question

(Shalonova and Tucker, 2003). Table 2.2 shows some data extracted from this

resource.5 From this, it can be seen that over 65% of the languages in this

database meet the assumptions mentioned, of alphabetic script and orthograph-

ically marked words. Although not tested here, it is supposed that letter-based

synthesis would also be feasible with alphabetic-syllabic scripts, bringing the per-

centage of languages sampled by Shalonova and Tucker (2003) that meet the

assumptions of the thesis to 79%.

4The database at http://llsti.org/languages-database.htm was accessed in January
2012 for the collection of the data presented here. At that time, data for 107 languages were
included in the database, compared with the 105 described in the publications cited. Malay,
Panjabi and Sindhi each have double entries for different script types, bringing the count of
database entries to 110.

5A brief typology of the world’s scripts is given by Comrie (2011), where the terms alpha-
syllabic and logographic correspond to alphabetic-syllabic and ideographic used in Table 2.2.
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Script type Orthographic words?
Yes No

Alphabetic 70 0
Alphabetic-syllabic 20 6
Consonantal 9 0
Syllabic-ideographic 0 1
Ideographic 0 1

Table 2.2: Script characteristics of 107 languages. Entries in the table are counts
of languages in the database described in Shalonova and Tucker (2003). Malay,
Panjabi and Sindhi are counted only under their non-Arabic script entries.

The assumptions mentioned here are those that must be met in order that the

types of module described in Chapters 4 to 8 are trainable for a target language.

Other typological characteristics will determine whether or not the induced repre-

sentations will actually be useful for TTS in a given target language. For example,

given a morphologically rich target language, orthographic word types may be

too sparsely represented for word type representations such as those described in

Section 4.2.4 to have any capacity for generalisation. For word representations

to be of use in such cases, they would have to be representations of word tokens,

using for example automatically derived morpheme-like units as internal or ex-

ternal contexts (see Section 4.2). However, the distributional–acoustic method

presented in this thesis works on the assumption that features derived from vec-

tor space models in the distributional phase will be rejected by the system in

the acoustic phase if they are irrelevant to the acoustics of the target language.

This rejection of irrelevant features is the task of decision tree building modules,

aided by the method of feature selection developed in Chapter 7. If a vector

space model – such as one of word types in a morphologically rich language –

provides features that are wholly irrelevant, the assumption is that it will at least

not harm the quality of speech generated.

Finally, it should be noted that this thesis deliberately avoids broaching the

issue of normalisation of non-standard words (Sproat et al., 2001), such as the

normalisation of £5 to five pounds. It is assumed that the text part of the primary

corpus and run-time input to the systems built consist of fully-expanded standard

orthographic forms.6 Text normalisation is considered to be too language-specific

to be handled in a wholly unsupervised way, but could be amenable to an active

6Note that no such normalisation is expected in the copious tertiary data, creating a slight
mismatch when the results of distributional analysis of the tertiary data are used to characterise
textual objects in the primary data.
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learning type approach. As such, it is beyond the scope of this thesis, but will

be the focus of future work.



Chapter 3

Benchmark Systems

3.1 Introduction

The central question that this chapter seeks to answer is: How necessary are the

features output by various front-end modules listed in Table 2.1 on page 7 for the

successful operation of a speech synthesis system? To this end, three experiments

are carried out, each of which focuses on a different area of the knowledge encoded

in a conventional linguistic specification. These different areas of knowledge will

now briefly be outlined, along with an overview of the experiments designed to

evaluate their contribution to the quality of speech synthesised.

Experiment 1: Contribution of High-Level Features Given on page 7

is a list of contextual features used for the conventional English systems built for

this thesis (Table 2.1), and it is on what will be termed the high-level features

given in this list that the first experiment focuses. The term high-level is used

to denote features that cannot be obtained from a lexicon and letter-to-sound

rules: features relating to part of speech, intonational phrase boundaries, pitch

accents, and boundary tones (features classes W, P and T in Table 2.1). The

first experiment is intended to determine what these features contribute to the

quality of synthesised speech. This is done by building a range of voices, each of

which excludes a subset of linguistic features, and then subjectively comparing

synthetic speech generated by them for naturalness.

Experiment 2: Contribution of Phonetic Transcription The second

and third experiments focus on the phoneme-related features of the linguistic

specification (feature classes F and FC in Table 2.1 on page 7). Specifically, the

second experiment examines the contribution of phonemic transcriptions to the

quality of synthetic speech, addressing the situation in which such a transcription

35
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is not available. To what extent is it possible to naively use textual objects

(letters) in place of expertly-specified ones (phonemes and associated phonetic

classes: feature classes F and FC in Table 2.1) as elements of the linguistic

specification? As in Experiment 1, a range of systems is built, to each of which is

made available a different level of annotation, and the intelligibility of resulting

systems is measured in a listening test. The experiment considers letter-based

systems for a language with an alphabetic writing system with relatively opaque

letter–sound correspondence (English).

Experiment 3: Contribution of Phonetic Categories examines the con-

tribution that knowledge of phonetic categories (encoded in features of class FC

in Table 2.1) makes to the quality of synthetic speech. Again, a range of systems

is built, to each of which is made available a different level of phonetic knowledge.

Evaluation is carried out through objective comparison of held-out natural sam-

ples and the systems’ attempts at synthesising those samples. The motivation for

this experiment is the fact that in languages with more transparent alphabetic

orthographies than the target language for these experiments (English), using

letters directly provides a similar representation to one made using a phonemic

transcription. In the case of letter-based systems, however, phonetic classes such

as those that are implicit in the design of a phoneme set are not generally estab-

lished, making evaluation of phoneme-based systems more straightforward.

Different methods of evaluation are used in each of the three experiments. In

Experiments 1 and 2, human listeners are used. In the former, they are asked to

rank synthetic samples for naturalness, and in the latter, to provide transcriptions

of synthesised utterances which can then be scored against the true transcription

to provide a measure of system intelligibility. In either case, the aspect of syn-

thetic speech is evaluated that is expected to be most clearly affected by the way

linguistic annotation is varied between experimental conditions. Where phonemes

are replaced with letters in Experiment 2, intelligibility will most obviously be

affected. Where high-level features are varied in Experiment 1, it is expected

that naturalness of synthetic speech will be more obviously affected. Experiment

3 makes no use of human listeners due to the time-consuming nature of listening

tests. Here, objective evaluation of spectral envelope parameters is performed;

this aspect of speech was chosen over – for example – fundamental frequency, as

it is spectral envelope that is expected to be affected most when knowledge of

phonetic categories is varied.

Insights gained in the analysis section of Experiment 1 suggest improvements

to the baseline systems in both Experiments 2 and 3. The methods of improve-
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ment are presented in the relevant sections, along with experimental results.

The systems incorporating improved techniques are in some respects success-

ful. However, they have some shortcomings and limitations that are discussed in

the concluding part of this chapter. This paves the way for introduction of the

methodology that is central to this thesis in Chapters 4–7.

3.2 Experiment 1: Contribution of High-Level

Features

3.2.1 Overview

This experiment takes the availability of a lexicon and features derived from it

(what will be termed phoneme-level features: phonemes, lexical stress, syllable

boundaries) as given, as well as utterance boundaries.1 It is assumed that out-

of-vocabulary words are handled well or perfectly by relevant modules. These

assumptions are made in order to focus on high-level features as already men-

tioned (feature classes W, P and T in Table 2.1). It is assumed that there is no

means of assigning these in the baseline case.

Twelve synthesis systems were assembled for this experiment. They are sum-

marised and given identifying codes in Table 3.1. For all systems, a common

training set was used, details of which are given below. The only aspect of train-

ing varied between systems was the annotation of the speech data used. This

annotation was varied firstly with regard to the highest linguistic tier of anno-

tation that was included, and secondly with regard to how that annotation was

obtained. The first type of variation is represented by the rows of Table 3.1:

the systems on the bottom row of the table make use only of features given by

a lexicon and utterance segmentation (feature classes F, FC, S and U in Table

2.1). Moving up the table, the systems incorporate higher levels of analysis (part

of speech, phrase-breaks and finally pitch accents: feature classes W, P and T,

respectively). Systems in the uppermost row use the full feature set, and so

constitute top-line systems.

The three columns of Table 3.1 represent different degrees of automation of

annotation of the high-level features. In column 1 are what can be thought of as

ideal world systems, employing manually-constructed or manually-checked anno-

tation at both training and synthesis time. This type of high-quality annotation

1An earlier presentation of Experiment 1 was made in Watts et al. (2010a).
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Training labels: Gold Gold Auto

Synthesis labels: Gold Auto Auto

(Gold Mixed Auto)

Feature descriptions : Feature classes :

Basic POS Phrase ToBI F FC S U W P T G1 M1 A1

Basic POS Phrase F FC S U W P G2 M2 A2

Basic POS F FC S U W G3 M3 A3

Basic F FC S U G4 M4 A4

Table 3.1: Summary of systems built to analyse the impact of using linguistic
features, and the impact of prediction noise on these features. The feature classes
given refer to Table 2.1.

can be thought of as a gold-standard, and will here be referred to as Gold an-

notation (G). In column 3 are systems that represent a more common real-world

case, in that both training and synthesis are done using annotation automatically

predicted from text; this annotation is here referred to as Auto (A). The middle

column represents a mixed condition (M), where Gold annotation is used during

training and Auto during synthesis.

The variation represented by the columns of this table is motivated by a

secondary concern of this experiment. This is the impact of noise in the labelling

of these higher-level features on their usefulness to a system. Extensive subjective

comparison of the G, M and A conditions was not performed in this experiment,

but the use of features by all three types of system is analysed in Section 3.2.5.

A more detailed account of the differences between different systems’ features

is given below in Section 3.2.3. Besides these different features, identical data

and training procedure were used. All systems were built using the recipe termed

HTS-2005 in Section 2.1.3, and using the data that are detailed in the following

section.

3.2.2 Data Used

The Boston University Radio News Corpus (BURN: Ostendorf et al., 1995) was

selected because of the high quality of the associated annotation, much of which

is manually assigned, including ToBI labels (Silverman et al., 1992). The speaker

f2b was chosen as target speaker, being the speaker with the largest amount

of data hand-labelled with ToBI. Only the radio news part of the corpus was

used, in order to achieve consistency of speaking style. The amount of data
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used (55 minutes, not phonetically balanced) is the minimum needed for decent

performance by a speaker-dependent system. Combined with the fact that there

is also some variation between the acoustic quality of different sessions, this means

that voices of very good segmental quality cannot be obtained from these data.

However, the voices were built on the assumption that it should be possible to

evaluate their global prosodic characteristics, i.e. those which are expected to be

most affected by high-level features.

The BURN data are distributed in paragraph-sized files which were split up

into smaller subjectively-unified utterances for the purpose of ease of processing

in this experiment. Data that were judged too noisy for this experiment or of

markedly different acoustic quality to the majority of the data or which lacked

ToBI annotation were discarded. The result was a set of 425 utterance waveforms

(55 minutes in total).

A testset was prepared from BURN using the audio and associated labelling

of two different speakers (m1b and m2b), because the f2b data were considered

too small to be partitioned into training and test sets of reasonable size. Two

sets of annotation of this testset (Gold and Auto) were prepared in the same way

as for the training set.

3.2.3 Annotation Used

Two sets of linguistic specifications were prepared for the training and test data,

which will here be called Auto and Gold. The features specified in both sets of

annotation are those summarised in Table 2.1 with two exceptions. First, part of

speech of previous, current and following words (using utterance POS tags) were

used instead of guess POS. Second, the types of pitch accent of previous, current

and following syllables were used as features, not simply the true–false value used

in the standard contexts (that is, whether or not a pitch accent is predicted for

a given syllable). In both cases, manually-specified sets of POS tags and accents

(such as verb, function word, pitch-accent containing H, etc.) were used.

Note that the differences between the Gold and Auto annotation account for

the columns of Table 3.1. To create the conditions represented by the rows of

that table, the relevant parts of these linguistic representations were suppressed

for each voice built.

The lexicon and utterance-level features (features of classes F, FC, S and U

in Table 2.1 on page 2.1) for both sets were derived in the same way from text

transcriptions, using the automatic procedure outlined below. The high-level
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features of the Auto annotation were also derived using automatic procedures. In

the case of the Gold annotation, on the other hand, manual or manually-verified

annotation was used for all these higher level features, as described below.

Auto: Automatic Annotation

The automatic annotation (including annotation of features relating to part of

speech, phrase breaks, pitch accent, and boundary tones) was produced following

the procedure outlined on page 25. The Carnegie Mellon University Pronouncing

Dictionary was used, and out-of-lexicon words in both training and test data were

added manually to be able to focus on the contribution of the high-level features.

It should be noted that the two CARTs used to assign pitch accents and

boundary tones had been trained on data from the target speaker of the present

experiment, f2b. Although these CARTs had been trained with a view to gen-

eralising to other speakers and not overfitting f2b’s characteristics, these trees’

predictions are obviously expected to be much better on this – their training data

– than on arbitrary data. Note that the two testset speakers, however, had made

no contribution to the training data for Festival’s ToBI-prediction trees.

Gold : Gold Standard Annotation

As mentioned above, the phoneme-level features (phoneme sequence, lexical

stress, syllabification) were identical in the Auto and Gold annotation.

The part of speech (POS) tags supplied with the radio news sections

of BURN are automatically assigned and not manually checked. For the Gold

annotation, therefore, a new high-quality POS tagging was produced by running

three high-quality taggers of different types over the c.10,000 tokens of the training

corpus, accepting unanimous decisions of the taggers, and manually tagging the

remaining 7% of the tokens in accordance with Penn Treebank tagging guidelines.2

Phrase-breaks: The annotation provided with BURN gives manually as-

signed phrase-break indices. Breaks with index 4 were used to provide phrase-

breaks in the Gold annotation; other indices including those for intermediate

phrase boundaries were discarded.

Pitch accents and boundary tone features in the Gold annotation were

derived from the manual labelling in BURN. With the exception of intermediate

2The three taggers used were a trigram tagger (TnT : Brants, 2000), a maximum entropy tag-
ger (MXPOST : Ratnaparkhi, 1996), and Brill’s Transformation-Based Learning tagger (Brill,
1992). Models that had already been trained on the Wall Street Journal data from the Penn
Treebank were used.
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phrase tones and %H accents, which were discarded, accents were associated with

syllables and boundary tones with phrases in the Gold annotation.

3.2.4 Subjective Evaluation

Procedure

An AB test was conducted in which a pairwise comparison was made between

eight selected pairs of six of the systems built in terms of listeners’ impression

of the naturalness of the synthetic speech. Five comparisons were made among

systems G1, G2, G3 and G4 to assess the impact of removing high-level fea-

tures: the comparisons made were G1-G2, G1-G3, G1-G4, G2-G3, G3-G4. Three

comparisons were made among systems G1, M1, and A1 to assess the impact of

prediction noise while keeping the feature set constant.

80 medium-length utterances (4–10 s.) were taken from the test set. 80 syn-

thetic stimuli could therefore be used for each of the 6 systems to be evaluated.

The utterances were randomly assigned to 8 utterance sets. Each listener was

presented with each of the 8 system comparisons as ten (same-utterance) pairs

from a single utterance set; no listener received the same system comparison from

the same utterance set, and no listener heard the same utterance in more than

one pair in the course of the entire evaluation. Within-pair ordering of systems

was balanced within each utterance set. Finally, the presentation order of each

listener’s pairs was randomised, and the pairs presented in 4 blocks of 20. The

listening test was conducted via a web browser and headphones in purpose-built

listening booths, with a total of 8 paid listeners (ages 18–25, all native speak-

ers of English). The listeners were asked to listen to the pairs and record their

preference for the more natural-sounding utterance.

Results

Results of the paired comparisons are presented in Figure 3.1. There, error bars

show 95% confidence intervals (with Bonferroni correction) from a binomial test.

One preference was detected as significant (G1 vs. G4), and the overall trends

are consistent with what is expected: systems perform worse the more tiers of

high-level annotation are removed, and there is a trend of preference for systems

using hand-labelling over ones using automatic labelling. It can also be noted that

different types of feature seem to differ in the importance of their contribution

to listeners’ preference, in particular that the use of pitch accent, boundary tone
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Figure 3.1: Results of AB test for naturalness in Experiment 1. Error bars show
95% confidence intervals (with Bonferroni correction).

and POS features seems to contribute more to preference scores than the use

of phrase features. A more extensive evaluation with more listeners might be

expected to detect more significant differences in support of these trends.

3.2.5 Systems’ Use of Linguistic Features

To gain insight into the types of question most used by each system, and to see

how this changes as conditions are varied, the data represented in Figure 3.2

were gathered. For each system the entire testset (consisting of 10,456 context-

dependent phoneme tokens) was synthesised, and a count was made of the number

of times each linguistic feature was queried as the trees for deciding log F0 dis-

tribution were descended. Trees for F0 were chosen here (rather than e.g. trees

modelling spectral parameters) because this is the part of the model which is ex-

pected to be most affected by modifications to the higher-level linguistic features.

The counts were categorised by the types of feature given in Table 2.1 on page 7,

and normalised by the number of features queried for each system, resulting in

the columns of Figure 3.2.

The overall distribution of features used over classes is much more similar

between the G and M systems than between the M and A systems, from which it

might be deduced that the type of annotation used in training is more important

than the type used at synthesis time in determining which features define units
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Figure 3.2: Type of questions asked during synthesis of test set in Experiment 1.
For each voice, the % of questions (tokens) asked during synthesis from each type
is given as a grey-scale value (black = 11%, white = 0%: note the 11% ceiling
obscures details of monophone and triphone values but enables small values to be
presented with greater accuracy). Hatching indicates that a group of features was
held out from a system. The identifiers for question classes are explained in detail
in Table 2.1. Briefly, ‘F’ and ‘FC’ questions refer to phones, ‘S’ to syllables, ‘W’
to words (i.e. part-of-speech), ‘P’ to phrase, ‘T’ to tone and accent, and ‘U’ to
utterance.
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in synthesis. The tendency for a greater proportion of questions to be asked

about lower level features (e.g. quinphones) as higher-level features are removed

is the sort of surrogacy effect that might be expected. But Figure 3.2 also reveals

more specific surrogacy effects as higher-level features are removed. In all 3

conditions G, M and A, for example, when pitch accent and tone-related features

are removed (categories T1–4), there is a sharp increase in use of questions from

category P1 (Number of syllables {since, until} phrase boundary). Likewise, when

questions from the phrase category (P1–8) are removed, questions in the POS

class (W1–2) see a sharp increase in usage. These effects are what might be

expected given that exactly these types of features are used as predictors of pitch

accents and phrase-breaks in the front-end modules used. What seems to be

happening is that similar combinations of e.g. phrase features as those used to

assign ToBI events by a CART tree are being found directly in the decision tree

for state-clustering when ToBI labels are removed from the system. It appears

that acoustic model clustering trees are able find useful combinations of features

from lower tiers of the linguistic specification directly. The methods introduced

in the next two experiments are essentially ways of enhancing the trees’ ability

to find such combinations.

3.3 Experiment 2: Contribution of Phonemic

Transcription

3.3.1 Letter-Based Speech Synthesis

The first experiment of this chapter confirmed that features used in a conven-

tional TTS system that are obtained from modules other than the lexicon can

significantly improve a system’s perceived naturalness. The present experiment,

on the other hand, examines the contribution made to the quality of synthetic

speech by the lexicon through the phonemic transcription it provides.3

Similar work that attempts TTS based on letters is reported in Black and

Font Llitjos (2002) in the context of cluster-based unit selection synthesis. The

target language in that case was Spanish; the notoriously complex and irregular

letter-to-sound correspondences of English make using it as our target language

very ambitious. This is also shown by the findings of Killer et al. (2003), where

the performance of grapheme- and phoneme-based systems on speech recogni-

3An earlier presentation of Experiment 2 was made in Watts et al. (2010b).
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Identifier Description Modelling
unit

Run-time lexicon
and CART training
data

Decision
Tree
Method

L-BAS Letter-based baseline Letter n/a 1-pass

L-SER Letter-based, serial
tree-building

Letter n/a Serial

P-FUL Phoneme-based with
full lexicon

Phoneme Full CMU lexicon 1-pass

P-LIM Phoneme-based with
limited lexicon

Phoneme CMU lexicon
entries for

1-pass

training set items

Table 3.2: Summary of systems built for Experiment 2

tion tasks in German, English and Spanish are compared. Word error rates for

grapheme systems are slightly higher than for phoneme systems in the case of

German and Spanish, but significantly higher in the case of English.

Systems for this experiment are summarised in Table 3.2 and explained in

the following paragraphs. All systems were trained using the audio data and

text transcription for speaker slt in the ARCTIC database (Kominek and Black,

2004). The transcription was checked before use and manually preprocessed, and

all numerals and abbreviations correctly expanded. The same procedure (denoted

HTS-2005 and summarised on page 25) was used to build the acoustic models of

all systems except L-SER, where this procedure was extended with a serial tree-

building procedure at the final iteration of context clustering of spectral envelope

parameters (motivated and described below). As in Experiment 1, the principal

difference between systems is due to the different annotation that they employ,

which is now described.

The systems that are given the identifiers L-BAS and P-FUL are a baseline

and topline system, respectively. System P-FUL uses a phonemic transcription

obtained from a pronouncing dictionary and derived letter-to-sound (LTS) rules.

System L-BAS is identical, except that the lowercased letters of a standard or-

thography transcription are used in place of phonemes. This pair of systems

allows the main prediction of the experiment to be tested: that using phonemic

transcriptions derived from plain orthography gives better synthetic speech than

using the plain orthography directly.
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P-FUL Details

The annotation used to build the P-FUL system was obtained by a procedure

similar to the one described on page 25. That is, an initial time-alignment and

phoneme sequence was found by look-up in the CMU pronouncing dictionary

(CMU) and forced alignment with HMMs. All out-of-vocabulary words found

in the training data were added manually to the lexicon. The location of punc-

tuation marks was used to initialise a silence model, and later the insertion of

silence between words was allowed where supported by the audio. Selection of

alternative pronunciations from the lexicon was also allowed during alignment.

From the resulting phoneme sequences, simple features were derived, consisting

of the identity of phonemes at each position of a 7-unit context window and mem-

bership of those phonemes to conventional phonetically-motivated categories. In

addition, the number of phonemes since the start of the word, and the number of

phonemes until the end of the word. No features above the word level (relating

to e.g. position in phrase or utterance) were used. The phoneme inventory used

consists of 54 units, including 15 stressed variants of vowels. To perform synthesis

with this system, the CMU pronouncing dictionary was used to look up phoneme

sequences from plain text. Out of vocabulary (OOV) words were converted using

CART trees trained on the whole CMU lexicon.

L-BAS Details

The annotation used for system L-BAS was identical to that of P-FUL except for

the lexicon used: instead of the CMU lexicon used by System P-FUL, L-BAS uses

a naive lexicon, mapping tokens to sequences composed of the 26 lowercase letters

of English. In all other respects the procedure used for obtaining the annotation

for the two systems was identical. Note that the letter-based annotation of System

L-BAS referred to no sets of units comparable with the phonetic classes used in

System P-FUL’s annotation. Informal visual comparison of the phoneme- and

letter-based alignments shows that at the word level they are very similar, and

that reasonable assignments of letters to acoustic segments are generally made

when letters are used.

The use of a wider context window over sub-word units than elsewhere in

this thesis – seven units rather than five – is inspired by features typically used

in building CART trees for LTS conversion. Note that unlike in LTS trees, the

context units in the window may also be taken from neighbouring words, as the

features are expected to deal not only with LTS correspondences but also with
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the type of co-articulatory effects for which decision-tree-based context clustering

is conventionally used.

3.3.2 Phonemes: Modelling vs. Generalisation

Two other predictions are made in this experiment, and voices built to test them.

The first prediction is that the expected superior performance of P-FUL over L-

BAS is due to the capability for generalisation given by a pronouncing dictionary,

rather than due to the inherent superiority of phonemes over letters as units for

acoustic modelling. To allow this prediction to be tested, system P-LIM is built,

which is identical to P-FUL with regard to training, but which at synthesis time

is constrained to make predictions of phoneme sequences purely on the basis of

the phonemic transcriptions observed in training. That is, lookup is performed

in a lexicon limited to the forms encountered in the training set, and the pro-

nunciations of out-of-vocabulary words are provided by a CART tree trained on

this limited lexicon. P-LIM therefore provides a useful point of comparison with

L-BAS, which must make all generalisation on the basis of items seen in train-

ing, but which also must map directly from surface forms of words to acoustics

without the mediation of a phonemic transcription.

P-LIM Details

The annotation of training data and models build for system P-LIM were identical

to those used for system P-FUL. The only difference was the LTS resources used

at run time. Whereas P-FUL uses the full CMU lexicon, both for lookup of words

and for building of decision trees for the letter-to-sound conversion of OOV words,

the lexicon used for lookup and training LTS trees used for P-LIM was restricted

to the entries in CMU lexicon of the 2333 word types seen during training.

3.3.3 Induced Compound Features

The final prediction made is that a serial tree-building technique can significantly

improve the performance of a system. To test this, System L-SER was built, which

starts with the same features as L-BAS but through a modified tree-building

routine, acquires richer representations of letters in context by means of serial

tree-building.

The use of serial tree-building is motivated by the well-known weakness of

tree-based methods when multiple features must be queried simultaneously to
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Figure 3.3: A toy example of serial tree building for the characterisation of letter
tokens.
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achieve useful partitions of a dataset (Breiman et al., 1993, pp. 136ff). Such is the

case with sets of rules which capture English letter-to-phoneme correspondences.

An example of a dataset for training a model to predict the realisation of 〈a〉
as either /a/ or /ei/ is the set of words shown in node 0 of the tree in Figure

3.3A. This diagram could represent either a CART tree for letter-to-phoneme

rules or a tree for acoustic model clustering where letter-based features are used.

Questions querying a single feature of these examples are not sufficient to split the

set of words appropriately. For example, the question Is the letter 2 places to the

right an <e>? fails because of the exceptional pronunciation of the 〈a〉 in have;

this exception means that only a Boolean combination of features can split the

set appropriately. Asking questions one at a time, as in standard tree-building

procedures, leads either to impure nodes if splitting stops in the state depicted in

Figure 3.3A, or over-fragmentation if splitting continues till the nodes are pure

(as in Figure 3.3B, where items that would be best kept together are split apart,

both in nodes 2 and 5 and nodes 4 and 6).

This phenomenon can be observed in real trees built for letter-based sys-

tems such as L-BAS. Over-fragmentation and under-fragmentation often occur

together in different portions of the same tree. This is due to the Minimum De-

scription Length criterion used to determine at which point tree-building should

cease (see Section 2.1.2). This criterion is designed to balance the increasingly

good fit of the model to the data and the concomitant increasing complexity of the

model in an appropriate way. However, Description Length is computed globally

over the tree as a whole. In effect, by creating many pure but fragmented clusters

early in tree-building, we are getting bad value in terms of increased likelihood

for the extra model parameters used. If free parameters are wasted through frag-

mentation in one part of the tree, it is understandable that splitting could stop in

a locally premature way in another part of the tree. Qualitative evidence for this

phenomenon is given in Table 3.7 in connection with the final experiment in this

chapter. Note that empirical investigation shows that heavy fragmentation is not

detrimental to the predictive performance of CART trees built for letter-to-sound

conversion and that splitting till total node purity gives the best results (Black

et al., 1998). The case of decision tree building for state-tying of acoustic models

using letter-based units, however, is rather different, in that model complexity

control is crucial to ensure adequate training data for each HMM state.

Various methods have been proposed to overcome this problem with tree-

building. The tree-building algorithm can be reformulated so that each node is

split on a combination of multiple independent variables. Many procedures for
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finding useful variable combinations in trees work by considering some subset of

possible combinations one node at a time, in a single pass of tree building. Cantu-

Paz and Kamath (2003, §II) provide a useful review of approaches to the induction

of such oblique decision trees. A different approach to finding combinations of

variables is the serial method explained in Shafran and Ostendorf (2003) on which

the technique used in the present experiment is very closely based.

In this method, trees are built iteratively. Starting with simple features, a

tree is built that clusters some training data, and the names of nodes of this tree

are added as features to the names of the models that enter them. The tree is

then put to one side, but questions can now be asked about the new features it

has provided in subsequent iterations. The tree produced in the final iteration is

the tree that is finally used in the normal way.

As a toy example, take the tree in Figure 3.3C. We start by placing all model

names in the root node (0), and appending the names with features indicating

through which nodes they have passed on a previous iteration of tree-building (i.e.

the tree in 3.3B). For example, to the cat model are appended the features 0 and

2, indicating that the model traversed those nodes of the previous tree (3.3B).

Querying these features is equivalent to querying multiple original features simul-

taneously. At node 1 of 3.3C this is done, and results in a less fragmented tree

than 3.3B. The procedure can be repeated, as in 3.3D: the models are renamed

with the compound features found by traversing 3.3C, and reference to them leads

in 3.3D to a final, perfect split of the data. In effect, serial tree-building allows

questions to be asked (indirectly) about several linguistic attributes simultane-

ously: the new features represent Boolean combinations of the original features

with the AND and NOT operators.

System L-SER was constructed in the same way as System L-BAS, except that

the serial tree-building technique that has already been described is used. Five

iterations of the procedure are used for the final clustering of spectral parameters

of system L-SER; HMM parameters are not reestimated between iterations of

serial tree building for this system (i.e. HMM parameters receive the same amount

of training for systems L-BAS and L-SER).

3.3.4 Evaluation

It is predicted – uncontroversially – that use of the phonemic transcription will be

beneficial to the intelligibility of synthetic speech. The principal hypothesis of this

experiment therefore is that listeners will make significantly fewer transcription
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Figure 3.4: Results of Experiment 2. WERs for all test sentences (ALL: left),
sentences with in-training-vocabulary content words only (INV: middle), and sen-
tences with out-of-training-vocabulary content words only (OOV: right) are shown.
Arcs show pairs of systems where bootstrap-t confidence intervals over system dif-
ferences show no significant difference (with α = 0.05 and Bonferroni correction).

errors when transcribing speech generated by P-FUL than by L-BAS.

A web-based evaluation of the intelligibility of the voices built was conducted

on Amazon’s Mechanical Turk.4 This is a web-based platform that allows short

tasks requiring human intelligence to be posted and completed on the web for

payment. Many language experiments have been reported that use the service

(e.g. Tietze et al., 2009). 40 listeners were obtained in this way to evaluate

Semantically Unpredictable Sentences (SUS: Benoit et al., 1996) synthesised by

the systems. 40 such sentences were produced using each system, 20 of which

where the content words were not to be found in the systems’ training vocabulary

(the OOV portion of the test-set), and the other 20 so that all the content words

had been ‘seen’ by systems during training (the INV portion). Listeners were

assigned to one of 4 groups (each with 10 listeners); the groups were designed so

that each group’s listeners heard a different set of system–sentences, but so that

the same sentences were heard for each system over the whole test. Stimuli were

presented in random order to the listeners, and the listeners were asked to type

what they heard. Word error rates (WERs) were then computed on the listeners’

responses, with reference to the text that had been used to create the stimuli.

4https://www.mturk.com/mturk/
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System Description Features

Q Baseline Quinphones only

QC Topline Quinphones and phonetic Categories

QH Experimental Quinphones and automatically Harvested cate-
gories

Table 3.3: Summary of systems built for Experiment 3.

3.3.5 Results

Results of the evaluation are summarised in Figure 3.4. WERs are given over

all test sentences (left), sentences with in-training-vocabulary content words only

(middle), and sentences with out-of-training-vocabulary content words only (right).

Differences between system WERs were compared in a pairwise fashion using the

bootstrap procedure outlined in Bisani and Ney (2004): bootstrap-t confidence

intervals were calculated over system differences. Differences not found to be

significant in this analysis (with α=0.05 and Bonferroni correction) are indicated

with arcs in the figure.

On both the INV portion of the test set (centre plot of Figure 3.4) and on

the OOV portion (right-hand plot of same figure), the phoneme-based systems

achieve lower WERs than the letter-based ones, as expected. For the INV set,

the two phoneme-based systems receive the same WER as we would expect, as

they are essentially the same system when producing this ‘seen’ vocabulary. On

the OOV set, the limited-lexicon phoneme-based voice P-LIM has a higher WER

than counterpart P-FUL, although this difference between the P voices is not

found to be significant.

The serial tree-building method produces a significant improvement to the

baseline letter-based system in both the overall evaluation (left-hand plot of Fig-

ure 3.4) and evaluation on the INV portion of the test-set (middle plot in same

figure). Also on the OOV portion of the test-set (right-hand plot of Figure 3.4),

L-SER achieves a lower WER than L-BAS, although in this case it is not found to

be significant. In no case does performance of the L systems approach that of the

full phoneme-based system, P-FUL. On the OOV test-set, though, the addition

of serial tree-building allows the letter-based system to close a part of the gap in

performance between the baseline system L-BAS and the phoneme-based system

with limited lexicon, P-LIM. Here, although there remains a gap between L-SER

and P-LIM, it is not found to be significant (though as noted above, neither is

the gap in performance between L-BAS and L-SER in this case).
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3.4 Experiment 3: Contribution of Phonetic Cat-

egories

3.4.1 Overview

The present experiment examines the contribution that knowledge at the phoneme

level makes to the quality of synthetic speech, specifically, knowledge of phonetic

categories. As in Experiments 1 and 2, a range of systems is built, each incor-

porating a different level of phonetic knowledge. In this experiment, evaluation

is carried out through objective comparison of held-out natural samples and the

systems’ attempts at synthesising those samples.

As observed in the introduction to this chapter, the motivation for this ex-

periment is that in languages with transparent alphabetic orthographies, using

letters directly provides a similar representation to one made using a phonemic

transcription. In the case of letter-based systems, however, recognised classes

such as those that are implicit in the design of a phoneme set are not generally

established, which makes the construction of a benchmark system for comparison

in evaluation problematic.

3.4.2 Systems Trained

Details of the systems built for this experiment are given in Table 3.3. These

systems are identical with respect to the the data-set and training recipe used.

The systems were trained on speech from the database released by Phonetic Arts

for the 2010 Blizzard Challenge (King and Karaiskos, 2010). The whole database

consists of the speech of 4014 isolated factual utterances read from a script by the

speaker rjs, a professional 50-year old male RP-accented speaker. For training

voices in this experiment, a subset of this data was used, consisting of its first

1000 sentences (approximately 1.6 hours of speech).5 The training recipe denoted

HTS-2010 on page 25 (with 10 iterations of context clustering) was used to train

all three voices on this data-set.

The main comparison of the experiment is enabled by systems Q and QC,

which are baseline and topline systems, respectively. These voices differ only

with respect to the linguistic specification that they use. Both have access to a

phonemic transcription of the training corpus and the quinphone features derived

5For convenience, this subset will be referred to as RJS-1000 from now on in this thesis.
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Figure 3.5: A toy example of serial tree building for the characterisation of
phoneme types

from it (the features of class F on page 7), but only QC has access to phonetic

category information (the features of class FC). It is predicted that the phonetic

category information to which system QC has access will be beneficial to the

quality of speech synthesised. The prediction made, therefore, is that the Bark

cepstral distortion of speech generated by system QC compared with the natural

reference speech will be lower than that of system Q.

The third system – QH – makes use of a modified training procedure based

on the serial tree building technique described in Section 3.3.3. The method

described there in effect iteratively finds combinations of simple features using

the AND and NOT operators. The method developed for the present experiment

is appropriate for finding sets of features similar to phonetic categories: compound

features using the OR operator. The method is as follows: after each of the 10

iterations of context clustering, new features are harvested from the trees built.

Features are harvested as follows: for each quinphone position in each node of a
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tree, a category is formed from the phonemes that appear in the contexts that

have reached the node. Figure 3.5 illustrates this with a toy example. Two trees

are shown, and in each node of these trees, the phonemes in a single quinphone

position (current phoneme) that have passed down to that node are shown. In

the root node of both trees, this is a set of six phonemes: /p, t, m, n, e/ and

/o/. Tree 1 uses the initial feature set for splitting the dataset, in which models

are queried with regard to only single phoneme identities. That is, the system

incorporates no knowledge of phonetic categories with which the dataset can be

partitioned in other ways (e.g. unvoiced stop, nasal, vowel). It is assumed for the

sake of demonstration that the shortest description length of the data is given by

pooling the contexts with unvoiced stops as current phoneme in one leaf node,

and all other contexts in a second leaf node. Given this, any tree built using

the initial set of features will be suboptimal. Tree 1 is an example of this: the

unvoiced stops /p/ and /t/ must be partitioned from the rest of the contexts one

at a time, leading to over-fragmentation.

When harvested, however, tree 1 provides two categories of phonemes, which

were produced when /p/ and /t/ are removed: /t, m, n, e, o/ and /m, n, e,

o/. When described as /m, n, e, o/, this category does not seem to consist of

phonetically homogeneous elements. However, the complement of this category

– in the context of this example – is the category of unvoiced stops, /p, t/. A set

and its complement obviously have the same status in decision tree-based state-

tying. The use of these two categories by the second tree shown in the example

means that it is capable of directly partitioning unvoiced stops from the other

contexts by querying a single feature.

This is obviously a toy example, greatly simplified compared with a tree in-

duced on a real dataset. When used to build system QH, the procedure was ap-

plied to features for all five quinphone positions, each of 10 iterations of context

clustering to all trees for spectral envelope. Only the trees for spectral envelope

were harvested for features in this experiment as it is these that are most related

to segmental quality of speech, but in principle any of the trees built can be

harvested in this way.

Note that the use of the HTS-2010 recipe in this experiment – with its many

iterations of state-tying – means that the serial tree method can be incorporated

very simply compared with the procedure used for System L-SER in Experiment

2, where no re-estimation of HMM parameters was conducted between trees in the

series. It is also simple compared with techniques developed in speech recognition

which also have the goal of automatically determining phonetic categories. These
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Figure 3.6: Results of Experiment 3

techniques (e.g. Beulen and Ney, 1998; Singh et al., 1999) typically involve a

clustering stage additional to that used to build the final recognition models.

3.4.3 Evaluation

An objective evaluation of the three voices was carried out, by taking 100 utter-

ances for which time-aligned annotation was available but which were held out

of training, and synthesising them with natural segmental durations. The syn-

thesised speech parameters could then be compared on a frame-by-frame basis

with the parameterised natural samples. Mean Bark-cepstral distortion per non-

silent frame was computed for this experiment, because spectral envelope is the

attribute of speech that we expect to be most affected by the manipulation of the

phonetic categories used by a system. Segments labelled as pause and silence were

excluded throughout. As well as a general evaluation over all non-silent segments,

measures were also computed separately over vowel and consonant segments.

Results are presented in Figure 3.6. It can be seen that encoding expert-

specified phonetic categories in the annotation used leads to a reduction in Bark

cepstral distortion. However, using the serial tree-building method to induce

categories of phonemes leads to a comparable reduction in distortion without

incurring any of the cost associated with manually compiling phonetic categories.

The serial tree building methods used in both this experiment and Experi-
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ment 2 are designed to overcome the problems of over- and under-fragmentation

during treebuilding. Results of subjective and objective evaluation shown that

quantitatively, systems incorporating these procedures behave more like toplines.

Informal inspection of trees suggests that they do so also in qualitatively com-

parable ways. The data presented in Figure 3.7 demonstrate this. Here, all leaf

nodes of all decision trees for Bark cepstrum state emission parameters are di-

vided into three classes depending on the number of context-dependent phoneme

types which that node represents. Small leaf nodes represent 70 or fewer types,

large leaf nodes represent more than 1000 types, and the remaining leaf nodes

are called medium. It can be seen from this figure that system Q contains more

small and large leaf nodes than system QC, built using splits determined by pho-

netic category and not just phoneme identity. This greater number of small and

large leaf nodes is a consequence of the combined over- and under-fragmentation

mentioned above. Using the categories harvested with the serial tree method in

system QH gives a distribution of leaf-node sizes much more similar to that of

system QC than that of system Q. It seems therefore that the serial tree method

not only allows a baseline system to approach the performance of a system us-

ing expert knowledge of phonetic categories quantitatively (i.e. as measured in

cepstral distortion), but that it allows it to do so in a qualitatively comparable

way.
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3.5 Conclusions

In its analysis of the contribution of high-level features of a conventional linguis-

tic specification to the quality of synthesised speech, Experiment 1 provides the

foundation for the work presented later in this thesis, where less knowledge-rich al-

ternatives to these features are sought. The subjective evaluation has established

that these features do significantly improve listeners’ reaction to synthetic speech,

when features are assigned without error and combined. Perhaps more interest-

ing are the findings from analysis of which features are used during synthesis,

and the patterns of surrogacy between different tiers of features that this anal-

ysis reveals. Front-end modules provide linguistically-motivated combinations of

input features which are then used by decision trees for state-tying. When those

front-end modules are missing, however, it is clear that the state-tying trees are

finding the same sorts of combinations directly. This inspires the adoption of

serial tree methods in Experiments 2 and 3 as a means of facilitating this direct

discovery of feature-combinations.

Experiments 2 and 3 show that – fairly obviously – it is beneficial to use

phonemic representations and expert-specified phonetic categories when they are

available. Failing that, however, two variants of a serial tree building were intro-

duced that significantly improve the performance of a simple letter-based system

when a phonemic transcription is absent, and close most of the performance gap

as measured objectively in the case that knowledge of phonetic categories is un-

available.

The serial tree method is not without its shortcomings, however. In Exper-

iment 3 it was used to characterise a closed set : the set of context-independent

phonemes. It is reasonable to expect a system to hear all members of this set sev-

eral times in a primary corpus of reasonable size. It makes no allowance, however,

for items unheard during training in the case that it is used to characterise objects

from an open set, such as word types. The variant used in Experiment 2 does

this, as it characterises the large set of letters-in-context, all members of which

cannot hope to be heard in training. It generalises to unheard cases, however,

with limited success, providing a significant improvement over the baseline sys-

tem only where the content words of the test-set are of heard types (central panel

of Figure 3.4). Where the test-set includes content words of unheard type, WER

is lower than for the baseline system when serial tree building is used, but not

significantly so (right-hand panel of Figure 3.4). The following chapters develop



3.5. Conclusions 59

a method of distributional–acoustic analysis that allows a system to generalise to

unheard (but not necessarily unseen) items.





Chapter 4

Vector Space Models for Speech

Synthesis

The present chapter outlines the vector space model and its proposed application

to text-to-speech (TTS) conversion. The vector space model is an unsupervised

approach to learning representations for orthographic objects that underpins the

work presented in the rest of the thesis. First, details of vector space models

(VSMs) in general are given via a toy example. Then the way the VSM is applied

to TTS in this thesis is outlined. The final two sections of the chapter are an

overview of previous work on vector space modelling for the characterisation of

linguistic and textual objects, and of some alternative approaches to this same

task.

4.1 Vector Space Modelling: an Example

The vector space model (VSM) is well established in Information Retrieval (IR)

and Natural Language Processing (NLP) as a way of representing objects such

as documents and words as vectors of descriptors. The descriptors are typically

selected or extracted from a database in an unsupervised manner. Selection or

extraction of descriptors has the aim of placing items that are in some sense

similar to one another close together in the vector space. The type of similarity

that the vector space is intended to capture depends on the application, and

influences the way in which descriptors are extracted. In its original incarnation

in IR, documents are characterised by descriptors which indicate the presence

of specific index terms attached to the document (possibly modified by some

weighting scheme). For this application, it is similarity of subject matter that

61
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is relevant, and the choice of index terms as descriptors achieves this. But the

scheme has much wider application, as borne out by later work. In vector space

models of word types, for example, the proximity of two words in the space might

be required to reflect those words’ syntactic or semantic similarity. Such spaces

might be built by using words’ neighbours as descriptors. A narrow context

window in which immediate neighbours are counted is typically used when the

space is required to capture syntactic similarity (as in e.g. Finch and Chater,

1992), and a wider one where semantic characterisation is the goal (as in e.g.

Lund and Burgess, 1996). A toy example of a vector space model of word types

designed to capture syntactic tendencies will now be given as a way of introducing

some typical mechanisms of a VSM.

Take, for example, the following small vocabulary:

finds, requires, makes, education, research, cooperation

Such words which need to be characterised will be referred to target words in

this thesis. Using knowledge of English we can divide these words into classes.

Most obviously, the forms can be divided into two groups: 3rd person present

forms of transitive verbs and abstract, uncountable nouns. Imagine, though, that

we know nothing about such possible syntactic categorisations in this language.

We do, however, have access to a large corpus of text, and can find words that

directly co-occur with them (their left and right neighbours) in that corpus. This

is the sort of narrow context that has already been mentioned as typically used

when a space reflecting syntactic similarity is sought. Table 4.1 shows the first

20 word triplets for the tokens finds and cooperation in the news portion of the

British National Corpus (BNC, 2007). For the purpose of this example we collect

100 such contexts for each of the six target words in our vocabulary. Then we

construct a co-occurrence matrix by counting the number of occurrences of a

target word with some group of context words. For this toy example we will

consider only three left contexts, the frequent words the, and, and it.

The following matrix, which will be called C, records counts of the times a

target word co-occurs with a context word to its left in the 600 examples extracted

from the corpus. For example, the education is observed seven times, and c1,4

records that: 0 0 0 7 8 11

5 3 2 1 3 9

2 11 10 0 0 0


Each word has been turned into a vector of numerical features (i.e. a column
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but finds it and cooperation from
he finds friendly for cooperation between
who finds himself s cooperation .
racing finds cagney friendly cooperation ,
hamilton finds that the cooperation of
rice finds out multi-agency cooperation in
davies finds out ’ cooperation ,
he finds this seeking cooperation and
delahunty finds particularly gulf cooperation council
she finds our close cooperation with
but finds the gulf cooperation council
and finds it close cooperation with
bradbury finds jandel regional cooperation (
he finds himself east-west cooperation and
and finds it , cooperation on
technology finds a community cooperation always
swinburn finds it and cooperation in
torode finds a the cooperation took
now finds itself and cooperation in
he finds he the cooperation of

Table 4.1: First 20 word triplets for tokens ‘finds’ and ‘cooperation’ in the news
portion of British National Corpus

of C) which characterises the way that word associates with neighbours in the

corpus. It can already be seen that C contains useful information for distinguish-

ing between the two groups already mentioned. Both the left neighbours the and

it are useful for distinguishing the nouns and verbs (for obvious reasons). How-

ever, there are also drawbacks. For example, these 2 cues to the same partition

of the vocabulary are not unified into a single feature, and so the representation

is not as compact as it might be. Also, the other feature word (and as a left

neighbour) is not useful for distinguishing the two classes. Neither are the and it

perfect features. It is less frequent before finds than before requires and makes,

and the occurs before cooperation more than before education and research.

These types of problem are typically overcome in vector space models by

the use of a dimension-reducing projection. A well-established method is to use

singular value decomposition (SVD) to extract lower dimensional latent structure.

The co-occurrence matrix C is decomposed using SVD into three matrices, i.e.:

C = UDV T (4.1)

U and V are orthogonal matrices containing the left and right singular vectors

of C and D is a diagonal matrix whose diagonal elements are the corresponding

singular values. Applied to our toy example, this gives:
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(
0 0 0 7 8 11
5 3 2 1 3 9
2 11 10 0 0 0

)
=( −0.75 0.42 0.51

−0.58 −0.02 −0.82
−0.33 −0.91 0.26

)(
18.28 0.00 0.00
0.00 15.06 0.00
0.00 0.00 5.22

)( −0.19 −0.29 −0.24 −0.32 −0.42 −0.73
−0.13 −0.67 −0.61 0.19 0.22 0.29
−0.68 0.08 0.19 0.53 0.32 −0.33

) (4.2)

This is shown graphically in the upper part of Figure 4.1. The representations

obtained in this way are more compact and more robust than the original co-

occurrence vectors. The decomposition effectively combines the 2 useful cues

mentioned above, and smooths out their imperfections: the second basis vector

(2nd column of U) gives the left contexts the, and, it the weights 0.42, -0.02, and

-0.91 respectively. That is, this vector expresses the behaviour of not occurring

after the and of occurring after it ; it is non-committal about the and context,

giving this a weight near to 0. The central row of V T shows the weights used

to mix this basis vector into word representations to reconstruct the original co-

occurrence vectors: essentially this row combines and smooths the outer rows of

C, giving a smoother, less redundant and more robust representation than either

in isolation.

The diagonal elements of D are conventionally sorted in descending order of

magnitude: taking the first r columns of U and D and the first r rows of V T

gives matrices whose product is the best rank r approximation of C, here denoted

by Ĉ:

Ĉ = UrDrV
T
r (4.3)

For example in the toy example, the small 3rd singular value shows that the

corresponding dimension is of little importance in reconstructing C (it accounts

for about 14% of the variation in the data) and can be discarded, along with the

corresponding singular vectors:

(
1.83 −0.21 −0.50 5.57 7.15 11.88
2.08 3.34 2.79 3.27 4.36 7.61
2.93 10.89 9.75 −0.72 −0.43 0.44

)
=( −0.75 0.42

−0.58 −0.02
−0.33 −0.91

)
( 18.28 0.00

0.00 15.06 )
( −0.19 −0.29 −0.24 −0.32 −0.42 −0.73
−0.13 −0.67 −0.61 0.19 0.22 0.29

) (4.4)

This is shown graphically in the lower part of Figure 4.1. The 2nd singular

value shows that the second latent dimension accounts for 39% of the data’s

variance. The first singular value is of course largest, but the corresponding

component is not very informative as it has a shape that is very similar to the



4.1. Vector Space Modelling: an Example 65

=

=

fin
ds

req
uir

es
ma

ke
s

ed
uc

ati
on

res
ea

rch
co

op
era

tio
n

the ...
and ...

it ...

the ...
and ...

it ...

D1 D2

the ...
and ...

it ...

the ...
and ...

it ...

D1 D2
D1 D2 D3

D1
D2
D3

D1
D2

fin
ds

req
uir

es
ma

ke
s

ed
uc

ati
on

res
ea

rch
co

op
era

tio
n

D1
D2

D1
D2
D3

fin
ds

req
uir

es
ma

ke
s

ed
uc

ati
on

res
ea

rch
co

op
era

tio
n

D1 D2 D3fin
ds

req
uir

es
ma

ke
s

ed
uc

ati
on

res
ea

rch
co

op
era

tio
n

Figure 4.1: Graphical toy example of the induction of word representations via
singular value decomposition (a logarithmic grey-scale is used).

average shape of the columns of C; the first column of U correlates well with

the sums of the rows of C (see Hu et al. (2003) and Widdows (2004, p. 184)).

These effects could be removed by centering the data before performing SVD,

but the sparsity of the co-occurrence matrix would be lost, together with the

implementational advantages of that sparsity.

The matrix V T
r obtained in this way can now serve as a sort of lexicon. A low-

dimensional characterisation of a word’s distributional behaviour can be looked

up in the corresponding column of this matrix. A common choice is to weight

the values in this representation by the singular values, and to use the columns

of DrV
T
r : (

−3.54 −5.38 −4.47 −5.81 −7.70 −13.40

−1.93 −10.04 −9.11 2.93 3.30 4.42

)
As well as characterising types observed in the training data (i.e. the columns

of DrV
T
r ), SVD also yields a linear transform that can be used to project newly

constructed co-occurrence vectors into the same latent space, or to fold them in.

Imagine that after building the space, two new words are seen:

investigation, contains

A sample of 100 examples of each is collected, and co-occurrences with the same

left contexts that were used to build the vector space are collected in a matrix

Q, so that element q3,2 records the fact that it contains occurs 17 times in the

sample:
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18 0

1 3

0 17


The equation to transform these newly acquired co-occurrence count vec-

tors (columns of Q) into lower dimensional representations in the latent space

(columns of LT
r ) can be found from Equation 4.3, when it is considered that we

wish the same relation to hold between Q and LT
r as holds between Ĉ and V T

r .

U is an orthonormal matrix so that UTU = I:

Q = UrDrL
T
r

UT
r Q = UT

r UrDrL
T
r

UT
r Q = DrL

T
r

(4.5)

Projecting newly found items into the existing latent space merely involves

multiplying the transpose of Ur by the count vectors of those new items. Note

that this produces the singular value weighted representation mentioned above.

In the current example, that gives the following compact representations of the

two new words: (
−14.03 −7.37

7.56 −15.48

)
This ability to place new objects in a low dimensional space that has already

been estimated might be useful in models of phenomena where it is expected

that novel items will frequently be encountered (such as a model of word types).

In models of utterances or documents, where it might be expected that each new

item encountered is of a novel type, it is crucial. This is discussed further in

Section 4.2.

The conventional way to compare representations of items in a VSM is to

compare whole vectors. Typically, cosine similarity is used. This measure reflects

the size of the angle between two vectors, and so ignores magnitude (which reflects

target word frequency). It is 1.0 when vectors share an identical direction, 0

when they are orthogonal, and -1 when their directions are opposite. One benefit

of this measure is that no normalisation of vectors is required: words having

very different frequencies but identical distributions will have vectors of different

lengths, but their cosine similarity will be 1. See e.g. Manning and Schütze (1999,

§8.5.1) for a discussion of this and other measures commonly used in vector space

modelling.
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However, in the work presented in this thesis, comparison of vectors is per-

formed on an element-by-element basis, in the univariate splits of the vector space

by decision trees. For this reason, length normalisation must be applied when

items to be compared have vectors of very different lengths (see below, Section

4.3.2). This has been ignored for the purposes of this toy example, as the vectors

here are of similar enough length for demonstration purposes. In this toy VSM,

the information from 2 cues has been combined and smoothed; a split on the 2nd

dimension at approximately 0 will separate these words into the classes noun and

third person present verb. Essentially a question like Is the value of dimension 2

less than 0? is equivalent to Does this word tend to occur after the and not after

it? ; it is a compound question about a word’s behaviour over multiple contexts,

expressed by a linear rather than Boolean mechanism. Dimension 2 has a simple

interpretation due to the toy nature of this example; such compound features will

of course consist of many more terms in real-world examples, with much greater

variation among the coefficients weighting those terms.

4.2 Vector Space Modelling Applied to TTS

4.2.1 Serial Tree Building: Shortcomings

Chapter 3 presented two preliminary attempts at inducing phoneme and letter

features during the training of TTS systems, using serial tree building techniques.

Those attempts met with considerable success: in the experiment described in

Section 3.4, for example, phonetic categories discovered wholly automatically re-

duced synthesis distortion on a held-out set to a level comparable to that achieved

by manually-specified expertise. The strength of this method is that it uses the

primary data to find classes of unit that are by definition relevant to the acoustic

modelling of that data. However, attention has already been drawn to some of

the shortcomings of the methods used. Most obviously, the methods group ob-

jects observed in the primary corpus into classes, but their power to generalise

beyond what is observed in that small data set is limited. When dealing with

sets of items with only a few members, such as context-independent letters or

phonemes, this is not problematic. The sets of phonemes of a language or charac-

ters of an alphabetic script are small enough that it is reasonable to expect that

a number of examples of each of their members will be observed in a primary

corpus of modest size. They are stable enough that it is reasonable to assume

that novel phonemes and letters will not come into existence in the life-time of a
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TTS system. Thus the third experiment of Chapter 3 introduces a technique that

is useful, as it deals with determining classes of context-independent phonemes.

When dealing with sets of higher cardinality, however, such as letters in a

7-letter context window (as in Experiment 2 of the previous chapter), problems

arise. Even though only a fraction of the 267 7-letter sequences of the lower-case

English alphabet are linguistically plausible, the number that can be encountered

in normal text is vastly greater than what is seen in a primary corpus for TTS.

If the c. 32 million words of news-text in the British National Corpus (BNC,

2007), for example, are stripped of non-alphabetic characters, and all upper-

case characters converted to lower-case, the number of 7-letter within-sentence

sequences that are observed is greater than 12 million. Obviously, it is only

reasonable to expect to observe a small fraction of these in a TTS primary corpus.

It has already been observed that the method proposed in Experiment 2 of the

previous chapter produced a significant improvement only on test sentences with

words observed in the training set. When tested on sentences with words never

before seen by the system, the improvement was slight and not found significant.

This problem becomes very marked when textual-linguistic analysis moves

from subsyllabic units such as letters and phonemes to units on higher-level tiers,

such as words, phrases, utterances, paragraphs, etc. To take words as an example,

there may be in a primary corpus e.g. 5,000 surface forms of words which linguistic

knowledge – in the form of a POS tag-set, should one be available – suggests

should map to 40 or 50 classes. A POS tag-set and conventional secondary corpus

of text labelled with these tags allows the construction of a classifier which enables

generalisation over the many surface forms of the training set, and beyond them

to ones not seen in the primary corpus but encountered at synthesis time. Any

method of generalisation that relies on observing units in the primary corpus

will obviously suffer with word-like units. The same obviously goes for units like

phrases and utterances, whose representatives at synthesis time can reasonably be

expected to be entirely novel types. The importance of being able to characterise

units at these levels above the phoneme is clear, however, from results of the first

experiment of Chapter 3, which showed that features defined at tiers above that

of the phoneme have a positive impact on the naturalness of synthetic speech

generated by a system (see Section 3.2.4).
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4.2.2 Distributional–Acoustic Modelling: Vector Space

Models and Decision Trees

In the remaining part of this thesis, a more general method for allowing decision

trees to generalise over surface forms is developed. This method is designed to

exploit the primary corpus in order to find partitions of sets of linguistic/textual

objects that are directly relevant to acoustic modelling, just as the serial tree

methods already outlined do. However, unlike the serial tree methods, it is de-

signed also to exploit the availability of plain unannotated text data whose cov-

erage of forms is much greater than can be achieved in a primary corpus. This

method is based on vector space models of language, which have already been

introduced. Crucially, the units to be modelled can be letters, phonemes, or ones

at higher levels of analysis, such as words, morphemes, phrases, etc. Continuous-

valued representations of textual/linguistic objects are learned from text using

vector space models at various levels of analysis. These representations provide

prior knowledge of the sorts of divisions of textual/linguistic units into classes that

it might be useful to make before any acoustic data have been observed. Plain

text is typically more readily obtainable in vast quantities than text aligned with

audio; much richer distributional information for the textual/linguistic objects

in the primary corpus will be available in the tertiary corpus. With large sets

(such as sets of words) the number of types seen in the tertiary corpus will be

greater than in the primary one, meaning that the resulting system will be able

to generalise to account for unheard (but not unseen) objects. This distributional

knowledge is introduced to decision tree-based clustering in the form of features

that generalise over a possibly vast number of surface forms. Measurements in

the vector space are made available to the system when synthesis models are built

using decision trees. A vector space constrains the ways in which surface forms

can be partitioned by decision trees and so guides tree-building, but the possible

partitions are still numerous, and no small set of categories is dictated by the

distributional analysis. This is because the vector space model maps linguistic

objects to points in a continuous space, rather than to discrete categories. The

vector space is partitioned by decision trees with ‘supervision’ provided by the

acoustic signal in TTS system-building tasks; these tasks are for example the

building of duration models, generative models of acoustic features such as spec-

tral envelope and fundamental frequency, and models for predicting pauses from

text.
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4.2.3 Strengths of the proposed approach

The most obvious strength of vector space models is that they allow linguis-

tic/textual objects to be characterised in an unsupervised manner. They are

therefore cheap to acquire, relying only on the availability of plain text resources

and the ability to tokenise this resource (relatively trivial in the case of orthogra-

phies that use whitespace to demarcate words). Importantly, this contrasts with

methods conventional in TTS such as POS tagging, in that no annotation by

human labellers is assumed by the framework.

The development of SVD algorithms specially designed to cope with large

sparse matrices or data streams as input means that extremely large amounts

of text can be used to induce the word representations. The use in the current

work of an incremental SVD algorithm which requires only a single pass over

the data means that the amount of text on which the vector spaces are based is

in theory unlimited. For the work presented in this thesis, an implementation

based on Brand (2006) was used.1 More recent versions of the package have

seen the introduction of distributed algorithms for single pass SVD (Řeh̊uřek and

Sojka, 2010; Řeh̊uřek, 2011), which could further ease the use of vast datasets.

Experiments with a corpus of 25 million words are reported in Chapter 7; although

this is small by the standards of recent work in NLP, it is larger than the largest

available corpus that is hand-annotated with parts of speech in the vast majority

of the world’s languages.

Because the vector space model performs unsupervised learning, the avail-

ability of labelled data in a given domain provides no constraint on training.

Consequently, text can be collected from the domain in which the TTS system

will be required to operate. It is shown in Chapter 6 that a vector space model

trained over words of news-text from the Wall Street Journal clearly reflects the

newspaper’s financial domain, to the extent that certain dimensions of the space

characterise vocabulary associated with stock prices. It is reasonable to expect

that if the domains of the training set for a vector space model and the end syn-

thesis task are more closely matched, the representations that emerge from the

data will be all the more suited for synthesis.

Again, because they result from unsupervised learning, vector space models

are ideally suited to exploiting user input. User input in the simplest sense can

mean the text input into a TTS system, or the log of previous inputs to a system.

It is worth stressing this point: extra text is the only additional data that is

1Part of version 0.5.0 of the package Gensim (Řeh̊uřek and Sojka, 2010)
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guaranteed available to a TTS system – by definition – as the system is run.

The data are free: they don’t require explicitly asking a user for feedback. They

are acquired purely by virtue of a TTS system being run. Moreover the data

are by definition drawn from the domain (or at least from one of the domains)

in which the specific user wishes to generate speech. Different ways exist of

exploiting newly-acquired text with a vector space model. When the space is a

model of word types, for example, it is possible to use the transform estimated

for the model to project newly encountered word-types into the latent space (see

the example of folding in in Section 4.1 above, and the discussion of mixed and

dynamic model types below in Section 4.2). This is especially useful for previously

unseen domain-specific words which are encountered numerous times so that rich

context vectors can be accumulated and then folded into the model.

Another advantage of the proposed approach is that because the VSM repre-

sents objects using continuous values, a hard classification of objects is delayed.

Different sets of word classes are likely optimal for different NLP tasks, and also

perhaps for different tasks that must be performed for TTS conversion. For exam-

ple, divisions that are useful for some other NLP task (e.g. full syntactic parsing)

might be irrelevant as far as the acoustic realisation of words is concerned, and

thus for TTS. One of the main differences between the approach described here

and the method that inspired it (Schütze, 1995, see Section 4.3.2 below) is that

here, continuous-valued features are used directly, and the final clustering stage

is omitted. The final rediscretisation stage is necessary in Schütze (1995) be-

cause the evaluation presented there is based on the overlap between induced

and reference categories, a type of evaluation not used here. But working with

continuous-valued features directly has several advantages (theoretical and practi-

cal) over conventional discrete POS-like sets. The key theoretical benefits of using

continuous-valued features are firstly that they make no assumptions about the

granularity of relevant categories (in the way that using a standard tag-set does),

and secondly, that they make it possible to encode gradient phenomena and at

the very least allow us to avoid having to make a hard decision about where to

split along the continuum of such a phenomenon until strictly necessary.

It is shown in this thesis that it is possible to apply the VSM in a unified way

to multiple levels of textual analysis relevant to TTS. In Chapter 5, the model is

applied to phonemes and letters, in Chapter 6 to words, and in the final section

of Chapter 7, the model is used to characterise whole utterances. End-to-end

systems incorporating these levels of analysis are outlined in Chapter 8, where

techniques developed initially on English are applied with little extra effort to
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two additional languages.

4.2.4 The Vector Space Models Used in this Thesis

To make discussion concrete at this point, the three sorts of model that are built

to characterise letters, words and utterances in Chapter 5, 6, and 7 respectively

will be considered.

Letter- and word-level models To acquire representations for letters and

words, one vector is assembled for each of the m letter or word types in the

tertiary corpus. Co-occurrence is tallied with n letter/word types as left and right

neighbours, and this value must be determined, in the range [1,m]. Where m is

small (e.g. for letter models), n is set equal to m. A 2n ×m co-occurrence matrix,

C, is assembled such that ci,j records a count of the number of times the ith feature

letter or word occurs as the left-hand neighbour of the jth target letter or word

type, and ci+n,j records a count of the number of times the same (ith) feature

letter or word occurs as the right-hand neighbour of the same (jth) target letter

or word type.2 The raw co-occurrence matrix is then decomposed by a singular

value decomposition as already described, and the resulting matrices truncated.

As already mentioned, the diagonal elements of D are conventionally sorted in

descending order of magnitude: taking the first r columns of U and D and the

first r rows of V T gives matrices whose product is the best rank r approximation

of C. We will denote the matrix derived from DV T by taking its first r rows as

DrV
T
r , an r by m matrix whose columns are vectors summarising the interactions

of the m letter or word types of the corpus with their neighbours. The discrete

symbols of letter and word types from the corpus data are thus converted into

continuous values giving the coordinates of points in a r-dimensional space. We

wish to work with the values of individual elements of these vectors; before this

can be done, however, we need to reduce some target letter and word frequency

effects encoded in these values. One source of such effects is the discarding of low-

valued singular values. V T is orthonormal and so its columns are vectors of unit

2Note that the notation used in this section is different from the equivalent discussion in
Watts et al. (2011). There, C is a word-by-context co-occurence matrix; this emphasised the
method’s origin in work like Schütze (1995). Here it is replaced by its transpose, a context-by-
word matrix. This is to better reflect the most recent implementation used, but also to draw
attention to continuity with the utterance space described below. There, as conventional in
Latent Semantic Indexing (Section 4.3.2), columns of C represent documents / utterances. If
C = UDV T then CT = V DUT , so that the two formulations are equivalent if columns of
V T are used instead of rows of U .
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length, but the truncated version of it, V T
r , where only r rows are retained, has

columns of greatly differing vector lengths. Vector length is correlated with target

word frequency. To counter such effects, unit length is imposed on the columns

of DrV
T
r , resulting in a matrix that will be denoted DrV

T ′
r . The elements of

these columns can then be queried directly in isolation by modules that rely on

the features (e.g. decision trees).3

It should be emphasised that the VSMs that are built in this thesis for words

and letters are designed to characterise word and letter types rather than individ-

ual instances of words and letters. The subword-unit model is like that built in

Experiment 3 of Chapter 3, rather than that of Experiment 2: no characterisation

is done on the basis of a unit’s context, and the 2 instances of e in the word these,

for example, will be assigned the same representation by this model. Similarly, the

word model will not distinguish between forms which would need disambiguation

by context to be assigned the appropriate part of speech tag. For example, the

word winds in both the fragments It winds up and The winds are will be assigned

the same representation. There are two motivations for not seeking a model that

can disambiguate instances on the basis of context. Firstly, Lamar et al. (2010)

convert the output of a disambiguating tagger (which has been learned in an un-

supervised way) so that for each word type, the tag most frequently assigned to

that type by the tagger is always assigned that type. They show that converting

the tagger to a type-based tagger in this way does not worsen its performance.

Secondly, the word representations produced as described here are not an end

in their own right, but are rather designed to be used on tasks where a context

window over the type representations of neighbouring words means that disam-

biguation can be performed implicitly if it is beneficial to the task. Exactly the

same type of model is used for letters because of a desire to treat analysis on each

linguistic/textual tier as uniformly as possible.

If a static model is to cope with open sets, it is obvious that a method of

dealing with unseen units must be devised. The method used in Chapter 6 is

to learn a representation for a special symbol which is used for unseen words at

run-time. For this, tokens in a 1% portion of the data whose types are not seen

in the other 99% are rewritten with this unseen symbol. Different methods using

hard thresholds for determining which words will contribute to the unseen model

3Both the scaling by singular values (using DV T instead of V T , in which we follow the
original description of term-term comparisons in Deerwester et al. (1990)) and subsequent
scaling to unit length are details that were omitted from the description of the algorithm given
in Watts et al. (2011). Differing vector lengths of the columns of truncated V T are also noted
in Horn and Axel (2003), where the same solution is used.
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are found to give more consistent results in Chapter 7.

Utterance-level models The characterisation of phrases and utterances, on

the other hand, can obviously not proceed in the same way – it is unreasonable

to expect types of these units to be seen more than once in training data, or for

seen types to recur at testing time. For this reason, the type of model that is

built for utterances in this thesis (and which would also be appropriate for inter-

mediate units such as phrases or metrical feet) is different, and is much more like

a classic Latent Semantic Indexing-type space (see Section 4.3.2 below). That is,

it provides a model of documents (sentences) which is based on elements internal

to the unit to be characterised (words within the sentence), and is dynamic (i.e.

the linear transform itself is stored, and not a lexicon-like list of transformed

representations for items already encountered).

A word–utterance matrix C is compiled from the tertiary corpus, where cij

is a count of vocabulary item i in the jth utterance of the corpus. No stop words

are excluded from this vocabulary, contrary to standard practice in Information

Retrieval: the representation sought here is ideally one that characterises utter-

ances in terms of their pragmatic role in a text, rather than their semantics, and

it seems clear that certain common words (However) and non-word tokens (? )

reflect their sentence’s role in a text (cf. the similar case of building word vec-

tors for sentiment analysis in Maas et al. (2011)). All words occurring more than

once in the corpus were retained in the model. Term-frequency inverse document-

frequency (TF-IDF) weighting is applied to the raw co-occurrence matrix, and

SVD is performed; r dimensions of the latent space are retained.

At synthesis time, newly encountered utterances are converted into vectors of

counts which are weighted using TF-IDF, and projected into the latent space as

outlined above to assign them an r-dimensional representation.

4.2.5 Design Choices

A great many design choices must be made at each step of the construction of a

VSM, and the types of VSM that have just been described and which were built

for the work presented in this thesis by necessity represent only a few points in

the vast space of possible systems. Some mention is now made of factors that

must be considered in building VSMs for TTS.
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Model Type and Context Type

When a linguistic or textual tier has been selected for analysis, and a VSM is

to be constructed to characterise the units occurring on that tier, two important

decisions that must be made relate to what will here be called the model type and

the context type. These decisions are closely connected, and result in the different

types of model mentioned above being built, for letters and words on one hand

and for utterances on the other. There are many other factors that can be varied

in the creation and use of these spaces, one of which – transformation type – is

also mentioned briefly below.

Model Type Estimating a dimensionality-reducing transform from an obser-

vation space to a latent space results in an embedding of the training data in

the latent space (DrV
T ′
r ), which was used in the example above as a sort of

lexicon from which low-dimensional representations of words can be looked up.

This will be called the lexicon model type or alternatively static model type, as

representations that can be assigned at run-time are limited to be members of

the fixed inventory of types seen during training. Another output from training,

of course, is the transform itself (UT
r ). In the static model type, this transform is

simply discarded after training. In what will be called the dynamic model type,

or projection model type, conversely, this transformation is kept and DrV
T ′
r can

be discarded. When units are to be assigned a representation, the contextual

representation of the observed unit is projected into the latent space using the

transform. A mixed model type is also envisaged, where a lookup table of repre-

sentations of units in the tertiary corpus is retained, and also the transformation.

Some criterion is defined that – when a representation is to be assigned to a unit

– determines whether a representation from the lookup table should be used,

or whether the transformation should be invoked. Most trivially, this criterion

would be the presence or absence of the unit in the lookup table (i.e. whether the

unit was seen during training on the tertiary corpus). It should be noted that the

model types differ only in the way they are stored and deployed – the different

model types imply no difference in training.

Context Type Another closely-related design choice is what context units are

chosen to characterise target units: most critically, whether the context units

are internal to or external to the target units. For example, a word might be

characterised externally, by neighbouring words as in the toy model given in
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Section 4.1. Alternatively, a word could be characterised by units internal to

it, such as morphemes or morpheme-like units. The advantage of using such

morphological information is clear, for example, in the the list of target words

used in Section 4.1: find-s, require-s, make-s, educa-tion, research, coopera-tion.

Here, the nouns and verbs can be well separated by the presence or absence of

either the morpheme -s or -tion. As in the case of model type, a third option is

a mixed type – considering both internal and external contexts.

How a model type or context type is chosen for a vector space model will

depend on the nature of the phenomenon to be modelled, and the two factors are

closely bound to each other. These two axes of variation are depicted schemat-

ically in Figure 4.2. The symbols L, W and U are placed in the relevant boxes

of Figure 4.2 to represent the three types of VSM built in the work presented in

this thesis – of letters, words and utterances, respectively.

1, 1

2, 1

3, 1 3, 2 3, 3

2, 32, 2

1, 2 1, 3

L  W

U

Static Static &
dynamic

Dynamic

Model type

In
te

rn
al 

&
ex

te
rn

al

Co
nt

ex
t t

yp
e

Ex
te

rn
al

In
te

rn
al

Figure 4.2: Two dimensions of a space of possible vector space models.

Other placements of the three symbols in the figure would correspond to

system configurations not explored in this thesis. Many of the configurations

suggested by the figure are attractive, and are left unexplored because they are too

numerous rather than because they are unpromising. For example, using a model

of letters with the configuration implied by position (1,3) of Figure 4.2 would

result in a model capable of sensitivity to the difference between the two i’s and

the two g’s in the word nightingale. A word model of the configuration implied by

(2,2) would require some method of morphological segmentation, but the dynamic

part of such a model would be capable of handling unseen words perhaps better
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than the simple unseen type method described in Section 4.2.4. Such an approach

would certainly give superior results in a language more morphologically rich

than English. An utterance model of the configuration implied by (2,3) might

be suitable where the speech corpus used is recorded with real communicative

intention. In such data, unlike conventional TTS corpora, utterances will have

a genuine communicative function which may be discernible from e.g. words or

phrases in neighbouring utterances. These are just a few of the many possibilities

suggested by Figure 4.2.

Dimensionality-reducing Transformation Another design choice relates to

the way low-dimensional representations are obtained from raw co-occurrence

vectors. Throughout this thesis, singular value decomposition is used to obtain

these. As explained in Section 4.3, the use of this matrix factorisation technique

for text analysis has its roots in Information Retrieval. Many other techniques

have since been proposed for accomplishing dimensionality reduction in Infor-

mation Retrieval. For example, Independent Components Analysis is shown by

Isbell and Viola (1998) to outperform SVD on Information Retrieval tasks (see

Section 4.3.3). These techniques could also be applied to inducing the sorts repre-

sentation applied in this thesis to TTS, no doubt with the possibility of improved

performance. The aim of this thesis, however, is to propose and test a general

framework for incorporating unsupervised learning in TTS systems, rather than

to exhaustively explore all possible design choices in search of the best performing

system. SVD is used here as a tried-and-tested method.

In all experiments reported in this thesis, vector spaces are exploited using

tree-based methods (CART and decision tree induction for state-tying). This

choice of machine learning technique is pragmatic, as it allows vector spaces to

be simply integrated into state-of-the-art systems which already rely on decision

trees for the construction of their acoustic models. The choice of CART for front-

end techniques is due to the fact that, as well as being a well-established method

for front-end tasks in TTS systems, it allows vector spaces to be exploited in a

way that is unified between the front and back-ends of the synthesiser.

There is very little in previous work that suggests that univariate splits of

vector spaces such as the ones used here should be especially useful for the tasks

attempted. A more common approach is to consider only distances between vec-

tors in the space, and not the absolute positions of those points. Despite this, the

experimental results presented in later chapters show that this approach produces

useful features. However, it is to be expected that cleverer exploitation of vector
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spaces than that allowed by the univariate splits of conventional decision trees

will give better results. This would come at the price of having to make funda-

mental changes to the state-of-the-art TTS framework used as the foundation for

these experiments.

4.3 Previous Work on Vector Space Models of

Language

Past work on vector space models in language processing is here reviewed in

greater depth than in the above introduction. First, the original vector space

model as formulated by Salton et al. (1975) for IR is described. Then the extended

application of variants of this basic model to the induction of semantic, then

syntactic, word features is summarised. Next, an influential development of the

basic VSM called Latent Semantic Indexing which underpins the work of this

thesis is described, and its application to the same tasks. Lastly, work using other

means of dimensionality reduction, and work using probabilistic topic models is

mentioned. This division is somewhat arbitrary, and doesn’t for example always

respect chronological order. Properties of a few of these systems are summarised

in Table 4.2 for convenience.

4.3.1 Salton’s Vector Space Model

Information Retrieval

Salton et al. (1975) describe the classic vector space model for Information Re-

trieval. In it, each document is identified by one or more index terms. Where n

different index terms are used over a collection of documents, each document is

represented as a vector of length n, each of whose elements encodes the presence

or absence or a particular term from a document (in the case of presence, possibly

modified by some weighting scheme). Salton et al. (1975) describe measuring the

distance between documents in the following way: vectors are normalised to unit

length, and the distance between two documents is then the distance between the

two points representing them on the unit sphere.

Salton et al. (1975) mention the simple term frequency weighting, where a

given term-element in a document vector simply records a count of the number of

times that term appears in that document. Also mentioned is the notion of inverse

document frequency (IDF). The problem with simple term frequency weighting
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is that some terms might be frequent across all documents of a collection, and

thus will have little power to discriminate between the documents. IDF scales

down the contribution of terms which occur in many documents. The document

frequency of a given term t, df(t), is a count of documents which contain that

term. Inverse document frequency of a term (idf(t)) is then:

idf(t) = log
N

df(t)
(4.6)

where N is the number of documents in the collection.

The VSM model is used for information retrieval by treating a user’s query

as a pseudo-document, and finding the documents (or clusters of documents) in

the collection whose distance to that ‘document’ is the smallest.

Distributional Semantic Features

The so-called hyperspace analogue to language that is presented in Lund et al.

(1995) and Lund and Burgess (1996) uses a formal model similar to the one

described by Salton to extract semantic representations of words from text. The

motivation for the work is different: the authors wish to construct a cognitively

plausible model of semantic memory which is then tested by being used to predict

human reactions on lexical priming tasks. Some details of model construction are

also different. The model described is induced from 160 million words of English

Usenet text; the 70,000 most frequent words are chosen as target words, and

also provide an initial set of context words. Target words take the place of the

documents of Salton’s model; the descriptors of a target word are the context

words with which it co-occurs in a moving window (instead of index terms). The

window used extends 10 words to the left and right of occurrence of the target

word. Weighting is applied such that the weight for a context word is inversely

proportional to the context word’s distance from the target. The window is also

directional: occurrence of a context word to the left of the target are stored as a

descriptor that is separate from that for the same context word occurring to the

right. This results in 140,000-dimensional word vectors. The semantic distance

between words is then computed by Minkowski metrics on the relevant words’

vectors normalised to unit length.

Such large word vectors are obviously unwieldy; a method is described of

selecting a small set of descriptors by computing the variance of each of the

140,000 descriptors and keeping only the top k descriptors with highest variance.
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Variance falls off sharply after the first 100 descriptors, and is very low after 200.

It is reported that using only 200 descriptors provides very similar results to those

using 140,000 dimensional vectors. It is mentioned that the model is influenced

by Schütze (1992) (see section 4.3.2 below), and SVD is mentioned as a possible

alternative for dimensionality reduction.

Distributional Syntactic Features

Finch and Chater (1992) describe a VSM for discovering syntactic categories from

plain text; the motivation appears to be linguistic or cognitive: an attempt to

determine empirically to what extent linguistic categories are learnable without

a knowledge of syntactic rules, only exposure to the sequences output by those

rules and suitable notions of context and similarity. The co-occurrence matrix is

built from 40 million words of English text; word vectors are acquired for the 1000

most frequent words, and their co-occurrence with the 150 most frequent words

is tallied. Four context positions are used, including the two neighbours of each

instance of a target word, resulting in 600-dimensional feature vectors. Spearman

Rank Correlation Coefficient (normalised to the range [0, 1]) is used to measure

distance between the raw context vectors; this metric is used in a hierarchical

cluster analysis of the 1000 target words to produce a similarity dendrogram that

can be cut at various levels of cluster granularity. The authors also mention

an implementation using the same contexts as a neural rather than a statistical

model – a Kohonen self-organising map. However, they observe that the output

of this model, though promising, does not present the same possibility as their

statistical model of tuning the depth at which the dendrogram is cut to get a set

of classes that is as similar to the gold standard set as possible.

Redington et al. (1998) use the same basic model as Finch and Chater (1992),

but motivate the experiments more explicitly, and report objective evaluations

both on the basic model and on the model when various aspects of its design

are altered. The work is intended as an investigation into the extent to which

distributional information can act as a cue to acquisition of syntactic category; the

authors stress that distributional information is one among several such possible

cues (others being extra-linguistic context, phonological cues, prosodic cues, and

innate knowledge of syntactic categories). They consider distributional cues to

enjoy ‘no theoretical primacy’, but given the availability of electronically stored

text, they are the easiest to investigate by computer simulation. Aspects of the

model which are varied in the experiments include, for example, the extent and
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direction of context window used. Many conditions varied are intended to test

whether the model is meaningful as a model of first language acquisition.

4.3.2 Dimension-Reduced Vector Space Model: Latent

Semantic Indexing

Information Retrieval

Deerwester et al. (1990) introduce the idea of representing a document–term ma-

trix by a low-rank approximation of it, calling the technique Latent Semantic In-

dexing (LSI)4. The motivation is due to two characteristics of terms that present

problems for the classic VSM: synonymy and polysemy. That is, on one hand

there are numerous ways to put a concept into words and so literally matching a

user query in terms of the surface form of its words might be problematic. Con-

versely, terms can have multiple meanings, so a literal matching scheme will find

documents that share terms with but are actually unrelated to a user query. The

solution is to uncover latent semantic structure of documents and queries. This

is accomplished by applying SVD to the term–document matrix, and retaining

only the dimensions of the transformed space with the highest eigenvalues. The

approach is described in factor analytical terms:

[. . . ] by virtue of the dimension reduction, it is possible for documents

with somewhat different profiles of term usage to be mapped into the

same vector of factor values (Deerwester et al., 1990).

The factors:

[. . . ] may be thought of as artificial concepts; they represent ex-

tracted common meaning components of many different words and

documents. Each term or document is then characterized by a vec-

tor of weights indicating its strength of association with each of these

underlying concepts. [...] The meaning representation is economical,

in the sense that N original index terms have been replaced by the

k < N best surrogates by which they can be approximated (Deer-

wester et al., 1990).

However, unlike in factor analysis, it is emphasised that no explicit interpreta-

tion is sought for the underlying factors (via e.g. rotation or reduction to very few

4Note that the same technique is also often referred to as Latent Semantic Analysis (LSA).
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dimensions). The SVD is rather a means to escape the ‘unreliability, ambiguity

and redundancy of individual terms as descriptors’. Individual elements of the

low-dimensional representations obtained are not examined. Rather, the overall

similarity of vectors is measured using cosine similarity, as described on page 66

of this thesis.

Deerwester et al. (1990) cite earlier work, such as that of Baker (1962) which

proposes the adoption of latent class analysis – developed in sociology – for IR,

and that of Borko and Bernick (1963) which suggests the use of factor analysis

for IR.

The LSI approach to Information Retrieval is the most obvious precursor the

utterance space presented above (see Section 4.2.4). As already mentioned, the

documents of IR become sentences in the case of the utterance space. Also as

already mentioned, no stop-word removal is performed in the case of the utterance

space, contrary to usual practice in IR.

Distributional Semantic Features

Schütze (1992) describes the construction of what is termed sublexical space and

its use on the task of (pseudo-)word-sense disambiguation (WSD). Spaces are

built from large corpora of news-text, although precise details of their construc-

tion are scarce. Word co-occurrences are counted using a fixed-length window.

Window lengths defined in (e.g. 1000) characters, ‘because few long words are as

good as (or even better than) many short words which tend to be high-frequency

function words.’ However, whole words are used as contexts; the contexts are

apparently non-directional (i.e. the order of the co-occurrence is not encoded in

context vectors). It seems that several thousand words are used as context words

for the construction of the space.

Two different sets of WSD experiments are described. In the first, hierarchical

clustering using cosine distance between vectors is used to find sense clusters in

the space, and instances of ambiguous words are assigned to the nearest cluster.

In the second set, Canonical Discriminant Analysis is used to find combinations

of the dimensions of the word space that maximally separate pseudo-ambiguous

words with their labelled senses. Using the cosine distance between whole vectors

and finding linear combinations of the elements of those vectors represent quite

different ways of using the word space, and the analysis presented in the second

case yields some interesting results. Canonical Discriminant Analysis is used for

classification by finding a combination of vectors’ values to project them onto one
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dimension; the best point on this line to separate distinct sense classes is then

determined.

The effect of using different context window sizes are tested, and also the

effect of combining different numbers of the top r dimensions resulting from SVD.

Performance improves as more of these dimensions are added, and the trend of the

results suggests that adding further dimensions (if they had been retained from

the decomposition) would give further performance improvements. Inspecting

the weights estimated in Canonical Discriminant Analysis reveals an interesting

property of the space: that the importance of dimensions of the space for a given

WSD pair does not seem at all positively correlated with the size of their singular

value; if anything, there appears to be a negative correlation. Also, very different

sets of dimensions are chosen for disambiguating different pairs of words. There

appears to be considerable redundancy in the vector representations: the system

is robust against the removal of various sub-sets of dimensions. This leads to the

claim that:

[. . . ] the vector representations have the key properties of the dis-

tributed representations characteristic of parallel distributed process-

ing (Schütze, 1992).

It also leads to the choice of term sublexical space by analogy with similar terms

in connectionism.

A test is also made (using the clustering WSD set-up) of the extent to which

the use of SVD influences results. Extreme differences among raw counts are

dampened with a square root function, then clustered as before without the use

of SVD; it is found that SVD does not influence performance for this task. The

SVD is motivated instead by the compactness of the representations it allows.

Schütze (1993) describes a related approach, which is again tested on the WSD

task. The construction of the space described there is very intricate. Counts are

made over word fragments (letter fourgrams) rather than whole words to alleviate

sparsity issues. Fourgrams are filtered in various ways to exclude redundancies

and uninformative sequences. This results in a set of 5000 fourgrams. A co-

occurrence matrix of target fourgrams and their left contexts is then produced; the

context window is 200 fourgrams wide. SVD is applied, resulting in 97 dimensions

for each fourgram type. Next, word features are induced. For each of c. 54,000

lemmas, feature vectors are assembled as follows: for each occurrence of a target

word, for each fourgram within a window of 1001 fourgrams around the word

occurrence, the relevant fourgram representations (computed in the previous step)
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and normalised and summed. This sum represents the target word.

Bellegarda et al. (1996) describe the application of LSI to the clustering of

word types for language modelling. The word representations obtained using

conventional LSI (where words are characterised by the documents in which they

occur) are clustered into 500 clusters. The word clusters are intended for use

in class-based language modelling, where the semantic nature of the clusters is

predicted to be beneficial.

Distributional Syntactic Features

The procedure for word-feature discovery described above in Section 4.2.4 is

closely based on the first of three POS induction methods described in Schütze

(1995) (where it is called induction based on word type only). Briefly, a matrix C

is created where cij records the count of target word i in context j in a corpus.

The contexts used in Section 4.2.4 are based on those used by Schütze (1995):

counts of the 250 most frequent words as left and right neighbours. This matrix is

factorised with singular value decomposition and the resulting matrices truncated

as in Section 4.2.4 to yield a lower-dimensional representation of words. Here,

the procedures outlined in Schütze (1995) and Section 4.2.4 diverge. In Schütze

(1995), the discovered space is re-discretised by means of clustering the points

representing word-types into a pre-specified number of clusters (using cosine sim-

ilarity between vectors as a similarity criterion). This is due to the goal of that

work: the induction of a set of symbols analogous to a POS tag-set. In 4.2.4, the

final clustering stage is omitted, and instead the undiscretised space derived from

two of the truncated matrices resulting from the decomposition is used directly,

as described. Some advantages of using continuous-valued representations over a

discrete clustering were given. The model of Schütze (1995) clearly has its roots

in the tradition of Latent Semantic Indexing described in this section.

Schütze (1995) goes on to introduce various refinements to the basic system.

For example, a variant that tags not word types, but tokens in context is de-

scribed. Also, the use of generalised context vectors is mentioned: this operates

in two stages, where the clusters resulting from the basic model are used to re-

place words as contexts for a generalised model. Lamar et al. (2010) revive a

variant of this method, testing it against more recently devised techniques for

POS induction, against which it compares favourably with less computational

effort.
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4.3.3 Reduced Vector Space Model: Other Projections

Various alternatives to SVD have been proposed for vector space models. Any

alternative factorisation that is proposed for IR can be applied also to the induc-

tion of syntactic or semantic word spaces. For example, Kaski applies random

projections to IR; Sahlgren (2006) builds many word-spaces using this same tech-

nique. Isbell and Viola (1998) use Independent Components Analysis (ICA) for

IR where it outperforms SVD. Honkela et al. (2010) describes the use of an ICA

algorithm for extracting word representations from text. The perceived problem

with LSI that motivates this work is that:

[. . . ] the latent concept space is difficult to understand by humans

(Honkela et al., 2010).

The main difference between SVD/PCA and ICA in practical terms is described

as follows:

[. . . ] while PCA finds projections which have maximum variance, ICA

finds projections that are maximally non-Gaussian (Honkela et al.,

2010).

The second, larger-scale experiment reported uses a corpus of c. 22 million words

(c. 188,000 types) of text from Project Gutenberg. 10,000 target words are used

and 1,000 context words. Context positions are narrow, consisting of immediately

neighbouring tokens. An initial transformation is applied to the raw co-occurrence

matrix: 1 is added to all elements, of which the logarithm is then taken to dampen

differences in word frequency. As a preliminary to ICA, the matrix is ‘whitened’,

and PCA is performed on it for decorrelation and dimensionality reduction. Then

ICA is applied. ICA finds a rotation of the PCA feature space; it is argued that

the effect of this is that it favours features which are meaningful representations

of linguistic phenomena. No clustering is performed: it is considered that the fea-

tures will be useful in their own right, although no task-based evaluation is carried

out. A separation measure is used for evaluation of the continuous features.

Lagus et al. (2005) use ICA to induce representations of morphemes. Con-

text vectors of morphemes are compiled from a corpus of Finnish newstext where

orthographic words have been semi-automatically segmented into morphemes.

Context features used are the counts of the 506 most frequent morphemes occur-

ring to the right of the target. Note that although a gold standard segmentation

is used here, units segmented automatically (Creutz and Lagus, 2007) would also

be amenable to this sort of characterisation.
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4.3.4 Probablistic topic models

Information retrieval

Latent Semantic Indexing has been reformulated as a probabilistic topic model

(Steyvers and Griffiths, 2006), a type of mixture model. In Latent Dirichlet Allo-

cation (LDA: Blei et al., 2003), the words of an observed document are considered

to be drawn from a mixture of multinomial distributions over the words in the

vocabulary, each corresponding to a latent topic. The contribution of topics to a

document is in turn modelled by a multinomial distribution over topics for each

document. Distributions over topics are drawn from a symmetric Dirichlet distri-

bution, the setting of whose parameter can enforce sparsity: i.e. that documents

drawn mainly from a few of the topics have a higher probability. Distributions

over words can also be drawn from a Dirichlet distribution; sparsity in this part of

the model means that a few vocabulary items contribute richly to a given topic.

Given a collection of documents and the number of topics, model parameters

can be estimated using variational expectation-maximisation (Blei et al., 2003)

or Gibbs sampling (Griffiths and Steyvers, 2004).

Syntactic Features

LDA is used directly by Chrupa la (2011) for the induction of word classes. The

documents of the topic model become word types, words become context features,

and topics become word classes. The procedure of Chrupa la (2011) therefore

bears the same relation to LDA as the procedure outlined in Section 4.2.4 bears

to LSI. The context features of a target word are precisely the same as in Sec-

tion 4.2.4: the counts of the immediate left and right neighbours of that word in

the training corpus. Christodoulopoulos et al. (2011) present a mixture model

in some ways similar, where basic word co-occurrence features are supplemented

with features derived from bilingual corpora and unsupervised morphological seg-

mentation.

4.4 Other Techniques for the Induction of Lin-

guistic Representations

Some past work on the use of vector space models and related techniques for the

induction of word and document representations from text corpora has now been
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surveyed. However, much other work has been done on such induction using dis-

tributional methodologies other than the vector space model. These deserve to be

mentioned here. The work is here partitioned into four methodological categories

for the purposes of discussion: hierarchical clustering approaches, HMM-based

approaches, graph partitioning approaches and connectionist approaches.

4.4.1 Hierarchical Clustering Approaches

Hierarchical Clustering of Words

A common way to induce representations for words is to cluster them according

to their context in a large text corpus. Much work using such clusters builds

on the methods outlined in the influential paper of Brown et al. (1992). There,

clustering algorithms are presented in the context of class-based bigram language

modelling, where a deterministic assignment of words to classes is assumed, and

where the probability of a word being generated depends on the class of that word

and on the class of the previous word. The likelihood of a corpus computed using

this model provides a criterion which a class map of a given size seeks to optimise.

Brown et al. (1992) show that maximising the likelihood of the training data is

essentially the same as maximising average mutual information (AMI) between

adjacent word classes.

The core algorithm presented in Brown et al. (1992) is a greedy hierarchical

algorithm that starts by assigning each word to its own class, then finding the

pair of classes which gives the smallest loss in AMI when merged. Repeating

this procedure until a single cluster remains, but keeping a record of the merges

made, results in a binary tree whose root corresponds to the whole vocabulary,

and whose leaves correspond to individual words of the vocabulary. Intermediate

nodes represent clusters of varying coarseness. It is observed that exchanging

words between classes after inducing the required number as already described

can produce further gains in performance.

Brown et al. note that the classes they extract:

[. . . ] have the flavor of either syntactically based groupings or seman-

tically based groupings, depending on the nature of the underlying

statistics (Brown et al., 1992).

The core algorithm, using AMI over adjacent word classes, gives more ‘syntac-

tic looking’ results. But another mutual information criterion (called semantic

stickiness) is presented at the end of the paper that considers not the relation of
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neighbouring words, but of non-neighbouring words in a 1000-word window. All

work building on Brown et al. (1992) discussed here, however, uses the adjacent

word rather than the semantic stickiness method.

A great deal of later work has made use of Brown features in simple two-step

semi-supervised learning set-ups. The Brown algorithm and the optimisation

criterion it uses are closely linked to language modelling. However, the fact that

the clusters produced by the algorithm represent in many cases word classes of

a generally applicable nature means that clusters resulting from this and related

algorithms have been used by other researchers for a variety of different tasks. A

feature of the resulting tree-structure frequently used in this later work is that

it encodes clusterings at differing granularities, which means that the optimal

number of clusters does not need to be determined ahead of time. A path from

root node to a leaf of a binary tree can be represented as a bit-string; a common

strategy is to not choose one cut of the dendrogram to be used (i.e. bit-strings of a

single fixed length), but rather to specify a range of bit-string prefixes of varying

lengths for each word, or even to query individual bits in a word’s bit-string.

Ushioda (1996) uses a form of the AMI algorithm (modified to produce more

balanced tree structures) to induce word features which are then used to train a

decision-tree based part of speech tagger. The decision-tree building algorithm is

allowed to query individual bits in words’ bit-strings, as well as using a set of basic

questions. Using the AMI features provides up to 10% reduction in tagging error

rate (depending on the size of the untagged corpus and on which POS-tagged

corpus is used) over a system where the AMI features are randomly permuted.

As also previously reported in Brown et al. (1992), continuing to exchange words

between classes after hierarchical clustering has finished produces further gains

in performance.

A resurgence of interest in the use of Brown features for semi-supervised

learning was heralded eight years later by the paper of Miller et al. (2004). Here,

bit-string prefixes of four different lengths (8, 12, 16, and 20 bits) are taken from

an AMI hierarchical clustering tree built on approximately 100 million words of

news-text, and incorporated into the training of an averaged perceptron named-

entity tagger. Using the features improves system F measure on all sizes of

name-tagged training dataset (from 5000 up to 1 million words). Again, the

authors stress that the inclusion of a variety of lengths of bit-string prefixes is

important for avoiding commitment to any particular granularity of clustering

ahead of training on the tagged data.

Following Miller et al. (2004) were a series of publications reporting the use of



90 Chapter 4. Vector Space Models

such two-step training schemes with Brown cluster features for semi-supervised

learning on a variety of NLP tasks. For example, Li and McCallum (2005) apply

Brown clusters (as one of their unsupervised features) once again to POS tagging,

and in Koo et al. (2008) and Candito and Crabbé (2009), Brown clusters are used

for dependency and PCFG parsing, respectively.

Hierarchical Clustering of Phonemes

Chelba and Morton (2002) describe the induction by distributional means of pho-

netic classes for use in state-tying decision trees for speech recognition. From a

phonemic transcription, phoneme bigram counts are made, and the AMI clus-

tering algorithm of Brown et al. (1992) is applied. Recognition experiments are

performed, both with the resulting phoneme classes and with conventional expert-

specified classes as a baseline. State-tying trees are built in such a way that they

have a comparable number of leaf nodes across conditions. The induced classes

give results similar to, and sometimes better than, expert-specified classes in

German and Spanish systems.

4.4.2 HMM-based Approaches

HMMs for the induction of word classes

Among the experiments of Merialdo (1994), an HMM part of speech tagger is

trained by maximum-likelihood estimation using a dictionary mapping tokens to

possible tags and an untagged text corpus. Recent work has shown the possi-

bility of doing without any dictionary information, and inducing POS-like tags

from scratch (Goldwater and Griffiths, 2007; Gao and Johnson, 2008). This

work adopts a Bayesian approach, where the multinomial state–word emission

and state transition distributions are drawn from (usually symmetric) Dirichlet

distributions. The parameters of these Dirichlet distributions determine what

sort of emission and transition distributions are given high probabilities. They

can be set in a way that gives higher probabilities to sparse distributions. Such

sparse distributions are characteristic of linguistic phenomena, where for example

a given POS tag is generally followed by one of a limited set of POS tags.

HMMs for the induction of phoneme classes

Goldsmith and Xanthos (2009, §3.3) describe the induction of the classes vowel

and consonant distributionally using a two-state HMM. The model is trained
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using maximum-likelihood estimation on the phoneme sequences from lists of

phonemically transcribed words. The resulting model is evaluated as follows: for

each phoneme in the vocabulary, the logarithm of the ratio of the probability of

that phoneme’s emission by state 1 to the probability of its emission by state 2

is taken. For experiments in English and French, this results in negative values

for each of the phonemes that are known to be consonants, and positive values

for the vowels, showing that one state of the model specialises in emitting vowels,

and the other, consonants.

4.4.3 Graph Partitioning Approaches

A graph partitioning approach is used to determine word classes and phoneme

classes in Biemann (2006) and Goldsmith and Xanthos (2009, §3.2) respectively.

In both cases, induction of the classes proceeds in two stages. First, a weighted

undirected graph is constructed where the weight on the arc between two objects

(words, phonemes) indicates the similarity of contexts in which they occur. In

both cases this graph is derived from a co-occurrence matrix, of phonemes with

neighbouring phonemes in Goldsmith and Xanthos (2009) and of target words

with neighbouring high-frequency words in Biemann (2006). In Goldsmith and

Xanthos (2009) the conversion from co-occurrence matrix to adjacency matrix is

done by making and then normalising a Markov transition matrix, and in Bie-

mann (2006) the weights between nodes are derived from the cosine similarity

of word type co-occurrence vectors. Finally a graph partitioning algorithm is

employed to induce clusters of phonemes or words from this graph. Some re-

finements are used in Biemann (2006) to handle high- and low-frequency words

differently.

4.4.4 Connectionist Approaches

Connectionist Word Representations

In his review of work on distributional semantics, Lenci (2008) notes that the

vector-space lexical representations commonly used have three salient character-

istics, that the representations are inherently:

1. context-based

2. distributed

3. quantitative and gradual
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It is noted that these three qualities also characterise word representations used

in connectionist work. Elsewhere also the output of linear algebraic operations

is compared with connectionist representations or described in terms of neural

net analogues (Schütze, 1993; Landauer and Dumais, 1997). It is not surpris-

ing therefore that connectionist methods have been used directly to induce word

representations from co-occurrence observations. Much of this work presents

what are meant to be cognitively plausible models of word representation (e.g.

Borovsky and Elman, 2006; Rogers et al., 2004). Another, more practically-

motivated tradition of work on representing words with connectionist models

started a decade ago: Schwenk and Gauvain (2002) and Bengio et al. (2003)

present neural net-based language models. Schwenk and Gauvain (2002) note

that the main motivation for projecting words into a continuous space is that the

probability functions estimated over events will be smooth. The neural net ap-

proach is presented as a way of achieving this. However, another major benefit of

using neural nets for this work is that both the projection of the words into a con-

tinuous space and the weights for combining n-gram histories to make predictions

can be learned simultaneously via back-propagation. This overcomes objections

to two-step semi-supervised learning approaches where there is no guarantee that

the features learned in the first step will be useful for the second (as is the case

for the methods developed in this thesis).

Above it was seen that Brown word clusters – learned to optimise a criterion

motivated by language modelling – have been used for many tasks besides lan-

guage modelling. The same applies to word projections arising from the training

of a neural net language model: they are general enough that they can used for

other tasks. For example, in Turian et al. (2010), three types of word feature

obtained in an unsupervised way are evaluated on two different supervised tasks,

named-entity recognition and chunking. Conventional features and the unsuper-

vised features are aggregated; the aggregate systems outperform the conventional

systems having access to near state-of-the-art supervised features, and combi-

nations of the different types of unsupervised word features lead to additional

improvement. This approach is open to the same criticism that all ‘two-step’

approaches face – there is no guarantee that the embeddings will be useful for

the task.

Collobert and Weston (2008); Collobert et al. (2011) take the idea of task-

based estimation of word embeddings from neural net language modelling and

apply it to an array of NLP tasks in a multitask learning framework. Once

again, language model learning is used as an auxiliary task: the language model’s
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predictions are not used, only the embeddings of words are required. However,

models for five other tasks (POS tagging, chunking, named-entity recognition,

semantic role labelling and semantic relation classification) are trained in parallel;

the word projection initialised by the language model training is a shared layer

for all these tasks, hence back-propagation allows all tasks to affect the word

representation in a mutually beneficial manner. This would be an attractive new

architecture for TTS, where models for several NLP tasks in a single domain are

conventionally trained and applied as a cascade, leading to probably sub-optimal

results.

Connectionist Letter Representations

Jensen and Riis (2000) describe the learning of representations for letters within a

multilayer perceptron for performing letter-to-sound conversion. Codes for letters

in a five-letter context window form the input to the network, which outputs

phoneme posterior probabilities. The baseline system uses orthogonal one-hot

codes for letters (i.e. the code consists of 27 entries for lowercase letters and a

null token). A codeblock network which takes the 27 inputs of the orthogonal

codes and produces n outputs is inserted into the system. By training the whole

network and having all instances of the codeblock network share the same weights,

a set of 27 codes of length n is obtained, that expresses correlation between input

letters in a way that is optimal for the task. In the evaluation performed, setting n

to 15 gives highest accuracy, and using the codeblock network with any length of

code outerperforms the one-hot codes, and even a set of codes that are manually

specified and include information about categories of letters (vowel, consonant,

etc.).





Chapter 5

Letter Space

5.1 Introduction

The method of distributional–acoustic analysis introduced in Section 4.2 is here

applied to sub-syllabic units of English: both to letters and to phonemes. The ex-

periment presented in this chapter has the same goal as Experiment 3 of Chapter

3: the induction of phonetic classes useful for acoustic modelling. In comparison

with the serial tree building technique developed there, however, the method used

to attempt this task in the current chapter – the vector space model (VSM) – is

expected to be more easily extensible to other levels of analysis.

The serial tree building technique developed in Chapter 3 achieved a perfor-

mance that rivalled that of a benchmark system incorporating expert knowledge.

It might therefore be argued that approaching the same task with a different

method is redundant. Furthermore, this is a task in which no use is made of one

of the great strengths of the VSM – its ability to generalise from units heard in a

primary corpus to ones only seen in a tertiary corpus. This is because the set of

units to be characterised (letters or phonemes) is small and closed. The purpose

of returning to this task is to try the VSM on a familiar task before moving to

levels of analysis where the VSM’s ability to generalise will be of value. Further-

more, if similarly good results could be obtained with the VSM as with serial tree

building, it would enable the same technique to be employed on multiple levels

of analysis in a unified way, simplifying system construction.

95
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Figure 5.1: Two dimensions of a space of letter types built from Wall Street Jour-
nal text. Squares denote letters that are nominally vowels, diamonds consonants,
and circles numerals and punctuation. SP represents whitespace.

5.2 A Vector Space Model of Letter Types

A vector space model over letters observed in a corpus of running English text was

built. The text of the Wall Street Journal section of the Penn Treebank (Marcus

et al., 1993) was used for this purpose. These data are available in tokenised

form. To mimic the situation where time or expertise is not available to pro-

duce an intricate, language-specific tokenisation, untokenised text was obtained

by automatically reversing the Penn Treebank tokenisation of the distributed

data. The resulting untokenised text consists of c. 1 million words and just over

6 million letter tokens (including counts of spaces and other non-alphabetic char-

acters). This text was converted to lower-case, resulting in a vocabulary of 59

types: 10 numerals, 26 letters and 22 punctuation and miscellaneous symbols,

and whitespace. A vector space model of these types was built, following the pro-

cedure outlined in Section 4.2.4 and using immediate left and right neighbours of

each type as contexts.

Two dimensions of the space resulting from singular value decomposition are
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shown in Figure 5.1. To aid interpretation, nominal letter categories have been

coded in this figure by shape. These categories are called nominal, because the

traditional bipartite division of English letters into vowels and consonants glosses

over the opaque letter-to-sound relationship of English orthography. For example,

the letter 〈y〉, traditionally called a consonant, commonly corresponds to either a

vowel or a glide. With this proviso, squares in the figure denote vowels, diamonds

denote consonants, and circles all other symbols (numerals, punctuation, etc). SP

in this figure represents whitespace.

Ignoring the non-alphabetic characters (in circles), it is immediately obvious

from the figure that the discovered space is able to represent a partition of the

symbols that separates vowels from consonants. The non-alphabetic characters

are densely concentrated over a small range of dimension 3, and roughly group

into numerals and non-numerals along the other axis shown in the figure.

Informal inspection of a couple of dimensions of the space, therefore, shows

that the model has learned some key properties of the inventory of letters in an

unsupervised way. However, it is already known from previous work that the

most obvious division found by the space – into vowels and consonants – can

be obtained by distributional means (see Section 4.4.2). It is desirable to know

whether other phonetically-relevant classes are also represented in such spaces.

This model over letter types is hard to evaluate in a more rigorous way because

there is no well-established set of categories against which to test it. It already

seems clear that the space can handle the only well-established division of letters

(into vowels and consonants). To be able to compare an induced vector space over

sub-syllabic units rigorously against a well-established set of reference categories,

a similar model was built using English phonemes instead of letters.

5.3 A Vector Space Model of Phoneme Types

The Unilex Received Pronunciation Lexicon (based on the Unisyn accent inde-

pendent keyword lexicon: Fitt and Isard, 1999) was used for this experiment.

Stress and syllabification were removed from the word pronunciations, resulting

in a list of 105,394 unique pronunciations, made up of 903,378 phoneme tokens,

not counting the word boundary markers which were added. This preprocessing

results in a list of pronunciation types. In this regard, the approach taken here

is more similar to the one described by Goldsmith and Xanthos (2009), where

pronunciations from lexicons are used as training data, than that of Chelba and
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Figure 5.2: Two dimensions of a phoneme type space induced from the Unilex
Received Pronunciation Lexicon. Vowels and consonants are indicated in this
figure by circles and diamonds respectively.

Morton (2002), where phonemic transcriptions of running text are used with the

result that word frequency effects are incorporated into those models.

The phoneme space was constructed from this list of pronunciations using the

same procedure as for the letter space (described in Section 4.2.4). Specifically, a

context vector is assembled for each of the 50 (m) phoneme types in the corpus.

The number of types used to give context (n) is set to 51: a word boundary

symbol was added to provide word-terminal contexts, and is used as a left and

right context along with the 50 phoneme types. Truncated SVD gives a space of

r dimensions; for building this phoneme space, r was set to 5.

Two dimensions of the resulting space are plotted in Figure 5.2. It can be

seen that there is a clear grouping of vowel and consonant phonemes. From

this, an orthogonal partition of the space – of the type that the decision tree

building algorithms used in the current work are restricted to – would be able

to almost perfectly represent these two groups. The knowledge-based classes of

vowels and consonants are indicated in this figure by shape: circles denote vowels,

and diamonds denote consonants. Other finer clusterings of symbols appear to
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correspond to smaller intervals along a sonority hierarchy. For example, fricatives

and affricates are all characterised by low values in dimension 2, and so can be

found along the lower edge of the plot. Stops are clustered in a small area of the

bottom right corner of the plot. Liquids, nasals and glides are mostly grouped

together in the central area of this plot.

This sort of informal inspection of a few dimensions of the discovered space

suggests that some useful phonetic generalisations about segments are captured

by it, but is ultimately unsatisfactory. Often it seems from looking at a couple

of dimensions in isolation that oblique partitions would in many cases be more

useful for isolating linguistically plausible groups of segments than ones orthogo-

nal to the axes of the latent space. This raises the question of whether univariate

decision trees will be able to exploit the space. The following section moves

from informal inspection of the space to determining its practical value to a TTS

system.

5.3.1 Experiment

As already mentioned, using phonemes instead of letters for the VSM by-passes

the problem of not having many well-defined classes of letter against which to

benchmark. In the case of phonemes, there are well-defined phonetic classes

that can be withheld from a baseline benchmark system and incorporated into a

topline system. The challenge for the VSM system is then to close as much of the

gap in performance between the baseline and the topline as possible. If the VSM

system performs similarly to the topline system, we can conclude that the VSM

has found some representation – in an unsupervised way – that is beneficial for

TTS in the same way that expert-specified phonetic classes conventionally used

in TTS are beneficial.

Procedure

Five systems were used in this experiment; they are summarised in Table 5.1.

For all systems, the data-set RJS-1000 (described on page 53) was used. The

HTS-2010 procedure (see Section 2.1.3) was used to build acoustic models (10

iterations of the context clustering procedure were used). The only aspect of

the five systems that was varied was the set of features incorporated into the

annotation made available to them. The baseline system (here called System Q

and identical to the baseline system of the same name in Experiment 3 of Chapter

3) incorporates only features about the identity of phonemes in a 5-phoneme
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Table 5.1: Details of systems evaluated in the phoneme space model experiment.
Table 5.2 demonstrates the feature types named at the top of this table.

System Quin- Phonetic VSM Phonetic

phones (All) (V/C)

Q X

QC X X X

QV X X

QL X X

QCV X X X

Table 5.2: Examples of feature types in Table 5.1

Feature type Featureexample

Quinphone {LL, L, C, R, RR} phoneme is {i, ai, uh, ng, . . . }
Phonetic (All) {LL, L, C, R, RR} phoneme is {vowel, nasal, plosive . . . }
Phonetic (V/C) {LL, L, C, R, RR} phoneme is {vowel, consonant}
VSM {LL, L, C, R, RR} phoneme’s representation is < x in

dim. {1, 2, 3 . . . }

window around the modelled unit (feature class F in Table 2.1 on page 7). The

topline system (QC) supplements these basic questions with questions referring

to expert-defined phonetic sets of units (vowel, nasal, plosive, etc.) for each of the

5 quinphone contexts (feature class FC in Table 2.1). The experimental system

(QV) has access to the VSM already described, but makes no use of expert-defined

categories.

Two further systems were built, in addition to the baseline, topline and ex-

perimental systems, as follows. It is clear from visualisations of the discovered

space such as that shown in Figure 5.2 above that it will allow vowels to be dis-

tinguished from consonants by a univariate decision tree. As has already been

mentioned, it is less clear to what extent other phonetically-useful categories can

be made to emerge on purely distributional grounds. System QL was built to

control for the possibility that System QV uses the vowel-consonant split im-

plicit in the phoneme space, but makes no other use of the space. Like system

QC, System QL has access to expert specified knowledge, but rather than the

full set of 91 phonetic classes used by QC, QL has only knowledge of two of

those categories: vowels and consonants. Finally, system QCV was built to find

out if the expert-provided knowledge used by QC and the automatically induced
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Figure 5.3: Results of phoneme-space experiment. See Table 5.1 for explanation
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knowledge used by system QV are in some way complementary, or whether one

representation is redundant given the other.

As already mentioned, 5 dimensions of the phoneme space were available for

use. The space was represented in the feature set used by Systems QV and QCV

by features representing a binary split for each pair of the set of 50 phonemes

adjacent along each dimension of the space. This gives (50− 1)× 5 features for

each quinphone position, resulting in 1225 features over all five of these positions.

Results

An objective evaluation of the three voices was carried out using the same pro-

cedure as for Experiment 3 of Chapter 3, described on page 56. To recap, 100

utterances for which time-aligned labels were available were held out of train-

ing, and synthesised with natural segmental durations. The synthesised speech

parameters could then be compared on a frame-by-frame basis with the parame-

terised natural samples. Mean Bark cepstral distortion of non-silent frames was

computed for this experiment, because spectral envelope is the attribute of speech

that we expect to be most affected by the manipulation of phonetic representa-

tions available to a system. Segments labelled as pause and silence were excluded

throughout. As well as a general evaluation over all non-silent segments, measures

were also computed separately over vowel and consonant segments.

Results are presented in Figure 5.3. It can be seen that, as expected, the use
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of conventional phonetic categories improves performance, decreasing Q’s Bark

cepstral distortion from 5.54dB to 5.41dB for QC. While it does not perform

as well as the system using the serial tree method in the experiment of Section

3.4, the VSM-based system, QV, still closes most of the gap between topline and

baseline. It outperforms system QL (having knowledge of consonants and vow-

els), confirming that the phoneme space embodies acoustically-relevant partitions

besides the obvious partition of the space into vowels and consonants that is most

obvious in Figure 5.2. When the knowledge-based questions are combined with

the VSM-derived ones, performance is very similar to that of the topline system,

which suggests that the useful categories implicit in the VSM are similar to ones

in the expert-specified phonetic classes.

5.4 Conclusions

This chapter has outlined the construction of two vector space models of sub-

syllabic units of English: a space characterising letter types, and one character-

ising phoneme types. Systems were built with the phoneme space principally for

ease of evaluation, as for phonemes there exist well-defined categories that serve

as a point of reference in evaluation. The systems built for the experiment are

however in no way considered to be toy systems. The use of phonemes in an

English system is comparable to the direct use of letters as modelling units in

languages with a more transparent letter–phoneme correspondence (e.g. Finnish).

The experimental systems built are therefore of relevance to real-world situations

in which pronouncing dictionaries and phonetic knowledge are not available for

some target language with a transparent alphabetic orthography. The experiment

demonstrates that distributional analysis, which takes place before any acoustic

signal has been introduced into the voice-building procedure, gives the system

useful indications about which partitions of its inventory of units will be acous-

tically relevant. Real advantage of this approach’s strength is not taken in the

present task, where it can safely be assumed that all units will be encountered

in the primary data. Such is not the case with word-sized units, and it is to this

higher level of analysis that the following chapter applies the same vector space

model approach.



Chapter 6

Word Space

6.1 Introduction

The vector space model outlined in Chapter 4 has been shown to yield acousti-

cally relevant representations of sub-syllabic units of English. The experiments

presented in this chapter are designed to establish whether similar representations

at the word level are also relevant to TTS. In the present chapter, two such tasks

are used as the basis of experiments: decision tree clustering of acoustic model

states, as in Chapter 5, and the prediction of phrase-breaks from text, also using

decision trees.

The hypothesis of both these experiments is that the word-level vector space

model – derived automatically from unannotated text – can be successfully used

in place of a conventional part of speech tagger with minimal degradation of

performance. In the second of these (state-tying), the space of word types is par-

titioned using distributions over acoustic values as a response variable, as in the

experiment of Chapter 5. The partitioning therefore relies on no hand-annotated

data, but is made using a response (distributions over acoustic parameters) ob-

tained automatically from a naive ‘labelling’ by a speaker of a set of prompts

with appropriate waveforms. This speaker’s expertise might be no more spe-

cialised than a knowledge of the target language and literacy in that language.

The first experiment presented in this chapter (phrase-break prediction), in con-

trast, relies on a corpus that is hand-labelled with phrase-breaks by experts. This

task was chosen mainly because previously-published work using the same data-

set provides points of reference (see Section 6.3.3). However, it is expected that

features obtained much more naively from the acoustic signal (e.g. silent seg-

ments whose duration exceeds some threshold) will be reasonable surrogates for

103
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manually-labelled phrase-breaks. This approach is taken when systems are built

with no reliance on hand-labelled data in Chapter 8. Before the experiments are

presented, details of construction of the word space used in both experiments will

be specified, along with some informal observations about the space’s character-

istics.

6.2 A Vector Space Model for Word Types

Data

The data used to build the VSM of word types that is employed in the experi-

ments of the present chapter is the text of the Wall Street Journal section of the

Penn Treebank (Marcus et al., 1993). The tokenisation of the corpus is used as

provided (punctuation tokens were retained), but all other information was dis-

carded (parse trees, POS tags, sentence boundaries, capitalisation and sentence

boundaries – except as signalled by punctuation).

Procedure

The resulting text consists of 1,173,767 word tokens and 43,767 word types in-

cluding punctuation. A vector space model of these types was built, following the

procedure outlined in Section 4.2.4 and using immediate left and right neighbours

of each type as contexts. Values of parameters n (the size of context vocabulary

against which co-occurrence is counted) and r (the dimensionality of the latent

space) used were the same as those used in Schütze (1995): 250 and 50. Initial

experiments suggested that these would yield good results for present purposes.

The 250 most frequent words of the corpus which constitute the feature words

used are given in Table 6.1. For the word space described in this chapter, the

simple unseen token method was used to handle out of vocabulary words as de-

scribed in Section 4.2.4. That is, tokens in a 1% portion of the data whose types

are not seen in the other 99% are rewritten with a special symbol to represent

unseen words at run-time. 260 types contributed to the unseen model. In this

way, a 50-dimensional vector representation for each of 43,507 word types and one

for the unseen symbol were induced (i.e. the value of m for this space is 43,508).
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Table 6.1: 250 most frequent tokens in the Wall Street Journal text used, used as
feature words for the Word Space.

, the . of to a in and ’s

for that $ “ is ” it said on

% at by as from with million mr. was

be its are he but has’ n’t ’an have

will new or company they this which year would

about market – says more were had billion their

his up u.s. one than stock been some who

also other share not : we corp. when ;

last if i all shares ) president years (

trading first two after inc. because could sales &

out there do only business such most can co.

york into may over group many time now federal

companies prices no government so any cents quarter bank

investors down you price exchange ’ what people even

say yesterday much big while months securities under week

rose them bonds stocks major next three net interest

earnings did financial still 1 make chairman american just

earlier board through investment before those since chief industry

executive these state money national program off officials friday

10 expected made analysts like rate she unit month

markets days house does 30 profit sell buy between

against rates both plan capital firm income back get

recent revenue japanese ago general average products during well

should own funds index international offer fell issue another

court part debt then take trade among higher including

? her being 15 however 8 japan 1988 each

reported according world computer tax vice sale plans work

sold lower several way report traders past

Analysis of the Word-Level VSM

The word type space was inspected subjectively to determine whether its dimen-

sions have any intuitively straightforward interpretation. Of course, the model is

not expected to express a crisp division of words into traditional knowledge-based

classes, but it is expected that the discovered space will have some ability to rep-

resent such a division. Indeed, it is the assumption that the space will be able

to stand in for conventional part of speech tags that motivates the design of the

two experiments presented later in this chapter, where the type of module used

for assigning representations to words (either a POS tagger or VSM) is varied

between different experimental conditions.

To this end, the nearest neighbours of each of the first 50 latent axes of the

space were found from among the 3000 most frequent words of the corpus. Simi-

larity was measured with cosine similarity. Although not used in the experiments

and systems presented in this thesis, this is the most commonly used measure

of similarity between vectors employed in LSI-style approaches to Information

Retrieval (see Section 4.1).

A selection from among the 50 dimensions is given in Table 6.2 on page

107. Some of these dimensions have clear syntactic interpretations. For example,

the close neighbours of axis 1 consist mainly of prepositions: of, against, into,

across, toward, below, above, over, throughout, on, by, during, inside, beyond ;
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among axis 3’s neighbours are many adverbs: largely, primarily, formerly, mainly,

mostly, partly, usually, especially ; axis 6’s neighbours are made up entirely of

singular nouns: boom, case, team, committee, bill, firm, field, floor, moment, game,

day, machine, problem, group, event, network, campaign, organization, trial, gap;1

auxiliaries dominate the top positions of axis 9’s neighbours: should, must, might,

can, would, will, may, could, ll.2

As expected, the space captures properties of words besides purely syntactic

ones. For example, axis 3’s adverbs, already listed, are mainly adverbs of degree

or extent. Some dimensions seem to represent semantic aspects of the domain

in question: many of the nearest neighbours of axis 17 reflect the space’s con-

struction from Wall Street Journal text, and are not only past tense verbs, but

of verbs used to describe changes in stock prices: slid, rose, fell, jumped, plunged,

soared, climbed. Dimension 29 perhaps reflects newspapers’ more general concern

with reportage and the dating of events – these are words commonly collocated

with the word ‘year(s)’: consecutive, last, this, next, fiscal (Wall Street makes its

presence felt again here), every, full.

Thus while it is clear that certain dimensions of the space are amenable to

human interpretation, the interpretation can rarely be made on a purely syntac-

tic basis. This is expected, and is not necessarily a disadvantage. It is not clear

to what extent the word representations ideal for our task should be similar to

conventional POS tags. If a class of ‘words that describe what happens to stock

prices’ is an important one in the domain of our end task, it might well be a useful

one to be able to represent. This would be the case, for example, if we wanted

to predict phrase-breaks in Wall Street Journal-like text; unfortunately, this isn’t

the case in the experiments presented here. Essentially, word representations ob-

tained as described here reflect the contents of the data used to induce them, and

– as already noted in Section 4.2.3 – the closer the domain of the untagged data

to that of the supervised task, the better we would expect those representations

to perform.

1Although it should be noted that the POS of some of these words is ambiguous.
2The final item here is the contracted form of will or shall.
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Table 6.2: The 20 nearest neighbours of a selection of 12 of the first 50 latent axes
of the word space described in Section 6.2, from among the 3000 most frequent
words of the corpus, together with their cosine similarity scores.

Dimension 1 Dimension 3 Dimension 6 Dimension 7

. 0.64 ’ 0.62 boom 0.9 entire 0.72

reflects 0.6 compared 0.61 case 0.89 underlying 0.72

of 0.59 stearns 0.6 team 0.89 supreme 0.72

against 0.59 largely 0.58 committee 0.88 year-ago 0.72

into 0.59 primarily 0.58 bill 0.87 no. 0.72

across 0.58 formerly 0.58 firm 0.87 year-earlier 0.71

, 0.58 sachs 0.58 field 0.87 previous 0.71

toward 0.57 mainly 0.58 floor 0.87 latest 0.71

below 0.56 who 0.58 moment 0.87 current 0.71

; 0.56 harris 0.57 game 0.87 main 0.7

above 0.56 peabody 0.57 day 0.87 same 0.7

over 0.55 via 0.55 machine 0.87 soviet 0.7

throughout 0.54 effective 0.55 problem 0.87 original 0.7

entered 0.53 mostly 0.55 group 0.87 dow 0.69

on 0.53 partly 0.55 event 0.86 nikkei 0.69

by 0.52 judges 0.54 network 0.86 fourth 0.69

during 0.51 usually 0.54 campaign 0.86 biggest 0.69

inside 0.5 plus 0.54 organization 0.86 newly 0.69

runs 0.5 whose 0.54 trial 0.86 nasdaq 0.69

beyond 0.5 especially 0.53 gap 0.86 nine 0.69

Dimension 9 Dimension 17 Dimension 26 Dimension 29

should 0.64 totaled 0.59 risen 0.4 consecutive 0.56

must 0.63 totaling 0.58 occurred 0.4 last 0.55

might 0.63 earned 0.57 grown 0.4 this 0.51

can 0.63 slid 0.54 been 0.39 next 0.42

would 0.63 rose 0.53 fallen 0.39 fiscal 0.41

will 0.62 fell 0.51 charged 0.36 model 0.27

may 0.6 jumped 0.49 gone 0.36 claimed 0.19

could 0.57 offered 0.49 settled 0.35 crop 0.17

ll 0.51 roughly 0.49 shown 0.35 prior 0.16

never 0.49 estimated 0.48 changed 0.32 signal 0.16

actually 0.48 ( 0.43 turned 0.32 indicated 0.15

to 0.47 paid 0.42 pulled 0.31 every 0.15

really 0.44 plunged 0.41 caught 0.31 full 0.14

probably 0.4 contributed 0.41 resulted 0.31 circuit 0.14

simply 0.4 soared 0.41 taken 0.31 than 0.14

spend 0.38 climbed 0.41 heard 0.3 bet 0.13

receive 0.37 planned 0.41 begun 0.3 complained 0.13

immediately 0.37 committed 0.4 ruled 0.3 how 0.13

eventually 0.36 ought 0.4 stopped 0.29 decided 0.13

add 0.36 exposure 0.4 purchased 0.29 promised 0.13

Dimension 30 Dimension 33 Dimension 35 Dimension 36

fewer 0.58 than 0.79 sotheby 0.36 adds 0.26

less 0.56 aggressive 0.72 moody 0.36 owns 0.24

more 0.55 sophisticated 0.59 mac 0.34 succeeds 0.22

greater 0.55 expensive 0.55 lloyd 0.33 added 0.21

rather 0.52 attractive 0.51 mae 0.31 knows 0.21

faster 0.5 effectively 0.49 lawson 0.31 thinks 0.21

better 0.47 cautious 0.47 poor 0.29 believes 0.21

we 0.42 heavily 0.35 wang 0.28 turns 0.2

longer 0.4 profitable 0.32 thatcher 0.27 looks 0.2

slower 0.4 quickly 0.32 fe 0.26 sees 0.2

i 0.38 important 0.31 fidelity 0.25 expects 0.17

smaller 0.37 sluggish 0.3 nicaragua 0.25 immediately 0.17

circuit 0.37 widespread 0.3 circuit 0.25 gets 0.16

extremely 0.37 competitive 0.29 mixte 0.24 p&g 0.16

considerable 0.35 complex 0.27 lehman 0.24 sotheby 0.16

you 0.34 closely 0.27 dinkins 0.23 finished 0.15

appropriate 0.34 frequently 0.27 gorbachev 0.23 moody 0.15

higher 0.32 memory 0.26 hooker 0.22 swiss 0.15

sophisticated 0.32 rapidly 0.25 china 0.22 takes 0.15

fair 0.32 active 0.25 mason 0.22 poor 0.15
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6.3 Experiment 1: Word VSM for Phrase-Break

Prediction

These induced word representations are now applied to two TTS tasks: the front-

end task of phrase-break prediction in the current section,3 and the back-end task

of acoustic model clustering in the section that follows.

6.3.1 Background: Phrase-break Prediction

Phrase-break prediction as a stage of TTS conversion was mentioned in Section

2.1.1. It was mentioned there that the conversion of word sequences to part of

speech (POS) tag sequences is a useful first step for predicting phrase-breaks from

text. The availability of a part of speech tagger is a central requirement in the

majority of work on phrase-break prediction. Many different machine learning

techniques have been applied to phrase-break prediction; for example, decision

trees have been used (Wang and Hirschberg, 1992; Navas et al., 2008), n-gram

models (Taylor and Black, 1998; Schmid and Atterer, 2004), finite-state trans-

ducers (Bonafonte and Agüero, 2004), and memory-based learning (Busser et al.,

2001). The input to whatever classifier is used, however, has consistently included

POS tags as features of central importance. In all of the above-mentioned works

they are used directly as input into a phrase-break classifier. In Parlikar and

Black (2011) they are used additionally to construct parse trees which in turn

provide predictor features for a decision tree. Previous work therefore suggests

that reducing the set of surface-forms to a smaller set of symbols on knowledge-

based, distributional grounds (i.e. via POS tagging) is a necessary first step for

phrase-break prediction. We here test whether the induced word representations

already described above can stand in as surrogates for POS tags in this task.

Various researchers have shown that a pre-defined set of tags (such as the Penn

Treebank tag-set) is often not optimal for the phrase-break prediction task. For

example, mapping the full Penn Treebank set to a smaller, coarser set gives im-

proved performance in Taylor and Black (1998), where the mapping is manually

specified, and in Read and Cox (2007), where is it learned through an optimi-

sation procedure. Conversely, producing a finer set of classes for certain words

is tried both in Stolcke and Shriberg (1996), successfully, and in Busser et al.

(2001), with less success. In both cases, systems using surface forms of words are

3An earlier and more limited version of the work here called Experiment 1 was presented in
Watts et al. (2011).
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compared with systems using POS tags and a ‘mixed mapping’, where POS tags

are used except for some small groups of words (e.g. function words), for which

the surface forms are used. It can be seen, then, that a knowledge-based POS

tag-set provides a good – but not optimal – set of word classes for phrase-break

prediction. This suggests the potential for unsupervised induction of representa-

tions for this task to improve on the use of generic knowledge-based classes, an

idea that was introduced in Section 4.2.3.

6.3.2 Experiment

Data

The phrase-break annotated data used for this experiment was obtained by com-

bining data from the Lancaster/IBM Spoken English Corpus (SEC: Knowles et al.

(1996a,b)) and its machine-readable extension, MARSEC (Roach et al., 1993).

These corpora consist of material from a variety of speakers and genres, broadcast

on BBC radio programmes during the 1980s. A subset of 39 stories was used,

the main exclusions consisting of material from the Poetry and Dialogue gen-

res. The text of SEC is punctuated by volunteers, without reference to prosodic

cues from the audio or phrase-break annotations (Knowles et al., 1996a, p. 130).

Phrase-breaks in MARSEC are annotated by two annotators from the audio as

follows:

The division [into tone units] is made on phonetic criteria such as

pause, lengthening of a preceding syllable, or a break in the rhythm

. . . (Williams, 1996, p. 51).

For this experiment, MARSEC and SEC were automatically merged to obtain

a text in plain (although tokenised) orthography that is both punctuated (from

SEC) and annotated with phrase-breaks (from MARSEC). All tokens were con-

verted to lower-case, and punctuation marks and phrase-breaks were associated

with the token that precedes them as a feature of that token.4

There are 34,824 tokens in the subset of the corpus prepared (not counting

punctuation marks). 11% of these are from the overlap section – that part of

4We note the similar (but more careful) preparation of part of this material (ProPOSEC) by
Claire Brierly (Brierley and Atwell, 2010), and acknowledge her generous sharing of her version
of the data. This was not eventually used in the work presented here, however, as only the
first 10 stories were available, and for consistency our own more rough-and-ready approach was
used to prepare a larger data set.
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the material annotated prosodically by both the corpus’s annotators. These are

set aside as a test set; this choice of test set enables easy replication of the

training/test division used and is balanced with respect to speaker and genre

(consisting of whole sentences from across the different stories and genres of the

corpus). 10% of the remaining 89% was set aside as a development set for system

tuning. The points for this development set were picked randomly from across

the non-overlap section of the data (on a word-by-word basis). This results in a

training–development–test division of 80%–9%–11%.

Procedure: CART

CART (Breiman et al., 1993) is used as the classification method in this ex-

periment. CART is expected to yield respectable predictors for this work as its

suitability for the task has been established previously (Section 6.3.1). This choice

is also motivated by similarities between the phrase-break classification trees and

the regression-type trees used for acoustic model clustering in HMM-based speech

synthesis. Using CART as the machine learning framework for phrase-break pre-

diction means that a single methodology – the partitioning of a discovered vector

space by decision-tree building – can be employed in a unified way across multiple

modules of a single TTS system.

The procedure used to build trees for all experiments will now be explained.

Classification trees were fully grown using the Gini diversity index as impurity

measure and then pruned using minimal cost-complexity pruning. The com-

plexity parameter used for pruning was determined by 10-fold cross-validation,

the chosen parameter being the one resulting in the smallest tree from among

the values within 1 standard deviation of the value giving highest accuracy on

the cross-validation (Breiman et al., 1993). It should be noted that this proce-

dure is slightly different to the one followed in an earlier published version of

this work (Watts et al., 2011), where the value minimising prediction error in

cross-validation was used to select an appropriate value for the complexity pa-

rameter. Furthermore, cross-validation is accomplished by a random partition of

the training data into folds. To counter the effects of this non-determinacy, 10

trees are here built for each condition and the means and standard deviations of

the relevant values over 10 trees are reported (in contrast to Watts et al. (2011),

where values from a single run of the tree-building algorithm per system were

presented).5

5The implementation of CART used in this work is the R package rpart (RPART).
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System Positional GPOS Brill TnT VSM

B X

G X X

Tb X X

Tt X X

U X X

GU X X X

TU X X X

Tbt X X X

Table 6.3: Details of features used in systems built for phrase-break prediction.
Positional denotes a basic feature-set relating to punctuation and tokens’ po-
sition in utterance; GPOS, Brill and TnT denote feature-sets derived from
different part of speech taggers; VSM denotes a feature-set derived from repre-
sentations of words automatically induced in a vector space model.

Experimental Conditions

Systems were built in eight sets of experimental conditions. The system-building

procedure was identical in each case except for the predictor variables to which

the systems had access. Features used by each of the systems are here described,

and the different conditions are also summarised in Table 6.3.

All Systems The feature to be predicted for each word by all systems was the

level of phrase-break associated with it. All three break types in the original

annotation (major break, minor break, disfluent pause) were mapped to a single

symbol for break, B, and words with none of these associated were given a symbol

for no break, NB.

B: Baseline System The baseline system B had access only to features relating

to punctuation and tokens’ position in utterance. For each token in the corpus,

the following 5 basic features were used:

• The identity of the punctuation symbol following the word;

• The number of words {since, until} a word with a strong punctuation mark

(i.e. excluding quotes);

• The number of words {since, till} the beginning/end of the utterance;
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Baseline system B was built with access to only these features; all other systems

built had access to these features in addition to further features, as now explained.

G: Baseline System with Guessed POS (GPOS) As mentioned in Section

2.1.1, full POS tagging can be approximated deterministically by compiling a list

of the closed set of function words (or possibly, several sub-lists giving distinctions

such as pronoun, modal verb, etc.), tagging these words by look-up in the list(s),

and tagging all out-of-list words as content words. Such an approach is tested

in system G, which uses 9 lists of different types of function words modelled as

closely on those distributed with the Festival TTS system (Black et al., 1999)

as differences in tokenisation allow. The lists are nominally of prepositions, the

word to, determiners, modals, coordinating conjunctions, wh-pronouns, possessive

pronouns, auxiliaries, and an extra class for the morpheme ’s. Obviously this

method cannot handle the POS ambiguity of function words such as that, and

makes no distinction between different types of content words. The tags obtained

in this way for a token and its right-hand neighbour are included as features

of that token. An extra null token is used for ‘next word’s POS’ at the end

of utterances. The CART algorithm using the standard question set (Breiman

et al., 1993, §2.4.1) searches all binary partitions of this small tag-set, and thus

the simple content–function distinction is modelled implicitly. System G was

constructed using these features in addition to the positional features of system

B.

Tt and Tb: Topline Systems with Full POS Systems Tt and Tb are

toplines, and in addition to the basic features used by System B, incorporate

features obtained from two different state-of-the-art POS taggers that had already

been trained on approximately 1.2 million words and 300,000 words of manually-

tagged data from the Wall Street Journal respectively. System Tt uses tags

from the trigram tagger TnT (Brants, 2000), and System Tb uses tags from

Brill’s Transformation-Based Learning tagger (Brill, 1992). As mentioned above,

collapsing some fine distinctions made by the full Penn Treebank tag-set has been

found to give improvements on this task in previous work (Taylor and Black,

1998; Read and Cox, 2007). Early trials on the development set showed that

the 23-tag system of Taylor and Black (1998) (grouping verbs, nouns, adjectives

and adverbs into single classes) gives improved results also in the present set-up.

This 23-tag set was therefore also used for all of the POS features in the current

work. For each token, the tag of that token is included as a feature as well as
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the tag of its right-hand neighbour. Contrary to the results with decision trees in

e.g. Wang and Hirschberg (1992) and Sun and Applebaum (2001), early trials on

the development set suggested that a wider tag window does not improve results,

and so a 2-word window was used in all of the current experiments (in effect,

tags either side of a juncture are used to predict break type at that juncture).

End-of-sentence contexts were represented with the null symbol as in the case of

the GPOS features.

U: System Using Unsupervised Word Features Besides the positional

features of System B, System U incorporates features obtained from untagged

Wall Street Journal text as described in Section 6.2. It should be noted that this

is the same corpus that had been used to train the taggers used for Systems Tb

and Tt, except here – obviously – no use is made of the POS annotation. As with

Systems Tt and Tb, the obtained features of a token and its right-hand neighbour

were associated with that token as features; in the case of System U, however,

these features amounted to 100 continuous features (50 for current and following

words) rather than two POS tags. End-of-sentence contexts were represented by

the mean vector of the whole VSM ‘lexicon’.

Systems B, Tb, Tt and U are the systems to make the basic comparisons. In

addition to these, three extra systems were built using different combinations of

the features already described.

GU: System Combining Unsupervised Word Features with POS This

system was built using both the GPOS features of System G and the VSM features

of System U to determine if there is any complementarity between the benefits

offered by each type of feature. This is a possibly attractive combination as it

allows the easy integration of some human expertise into an unsupervised system

without a full part of speech tagger being required.

TU: System Combining Unsupervised Word Features with POS This

system combines the Brill tagger features of System Tb with the unsupervised

word representations of system U. This idea here is to test for complementarity

between conventional, topline POS features and the proposed word features. If

there is some, then it might be possible even in the best case scenario (where all

the desired conventional features are available) to add extra word representations

at little expense to see some added improvement.
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Figure 6.1: Precision, recall, and F-measure of phrase-break predictors on devel-
opment (upper) and test set (lower). Means and standard deviations (error bars)
over 10 repetitions of tree building are given.

Tbt: System Using Two POS Taggers Finally, a system was built combin-

ing the features of the two taggers already mentioned. The motivation for this

system is to compare the effect of combining knowledge-based features with the

induced representations against the effect of combining knowledge-based features

with other similar knowledge-based features. The expected redundancy between

tags from these two systems means that this system is not expected to perform

better than the best system using a single tagger.

6.3.3 Results

Results of evaluation of the systems on development and test sets are given in

Figure 6.1. The sizes of trees built (measured in number of leaf nodes) are given

in Figure 6.2 on page 115. All these plots give the mean scores (precision, recall

and F measure) over 10 repetitions of tree building (motivated above); error bars

show 1 standard deviation. Plots of the top parts of trees for systems Tb and U

are shown in Figure 6.3.
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Figure 6.2: Sizes of trees built for phrase-break prediction; means and standard
deviations (error bars) over 10 repetitions of tree building are given.

Baseline system B achieves an average F measure on breaks in the test-set of

69.6%. The ‘guessed POS’ (GPOS) features that were incorporated into system G

increases this to 74.1%, although performance of this system is less stable across

test and development sets than that of any other system; on the development

set, the increase in performance between systems B and G is much less (F scores

of 69.1% and 70.6% respectively). The size of the tree created using the GPOS

features is much less stable between runs of the tree-building algorithm than for

any other set of features, shown clearly in Figure 6.2.

Topline Systems Tb and Tt gain mean F measures on the test-set of 77.4%

and 78.8%, and thus represent a reasonable level of performance (cf. F measures

of 74.4%, 78.3%, and 81.6% in Busser et al. (2001); Taylor and Black (1998);

Read and Cox (2007) respectively on MARSEC data6). Examination of the

binary partitions of the tag-set that are chosen for these trees suggests one reason

why GPOS features provide a smaller improvement in performance than POS

features: in the case of both splits in the upper portion of the tree for system Tb

shown in Figure 6.3, the partition separates different classes of content words, and

6Possible differences of data division and preparation mean this comparison needs to be
made with caution.
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Figure 6.3: Top portions of trees built for System Tb (Basic and Brill tagger
features) and U (Basic and Unsupervised VSM features); nodes querying basic
features are shown in white, those querying supervised POS features (in the left-
hand tree) or unsupervised VSM features (in the right-hand tree) are shaded grey.

distinction between content word classes is obviously not enabled by the GPOS

features.

The system using unsupervised word features, System U, gains an average

F measure on breaks in the test-set of 77.7%, thus closing most of the gap in

performance between baseline system B and topline systems Tb and Tt, and

giving superior performance to system G. Note the generally similar topology

of the top portions of the trees induced for systems Tb and U shown in Figure

6.3: Tb’s question about the POS of the current word is mirrored in tree U by

a question about dimension 6 of the current word’s VSM features. Similarly, the

following question about the POS of the following word in tree Tb is mirrored by

2 questions about dimensions 1 and 2 of the next word’s VSM features in tree U.

The final 2 questions in the tree fragments shown are identical.

Adding GPOS features to the system using induced word representations

yields a small gain in performance. Adding the word representations on top

of tags from the Brill tagger also improves performance, nearly equalling that

of the better-performing TnT tagger. Interestingly, combining the two taggers’

features degrades performance: it seems that there is some complementarity be-

tween conventional tagger features and the induced features, but that this is not

true of features produced by the two full-scale POS taggers.
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System Short description Contexts Specific to System

B Baseline None
P Part-of-speech

topline
POS of word and neighbours, from TnT; distance to
content word (from GPOS function)

V VSM 50 VSM features for word and its neighbours (dis-
cretisation: 50 evenly-spaced bins)

Table 6.4: Systems built to test VSM for decision-tree-based state tying and con-
text features characterising them.

6.4 Experiment 2: Word VSM for State-Tying

Results of the first experiment of this chapter show that it is possible to replace

knowledge-based POS features with induced VSM features in at least one module

of a TTS front-end cascade with considerable success. The second experiment

performed using features from the VSM of word types is designed to discover

whether similar success can be achieved by applying these features to the task of

decision-tree state-tying in place of POS features.

6.4.1 Experiment

Data and Training Procedure

For this experiment the data-set denoted RJS-1000 on page 53 is used. This

same procedure is used for voices built for all conditions of this experiment:

HTS-2010 (see Section 2.1.3). The only aspect varied between conditions is the

type of context features used. Features relating to phrase, and to tone and accent

(feature-sets P and T respectively in Table 2.1) are omitted from all voices; all

voices make use of the standard features relating to phones, syllables and the

utterance (feature-sets F, FC, S and U respectively in Table 2.1). The features

that are varied across the three systems are specified in Table 6.4, which also

assigns identifying codes to the systems.

Systems B and P are baseline and topline systems, respectively: B has no

other features than those available to all systems, relating to phone, syllables and

the utterance: it represents the best system that can be built without using word-

and phrase-level features. To these basic features, P adds contexts derived from

part of speech (POS) assigned by a high-quality tagger, TnT (Brants, 2000).

Specifically, the contexts used by P are the POS of the current phone’s word

and those of its left and right neighbours. Sets of POS tags are also used for
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these contexts to generalise over the many fine-grained tags of the Penn tag-set.

(See Section 6.3.1 for a case where using a coarser set of tags gives improved

results.) These sets, which include ones such as verb and content word, are

manually specified with expert knowledge. Clusters of tags are specified with

varying degrees of granularity, from the full Penn treebank set at the finest to

the function–content word division at the coarsest.

System V substitutes three vectors of 50 VSM features each (again, for the

current phone’s word and those of its left and right neighbours) for the three POS

contexts of system P. The same word space described in Section 6.2 and used for

Experiment 1 in this chapter is used here. However, the decision-tree building

routine used for context clustering in HTS uses a manually-specified question set

rather than using the full standard question set (Breiman et al., 1993, §2.4.1)

that can be inferred from the data.7 Assembling the full question set explicitly

would result in an unwieldy question set, and would prove too computationally

expensive for decision tree state-tying.8 Therefore, each dimension of the VSM

is discretised: the maximum and minimum values in the VSM look-up table are

found for each dimension, and values along that dimension are binned into 50 bins

of uniform width in that range. The questions incorporated into the question set

refer to the 49 sets of (consecutive) bins that represent splits on each of the 50

dimensions used.

Evaluation

Objective evaluation of the three voices described was conducted using the la-

bels and audio of 100 utterances from the same corpus that had been held out

during training. Similarity measures were computed between the natural speech

of these utterances and speech synthesised from the corresponding time-aligned

transcription. To make comparison of natural and synthesised parameters on

a frame-by-frame basis, the synthesiser was constrained to use natural phone

durations. With the resulting frame-aligned natural and synthetic speech the fol-

lowing measures were computed: mean Bark-cepstral distortion per frame, and

(over correctly voiced frames) Root Mean Square Error of F0 and Pearson cor-

relation coefficient of F0. Segments labelled as pause and silence were excluded

7As the CART implementation rpart does.
8This is partly for reasons of implementation (rpart computes improvements in cluster purity

efficiently, updating already computed statistics for similar previous splits rather than starting
from scratch for each split) and partly because the data for state clustering is of higher dimen-
sionality (the response is represented by vectors of state means and variances, not just a single
symbol).
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Figure 6.4: Results of state-tying experiment

throughout. As well as a general evaluation over all non-silent segments, mea-

sures were also computed separately over vowel and consonant segments. Results

of this evaluation are shown in Figure 6.4.

The relation between systems B and P is as we would expect: part of

speech has little effect (or a slightly negative effect in the case of consonants) on

the spectral envelope measures, but improves F0 measures consistently (with the

exception of RMSE for consonants).

System V: The effects of using the VSM features are surprising: according to

the objective measures, synthesised spectral envelope is improved, but the quality

of synthesised F0 trajectories is degraded. This is surprising because features

modelling word level effects might be expected to improve prosody (which tends

to be associated more with pitch than spectral envelope) rather than segmental

quality (generally associated more with spectral envelope than pitch). Word-level

VSM features might be expected to behave like POS features in this regard. Such

is not the case as can be seen in Figure 6.4: where POS has a negligible affect on

generated spectral envelope, VSM features improve it. Whereas POS improves

F0 generation, VSM features degrade it.
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System Number of
questions defined

B 1889
P 2042
V 9389

Table 6.5: Numbers of features used in the systems built.

One possible explanation of the degrading effect of the VSM features on the

F0 trajectories generated by system V is the large number of contextual features

used by this system. Despite the discretisation used as described, this system

still has a very large number of features compared with B and P, as shown in

Table 6.5.

Furthermore, in comparison with the POS features, the features derived from

the VSM are noisy: it is to be expected that along each dimension of the space,

many splits represent partitions of words having no linguistic or prosodic relevance

at all. As well as increasing the time taken to build the trees, this large number of

noisy attributes might have a degrading effect on the trees built. It is well known

that decision-tree inducers are particularly sensitive to the degrading effects of

noise (or noisy) attributes (John, 1997, pp. 68 ff.). This is due to the myopic

partitioning strategy they use, where a split is chosen based only on the data

points that have made it to the current node. The more attributes that define

possible splits, the greater the chance that one will just happen to split the small

training data well, regardless of whether that attribute represents noise or not

(i.e. of whether the split chosen will generalise to new examples). This problem

is expected to be more marked for the trees built for F0 distributions, which are

larger and so whose splits on average are chosen based on smaller sub-sets of the

data.

6.5 Conclusions and Open Problems

The results of the first experiment of this chapter (phrase-break prediction) are

pleasing. They show that most of the performance improvement between base-

line and topline systems B and Tb/Tt, gained by incorporating knowledge-rich

resources into the system via a state-of-the-art POS tagger, can alternatively be

achieved by adding features extracted from plain text in an unsupervised manner

(system U). Use of the unsupervised features also yields an improvement over

System G where full part of speech tagging is approximated by the use of manu-
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ally constructed word lists. Encouragingly, not only do the VSM-derived features

give a quantitatively similar increase in performance over system B compared

with the knowledge-based features of system Tt, but they appear to be used in

a qualitatively comparable way (see the similarity of the trees’ structures men-

tioned in Section 6.3.3). It seems, however, that the features differ enough that

there is some complementarity between them: combining a tagger’s features with

the unsupervised ones leads to improvements over using either set of features

in isolation, something not achieved by directly combining the features from 2

conventional taggers, where performance degrades. These results are encouraging

because they show that at least some components of TTS systems can be built

with very little manual effort, but very little degradation of state-of-the-art per-

formance. The less restrictive data requirements for the VSM system mean that

straightforward modifications – such as increased amount of training data – could

improve performance further. This possibility is explored further in Chapter 7.

The use of VSM-derived features in the second experiment described (state

tying) did not produce the results expected. The features improved the generation

of spectral envelope where no such improvement was hypothesised, but degraded

F0 generation where improvement was expected. The explanation proposed, that

the degradation caused to F0 trees by these features is due to the features’ noise

and high-dimensionality combined with the trees’ average small node size, is

explored in Chapter 7. There the hypothesised problem is addressed by using a

feature selection procedure that takes a more global view of the features before

construction of the final trees even starts.





Chapter 7

Refinements and Extensions

The current chapter considers some refinements of – and an extension to – the

vector space models of language that have already been presented. Two types of

refinement are considered. First, the ability of the vector space model of words

presented in Chapter 6 to exploit larger quantities of training data is examined.

Also, various parameters were set somewhat arbitrarily in Chapter 6 and subse-

quently remained unchanged. Both the effect of larger sizes of training corpus

and of different settings of these parameters are tested here, by revisiting Ex-

periment 1 of Chapter 6 (phrase-break prediction). Second, a method of feature

sub-set selection particularly appropriate for decision trees is used in combination

with the vector space model of word types in an attempt to improve upon the

results of Experiment 2 of Chapter 6 (state-tying). In addition, the extension of

VSMs to higher levels of linguistic analysis than the word is considered: a model

is formulated that is designed to capture characteristics of utterances that are

relevant to TTS conversion.

7.1 Word Space: Corpus Size and Parameter

Settings

One of the great attractions of the vector space model (and of unsupervised ap-

proaches in general) is that the size of a training corpus is limited only by the

amount of plain text data that can be collected. There is no limit imposed by the

need to manually annotate any data. As mentioned in Section 4.2.3, the develop-

ment of incremental algorithms for singular value decomposition lifts restrictions

on the dimensions of the matrices to be decomposed, and data incoming from a

stream can be used to update a vector space incrementally. It is therefore easy

123
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to imagine improving the performance of systems such as system U in Section

6.3 simply by increasing the size of the corpus from which the word represen-

tations are obtained. The experiment presented here tests whether this is true.

Also tested is the effect of altering settings used in the procedure for building

the vector space whose values were set arbitrarily in Section 6.2. Two settings

– the value of n and the method for handling unseen words – were chosen for

investigation here as it is expected that ideal values for these settings will vary

with the size of corpus used.

7.1.1 Data and Vector Space Models

The text used for this experiment was taken from the news portion of the British

National Corpus (BNC, 2007). Six progressively larger sub-sets were defined,

each consisting of running text from the corpus and subsuming the previous sub-

set. The sizes of these are 1, 5, 10, 15, 20 and 25 million words. Note that the

smallest of these is similar in size to the Wall Street Journal text on which the

model used in Section 6.3 was built, and so provides a point of comparison.

The method used in Section 6.3 to determine the set of word types on which

to train the representation for unseen words will here be called unseen method

A. To recap, tokens in a 1% portion of the data whose types are not seen in the

remaining 99% are rewritten with the unseen symbol. Rather than adjusting the

percentage used by this method, a more straightfoward method was used here

for comparison, which will be called unseen method B. In this method, all types

that are seen t or fewer times in the training corpus are rewritten with the unseen

symbol. Four different values of t were tested: 1, 2, 5 and 10. Unseen method B

using these four values of t will be denoted B1, B2, B5 and B10, respectively.

The other parameter whose value was varied in these experiments was n:

the size of context vocabulary (number of types with which left and right co-

occurrence is counted). Besides the value of 250 used in Section 6.3, four further

values were tested: 500, 750, 1000 and 2000.

Word type models were induced using all 150 combinations of these 6 corpus

sizes, 5 unseen type methods, and 5 values of n. In all respects other than

these three settings, the procedure used to build the models was identical (see

Section 4.2.4). The usefulness of these spaces was then tested by incorporating

them into phrase-break prediction systems like System U in Section 6.3. In all

respects other than the word representations used, the training and testing of

these systems are identical to that of System U in Section 6.3. To summarise:
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Table 7.1: F measure (%) on phrase-breaks of SEC/MARSEC test set for 1)
different methods of handling unseen words, 2) different values of n (number of
context types) and 3) different sizes of text corpus. Means and standard deviations
(±) over 10 runs of CART building are given for each configuration. Means shown
in italics are plotted in Figure 7.1, and means shown in bold type are plotted in
Figure 7.2.

Unseen method: A

# words n = 250 n = 500 n = 750 n = 1000 n = 2000

1,000,000 78.08 (±1.27) 77.27 (±0.16) 75.35 (±1.03) 78.12 (±1.18) 76.01 (±2.33)

5,000,000 77.05 (±1.26) 75.53 (±0.23) 76.94 (±2.24) 74.67 (±0) 76.86 (±0.63)

10,000,000 77.8 (±0) 77.2 (±1.57) 78.01 (±0.12) 78.09 (±1.86) 77.27 (±1.05)

15,000,000 78.77 (±0.3) 76.92 (±1.82) 76.37 (±0.63) 77.8 (±0.1) 77.11 (±2.45)

20,000,000 78.34 (±1.35) 76.05 (±0.51) 77.97 (±0.65) 76.4 (±0.71) 76.75 (±0.93)

25,000,000 79.02 (±1.13) 76.58 (±1.1) 77.82 (±2.01) 77.9 (±1.59) 75.38 (±1.5)

Unseen method: B1

# words n = 250 n = 500 n = 750 n = 1000 n = 2000

1,000,000 78.73 (±0) 78.12 (±0.99) 78.17 (±0) 78.17 (±0) 78.09 (±0.21)

5,000,000 78.55 (±0.26) 77.11 (±2.03) 76.65 (±0.01) 76.71 (±0.01) 78.69 (±1.37)

10,000,000 78.36 (±1.12) 79.03 (±0.5) 78.38 (±0.51) 79.3 (±1.12) 79.08 (±0.44)

15,000,000 78.18 (±1.41) 78.11 (±0.52) 78.24 (±0.72) 78.5 (±0.16) 77.68 (±1.05)

20,000,000 77.05 (±0.82) 77.43 (±0.53) 77.8 (±0.68) 78.27 (±0.32) 78.31 (±0.23)

25,000,000 78.05 (±1) 78.39 (±1.57) 78.19 (±1.83) 78.66 (±1.17) 75.92 (±0.28)

Unseen method: B2

# words n = 250 n = 500 n = 750 n = 1000 n = 2000

1,000,000 78.38 (±0) 78.27 (±0.19) 78.12 (±0.71) 78.34 (±0.12) 78.32 (±0.16)

5,000,000 77.72 (±3.53) 79.22 (±0.49) 79.19 (±0.71) 79.25 (±0.18) 79.39 (±0.47)

10,000,000 78.76 (±0.58) 78.33 (±0.48) 79.67 (±1.51) 79.34 (±1.12) 78.08 (±0.65)

15,000,000 77.91 (±0.91) 77.65 (±1.65) 77.94 (±1.07) 77.96 (±3.37) 77.19 (±2.56)

20,000,000 77.87 (±1.53) 78.45 (±1.19) 78.35 (±1.35) 78.46 (±0.81) 78.82 (±0.42)

25,000,000 77.96 (±0.97) 78.42 (±0.46) 78.9 (±0.32) 78.23 (±0.13) 77.96 (±2.43)

Unseen method: B5

# words n = 250 n = 500 n = 750 n = 1000 n = 2000

1,000,000 78.12 (±0.81) 78.06 (±0.01) 77.21 (±2.82) 77.86 (±1.41) 77.9 (±0.25)

5,000,000 78.1 (±0.57) 78.06 (±0.21) 77.84 (±0.26) 77.88 (±0.52) 78.19 (±1.22)

10,000,000 79.12 (±1.3) 78.97 (±1.02) 78.15 (±2.92) 78.81 (±1.25) 78.4 (±2.87)

15,000,000 79.04 (±0.77) 78.88 (±0) 78.91 (±0.03) 78.92 (±0) 78.91 (±0.7)

20,000,000 79.01 (±0.26) 78.95 (±0.12) 79.02 (±0.66) 78.97 (±0.15) 79.04 (±0.39)

25,000,000 79.13 (±0) 79.11 (±0.65) 79.12 (±0.34) 79.1 (±0.52) 79.15 (±0.61)

Unseen method: B10

# words n = 250 n = 500 n = 750 n = 1000 n = 2000

1,000,000 77.79 (±1.54) 78.27 (±1.73) 77.12 (±1.2) 78.57 (±1.27) 79.06 (±0.75)

5,000,000 78.72 (±0.66) 78.79 (±0.44) 78.87 (±0.29) 78.81 (±0.41) 78.72 (±0.32)

10,000,000 78.69 (±0.09) 78.8 (±0.28) 79.1 (±1.73) 79.21 (±0.99) 79.15 (±0.51)

15,000,000 78.24 (±0.47) 78.61 (±1.48) 78.39 (±1.64) 78.17 (±0) 78.52 (±1.04)

20,000,000 78.93 (±1.72) 79.17 (±1.76) 78.97 (±1.69) 78.74 (±1.27) 79.01 (±1.93)

25,000,000 78.49 (±4.35) 79.19 (±1.67) 78.9 (±2.4) 78.93 (±2.42) 78.31 (±3.71)
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Figure 7.1: The effect of varying method for handling unseen words (shown in the
legend); n is held constant at 250 for this plot. (The values plotted here are the
mean values shown in italics in Table 7.1.)

phrase-break predictors were trained and tested on disjoint sets of data from

the MARSEC/SEC corpus. The predictors are CART trees, which are fully

grown and then pruned using a complexity parameter obtained by 10-fold cross

validation.

7.1.2 Results

The performance of the 150 configurations tested on the same set of SEC/MARSEC

data used in Section 6.3 is given in Table 7.1. Mean F measures and standard

deviations over 10 runs of CART building are given as in Section 6.3. Some key

points of these results are presented graphically in Figures 7.1 and 7.2.

Figure 7.1 plots the left-hand column of mean values which is shown in italics

in Table 7.1. It shows the effect of varying the method used for handling useen

words and size of corpus used to train the vector space model. The value of n is

held constant in this plot (at 250). It is clear from this plot that most of these

methods are very sensitive to corpus size, and that some methods are suited to

a particular size of corpus. Method B5 gives the most stable results. Although

it is not the best-scoring method with smaller sizes of corpus, with corpora of 10
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Figure 7.2: The effect of varying context vocabulary size (n: different values of
this parameter are shown in the legend); unseen method is held constant (B5) for
this plot. (The values plotted here are the mean values shown in bold type in Table
7.1.)

million or more words it outperforms the other methods. It is also the method

for which performance does not depart far from a monotonic improvement as a

function of corpus size.

In Figure 7.2, the unseen method is kept fixed (at B5), and the value of

parameter n and the size of training corpus are varied. The plot represents the

rows of mean values that are shown in bold type in Table 7.1. The plot shows

that the size of context vocabulary (n) is more critical for optimal performance

with small corpus sizes. When the corpus size is increased to 15 million words and

beyond, the difference in performance between different systems is much smaller.

A context vocabulary size of 250 is better with smaller corpus sizes. A larger

value of n (500) is marginally better when 20 and 25 million words are used.

This might indicate a trend that larger values of n become better as corpus size

increases. This might be expected, given that larger context vectors will be less

sparse as more data are observed.

Figure 7.3 repeats scores for the baseline, best performing topline, and VSM-

based systems (systems B, Tt and U respectively) already presented in Section

6.3. In addition, the system U′ is added, taken from among the better-performing
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Figure 7.3: Precision, recall, and F-measure of phrase-break predictors on test
set. All results except those of system U′ were presented in Section 6.3.3, but are
reprinted here for comparison. Means and standard deviations (error bars) over
10 repetitions of tree building are given.

systems whose results are plotted above. U′ is the system whose VSM is trained on

25,000,000 words of news-text, uses 250 for its value of n, and uses unseen method

B5. It can be seen that simply by increasing the amount of text on which U’s VSM

is trained and adjusting the configuration used for VSM training can improve

system performance. Moving from system U to U′, the systems using induced

word representations overtake the topline system (in terms of mean F measure).

Naturally, retraining system Tt’s POS tagger on a comparably larger annotated

corpus (rather than the c. 1.2 million words on which it had actually been trained)

would also be expected to improve its performance, but the difficulty of acquiring

such large amounts of annotated data represents a major limitation, compared

with the ease with which unannotated text can be collected for many languages.

System U′ makes use of 25 million words for training its VSM, but training

on much larger quantities is a trivial extension, and the upwards-trend of the

right-hand side of Figure 7.2 suggests that larger data-sets could yield further

improvement to system performance. Furthermore, the VSM-derived features

give much more stable results on the phrase-break task than the features used

by system Tt, which are derived from the TnT tagger. That is, the same CART

structure is produced over 10 runs of training for system U′, resulting in identical

predictions and thus a standard deviation of 0.0 for this system’s scores.
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7.2 Feature Selection for HMM TTS

The use of features derived from a vector space model of word types for the task

of state-tying in Section 6.4 produced unexpected results. The features improved

the generation of spectral envelope where no such improvement was hypothesised,

but degraded F0 generation where improvement was expected. Section 6.4 ten-

tatively attributed the degradation of the F0 model caused by the VSM-derived

features to the great quantity of those features and to the noise contained in

them. F0 is expected to be particularly susceptible to these characteristics of the

features because the trees with which it is modelled tend to be deep. Here, this

hypothesised problem is explored, and a feature selection procedure is proposed

that is designed to address it. In essence it does this by taking a less myopic view

of the data than that allowed to those nodes of decision trees far from the root,

where the set of data upon which a split is to be chosen is much smaller than the

whole data-set.

The selection of a good subset of features from among those available for input

into a machine learning algorithm is a much researched topic, of which Guyon and

Elisseeff (2003) give a review. The motivations for applying feature selection are

various: for visualisation or interpretability for example, to save computational

cost or to achieve better prediction. The latter is the motivation for its use here.

The current task is to select a subset from among the 9,389 text-derived features

available to system V in Section 6.4, then to use that sub-set to build a model

which better predicts the acoustics – particularly F0 – of the held-out set. The

method that is used here is based on elements of the one presented in Tuv et al.

(2009), which uses random forests for feature sub-set selection. Ensembles of

trees are introduced, after which their application to feature selection in the work

presented here is explained.

7.2.1 Ensembles of Trees

Predictive models such as decision trees can be used in ensembles. In an ensemble,

predictions of many simple models are combined, typically by having the members

of the ensemble vote on the class in a classification problem, or taking the average

of their predictions in a regression problem. It can be seen from the error bars

in Figures 6.1 and 6.2 that decision trees are inherently unstable. The variance

on the results presented in those plots derives from the fact that the 10 trees

contributing to each of those results were pruned to varying depths, which in turn



130 Chapter 7. Refinements and Extensions

derived from the fact that a random partition of the data was used to determine

pruning parameters. If two trees are actually trained on two randomly perturbed

versions of the same training data, small differences in the versions of the data

used can create very different tree structures, and different predictions on new

data. This instability means that tree-based methods are well-suited to ensemble

learning, as small variations in the data mean that different trees will model it

in very different ways, and each of the members of the ensemble will specialise in

some particular aspects of the data.

Decision trees have therefore formed the basis for several very successful en-

semble methods. Many of the differences between these methods are in how the

data are perturbed to force the induction of a varied set of trees. In bagging

(Breiman, 1996), each of the trees in the ensemble is grown on a different boot-

strap sample of the training data. That is, for each tree to be grown, a new

data-set is created by sampling with replacement from the original data-set, until

the new data-set is the same size as the original. In the random subspace method

(Ho, 1998), trees are grown on all instances in the original training set, but using

a tree-wise random subset of the independent variables. The random forest of

Breiman (2001) combines both these approaches: each tree is grown on a boot-

strap replicate of the training data, and splits are chosen from among a subset of

independent variables randomly selected at each node. All such methods employ-

ing ensembles of trees typically yield improvements in prediction over single-tree

methods. Of more relevance in the present context, however, is a by-product of

such forests: variable importance measures.

7.2.2 Variable Importance Measures

Variable importance measures can be computed from an ensemble of trees in var-

ious ways. Breiman (2001, §10) suggests a method based on out-of-bag estimates

of misclassification. In an out-of-bag estimate, the instances of the training set

are classified by the forest that has been learned on it, but each tree votes only

on those members of the training set not present in the replicate on which it

was grown. Scoring predictions made in this way against class labels gives the

out-of-bag misclassification rate. Before the importance of any variable can be

assessed, the out-of-bag misclassification score is computed for the model. Then,

to measure the importance of variable i, the values which that variable takes

over the dataset are randomly permuted, and out-of-bag misclassification is re-

computed. The change in misclassification after variable i’s values are permuted
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gives a measure of that variable’s importance. This is repeated for each variable

in the model, after which they can be ranked by importance score. A simpler

measure of variable importance can be obtained by summing the improvement in

the splitting criterion for each variable over all splits made in building the forest

using that variable. Both methods are mentioned and their results compared

graphically in Hastie et al. (2009, pp. 593–4).

The second type of variable importance described forms the basis of the feature

subset selection method presented in Tuv et al. (2009). The main innovation

there is the introduction of significance testing to determine not only a ranking

of variables by their importance, but a subset of significantly important variables.

The mechanism which allows significance testing – artificial contrasts – is adopted

here. Small alterations are made to the way these contrasts are used, however,

which will be mentioned below. Also, a major element of the method presented

in Tuv et al. (2009) that is designed to handle variable masking effects is not

incorporated into the system presented here.

7.2.3 Feature Selection for the Distributional–Acoustic

Method

The feature selection developed for the present work will now be explained, fol-

lowed by a presentation of the experiment in which it was applied to TTS.

The Learning Sample

As outlined in Section 2.1.2, acoustic models which are to be clustered consist

of distributions over acoustic values associated with a set of linguistic–prosodic

attribute values for c unique contexts. These distributions represent the data in

the training set, and might generally be thought of as a synthesis model, but in

the present context will be termed the learning sample for a decision tree. This

learning sample, which will here be denoted Z, is of the form {(x1, γ1,µ1,Σ1), . . .

(xc, γc,µc,Σc)}, where xj is a q-dimensional vector of binary values for the jth

context, whose kth element specifies whether the kth linguistic–prosodic attribute

is true or false of context j. µj and Σj are (possibly poorly estimated) parameters

for distributions over acoustic values associated with the jth context. γj is the

quantity of frames of the training corpus attributed to context j in a forward–

backward alignment of the model with the observations. Because this is a soft

alignment, γj for a given context j will typically not be a whole number.
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Bootstrap Resampling

Because – as already mentioned in Section 2.1.2 – each item in this learning set

represents a distribution over a varying number of observed values rather than an

observed value itself, bootstrap resampling cannot proceed (as in Breiman (2001)

and Tuv et al. (2009)) on a point-by-point basis. Instead, the learning sample

is perturbed in each replicate by adjusting the values (γ1...γc). The elements

of sequence (γ1...γc) of the original learning set are normalised, so that for each

element j, the normalised element is:

γj∑c
i=1 γi

(7.1)

The elements of this normalised sequence are then treated as the event probabili-

ties of a categorical distribution with c outcomes. A perturbed version of (γ1...γc)

is created by initialising a sequence where all values are 0.0, drawing n times from

this distribution, and where the outcome of the draw is j, incrementing element

j of the new sequence by some fixed quantity.1

Where a forest of t trees is to be grown, the learning set Z is duplicated k

times to create a sequence of learning sets, {Z1...Zt}. In each of these replicated

learning sets, a bootstrapped set of values for {γ1 . . . γc} is created as explained

above. All other elements of the original learning sample (linguistic contexts,

mean vectors, covariance matrices) are duplicated exactly in each replicate of the

learning set. To build a standard ensemble of trees, tree building would then

proceed independently for each of the t new learning sets, resulting in a ensemble

of t trees.

Artificial Contrast Variables

In the present experiment, however, artificial contrast variables were added before

building the forest. X is a c× q matrix whose rows are {x1...xc}; xjk therefore

presents the value (true or false) of the kth linguistic attribute for the jth context.

X ′ is also a c×q matrix whose kth column is generated by random permutation of

the kth column of X. Column k of X ′ represents an artificial variable having the

same distribution as the real variable represented by column k of X, but only a

1This quantity will be 1
(
Pc

i=1 γi)n
if it is desired that the replicate of the learning set should

consist of the same number of frames as the original, although for present purposes this is
not important. Note that the bigger the value of n used, the finer the quantisation of state
occupancy used in the resampling. For this experiment, n was set to 100(

∑c
i=1 γi), i.e. 1

100
frame units were used.
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chance relationship with the distributions over acoustics. For each context j in a

replicate, q-dimensional vector xj of linguistic–prosodic values is appended with

another q-dimensional vector, row j of X ′. The resulting 2q-dimensional vector

represents the true–false values for q linguistic variables and for q corresponding

contrast variables. The randomisation to produce artificial contrasts is performed

for each of the t trees in the ensemble.

Feature Selection

The ensemble of trees is then built: tree construction proceeds independently for

each of the t replicates of the learning set with added contrast variables, resulting

in an ensemble of t trees. For the present experiment, 200 trees were built for

each of five states, both for spectral envelope model trees and trees modelling

fundamental frequency. Trees in the forest are grown as far as they can be. As

the ensemble is built, a record is kept of the log-likelihood improvement given by

each split made; these improvements are summed within each tree for each of the

q linguistic attributes and each of the corresponding contrast attributes.

In the present experiment, the ensemble is used only for the purpose of feature

selection. The trees themselves will not be used to make predictions and can be

discarded. All that is retained are two t × q matrices, R and R′, where rij

records the sum of improvements to log likelihood of the training data yielded

by linguistic attribute j in tree i, and r′
ij records the corresponding sum for the

contrast feature corresponding to attribute j in the same tree i.

Using these two matrices, feature sub-set selection is performed by hypothesis

testing. For each feature j, hypothesis H1 is that j contributes more to log like-

lihood improvement during forest training than its counterpart contrast feature

j′ (which shares j’s distribution but bears only chance relationship to the acous-

tics). The null hypothesis H0 is that j and its permuted counterpart j′ contribute

the same amount to log likelihood improvement. In the present experiment, the

hypothesis was tested for each variable j of q variables using Wilcoxon’s signed

rank test (Wilcoxon, 1945) over the paired values of columns j of R and R′. The

acceptable probability of false rejection of the null hypothesis (α) is set to 0.05

for this experiment; Bonferroni correction is used to account for the number of

tests being made (α
q

is used). The sub-set of features found in this way to give an

improvement in forest building that is significantly better than the improvement

given by the permuted counterpart is selected for the next stage of training. The

final trees that are actually to be retained for speech synthesis are then built
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Figure 7.4: Results of state-tying experiment: for all systems except F (using
feature selection) results are repeated from Figure 6.4

using this subset of features.

Modifications

Note the following differences between the procedure outlined in Tuv et al. (2006,

2009) and the one presented here. For reasons already mentioned, the bootstrap

resampling takes a different form. Wilcoxon’s signed rank test is used here rather

than Student’s t-test because the data do not meet the assumptions of that test

(e.g. in many cases they are not normally distributed). Each row ofR corresponds

in the present experiment to a single tree, whereas in Tuv et al. (2006, 2009),

several trees are used for each comparison. Tuv et al. (2006) motivates this as a

way to avoid zero scores, where some variable is not used at all in a given tree.

Such zero values are not an issue where the Wilcoxon test – which considers only

rank and not absolute values – is used. In Tuv et al. (2006, 2009), it is reported

that the 75th percentile of all contrast variables was used in place of individual

contrast variables’ scores; in the present experiment, the columns of R and R′

were compared directly.
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7.2.4 Experiment: Word VSM for State-Tying, Revisited

System F was built in the following way to test the usefulness of the feature selec-

tion method that has been outlined. Five iterations of clustering were performed

exactly as for System V in Section 6.4. Using the resulting models, feature selec-

tion was performed as described. For the first 5 iterations of training, the system

had the same 9389 features available to it as System V. A sub-set of 1736 of these

(18.5% of the original set) was chosen by feature selection. This sub-set was used

for the remaining 5 iterations of training. Note that Systems V and F received a

comparable amount of training of the models that are finally used for synthesis.

Evaluation was conducted following the same procedure as in Section 6.4.

Results of the evaluation of System F are plotted in Figure 7.4; the scores for

topline, baseline, and VSM system (without feature selection: systems B, P and

V respectively) are re-plotted here for comparison.

It can be seen that incorporating feature selection into the vector space model

based system greatly improves its performance on the F0 measures: this was the

expected result. F is the best-performing system in the plot, achieving lower

RMSE of F0 and higher F0 correlation than even the topline system incorporat-

ing a high-quality tagger. For spectral envelope, F still outperforms the topline

system; however, much of the unexpected gain achieved by system V over the

benchmarks is lost after feature selection is applied.

7.2.5 Conclusion

The experiment presented in this section has modified an existing method of

feature sub-set selection and applied it to speech synthesis for the first time. In it,

an ensemble of trees is grown and used to find linguistic features that are irrelevant

to the task of clustering distributions over acoustics. A global approach is thus

taken to evaluating the relevance of features; this can be contrasted with the local,

short-sighted approach used by a decision tree inducer when selecting a feature

for splitting a node. By excluding features found to be irrelevant ahead of decision

tree building, the problem presented by this short-sightedness is mitigated.

There are design choices where optimal values have not been established by

the experiment presented here. For example, a single set of features is selected

over the entire forest (trees for all states, for both fundamental frequency and

spectral envelope), and applied to all parts of the synthesis model. Many different

variations can be envisaged that might prove beneficial: feature sets could be
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selected for example from a specific state position or type of tree, and used for

building the corresponding part of the synthesis model. It is almost certain, for

example, that different subsets of the feature-set are useful for modelling spectral

envelope and F0. Incorporating this notion into the design of a set of sub-forests

might therefore give improved results. Not doing so may account for the fact that

single-forest selection improves the F0 of system F but degrades spectral envelope

(in comparisons with system V).

The success of the feature selection used on F0 shows that the distributional

features that are derived from the VSM of word types are useful for the task of

state-tying just as they were shown to be in Section 6.3. However, they contain

many features that are irrelevant, and this is harmful to large decision trees such

as the ones used for modelling F0 distributions if these irrelevant features are not

removed.

The experiment also suggests that feature selection with ensembles of trees

could have wider application than winnowing the chaff from VSM-derived fea-

tures. 18.5% of the total feature set was selected; this includes 13.5% of the 7500

features derived from the VSM of words, but also 38.5% of the 1889 baseline

features. That is, more than half of the conventional linguistic features used were

excluded by the forest. This suggests that the method of feature selection de-

veloped here might also be useful in the case where only conventional linguistic

features are used.

7.3 An Utterance Space Model

In Chapter 5 the vector space model was applied at a sub-syllabic level of analysis,

and in Chapter 6, extended to the word level. The current section continues this

trend by considering a level of linguistic analysis above the word level: the level of

the utterance. This part of the thesis is particularly relevant given current trends

in TTS research, where large, continuously-recorded databases are starting to be

tackled, in which utterances occur in some genuine discourse context (Prahallad

and Black, 2010; Braunschweiler and Buchholz, 2011; Székely et al., 2011). As

the vector space model approach to characterising textual entities was originally

formulated in Information Retrieval for use at the document level, it is ideally

suited to this level of analysis, and the work presented here might be viewed as

a homecoming for the vector space model.

However, the sort of characterisation of utterances that is expected to be useful



7.3. An Utterance Space Model 137

for TTS is different from the characterisation of documents ideal for Information

Retrieval. Two utterances can have very different semantic content, but share

the same utterance type. There is no well established classification of utterances

into types reflecting their role in a text or dialogue, but many typologies and

annotation schemes have been proposed both for utterance-type units themselves

(e.g. Carletta et al., 1997; Bunt et al., 2010), and for the relations that can hold

between them (e.g. Mann and Thompson, 1988). For both types of scheme,

experiments have shown that at least some of the distinctions made in the sets of

classes have acoustic correlates (e.g. Surendran and Levow, 2006; Murray et al.,

2006). It seems obvious, then, that some sort of characterisation of utterances

will prove beneficial for TTS. An experiment was therefore conducted to test

whether one obvious division of utterances – into questions and non-questions –

can arise from the distributional–acoustic analysis proposed in this thesis.

7.3.1 A Vector Space Model of Utterances

The experiment presented here seeks to determine whether a simple division of

sentences into questions and non-questions can be expressed by a space trained

in an unsupervised way without access to the labelling of these two classes. To

this end, a vector space model of sentences was built. A small corpus was used

for this experiment, as its aim is proof of concept, and it is not incorporated into

any synthesis system. To build this vector space, the first 10,000 sentences of a

corpus of 3 million sentences of web-scraped text made publicly available in the

Leipzig Corpora Collection were used (Quasthoff et al., 2006).2 The sentences

were tokenised and used to build a dynamic vector space of the type described

in Section 4.2.4. To recap, all words occurring more than once in the corpus

were retained in the model, and no stop words are excluded. In the present case,

this results in a vocabulary size of 9,524 word types. A word–utterance matrix

C is compiled, where cij is a count of vocabulary item i in the jth utterance of

the corpus. Term-frequency inverse document-frequency weighting is applied to

the raw co-occurrence matrix, and SVD is performed. For this experiment, 100

dimensions of the latent space were retained.

The fact that a characterisation of utterances in terms of topic is not sought

here is reflected by a difference in how the space described here is constructed,

compared with a classic Latent Semantic Indexing model. Namely, stop-word

2Specifically, the first 10,000 sentences of the corpus named eng-au web 2002 3M-text were
used.
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Can Job Focus tell me what to do ?

Do I have to use the password provided by HeSA ?

Guess who backed everything else on Saturday including Ken Cheval but did n’t take the trifecta ?

NEXTEP > What is DSL ?

I said to them , “ what you fellas come here for ? ”

How many people live in the house ?

“ And which book did you read , Eddie ? ”

Can you see any connections ?

Have you seen it on air ?

Does each paragraph deal with a coherent aspect of the topic ?

. . .

Table 7.2: The first 10 sentences of the question-testset labelled as questions

removal is not employed, as function words such as however and non-words such

as ? are expected to be most useful for characterising utterances in a way that is

useful for TTS. Other modifications can easily be imagined: actively excluding in-

frequent words, for example, and including contexts from neighbouring sentences

to incorporate discourse context of an utterance. Other context types than words

might well be useful for this task; although using a bag-of-phrases instead of a

bag-of-words approach has generally provided little benefit for Informational Re-

trieval (Koster and Seutter, 2003; Coenen et al., 2007), sequences such as can

you and in fact would probably be more useful for utterance type classification

than the constituent words in isolation. For this experiment, however, no such

modifications were tested.

For this experiment, the final 10,000 sentences of the same corpus of web-

scraped text were tokenised and used as unseen sentences. The space is dynamic:

these newly encountered utterances are therefore projected into the latent space

and are each thereby assigned a 100-dimensional representation.

7.3.2 Experiment: Separability of Questions and Non-

Questions

For this experiment, a crude set of class labels was made for the 10,000 unseen

sentences. Sentences are labelled as question or non-question simply on the basis

of whether a question-mark is present in them. The first 10 sentences identified

in this way as questions are listed in Table 7.2.

A sub-set of the 10,000 unseen sentences that will be called the question-testset

was chosen as follows. The first 200 sentences labelled as questions and the first

200 labelled as non-questions were selected. Even numbers of questions and non-

questions were used for the test set to yield clearer visualisations of the space and
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Figure 7.5: The 400 points of the question-testset plotted against 2 dimensions of
an induced utterance space.

make the interpretation of classification accuracy obvious (50% accuracy is the

chance level). As is to be expected, the distribution is not uniform in the training

set, where exactly 3% of the sentences would be labelled as questions (contain the

token ? ). In Figure 7.5, the 400 points of the question-testset are plotted on the

2 dimensions of the space in which the purest partitions of the two classes can be

made. It can be seen that although the 2 groups are not perfectly separable with

partitions orthogonal to either of the two latent axes represented in the plot, they

do cluster in two groups in such a way that a fairly clean division can be made.

An obvious objection at this point is that the space could be performing an

operation no more sophisticated than the one used to produce the class labels

– that the two dimensions plotted simply reflect the presence or absence of the

frequent token ? in the sentences. To address this issue, the following control

test was run. Another word type, present in a similar number of sentences of the

training set as ? was chosen, but which does not have the obvious connection

with an utterance type that ? has. The word type chosen was time, which occurs

in 292 out of the 10,000 training sentences (? occurs in 300 of them). A second

control test set (which will be called the time-testset) was created by taking the

first 200 test sentences containing the token time, and the first 200 from which
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Figure 7.6: The 400 points of the time-testset plotted against 2 dimensions of an
induced utterance space.

that token is absent. The two dimensions of these 400 utterances’ representations

in the latent space are plotted as before in Figure 7.6. Once again, the two

dimensions chosen are the ones that allow the best and second best separation

of the two classes with a single split orthogonal to those dimensions’ axes. It is

immediately obvious that the classes of the time-testset cannot be separated as

cleanly as those of the question-testset.

To quantify this difference in separability, a series of decision stumps were

built for both test-sets. These decision stumps are classification trees that make

only a single split of the data, and thus have only two leaf nodes. The two stump-

sequences were built as follows: the first stump selects the split on any dimension

of the utterance space that best partitions the 2 classes (goodness of partition is

measured with the Gini index). That split is recorded, then the dimension on

which it is made is excluded from the data, and the procedure is repeated. In this

way a ranked list of splits that separate the classes with decreasing effectiveness is

obtained for each test-set. The first 2 stumps’ decision boundaries for each test-

set are represented by the vertical and horizontal lines respectively in Figures 7.5

and 7.6. Tables 7.3 and 7.4 give details of further splits of the question-testset

and time-testset, respectively, and include accuracy scores.
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Rank Dim. Split point Accuracy
1 8 -0.040 88%
2 2 0.009 86%
3 13 0.035 84.75%
4 9 -0.055 83.5%
5 7 0.043 77.5%

Table 7.3: Ranked stump accuracy for the question-testset.

Rank Dim. Split point Accuracy
1 57 0.020 67%
2 55 0.024 66.25%
3 56 -0.037 66%
4 69 0.006 65.5%
5 67 0.025 64.5%

Table 7.4: Ranked stump accuracy for the time-testset.

These tables confirm what can be seen clearly in Figures 7.5 and 7.6: that the

space offers multiple ways to separate the question and non-question sentences

much more accurately than for the time and non-time sentences. This is to be

expected as the word time has no obvious association with utterance type in the

way that ? does. Even for the time set, however, the accuracy with which the

space allows the two classes to be separated is above the chance level (50%, as

the two classes are balanced in the test-sets). It appears therefore that the token

time is bound up with some factors in the space’s representation of utterances

that are not obviously interpretable. But the better separation of the question

set is obviously not simply attributable to the frequency of the token ? : the space

has done something non-trivial in its unsupervised separation of these classes. To

gain some intuition about what it is doing, the weights (elements of basis vectors)

of each dimension listed in Table 7.3 with the largest absolute values were found,

and are shown in Table 7.5 next to their corresponding vocabulary items. The

basis vectors for the latent space are the columns of the matrix calledU in Section

4.1, whose rows correspond to contexts – in the case of the utterance space, the

contexts are vocabulary items – and whose columns correspond to dimensions

of the latent space. For each of these dimensions, ? has a weight with a large

absolute value, as expected. However, for each of these dimensions, the other

weights of the same sign as ? having the largest absolute values are obviously

context vocabulary items that co-occur in various types of questions: dimension
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Dimension 8 Dimension 2 Dimension 13 Dimension 9 Dimension 7

Word Weight Word Weight Word Weight Word Weight Word Weight

are -0.387 you 0.488 : -0.371 : -0.375 be -0.365

? -0.352 ( -0.341 ? 0.339 ? -0.366 i -0.314

was 0.258 ) -0.340 are -0.308 is -0.350 : -0.306

your 0.237 do 0.207 how 0.248 it -0.309 you 0.256

how -0.227 i 0.180 be 0.220 ’ 0.235 will -0.218

you 0.227 ? 0.177 ; 0.192 “ 0.232 ? 0.207

he 0.184 your 0.174 is -0.192 be 0.230 information -0.183

it 0.179 if 0.174 & 0.185 are 0.209 has 0.143

they -0.178 have 0.147 for 0.182 how -0.182 in 0.141

on 0.166 of -0.146 that -0.171 will 0.142 have 0.139

Table 7.5: Elements with largest absolute values of basis vectors for the five di-
mensions of the utterance space listed in Table 7.3.

8 has how, are and ? ; dimension 2 has you, do and i, ? ; dimension 13 has how,

be and ?, etc.

It seems, then, that the space induced is able to separate the classes questions

and non-questions because there are co-occurring sets of vocabulary that signal

membership of these classes. It is reasonable to expect that other classes of

utterances beside questions will be marked out by such patterns of co-occurrence,

and therefore able to be discovered by such a VSM of utterances. Of course,

many possible splits of many dimensions of such spaces will not represent any

useful class of utterance. The method of feature-selection developed in Section

7.2 was shown to be able to exclude irrelevant features stemming from a VSM

of word types. Such feature selection is also expected to be crucial to the useful

employment of features from utterance spaces in acoustic modelling using decision

trees.



Chapter 8

Evaluation of Entire Systems

8.1 Introduction

Up until this point of the thesis, the techniques described have been tested in a

single language: English. The motivation for this is practical: multiplying the

number of languages in which techniques are to be evaluated means multiplying

the number of systems to be built and evaluations to be conducted, and therefore

limits the number of novel techniques that can be considered. The use of a single

target language in evaluations, however, brings with it the obvious inevitable

disadvantage that those evaluations give no assurance that the techniques tested

will be useful in other target languages.

Furthermore, the evaluation presented so far has been conducted in a piece-

meal fashion, by exchanging isolated modules of a TTS system. That is, to test a

novel component of a TTS system, only the module of a conventional benchmark

system having a role most similar to that of the module to be tested is removed

and the novel one put in its place. Other modules necessary to synthesise speech

from text are left untouched. For example, in Chapter 6, a novel way of assign-

ing representations to words – a vector space model of word types – was tested

through the comparison of a benchmark system that employs a conventional part

of speech tagger with one where that tagger is replaced with the vector space

model. However, parts of the voices (such as the pronunciation lexicon) that

concern subword-level features were left untouched and corresponded exactly in

the two voices. The advantage of such an approach to evaluation is that it is

controlled, and allows the contribution of the module in focus to be isolated. The

closely related disadvantage is that it is quite an unrealistic test of system per-

fomance. In real-world scenarios it might be necessary to employ naive modules

143
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at various levels of textual analysis. If detrimental interactions occur between

naive modules on these different tiers of analysis, the module-by-module evalu-

ation undertaken so far in this thesis will not reveal them. For this reason, it

is also necessary to attempt to build what are here termed end-to-end systems:

systems that make minimal use of expert knowledge and rely on naive modules

on every level of analysis that they encompass.

The current chapter addresses the issues of language dependence and end-

to-end design by detailing the construction and evaluation of end-to-end sys-

tems for three target languages: English, Romanian and Finnish. Romanian and

Finnish were selected primarily for pragmatic reasons: the ready availability of

high quality annotation for benchmarking purposes, and the ability to arrange

subjective tests with native listeners. In these three target languages, both the

Finno-Ugric and two branches (Romance and Germanic) of the Indo-European

language families are represented. However, they do not demonstrate the kind of

range of typologically diverse features mentioned in Section 2.3 as being necessary

to claim language independence for a technique. Indeed, such a range would be

impossible to achieve with so few languages. These experiments are not intended

to make the claim that the methods involved are language independent. It is

rather to show that despite being developed on a single language, the techniques

outlined in this thesis are linguistically naive enough that they can be applied

to further languages with no additional effort. Some details of characteristics of

the languages relevant in connection with text-to-speech conversion will now be

mentioned.

8.2 Language Characteristics

Like English, both Finnish and Romanian have alphabetic orthographies and

mark word boundaries orthographically. As such, the assumptions made in Sec-

tion 2.3 about the types of scripts whose characters can be used as units for

acoustic modelling are clearly met. Both orthographies have a much more trans-

parent phoneme–letter relationship than that of English. With respect to the

‘careful normative pronunciation of the standard language’, the orthography of

Finnish defines a one-to-one mapping between letters and phonemes, with the

single exception of /NN/ which is written 〈ng〉 (Karlsson, 2006). Romanian also

employs a transparent orthography, although the correspondance of vowel se-

quences and the diphthongs and triphthongs represented by them is often not



8.2. Language Characteristics 145

straightforward, and neither is the pronunciation of some neologisms (Augerot,

2006; Stan et al., 2011).

Primary lexical stress is always on the first syllable of the word in Finnish

(Karlsson, 2006); in Romanian (as in English) its location is harder to predict

(Augerot, 2006; Stan et al., 2011).

As already mentioned, Finnish and Romanian both have orthographically-

defined word units, which means that the implementation of vector space models

of word types and of utterances like those described for English in Chapters 6

and 7 is straightforward. However, the inflexional morphology of both Romanian

and, in particular, of Finnish is much richer than that of English. For example,

the English noun house can take only two inflexional forms: house and houses.

Inflexion for case and number and suffixation of the definite article in Romanian

mean that the noun for ‘house’ in Romanian is seen in the following orthographic

words: casa, casă, case, casei, casele, caselor (Augerot, 2006). Because Finnish

suffixes morphemes for number (2 morphemes), case (14 morphemes), and posses-

sion (5 morphemes), the number of orthographic word types in which the ‘house’

morpheme can occur in Finnish is much larger. For example: talo, talot, talossa,

taloistani, talonne, etc. (‘house’, ‘houses’, ‘in (a/the) house’, ‘out of my houses’,

‘into your house’, etc.) (Karlsson, 2006).
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Figure 8.1: Figures demonstrating varying morphological richness of the three
target languages.

These characteristics are illustrated quantitatively in Figure 8.1. The left-

hand panel of Figure 8.1 is based on 1 million tokens of the news text collections

described below in Section 8.4.2, and shows a running count of orthographic word

types encountered plotted against the (gradually increasing) size of the sample (in

word tokens). It can be seen that 1 million word tokens consists of very different
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numbers of types in the three languages: nearly 49,000 for English, 67,000 for

Romanian, and 260,000 for Finnish.

The right-hand panel of Figure 8.1 considers the rich coverage of word tokens

in the first 800 words of the test sets described below in Section 8.5. A word is

considered to be richly covered if it has been seen 20 times or more in the text

corpus, reflecting the fact that it is probably necessary to observe a word type in

several contexts to estimate useful features for it. Using 1 million words of news

texts, 40% of Finnish tokens in the test set can be observed in 20 contexts, and

this number is higher for Romanian and English (c. 65% and 60% respectively).

The higher score for Romanian here is presumably due to the better match of

the Romanian news corpus with its test sentences than is the case for English.

The morphological richness of Finnish is predicted to be the biggest challenge in

extending the word- and utterance-level features described in Chapters 6 and 7 to

that language without the sort of unsupervised morphological analysis mentioned

in Section 2.3.

8.3 Initial Hypotheses and Systems Built

These experiments are based around two sets of benchmarks: the performance of

baseline systems and of topline systems. The baseline system for a language is the

simplest system imaginable, built using minimal language-specific knowledge (i.e.

knowledge of which characters are letters, which are punctuation, and which are

word-delimiters), and a primary corpus of text and speech. The topline system for

a language is one built in a more conventional way, making free use of language-

specific expertise and manually annotated data. In Table 8.1, where systems

built are given identifiers, topline systems are denoted {EN,FN,RM}-T-1, and

baselines as {EN,FN,RM}-A-1.

The first hypothesis of these experiments is unlikely to be controversial:

Hypothesis 1: The topline system of a given language will outperform

that language’s baseline.

Performance will be measured in terms of the results of listening tests for intelli-

gibility and naturalness. The overarching second hypothesis of these experiments

– to be broken down and expressed as several sub-hypotheses in the following

discussion – is:

Hypothesis 2: by utilising additional unannotated text data in the target

language to build vector space models of elements at different granularities



8.3. Initial Hypotheses and Systems Built 147

English Finnish Romanian

Feature Set Plain Selection Plain Selection Plain Selection

A EN-A-1 EN-A-2 FN-A-1 FN-A-2 RM-A-1 RM-A-2

B EN-B-1 EN-B-2 FN-B-1 FN-B-2 RM-B-1 RM-B-2

C EN-C-1 EN-C-2 FN-C-1 FN-C-2 RM-C-1 RM-C-2

D EN-D-1 EN-D-2 FN-D-1 FN-D-2 RM-D-1 RM-D-2

T EN-T-1 EN-T-2 FN-T-1 FN-T-2 RM-T-1 RM-T-2

Table 8.1: Details of 30 end-to-end systems built. The codes EN, FN and RM
in the system identifiers denote system target language (English, Finnish and
Romanian, respectively). The codes A, B, C, D, and T indicate the feature set
used by the voice, and are explained in Table 8.2. 1 and 2 indicate whether feature
selection was used (2) or not (1).

Feature A B C D T

Letters and positions X X X X

Letter VSM X X X

Word VSM X X

Utterance VSM X

Topline features X

Table 8.2: Key to feature sets of Table 8.1.

of analysis, it is possible to significantly close the gap between the baseline

systems and the toplines.

To this end, VSMs are built in each language at the level of the letter (following

the methods used in Chapter 5), the orthographic word (as in Chapter 6), and

the utterance (as in Chapter 7). Systems *-{B,C,D}-1 are built, incorporating

features derived from these VSMs. In each set of systems, features from a VSM

built on one tier of analysis are added, meaning that the last group mentioned

incorporates features derived from all 3 VSMs (letter, word and utterance). The

feature sets denoted by the letters B, C and D in these system identifiers are

summarised in Table 8.2.

Based on results presented in Chapters 5, 6 and 7, the Hypothesis 2 is

broken down into the following subhypotheses:

Hypothesis 2a The VSM of letter types will improve system performance

in all languages without feature selection needing to be performed (see

Section 5.3.1).



148 Chapter 8. Evaluation of Entire Systems

Hypothesis 2b The VSM of word types will improve system performance,

but will require feature selection to be performed (see Sections 6.3 and 7.2).

Hypothesis 2c The VSM of utterances will improve system performance,

but will require feature selection to be performed.

Hypothesis 2d When feature selection is applied in a system, adding

features from any source will not degrade performance beyond that of the

baseline (see Section 7.2).

A subset of hypotheses will be selected and refined in light of the objective eval-

uation of Section 8.6 before they are tested subjectively in Section 8.7. As hy-

potheses already given state predictions related to voices where feature selection

is performed, two voices were built for each naive system: one where no fea-

ture selection is performed (voices *-{A,B,C,D}-1) and ones using the same data

and feature set, but with the use of an ensemble of trees during acoustic model

training to select a set of linguistic features to be used (voices *-{A,B,C,D}-2).

Vector space models and ensembles of trees for feature selection are presented

in this thesis as a means of mitigating the effects of a lack of language-specific ex-

pertise and annotation when training TTS systems. However, there is no inherent

restriction that limits their use to cases where resources are scarce: it might be

that in some cases, the features obtained by these techniques complement those

that arise from the supervised learning more common in the training of TTS

systems. In Section 6.3.3 above, for example, it was found that combining fea-

tures derived from the Brill tagger with ones derived from a VSM of word types

to predict phrase-breaks gives an average F measure that is very slightly higher

than those of systems built with either set of features exclusively. In other work

as well, such as that of Turian et al. (2010), word representations learned in an

unsupervised manner are proposed as a complement to traditional features such

as part of speech, rather than as a replacement for them. Also, given that features

used in conventional system building are typically numerous and noisy, and given

the known lack of robustness of tree-based methods against such features, it is

also thought that the method of feature selection developed in Chapter 7 will be

beneficial to TTS systems otherwise built in the conventional way.

Systems were built that allow the evaluation of the latter idea. For systems

{EN,FN,RM}-T-2, the procedure followed to build topline systems {EN,FN,RM}-
T-1 is taken as a basis, but tree-ensemble feature selection is performed before the

final stage of model estimation. Feature selection is chosen to test in conjunction
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with standard feature-sets rather than vector space models. This is motivated by

the fact that the space of reasonable configurations of systems combining topline

and VSM features is a vast one. Feature selection can be combined with standard

systems much more straightforwardly, and poses fewer design choices. The third

hypothesis of these experiments, which relates to these systems, is that:

Hypothesis 3 Each member of {EN,FN,RM}-T-2 will outperform the re-

spective system in {EN,FN,RM}-T-1.

The following section gives details of the 5 feature-sets used in these experiments

(A, B, C, D, and T), and of the voices built using them.

8.4 System Construction and Features Used

Acoustic models were built in all languages and with all feature-sets using a

common training procedure. This is the recipe called HTS-2010 in Section 2.1.3.

In every case, 3 iterations of context clustering were performed. For systems *-*-

2, an ensemble of trees was built prior to the final pass through this loop, so that

apart from the training of the ensemble, all systems were built with a comparable

amount of training.

The only aspect of the voices that was varied besides data-set (and concomi-

tantly, language), was the configuration of textual-linguistic features used. These

features are varied in one of two ways: either at the outset, by means of adding

more features from different VSMs, or else during building of acoustic models, by

applying feature selection.

The construction of the naive systems *-A,B,C,D-* is summarised diagram-

matically in Figure 8.2 on page 150. Reference is made to this diagram in the

course of the following discussion.

8.4.1 Feature-set A

Voices {EN,FN,RM}-A,B,C,D,T-{1,2} were built with the components shown in

ellipses in Figure 8.2. These components and the procedures by which they are

related will now be briefly described.

Primary Corpus: Speech Waveforms and Text Transcription

Speech corpora of similar sizes were used for each of the three languages. These

corpora consisted of recordings segmented into utterance-sized files and a plain
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Input data and knowledge

Tertiary corpus Primary corpusLanguage-specific knowledge

Naively tokenised newstext

VECTOR SPACE MODELS

PAUSE PREDICTORTraining data annotation

Text corpus

Selected Features

ACOUSTIC MODELS (FINAL)

Waveforms

Time alignment

Acoustic models (initial)

Text transcription

Naively tokenised transcript

LETTER & PUNCTUATION LISTS

Figure 8.2: Construction of naive systems ({EN,FN,RM}-{A,B,C,D}-{1,2}).
Rectangular boxes show elements only present when using feature-sets B, C &
D. The hexagonal box shows an element only present in systems *-*-2. Uppercase
shows the components that make up a trained voice.

orthography transcription of that speech, aligned at the utterance level. Where

the speech data were made available at sampling rates higher than 16kHz, a

downsampled 16kHz version was created for these experiments.

Although the transcription used to build annotation for the naive systems

uses standard orthography and does not incorporate any specalised technical

annotation such as phonetic transcription, stress marks, etc., some care was taken

to ensure that numerals and abbreviations were expanded in the standard way in

the transcript.

For the English voices, a subset of RJS-1000 (see corpus description on page

53) of similar size to the corpora of the other languages was used: 650 utterances,

giving 58 minutes of speech (discounting initial and final silences), and 41,614

phoneme tokens.

For the Finnish voices, a database consisting of 600 phonetically balanced

Finnish utterances spoken by a 39-year-old Finnish male was used. The database

contains 50 minutes of speech data (discounting initial and final silences) and
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Language No. utterances Minutes No. of phoneme tokens

English 650 58 41,614

Finnish 600 50 41,823

Romanian 1000 46 40,215

Table 8.3: Details of speech corpora used for experiments in Chapter 8. Durations
given do not include initial and final silences. Counts of phoneme tokens do not
include any silence segments.

41,823 phoneme tokens.1

The Romanian voices were built from a subset of the publicly released Ro-

manian Speech Synthesis corpus (Stan et al., 2011). The subset used consists of

1000 sentences: all of the news sentences selected for diphone coverage, and a

few extra randomly chosen news sentences. This subset contains 46 minutes of

speech (discounting initial and final silences), and 40,215 phoneme tokens.

Orthographic Information: Letter and Punctuation Lists

The only language-specific expertise used to build systems *-{A,B,C,D}-* is con-

tained in a set of lists specifying which characters are punctuation and which

are letters, and which represent orthographic word boundaries. These lists were

obtained in an interactive manner: starting with empty lists, a script scans the

transcription part of the primary data and the input lists, and outputs a list of

characters present in the data but absent from the input lists. The user then adds

the found characters to the list they think most appropriate and reruns the script

until all characters are accounted for. The user also specifies implementationally-

safe substitutions together with the symbols in the lists. This is primarily to

ensure a set of names for letters that all parts of the system will be able to han-

dle as the names of acoustic models, etc., but is also where knowledge of e.g.

upper- and lower-case variants is incorporated (mapping e.g. both a and A to a

single symbol).

This procedure assumes some familiarity with the script of the the target lan-

guage, but not necessarily any with the language itself. It is clear, for example,

to a person familiar with the variant of the Roman alphabet used to write En-

glish that the Romanian characters ş and ı̂ are alphabetic characters rather than

punctuation marks. Likewise, ş and Ş are clearly upper- and lower-case variants

1Thanks to Martti Vainio and Antti Suni of the University of Helsinki for making the Finnish
database available for the experiments
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of one another. Even less obvious variants (such as ş and s,) become obvious as

such to an observer of a Romanian corpus without any knowledge of the language

due to their graphical similarity and similar distribution in frequent words (e.g.

şcoala, şi).

The user who produced the lists for the present experiments is a native speaker

of English, and has no knowledge of Finnish or Romanian. Note that the informa-

tion about character type that must be generated is exactly the sort that could be

obtained fully automatically from the General Categories of Unicode characters

(Korpela, 2006, pp. 210–212).

Naively tokenised transcript

A naive tokenisation was performed on the transcription part of the primary

data. This tokenisation is performed by using the lists described in the previous

paragraph to compile a regular expression. This regular expression performs a

simple tokenisation – words are considered to be delimited by sequences consisting

of one or more punctuation symbol together with one or more word boundary

symbol (i.e. whitespace). The tokenised text consists of a sequence of segments,

consisting of words, punctuation symbols, and word delimiters (whitespace).

The regular expression is very naive; for example, English word-final ’ is not

disambiguated as final apostrophe or quotation mark. Word-internal non-letters

(as in Jean-Paul) are treated as speech-emitting letters. Despite this naivety, this

technique gives reasonable results, providing that the assumptions made about

the transcription already mentioned are met (i.e. that the transcription is text-

normalised and therefore free of non-standard words).

Time Alignment

The transcription part of the primary data, naively tokenised as outlined in the

previous paragraph, is used to initialise a set of labels for the speech recordings.

These labels are then time-aligned with the speech using an alignment procedure

based very closely on that of the tools described in Clark et al. (2007). Briefly, the

parameters of a set of hidden Markov models representing context-independent

units are estimated.

The inventory of modelling units is made up of all of the letters in the letter

list that are present in the training corpus, and two models for junctures : a model

of silence called sil, and a non-emitting model called skip. Punctuation symbols

resulting from naive tokenisation are mapped a single symbol, PUNC, and word
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delimiters (i.e. whitespace) are represented by the symbol SPACE. Both these are

junctures, and correspond to either of the juncture acoustic models, sil and skip.

At the start of training, sil is initialised by fixing PUNC to always correspond to

the model for silence; SPACE is initially fixed to always have the pronunciation

skip (i.e. not to emit any observations). After initial estimation, a new sequence

of models is determined by Viterbi search, and junctures are allowed to map to

either sil or skip. This model sequence in turn provides the basis for further

Baum-Welch estimation of model parameters.

Pause Predictor: Classification Tree

As mentioned in Chapter 6, the positions of pauses extracted from audio are

expected to be a reasonable surrogate for expert-specified phrase-break annota-

tion. Therefore, silence segments in the letter alignment longer than 60 ms are

treated as pauses. The 60 ms threshold was chosen on the basis of brief visual and

auditory inspection of a few utterances. Symbols representing the presence and

absence of such a pause after each word are used as the levels of a response vari-

able for training a classification tree (see Chapter 6). Systems using feature-set A

use only features relating to punctuation and positional information as predictor

variables (i.e. the baseline feature set used in Experiment 2 of Chapter 6: see

Section 6.3.2).

Training Data Annotation and Acoustic Model Training

The time-aligned letter annotation is supplemented with the following features:

1. The identity of the current letter and of the letters 1 and 2 places to its left

and right

2. The number of letters {since, until} an orthographic word boundary

3. The number of {words, letters} {since, until} an utterance boundary

4. The length of a word in letters

5. The length of an utterance in words

6. The number of letters {since, until} a pause

7. The number of words since the last pause until the next one.
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The final two types of feature refer in the training data annotation to pauses

detected in the audio. The equivalent features to be used at synthesis time are

based instead on the predictions of the classification tree described in the previous

paragraph. This time-aligned annotation is used for training acoustic models for

synthesis. As mentioned above, this training follows the procedure described in

Section 2.1.3, where it is denoted HTS-2010.

8.4.2 Feature-sets B, C & D

Feature-sets B, C & D use the components described for the baseline feature-set in

Section 8.4.1, and incrementally add features derived from 3 vector space models:

models of letter types, word types, and utterances. The additional components

that must be constructed to incorporate these features are shown in rectangular

boxes in Figure 8.2 on page 150 and detailed below.

Tertiary Corpus: Text Data

Text data were collected in the three languages for the purpose of building vec-

tor space models on three orthographic levels (letter, word, sentence). Similar

amounts were collected in each language, as follows.

For systems EN-{A,B,C,D}*, the same 1.2 million tokens of Wall Street Jour-

nal text used in Chapter 6 was used for building vector space models. However,

that data is distributed in tokenised form. To mimic the situation where time or

expertise is not available to produce an intricate, language-specific tokenisation,

untokenised text was obtained by automatically reversing the Penn Treebank

tokenisation of the distributed data; the reversal of the tokenisation is slightly

imperfect but results in text that is very similar to text that can be obtained by

web-scraping. The word count of the resulting untokenised text is c. 1 million

words.

A corpus of web-scraped news texts made publicly available in the Leipzig

Corpora Collection provided c. 1.2 million words of untokenised Finnish text

data (Quasthoff et al., 2006).2

Web-scraped news texts provided c. 1 million words of untokenised Romanian

text data. Care was taken to ensure that the sentences to be used to test the

voices do not appear in the newstext used.

A division of the corpora into utterances is necessary for building the utterance

model (but not necessary for either the word or letter models). The division

2Specifically, the first 1.2 million words of the corpus named fin web 2002 3M-text were used.
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Language Letter Word No. Letter Word

tokens tokens utterances types types

English 6,078,644 1,150,871 49,209 60 48,613

Finnish 11,293,565 1,491,571 109,006 78 262,818

Romanian 5,693,094 1,085,339 46,878 70 66,267

Table 8.4: Details of newstext corpora used as tertiary data for experiments in
Chapter 8. All counts are given in terms of the naive tokenisation used.

provided in the English and Finnish corpora was used. For the Romanian data,

boundaries indicated by HTML codes were used. Otherwise, utterances were

considered to end at the symbols . ! and ?. This is very crude, and often the de

facto ‘utterances’ created end on a full stop that actually was intended to indicate

an abbreviation.

Naively tokenised newstext

Exactly the same naive tokenisation by which the tokenised speech transcription

was derived from the initial transcription was followed to produce a corpus of

naively tokenised newstext. Although the procedure used was identical, the dif-

ferent nature of the primary and tertiary text data creates a slight mismatch.

That is, the primary text data (speech transcriptions) are assumed to contain

no non-standard words. No such assumption is made for the tertiary data (new-

stext). It is expected that the vector space models will be robust enough to cope

with such mismatches. Table 8.4 gives some details of the text corpora used for

these experiments.

Vector Space Models

Vector space models characterising letters, words and utterances are estimated

from the naively tokenised text data, as follows.

Systems B–D: Letter type model Like the vector space model built for

letters in Chapter 5, the model used here for letters is a static model of unit

types using context features external to those units (left and right neighbouring

units, including spaces and punctuation). The same parameters as in Chapter

5 are used: n is set equal to the number of letter types (see Table 8.4), and 5

dimensions of the space resulting from SVD are kept. The vector space model is

discretised uniformly along each dimension into 50 bins, as in Section 6.4.1.
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Systems C & D: Word type model Like the vector space model built for

words in Section 6.2, the model used here is a static model of unit types using

context features external to those units (left and right neighbour words, including

punctuation). The same parameters as in Section 6.2 are used: n is set equal to

250, and 50 dimensions of the space resulting from SVD are kept. The vector

space model is discretised uniformly along each dimension into 50 bins, as in

Section 6.4.1.

It is because of the choices involved in building these word features (using

orthographic word sized units rather than subword morpheme-type units) that

these features are not predicted to be useful for Finnish (see above, Sections 2.3

and 8.3).

System D: Utterance model The utterance space models used for this exper-

iment are like the one described in Section 4.2.4 and similar to that implemented

in Section 7.3. That is, they are dynamic models of utterance tokens using con-

text features internal to utterances. All utterances of the text corpora described

in Section 8.4.2 are used, and the tokens resulting from their naive tokenisation

form internal contexts. All word tokens occurring more than once in a corpus

are retained in the model. No stop words are excluded. Term-frequency inverse

document frequency weighting is applied to the raw co-occurrence matrix, and

singular value decomposition is performed. For the utterance spaces used in this

chapter, 50 dimensions of the latent space are retained. The vector space is

discretised uniformly along each dimension into 50 bins, as in Section 6.4.1.

It should be noted that due to the design of the corpora used in these exper-

iments, the usefulness of utterance representations is immediately questionable.

The speech corpora are designed in a conventional way to exclude the sort of

variability between utterances that an utterance space is expected to be useful

for modelling. For example, questions are excluded from the prompts from which

the corpora are recorded. The prompts are selected from a large body of text

and so recorded without any discourse context. It is in just such a discourse con-

text that utterance function (concession, expansion, contradiction, etc.) would

be expected to significantly affect the acoustic realisation of an utterance. The

utterance representations are here included out of curiosity rather than an expec-

tation that they will lead to an improvement in the quality of synthetic speech. If

feature selection with ensembles of trees (see Section 8.4.4) is as effective in these

experiments as in the one presented in Section 7.2, then the inclusion of these

probably irrelevant features should at least not harm performance (see Hypothesis
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2d above).

Pause Predictor: Classification Tree

For systems using feature-set B, the classification used to predict pauses at run

time is trained in a manner identical to that of the tree used with feature set

A. For systems using feature-sets C and D, extra predictor features derived from

the word type vector space model are used. 50 features from the VSM features

for the word preceding a juncture are used, and for the word following. The

discretisation used is identical to that described in the previous paragraph.

8.4.3 Feature-set T: Topline Features
Benchmark systems were built to provide a point of reference when evaluating

the naive systems. These three systems – EN-T-1, FN-T-1 and RM-T-1 – were

built using database annotation derived from conventional front-ends that rely

on specialised knowledge and data annotation, as detailed below. They are here

considered as topline systems.

English: Systems EN-T-{1,2}
The English annotation was provided by the English front-end distributed with

the Festival speech synthesis system discussed in Section 2.1.3. The time align-

ment is provided by the forced alignment of acoustic synthesis models – previously

built on the whole of the RJS corpus – with their training data.

Finnish: Systems FN-T-{1,2}
The annotation used for the Finnish database is obtained as described in Vainio

et al. (2005a,b), and consists of features relating to phonemes, phonetic categories,

syllables, stress, phrasing, accent, and prominence.

Romanian: Systems RM-T-{1,2}
The annotation used for the Romanian database is that distributed with the

corpus, and detailed in Stan et al. (2011). Briefly, it consists of a pronouncing

dictionary, a classification tree for handling letter-to-sound conversion built from

it, a dictionary for lexical stress, rules for syllabification, and a part of speech

tagger.

8.4.4 Feature Selection: Systems *-*-2

For Systems *-*-2, feature selection was performed prior to the final iteration

of clustering and model reestimation; this is represented by a hexagonal box

in Figure 8.2. For each system, an ensemble of trees was built as described in
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Section 7.2, including an artificial contrast feature for each linguistic feature used

by the voice. Using bootstrap resampling of state occupancy scores for each tree

in the forest, a sub-forest of 100 trees was built for each state of the models of

fundamental frequency and spectral envelope, resulting in a forest of 1000 trees

for each voice. The same method as in Section 7.2 was used to select features:

the whole of this forest was used to select a single set of features. The Wilcoxon

signed rank test was used to find features that create a total improvement in

log likelihood during forest building that is significantly higher than that of the

corresponding contrast feature (α = 0.05). The single list of selected features are

used for the final iteration of clustering of all parts of the voice.

8.5 Synthesis

All evaluation of the 30 voices built for this experiment was conducted using two

sets of utterances. The first set (the natural set) consists of speech held out from

the corpora during training, and annotation produced from the corresponding

plain orthography transcription of those utterances. These sets were used for

objective evaluation of synthesised speech, results of which are presented in Sec-

tion 8.6, and for the subjective evaluation of naturalness, results of which are

presented in Section 8.7. The second set of test utterances for each language was

a set of Semantically Unpredictable Sentences (SUS: Benoit et al., 1996). These

were for use in the subjective evaluation of intelligibility (see Section 8.7).

Synthetic speech was generated from the text prompts of the utterances (in

the case of topline systems, existing annotation was used, although this had in

turn been generated from the text of utterances), and evaluated as will now be

described.

8.6 Objective Evaluation

8.6.1 Method

Objective evaluation was conducted using the parametric representation of syn-

thetic speech output for the natural sets of sentences described in Section 8.5.

Part of this representation – frames of Bark cepstral coefficients – was aligned

with a comparable parametric representation extracted from the held-out data

using Dynamic Time Warping (DTW). The warping path discovered in this way
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was also used to align the generated and natural F0 sequences. Using these time-

warped parameters, Bark cepstral distortion and Root Mean Square Error of

fundamental frequency were computed.

DTW was preferred to synthesis with natural durations in this case (cf. ex-

periments in Chapters 5 and 6) as the variety of modelling units used (phonemes

in the topline systems, letters in the naive systems) means that there is no single

gold standard alignment that can be used for all systems to be compared. Only

frames of the speech that are voiced in the reference utterances were used for

this evaluation. This is a way to exclude silent segments without recourse to gold

standard annotation. Silence segments excessively improve the cepstral distortion

measure when they are of the correct length (spectral shape of silence is mainly

unvarying and easy to synthesise), and conversely cause excessive degredation

when they are wrongly inserted (in the case that DTW aligns many silent frames

with speech frames).

8.6.2 Results

Without Feature Selection

The results of the objective evaluation for Systems *-*-1 are shown in Figure

8.3. A similar pattern can be seen across the three languages with regard to

the scores for Bark cepstral distortion (Figures 8.3a, c and e). That is, adding

features derived from the letter spaces to the basic features reduces distortion in

synthesis so that part of the gap between baseline and topline is closed in all cases.

However, distortion increases as word space and then utterance space features

are added. For English (System EN-D-1), the result is still an improvement upon

the baseline, but Finnish systems FN-D-1 and FN-A-1 score similarly, and for

Romanian, RM-D-1 achieves a slightly worse score than baseline RM-A-1.

There is no such pattern shared across languages with regard to the scores for

Root Mean Squared Error of F0 (RMSE-F0: Figures 8.3b, d and f). For English,

the trend for RMSE-F0 is similar to that for cepstral distortion for all languages:

adding letter space features reduces the error, but subsequently adding word and

utterance space features detracts from this initial improvement. For Finnish and

Romanian, on the other hand, all VSM features worsen the RMSE-F0, widening

the performance gap between baseline and topline. For Finnish, the extent of this

performance decrease lessens slightly as more features are added; for Romanian,

it increases with additional features.
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With Feature Selection

In Figure 8.4, the results shown in Figure 8.3 are supplemented with results for

Systems *-*-2, that is, systems where feature selection is used. A similar pattern

was seen across languages with regard to Bark cepstral distortion without the use

of feature selection. When feature selection is used (Figures 8.4a, c and e), the

pattern is once again mostly similar across the three languages. Feature selection

harms performance considerably when baseline features are used, and slightly

when the letter space model is used. When the word space model is used, feature

selection has little effect on score; when the utterance space features are added,

selection gives a slight improvement in all three languages. The effect of feature

selection on topline systems will be discussed separately in the next section.

The effect of applying feature selection on RMSE-F0 (Figures 8.4b, d and

f) is erratic and varies across languages. For the Romanian system, it gives a

consistent improvement, when systems with feature selection are compared to

corresponding systems without it. For English and Finnish systems, the effect of

feature selection is much more varied between conditions. Two points of similarity

are that feature selection gives an improvement when word space features are

used, and a worsening when utterance space features are added. The first point

is consistent with the similar improvement seen in Section 7.2. The second shows

that the prediction made in Section 8.4.2 is not borne out by the results of the

experiment. The prediction was that the features of the utterance space, while

probably irrelevant in the context of the current experiments, should at least

not harm performance in the case that feature selection is applied. The results

cast doubt on the ability of ensembles of trees – at least as they are used here –

to handle the shotgun approach to feature creation described in Section 2.3. If

it were working as planned, systems employing feature selection would always

perform at least as well as the best-performing system to their left in the plots

of Figure 8.4 (cf. Hypothesis 2d above).

Topline Systems with Additional Feature Selection

Figure 8.4 includes results for Systems *-T-2, that is, systems using conventional

features where feature selection is applied. For English and Romanian, applying

feature selection to the topline systems leads to an improvement in performance,

both for generated cepstrum and F0. For Finnish, the same procedure has a

negative impact on the performance of the topline system, worsening performance

in terms of both measures used.
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Figure 8.3: Results of objective evaluation the 15 voices build without feature
selection presented in Chapter 8. Horizontal lines indicate performance of baseline
and topline systems.
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Figure 8.4: As Figure 8.3, with additional results for the *-*-2 voices (employing
feature selection)
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8.7 Subjective Evaluation

8.7.1 Selected Hypotheses

Hypothesis 1 given in Section 8.3 will be tested in this experiment. Based on the

above observations of the results of objective evaluation, a single member of the

subhypotheses of Hypothesis 2 formulated in Section 8.3 is selected (Hypothesis

2a) for testing in a subjective evaluation: that the VSM of letter types will

improve system performance without feature selection needing to be performed.

In an ideal scenario, systems *-D-2 would be compared with baselines *-A-1

and toplines *-T-1. However, the improvement between systems *-A-1 and *-D-2

hypothesised above is not tested here because results of the objective evaluation

suggest that feature selection – as used in these experiments – is not performing

the role planned for it. Refinement of this means of feature selection is left for

future work (see Chapter 9).

Results of the objective evaluation tend to support Hypothesis 3: that the

method of feature selection developed in this thesis is beneficial for topline sys-

tems. However, it is not a hypothesis central to this thesis, and its subjective

testing is left for separate future work.

To test the selected hypotheses, 3 systems were selected for each language to

use in subjective evaluation with human listeners. Besides the baseline system

*-A-1 and topline *-T-1, the experimental systems *-B-1 were used. The refined

hypotheses that the listening tests conducted are designed to test are that:

Hypothesis 1 (part 1): The topline system in a given language (one of

systems *-T-1) will be significantly more natural than the corresponding

baseline (one of systems *-A-1)

Hypothesis 1 (part 2): The topline system in a given language (one of

systems *-T-1) will be significantly more intelligible than the correspond-

ing baseline (one of systems *-A-1)

Hypothesis 2a (part 1): Adding features derived from a letter space

model to a system (giving one of systems *-B-1) will create a significant

increase in naturalness compared with the corresponding baseline (one of

systems *-A-1)

Hypothesis 2a (part 2): Adding features derived from a letter space

model to a system (giving one of systems *-B-1) will create a significant
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increase in intelligibility compared with the corresponding baseline (one

of systems *-A-1)

In this evaluation, the difference in naturalness of two systems will be measured by

listeners’ stated preference for utterances generated by the systems. Intelligibility

of a system will be measured by counting errors in listeners’ transcriptions of

utterances generated by that system.

8.7.2 Procedure

The listening test was conducted via a web browser. Conditions were different

for each of the languages. The English part of the evaluation was conducted in

purpose-built acoustically insulated booths using headphones. The Romanian

and Finnish parts of the evaluation took place remotely, so that conditions were

less controlled. However, participants were asked to use headphones and a quiet

room.3 39 paid listeners participated in the English evaluation, and 19 and 114

unpaid listeners in the Romanian and Finnish evaluations, respectively. All lis-

teners were native speakers of the relevant language, between the ages of 18 and

25 in the case of English and Romanian evaluations, and between 20-45 years in

the case of the Finnish evaluation.

Part 1 consisted of three sections, in which the three system pairs (*-A-1, *-

B-1), (*-A-1, *-T-1), (*-B-1, *-T-1) were compared, respectively. In each section,

AB tests between the relevant systems were conducted, where listeners were asked

to state a preference for one of two synthetic speech stimuli. Altogether 20 such

pairs were presented in each section. Each listener heard each utterance text

spoken by only one pair of systems over the course of the whole test. Furthermore,

listeners were assigned to 3 equally- or similarly-sized groups,5 and the assignment

of utterance texts to sections (system pairs) was balanced across listener groups,

with the effect that the different texts were heard uniformly generated by the 3

system pairs.

The ordering of systems pairs in the sections was chosen to avoid ceiling effects:

the first of these comparisons (*-A-1 vs. *-B-1) is expected to involve differences

3Many thanks to Antti Suni and Heini Kallio of the University of Helsinki, Tuomo Raitio of
Aalto University, and to Adriana Stan of the University of Cluj-Napoca for recruiting Finnish
and Romanian participants.

4In fact, 10 Finnish listeners participated, one of whom unexpectedly participated twice.
However, the records of listeners kept do not allow the duplicate responses to be identified.

5The 3 groups were of perfectly equal size for the English evaluation, but less perfectly
balanced for Romanian and Finnish: 9–5–5 and 5–3–3, respectively.
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that are less obvious to listeners than later comparisons involving the topline

systems. It is put first so that listeners are not led to expect as big differences to

base their preference on as those that appear later in the test.

Part 2 consisted of three sections, each containing 18 tasks. Here, listen-

ers were asked to type in a transcription of each test stimulus. Stimuli for all

languages were Semantically Unpredictable Sentences. As in Part 1 of the eval-

uation, each listener heard each SUS text spoken by only one system over the

course of the whole test. Unlike in the preference task, no ceiling effect was antic-

ipated for the transcription task. Therefore, SUS generated by the three systems

(*-A-1, *-B-1, *-T-1) were distributed evenly within each of the three sections.

Transcription accuracy was measured using word error rate (WER) for English

and Romanian systems, and letter error rate (LER) for the Finnish ones.

8.7.3 Results

Figures 8.5a, c and e show the results of Part 1 of the evaluations, which considers

naturalness. Mean preference scores of each of the three comparisons made in

each language are shown. Error bars show confidence intervals determined by a

binomial test (α=0.05 with Bonferroni correction). The expected outcome under

the null hypothesis (no preference for either system of a pair) is 50%, shown by

a dashed line in the plots. It can be seen therefore that for the English and

Finnish systems, there is a significant preference for the topline systems over

the baselines, allowing acceptance of the Hypothesis 1 (part 1) as stated in

Section 8.7.1 for Finnish and English. Also for these languages, the systems

incorporating features derived from a letter space are found significantly more

natural than the baselines, allowing acceptance of Hypothesis 2a (part 1) for

those languages. It is also found for English and Finnish that listeners find the

speech produced by topline systems significantly more natural than that produced

by the ones incorporating the letter space features. That is, the letter space closes

a significant part of the gap between baseline and topline, but the topline is still

significantly better. For the Romanian systems, no system preferences are found

significant, even between the topline and baseline systems. The systems using

letter space features is slightly preferred over the baseline, but not significantly

so. Neither Hypothesis 1 (part 1) nor Hypothesis 2a (part 1) can therefore

be accepted for the Romanian systems.

Figures 8.5b, d and f show the results of Part 2 of the evaluations, which

considers intelligibility. Mean transcription error scores for each of the three sys-
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Figure 8.5: Preference and intelligibility scores.
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tems in each language are shown: word error rates for English and Romanian,

and letter error rates for Finnish. Differences between system error rates were

compared in a pairwise fashion using the bootstrap procedure of Bisani and Ney

(2004): bootstrap-t confidence intervals were calculated over system differences.

The systems marked with an asterisk in these plots were found significantly more

intelligible than both competing systems (with α = 0.05 and Bonferroni correc-

tion). Otherwise, no significant differences were found.

It can be seen that the topline systems in English and Romanian are signifi-

cantly more intelligible than the corresponding baselines, allowing acceptance of

Hypothesis 1 (part 2) as stated in Section 8.7.1 for these two languages. How-

ever, there is no significant difference between the intelligibility of the baseline

and letter space systems for any language, meaning that Hypothesis 2a (part

2) cannot be accepted for any language. For Finnish, the trend is the opposite of

what might be expected: the topline systems is less intelligible than the baseline.

However, this difference is not found to be significant, and Hypothesis 1 (part

2) cannot be accepted for Finnish.

8.8 Conclusions

This chapter has presented the construction of 30 TTS systems in three lan-

guages. 24 experimental systems were built, to allow the evaluation of three

automatically-induced feature sets, with and without the application of feature

selection based on ensembles of trees. Three topline systems provided a bench-

mark in each language, and the same feature selection procedure was applied

additionally to them.

The objective evaluation, conducted over all systems, suggested that the fea-

ture selection procedure does not perform as planned and as the results of the

experiment of Section 7.2 suggest. Under the ideal operation of this procedure,

irrelevant features would be discarded, meaning that adding arbitrary new noisy

features would not harm performance. This is not what the results of objective

evaluation suggest is actually happening.

Three selected systems from each language were compared in evaluations with

human listeners. The automatically-induced features tested in these evaluations –

derived from vector space models of letter types – never harm scores for natu-

ralness or intelligibility. In two of the languages used in the experiment, these

features produced a significant preference among native listeners for the system
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in which they are used, compared with systems from which they are absent.



Chapter 9

Conclusions and Future Work

9.1 Contributions

The primary contribution of the work presented in this thesis is a methodology for

the construction of TTS front-ends using representations of subword-, word- and

utterance-level units which are learned in an unsupervised fashion. The approach

is novel: this is the first published presentation where unsupervised learning is

applied to the front-end of a TTS system in a unified way across several levels of

analysis.

It has been shown that the distributional–acoustic method developed enables

the unsupervised acquisition and use of representations for textual and linguistic

objects that can replace conventional representations of the same objects derived

from expert knowledge in TTS systems. Unsupervised induction of representa-

tions incurs only a fraction of the cost associated with manually annotating data

or encoding knowledge in look-up tables, and can close much of the gap in per-

formance between systems using conventional representations and ones which use

no representations at all, as the following selected results show:

• In Section 5.3.1 a baseline TTS system using phonemes but incorporating

no knowledge of phonetic categories was built; mean Bark cepstral distor-

tion per non-silent frame between held-out speech and speech synthesised

by the system is 5.54dB. Incorporating expert-derived phonetic categories

brings this distortion down to 5.41dB. Incorporating features obtained with-

out expert knowledge, using distributional analysis, closes most of this gap

in performance, giving a score of 5.44dB. The full set of phonetic cate-

gories can be approximated with a reduced set, such as a simple division

of phonemes into vowels and consonants, which could be trivially speci-
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fied by a non-expert system-builder. These two categories close part of the

same performance gap when added to the system, but not so much as the

unsupervised representations (score: 5.48dB).

• In Section 6.3.3, the performance of several phrase-break predictors was

measured objectively using the mean F scores of phrase-breaks predicted

by 10 systems sharing the same configuration. A baseline system – using

only basic features such as distance until punctuation – attained a mean

F score of 69.6%, and a conventional topline system which incorporates

part of speech tags output by a state-of-the-art tagger attained a mean

score of 78.8%. Once again, the incorporation of features obtained without

expert knowledge, using distributional analysis, closes most of this gap in

performance, giving a mean F score of 77.7%. The word representations

used in this experiment are learned from the same 1.2 million words of data

as the tagger used for the topline system, but pretend that no part of speech

annotation exists for those data.

• The fact that no manual annotation is required to learn such representations

means that it is trivial to increase the amount of data on which they are

learned; in Section 7.1, similar representations are learned on 25 million

words of text, and applied to the same phrase-break task, giving a mean F

score of 79.1%, thus entirely closing the gap between mean performance of

the systems. It is not doubted that training a part of speech tagger on a

comparably larger corpus would improve topline performance. However, if

it is assumed that tagged corpora do not already exist in the target language

(the case for the majority of the world’s languages), this probable gain in

performance comes with the considerable expense of manually annotating

an extra 24 million words of text.

• Sections 6.4 and 7.2 presented attempts to apply the learned word repre-

sentations directly to HMM state-tying. In order to successfully exploit the

representations for this task, a method of feature selection using ensembles

of trees was devised. This is the first published application of tree-ensembles

to feature selection for acoustic modelling in TTS. The F0 trajectories gen-

erated by a baseline system making no use of word representations attain a

correlation of 0.585 with the F0 of natural held-out samples. Using part of

speech as word representation increases this to 0.592. Using an automat-

ically selected set of features derived from distributionally-acquired word
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representations surpasses this topline performance, achieving a correlation

of 0.613.

• Although no strong claims are made for the language-independence of the

techniques developed, they are linguistically naive enough that they can be

applied with little effort to any language making use of an alphabetic script

with orthographically-marked word boundaries (Section 2.3). This was done

in Chapter 8, where topline systems in English, Finnish and Romanian –

including expert-derived speech annotation – were compared with systems

in those languages built with minimal reliance on human intervention, and

which depend on distributional analysis to characterise text objects. A

subset of these systems were chosen for subjective evaluation, and for both

Finnish and English, listeners significantly preferred systems incorporat-

ing distributional representations of letters to baseline letter-based systems

(Section 8.7).

9.2 Future work

The framework developed for the experiments presented in this thesis enables the

automated building of entire systems from data with minimal expert supervision.

This framework forms the necessary foundation for ongoing work, which is carried

out in the context of the Simple4All project which has the aim of developing:

[. . . ] speech synthesis technology that learns from data with little or

no expert supervision.1

The work of this thesis provides a valuable starting-point for the work of this

project. In turn, the project provides opportunities to build upon and extend the

techniques developed in this thesis. Most obviously, the techniques developed in

this thesis will be tested in languages other than the three used in the experi-

ments of Chapter 8. Even within these languages, it is unclear to what extent

the differences between results obtained for the languages are truly indicative of

language differences, and to what extent the comparison between languages is

confounded by other characteristics of the databases used (e.g., speaker-specific

characteristics). Use of multiple speakers to build multiple voices within each

target language would reveal these confounding effects.

1 http://simple4all.org/
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Incorporation of an unsupervised morphological segmentation module is ex-

pected to improve performance on languages with rich morphology. Due to the

similarity between morphological and word segmentation tasks (Creutz and La-

gus, 2007), it is also envisaged that a generalised segmentation module could also

be of use for languages such as Mon, Thai, Tibetan, Burmese, Khmer and Lao,2

which use alphabetic-syllabic scripts but which do not mark word boundaries

orthographically.

It was noted in Section 2.3 that this thesis deliberately avoids the issue of

text normalisation, considering it too language-specific to be handled in a wholly

unsupervised way. Future work will focus on incorporating non-expert native-

speaker knowledge in an active learning approach to this task.

The systems developed in this thesis embody a framework which allows the

induction and incorporation of representations of text units of arbitrary size.

The framework therefore allows features above the utterance level to be used,

which is becoming increasingly important with recent trends in using ‘found’,

continuously-recorded speech for system training instead of traditional TTS data-

bases (Braunschweiler and Buchholz, 2011; Székely et al., 2011). Use of such data

is planned for future work, and features at the utterance level and beyond, ex-

tracted and exploited in the distributional–acoustic framework, are expected to

be an indispensable element in systems that make use of the natural variability

in such data.

The method of feature selection used in this thesis is novel in the context

of TTS, and provides improvements in the performance of conventional systems

for two of the three target languages in Chapter 8 (in the objective evaluation).

This is a serendipitous finding, as improvement to conventional systems is not the

concern of this thesis. As such, this is not the place for extensive investigation

of this finding. However, such investigation could form the basis of useful future

work. On the other hand, the feature selection method did not provide the

expected benefits in the experimental systems for which it was primarily intended

(Section 8.8).

However, avoiding the use of tree-structured models might render the feature

selection method developed unnecessary altogether. As mentioned in Section

4.2.5, the acoustic phase of the distributional–acoustic method advocated by this

thesis was implemented with decision trees for pragmatic reasons, as doing so

meant that state-of-the-art systems for acoustic model building could be used.

2 These are the six languages that are counted in Table 2.2.
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However, use of decision trees is an implementational choice: there is nothing in

the general framework proposed which binds it to this choice of method for its

acoustic phase. Indeed, the limitations of the divide-and-conquer approach used

in decision trees is well known, as has been pointed out at various points in the

course of this work (e.g. in Section 6.4.1). An attractive approach is to integrate

continuous representations of textual units more closely with acoustic models, and

perhaps to update them explicitly in light of the acoustics (an approach suggested

by work such as Collobert and Weston, 2008; Collobert et al., 2011). This would

involve fundamental revision of the acoustic-modelling framework used which is

clearly beyond the scope of this thesis, but is planned for future work.
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M. Killer, S. Stüker, and T. Schultz. Grapheme based speech recognition. In

Proc. Eurospeech, pages 3141–3144, 2003.

S. King and V. Karaiskos. The Blizzard Challenge 2010. In Proc. Blizzard Chal-

lenge Workshop 2010, Sept. 2010.

G. Knowles, A. Wichmann, and P. Alderson. Working with Speech: Perspectives

on Research into the Lancaster/IBM Spoken English Corpus. Longman, 1996a.



182 BIBLIOGRAPHY

G. Knowles, B. Williams, and L. Taylor. A Corpus of Formal British English

Speech: The Lancaster/IBM Spoken English Corpus. Longman, 1996b.

J. Kominek. TTS From Zero: Building Synthetic Voices for New Languages. PhD

thesis, Carnegie Mellon University, 2009.

J. Kominek and A. Black. The CMU Arctic speech databases. In Proc. 5th ISCA

speech synthesis workshop, pages 223–224, Pittsburgh, USA, June 2004.

J. Kominek, T. Schultz, and A. W. Black. Voice building from insufficient data

– classroom experiences with web-based language development tools. In Proc.

6th ISCA Speech Synthesis Workshop, pages 322–327, Bonn, Germany, 2007.

T. Koo, X. Carreras, and M. Collins. Simple semi-supervised dependency parsing.

In In Proc. ACL/HLT, 2008.

J. K. Korpela. Unicode Explained. O’Reilly Media, 2006.

C. H. A. Koster and M. Seutter. Taming wild phrases. In Proceedings of the 25th

European conference on IR research, ECIR’03, pages 161–176, 2003.

K. Lagus, M. Creutz, and S. Virpioja. Latent linguistic codes for morphemes

using Independent Component Analysis. In A. Cangelosi, G. Bugmann, and

R. Borisyuk, editors, Modeling language, cognition and action: Proceedings of

the Ninth Neural Computation and Psychology Workshop (NCPW9), Septem-

ber 2005.

M. Lamar, Y. Maron, M. Johnson, and E. Bienenstock. SVD and clustering for

unsupervised POS tagging. In ACL (Short Papers)’10, pages 215–219, 2010.

T. K. Landauer and S. T. Dumais. A solution to Plato’s problem: the La-

tent Semantic Analysis theory of acquisition, induction, and representation of

knowledge. Psychological Review, 104:211–240, 1997.

J. Latorre, K. Iwano, and S. Furui. New approach to the polyglot speech gen-

eration by means of an HMM-based speaker adaptable synthesizer. Speech

Communication, 48(10):1227–1242, 2006.

A. Lenci. Distributional semantics in linguistic and cognitive research. Italian

Journal of Linguistics, 20(1):1–31, 2008.



BIBLIOGRAPHY 183

W. Li and A. McCallum. Semi-supervised sequence modeling with syntactic topic

models. In Proceedings of the 20th national conference on Artificial intelligence

- Volume 2, pages 813–818, 2005.

K. Lund and C. Burgess. Producing high-dimensional semantic spaces from lexical

co-occurrence. Behavior Research Methods, 28:203–208, 1996.

K. Lund, C. Burgess, and R. A. Atchley. Semantic and associative priming in

high-dimensional semantic space. In Proceedings of the Seventeenth Annual

Conference of the Cognitive Science Society, pages 660–665, 1995.

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learn-

ing word vectors for sentiment analysis. In Proceedings of the 49th Annual

Meeting of the Association for Computational Linguistics: Human Language

Technologies - Volume 1, HLT ’11, pages 142–150, 2011.

K. Maekawa, H. Kikuchi, Y. Igarashi, and J. Venditti. X-JToBI: an extended

J-ToBI for spontaneous speech. In ICSLP-2002, pages 1545–1548, 2002.

W. C. Mann and S. A. Thompson. Rhetorical structure theory: Toward a func-

tional theory of text organization. Text, 8(3):243–281, 1988.

C. D. Manning and H. Schütze. Foundations of Statistical Natural Language

Processing. MIT Press, 1999.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated

corpus of English: the Penn Treebank. Comput. Linguist., 19:313–330, June

1993.

B. Merialdo. Tagging English text with a probabilistic model. Comput. Linguist.,

20(2):155–171, June 1994.

P. Mermelstein. Automatic segmentation of speech into syllabic units. The Jour-

nal of the Acoustical Society of America, 58(4):880–883, 1975.

S. Miller, J. Guinness, and A. Zamanian. Name tagging with word clusters and

discriminative training. In Proceedings of HLT, pages 337–342, 2004.

G. Murray, M. Taboada, and S. Renals. Prosodic correlates of rhetorical rela-

tions. In Proceedings of the HLT-NAACL 2006 Workshop on Analyzing Con-

versations in Text and Speech, ACTS ’09, pages 1–7, Stroudsburg, PA, USA,

2006. Association for Computational Linguistics.



184 BIBLIOGRAPHY

E. Navas, I. Hernez, and I. Sainz. Evaluation of automatic break insertion for an

agglutinative and inflected language. Speech Communication, 50(11-12):888 –

899, 2008. Iberian Languages.
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