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Abstract

This paper presents a method to produce a new vowel by articu-
latory control in hidden Markov model (HMM) based paramet-
ric speech synthesis. A multiple regression HMM (MRHMM)
is adopted to model the distribution of acoustic features, with
articulatory features used as external auxiliary variables. The
dependency between acoustic and articulatory features is mod-
elled by a group of linear transforms that are either estimated
context-dependently or determined by the distribution of artic-
ulatory features. Vowel identity is removed from the set of con-
text features used to ensure compatibility between the context-
dependent model parameters and the articulatory features of a
new vowel. At synthesis time, acoustic features are predicted
according to the input articulatory features as well as context
information. With an appropriate articulatory feature sequence,
a new vowel can be generated even when it does not exist in
the training set. Experimental results show this method is ef-
fective in creating the English vowel /2/ by articulatory control
without using any acoustic samples of this vowel.
Index Terms: Speech synthesis, articulatory features, multiple-
regression hidden Markov model

1. Introduction
Hidden Markov model (HMM)-based parametric speech syn-
thesis has become a mainstream speech synthesis method in
recent years [1, 2]. This method is able to synthesise highly
intelligible and smooth speech sounds [3, 4]. In addition, it
makes speech synthesis far more flexible compared to the con-
ventional unit selection and waveform concatenation approach.
Several adaptation and interpolation methods have been applied
to control model parameters and so diversify the characteristics
of the generated speech [5, 6, 7]. However, this flexibility relies
upon data-driven machine learning algorithms and it is difficult
to integrate phonetic knowledge into the system directly when
corresponding training data is not available. In previous work,
we have proposed a method to improve the flexibility of HMM-
based parametric speech synthesis further by integrating artic-
ulatory features [8, 9]. Here, we use “articulatory features” to
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refer to the continuous movements of a group of speech articula-
tors, such as the tongue, jaw, lips and velum, recorded by human
articulography techniques. In this method, a unified acoustic-
articulatory HMM is trained. The dependency between acoustic
and articulatory features is modelled by a group of linear trans-
forms which are either trained and tied context-dependently [8]
or switched in the articulatory feature space [9]. During syn-
thesis, the characteristics of the synthetic speech can be con-
trolled flexibly by modifying the generated articulatory features
according to phonetic rules. Experimental results have shown
the effectiveness of this method in controlling the overall char-
acter of synthesised speech as well as the quality of a specific
vowel [8, 9].

In this paper, we apply this method of articulatory con-
trol to the task of vowel creation in HMM-based parametric
speech synthesis. In this task, the target vowel to be created
does not occur in the training set, but its phonetic characteris-
tics are known beforehand. We aim to produce this target vowel
effectively at synthesis time once appropriate articulatory rep-
resentations are provided. This is potentially useful for applica-
tions such as speech synthesis for limited resource languages,
cross-language speaker adaptation, and so on. In our previous
approach, articulatory features are treated as HMM observation
vectors on which the acoustic features depend. In contrast, in
this paper we treat the articulatory features as external explana-
tory variables for the mean vectors of Gaussians. Thus, we can
integrate other forms of articulatory prediction model that are
simpler to control than with the HMM itself. This model is
called a “multiple regression HMM” (MRHMM). Our feature-
space transform tying strategy [9] is also applied here, and we
compare this with the context-dependent transform tying on the
vowel creation task. Furthermore, we remove vowel identity
from the set of context features used during context-dependent
model training in order to ensure compatibility between the es-
timated model parameters and the articulatory features of a new
target vowel at synthesis time.

This paper is organised as follows. Section 3 describes our
proposed method in detail. Section 4 presents the results of our
experiments and Section 5 summarises our conclusions.

2. Methods
2.1. MRHMM-based parametric speech synthesis

The MRHMM was initially proposed for automatic speech
recognition (ASR). The aim is to improve the accuracy of
acoustic modelling by introducing auxiliary features that are
correlated with the acoustic features [10]. The MRHMM has
also been applied to HMM-based parametric speech synthe-
sis, with sentence-level “speech style” vectors as the explana-



tory variables [6]. The difference between this model and the
standard HMM is that an auxiliary feature sequence is used
to supplement the state sequence for determining the distri-
bution of acoustic features. In this paper, that auxiliary fea-
ture sequence is comprised of articulatory trajectories. Let
X = [x>1 , x>2 , ..., x>T ]> and Y = [y>1 , y

>
2 , ..., y

>
T ]
> denote the

parallel acoustic and articulatory feature sequence of the same
length T . For each frame, the feature vector xt ∈ R3DX

and yt ∈ R3DY consist of static parameters and their veloc-
ity and acceleration components, where DX and DY are the
dimensionality of the static acoustic and articulatory features
respectively. A detailed definition of these dynamic features
can be found in [8]. The distribution of X in the conventional
MRHMM [10] can be written as

P (X|λ,Y) =
∑

q

πq0

T∏
t=1

aqt−1qtbqt(xt|yt), (1)

bj(xt|yt) = N (xt;Ajξt + µj ,Σj), (2)

where πj and aij represent initial state probability and state
transition probability; bj(·) is the state observation probabil-
ity density function (PDF) for state j; q = {q1, q2, ..., qT } is
the state sequence for X; ξt =

[
y>t , 1

]> ∈ R3DY +1 is the
expanded articulatory feature vector; Aj ∈ R3DX×(3DY +1) is
the regression matrix for state j.

To train the MRHMM-based parametric speech synthesis
system, the procedures for standard HMM-based synthesiser
training [1] (without articulatory features) are first followed.
Context-dependent HMMs are trained using rich context infor-
mation that includes detailed phonetic and prosodic features [1].
To deal with the data-sparsity problem, a decision-tree-based
model clustering technique that uses the minimum descrip-
tion length (MDL) criterion [11] is applied to cluster context-
dependent HMMs. Then, the estimated mean vector and co-
variance matrix for each state are used as the initial values of
µj and Σj in the MRHMM. The regression matrix Aj is ini-
tialised as a zero matrix. After introducing articulatory features,
these parameters are iteratively updated to maximise P (X|λ,Y)
using the EM algorithm1. The detailed formulae for this are to
be found in [10]. Next, a state alignment to the acoustic fea-
tures is performed using the trained MRHMM in order to train
context-dependent state duration probabilities [1].

At synthesis time, acoustic features are generated follow-
ing the maximum output probability criterion [2]. For the
purpose of simplification, only the optimal HMM state se-
quence is considered. First, this optimal state sequence q∗ =
{q∗1 , q∗1 , . . . , q∗T } is determined using the trained duration dis-
tributions [1]. Given auxiliary feature sequence Y, the optimal
acoustic feature sequence X∗ is generated by maximising

P (X|λ,Y, q∗) =
T∏

t=1

N (xt;Aq∗t
ξt + µq∗t

,Σq∗t
). (3)

This is the conventional parameter generation problem [2]. The
only difference is that the mean vector at each frame is calcu-
lated as Aq∗t

ξt + µq∗t
instead of µq∗t

.
In the vowel creation task, the articulatory-phonetic charac-

teristics of the target vowel, such as tongue position and similar-
ity with other vowels, are assumed to be known. They are also

1The acoustic features commonly consist of spectral and F0 parame-
ters extracted from the waveforms of the training sentence. In MRHMM
training, X only contains the spectral feature stream. The relationship
between the articulatory features and the F0 features is not considered
in this paper.

included in the context features and the question set for training
context-dependent models with decision-tree-based clustering.
Y in (3) contains the articulatory representations of the target
vowel and we expect to generate the acoustic features of this
vowel by solving (3) at synthesis time.

2.2. Feature-space-switched MRHMM

As shown in (2), the regression matrix Aj in the conventional
MRHMM is context-dependent. In previous work [9], we have
proposed a feature-space transform tying method to take into
account the effect of articulatory features in determining the
transform matrices for the unified acoustic-articulatory mod-
elling. This method improved the controllability on synthetic
speech when manipulating articulatory features at synthesis
time [9]. The same issues apply to the MRHMM-based speech
synthesis method introduced in Section 2.1 when attempting the
vowel creation task. When solving (3), the articulatory features
yt of the new vowel may conflict with the transform matrix Aj

which could be estimated using the training samples of other
vowels. Therefore, we also apply the feature-space transform
tying method in this paper, to create a model that we term a
feature-space-switched MRHMM. A GMM model λ(G) con-
tainingM mixture components is trained in advance using only
the articulatory stream of the training data to obtain M clus-
ters in the articulatory space. Then, the regression matrices are
trained for each mixture component of λ(G) instead of for each
state of the MRHMM. Mathematically, we rewrite (2) as

bj(xt|yt) =
M∑
k=1

P (xt,mt = k|yt, qt = j, λ, λ(G)), (4)

=

M∑
k=1

ζk(t)P (xt|yt, qt = j,mt = k, λ, λ(G)), (5)

where mt denotes the mixture component index of λ(G) for the
articulatory feature vector at frame t. The HMM state sequence
q and the GMM mixture sequence m = {m1,m2, ...,mN} are
reasonably assumed to be independent of each other, so that

P (mt = k|yt, qt = j, λ, λ(G)) = P (mt = k|yt, λ
(G))

= ζk(t). (6)

For each Gaussian mixture, the dependency between the acous-
tic features and the articulatory features is described by

P (xt|yt, qt = j,mt = k, λ, λ(G)) = N (xt;Akξt + µj ,Σj),

(7)

where Ak ∈ R3DX×(3DY +1) is the regression matrix for the
k-th mixture of λ(G). The parameter set {Ak,µj ,Σj} is esti-
mated using the EM algorithm by maximising P (X|λ,Y). The
detailed formulae are similar to those introduced in [9] and so
are omitted here.

At synthesis time, the parameter generation criterion in (3)
is modified to

P (X|λ,Y, q∗) =
T∏

t=1

M∑
k=1

ζk(t)N (xt;Akξt + µq∗t
,Σq∗t

), (8)

where ζk(t) is calculated based on the given articulatory fea-
tures Y. This is a parameter generation problem with mixtures
of Gaussians at each frame. It can be solved by either consider-
ing only the optimal mixture sequence or by using an EM-based
iterative estimation method [2].



Table 1: Summary of the various systems used in the experiments.

Label
Model Structure

HMM Context Features Regression Matrix

STD-F standard full N/A

STD-T standard tailored N/A

MR-FC MRHMM full context-dependent

MR-TC MRHMM tailored context-dependent

MR-TF MRHMM tailored feature-space-switched

2.3. Context feature tailoring

In the MRHMM-based speech synthesis method, the model pa-
rameters Aj ,µj , and Σj in (2) are trained context-dependently.
To reconstruct speech signals more accurately, the context fea-
tures describing each phone commonly consist of detailed seg-
mental and suprasegmental information, such as current and
surrounding phone identifiers, prosodic boundaries, stress and
accent positions, part of speech, and so on. In the vowel cre-
ation task, no training samples of the target vowel are available
however. At synthesis time, the model parameters Aj ,µj ,Σj

determined by the context features of the target vowel are ac-
tually estimated using the samples of other phones. There-
fore, these model parameters may be incompatible with the in-
put articulatory features of the target vowel which are phone-
dependent and are unseen at training time. In the feature-space-
switched MRHMM method described in Section 2.2, the regres-
sion matrices are not context-dependent but assigned according
to the posterior probability of each frame in the articulatory fea-
ture space. However, the µj and Σj in (7) are still context-
dependent. In order to ensure the compatibility between the
context-dependent model parameters and the input articulatory
features in the vowel creation task, the vowel identity feature
is removed from the set of context features during MRHMM
training. This “context feature tailoring” method is expected to
improve the generalisation property of the trained model param-
eters for unseen vowels, and we compare the use of this method
with the standard use of full context features in our experiments.

3. Experiments
3.1. Experimental conditions

We used the same multi-channel articulatory database as we
used in our previous work [8, 9] for the experiments in this
paper. It contains acoustic waveforms recorded concurrently
with EMA data using a Carstens AG500 electromagnetic artic-
ulograph [12]. Around 1300 phonetically balanced sentences
were read by a male British English speaker. The waveforms
were in 16kHz PCM format with 16 bit precision. Six EMA
sensors were placed at the tongue dorsum (T3), tongue body
(T2), tongue tip (T1), lower lip (LL), upper lip (UL), and lower
incisor (LI) of the speaker. Each sensor recorded spatial loca-
tion in 3 dimensions at a 200Hz sample rate: coordinates on the
x- (front to back), y- (bottom to top) and z-(left to right) axes
(relative to viewing the speaker’s face from the front). Only
the x- and y-coordinates of the six sensors were used in our
experiments because the movements in the z-axis were rela-
tively small. There were a total of 12 static articulatory features
at each frame. The static acoustic features were composed of
F0 and 40-order frequency-warped line spectral pairs (LSPs)
[4] plus an extra gain dimension, which were derived using
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Figure 1: LSP RMSEs for the five systems listed in Table 1. “vowels-
ex-/2/” indicates all vowels excluding the target vowel /2/.

STRAIGHT[13] analysis with a frame shift of 5ms.
In our experiments, the scenario of vowel creation was sim-

ulated by selecting a target vowel from the British English
phone set and removing all sentences containing this target
vowel from the training set. Vowel /2/ was selected as the tar-
get vowel in the experiment described here. 809 sentences in the
database which contain no instances of this vowel were selected
for a training set. Five acoustic models were trained in total.
Descriptions of these models are shown in Table 1. A five-state,
left-to-right HMM structure with no skips was adopted and di-
agonal covariance matrices were used for all five systems. The
STD-F and STD-T systems were trained following the conven-
tional HMM-based parametric speech synthesis approach [1].
The difference between these two systems was that vowel iden-
tity was removed from the context features in the STD-T system.
The number of regression matrices in the MR-FC, MR-TC, and
MR-TF systems was set to 65, 65, and 64 respectively.

3.2. Objective evaluation

We randomly selected 50 sentences from the remaining 454 sen-
tences which contain instances of vowel /2/ to form a test set.
These sentences were synthesised using the five systems listed
in Table 1. The LSPs were generated using state durations de-
rived from state alignment against the natural speech performed
using each system. Natural articulatory recordings were used as
the input for the MR-FC, MR-TC, and MR-TF systems at syn-
thesis time. LSP root mean squared error (RMSE) for different
types of phone was calculated and these are shown in Fig. 1. 2

From this figure, we see that the STD-F system had much
higher LSP RMSE for /2/ than for the other vowels and conso-
nants, because no samples for /2/ were available during train-
ing. Once the MRHMM-based speech synthesis method was
applied and the natural articulatory features were available at
synthesis time, the MR-FC system could achieve much lower
LSP RMSEs than the STD-F system, especially for the new
vowel /2/. Comparing the context feature tailoring method
with using standard full context features, the STD-T system
was worse than the STD-F system, while the MR-TC system
had better prediction accuracy than the MR-FC system for the
vowel /2/. In fact, the LSP RMSE on the /2/ vowel for sys-
tem MR-TC is not higher than that of the STD-F system on the
other vowels. The feature-space-switched MRHMM modelling
can further improve the prediction accuracy slightly. However,
the difference between the performance of the MR-TC and MR-

2Some examples of the synthetic speech can be found at
http://staff.ustc.edu.cn/~zhling/VowCreIS2012/demo.html.
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Figure 2: Vowel identity perception results for synthesising different
vowels using the STD-F system and creating vowel /2/ by articulatory
control using the MR-TF system.

TF systems is not significant in this task because the context
feature tailoring method can also deal with the possible conflict
between the context-dependent regression matrix and the artic-
ulatory features input during synthesis.

3.3. Subjective evaluation

We also carried out a vowel identity perception test to further
evaluate the effectiveness of creating the target /2/ vowel. Five
monosyllabic words (“but”, “hum”, “puck”, “tun”, “dud”) con-
taining the /2/ vowel were selected and embedded within a car-
rier sentence “Now we’ll say ... again”. These sentences were
synthesised using the STD-F system and the MR-TF system
respectively. Because natural articulatory recordings of these
sentences were not available, the articulatory features generated
from the HMM-based articulatory prediction model [14]3 were
adopted for the MR-TF system. For the purpose of comparison,
we substituted the vowel /2/ in the five monosyllabic words
with /E/, /I/ and /æ/, and then synthesised the respective test
sentences using the STD-F system. Thus, we created twenty-
five stimuli for the vowel identity perception test. Thirty-two
native English listeners were asked to listen to these stimuli and
to write down the key word in the carrier sentence they heard.
Then, we calculated the percentages for how the vowels were
perceived. These results are shown in Fig. 2. We see that only
35% of the synthesised vowels /2/ were perceived correctly us-
ing the STD-F system, due to the lack of acoustic training sam-
ples for this vowel. This percentage is above chance level be-
cause the state models used here to synthesise vowels /2/ may
be estimated using the acoustic features of the vowels which
have similar pronunciation to /2/ due to the decision-tree-based
model clustering. Using the MR-TF system and the gener-
ated articulatory features, this percentage increased to 66.25%,
which is close to the perception accuracy of synthesising vowel
/E/ (68.75%) and /æ/ (66.25%) using the STD-F system.

3In our experiments, this model was trained using the full database
with full context features. In practical scenarios, however, we would not
expect the articulatory-acoustic features of target vowel to be available
in the training set. Therefore, an articulatory prediction method that
is capable of integrating phonetic knowledge to generate articulatory
representations for a new vowel is necessary. This will be one focus of
our future work.

4. Conclusions
An MRHMM-based speech synthesis method has been pre-
sented in this paper for creating a new vowel without acous-
tic training instances, but using articulatory representations at
synthesis time instead. In this method, articulatory features are
combined with context information to determine the distribu-
tion of acoustic features at each frame. A method for feature-
space regression matrix switching and a strategy of context fea-
ture tailoring have been introduced to ensure compatibility be-
tween context-dependent model parameters and unseen articu-
latory features of new vowel. Our experiment on producing the
English vowel /2/ has shown the effectiveness of our method.
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