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Abstract
This paper describes a method for speaker clustering, with
the application of building average voice models for speaker-
adaptive HMM-based speech synthesis that are a good basis for
adapting to specific target speakers. Our main hypothesis is that
using perceptually similar speakers to build the average voice
model will be better than use unselected speakers, even if the
amount of data available from perceptually similar speakers is
smaller. We measure the perceived similarities among a group
of 30 female speakers in a listening test and then apply multiple
linear regression to automatically predict these listener judge-
ments of speaker similarity and thus to identify similar speak-
ers automatically. We then compare a variety of average voice
models trained on either speakers who were perceptually judged
to be similar to the target speaker, or speakers selected by the
multiple linear regression, or a large global set of unselected
speakers. We find that the average voice model trained on per-
ceptually similar speakers provides better performance than the
global model, even though the latter is trained on more data,
confirming our main hypothesis. However, the average voice
model using speakers selected automatically by the multiple lin-
ear regression does not reach the same level of performance.
Index Terms: Statistical parametric speech synthesis, hidden
Markov models, speaker adaptation

1. Introduction
One of the advantages of HMM-based speech synthesis [1] over
unit selection is the ability to perform speaker adaptation, which
allows text-to-speech synthesizers to be built for a target voice
by starting from a well-trained average voice model and then us-
ing relatively small amounts of data from the target speaker [2].
Our recent analyses of speaker adaptation performance have
found that the quality/naturalness of synthetic speech of adapted
voices is moderately correlated with how “far” the transform
has had to move away from the average voice model; transform-
ing the average voice model “further” tends to degrade quality
[3]. The distance measures we have used to quantify how “far”
the transform has moved include mel-cepstral distance [3] and
logF0-F1 distance [4].

These results suggest that, for best performance, the av-
erage voice model should be designed with a particular target
speaker in mind. In other words, multiple average voice models
are required. We therefore hypothesize that applying speaker
clustering to select speakers from which to train the average
voice model, and choosing speakers who sound similar to the
intended target speaker, will effectively reduce the transform
distance and thus improve the performance of speaker adapta-
tion in HMM-based speech synthesis. The main hypothesis of
the work we present here is that this form of speaker selection
will improve quality even if it reduces the amount of data on
which the model is trained: “better data” beats “more data”.

One approach is to use the same acoustic features for
speaker clustering that will be used by the synthesis HMMs
and to maximize the likelihood of the clustering and the HMMs
simultaneously. An alternative is to use perceptual informa-
tion about speaker similarity and to identify clusters of speakers
prior to training the synthesis HMMs. The latter approach has
the advantage that it offers the possibility of incorporating addi-
tional information, gained from perceptual experiments, so this
is what we choose to do. Our experimental questions include:
how to obtain human perceptual judgements of speaker similar-
ity, what criteria should be used for automatic speaker selection
to approximate these human judgements, and whether there is
a trade-off between the specificity of the speaker cluster vs. the
number of speakers (and therefore amount of data) per cluster.

Our experiments are restricted to a single gender because
a) gender-dependent average voice models are a better starting
point for speaker adaptation [2] and b) Murry & Singh found
that different perceptual strategies are used by listeners to dis-
tinguish speakers across gender [5]. To test our main hypothe-
sis and examine the above questions, we used speech from a set
of female speakers and carried out perceptual tests to investi-
gate similarity among these speakers. We also sought objective
measures (i.e., not based on perceptual data) that correlate with
listeners’ judgements of speaker similarity. Generally the ef-
fect on naturalness and overall quality of the synthetic speech is
not directly evaluated, however closer similarity to a natural tar-
get provides implicit support. Section 2 explains our perceptual
study of speaker similarity. Section 3 reports prediction results
of the objective measures. Section 4 provides the results from
the speech synthesis experiment and discusses some outstand-
ing issues that need further work.

2. Perceptual Study of Speaker Similarity

2.1. Speaker Database

For the perceptual study of speaker similarity, we used speech
from 30 female speakers who each said the same sentence
“People look, but no one ever finds it.” These utterances
were recorded using an identical recording setup: an omni-
directional microphone, 96kHz sampling frequency at 24 bits
and in a hemi-anechoic chamber. All recordings were normal-
ized to -26 dBov based on ITU-T P.56 and were manually end-
pointed.

These speakers were selected so as to have a large spread in
age (from 19 years old to 64 years old, mean = 36.8, sd = 12.3)
and to include various accents (Scottish English, Irish English,
Other UK and North American – SE, IE, OU and NA, respec-
tively.). Because all speakers were recruited and recorded in
Edinburgh, the sample is inevitably biased: over half the speak-
ers (16 of 30) were Scottish English speakers.



Figure 1: Results of a two-dimensional multi-dimensional scal-
ing (MDS) analysis. Each voice is labeled with id age accent.
The accents are SE - Scottish English, IE - Irish English, OU -
Other UK, and NA - North American.

2.2. Listening Test of Speaker Similarity

For the listening test to measure similarity, all 900 possible
speaker pairs (30x30) were included and each pair was pre-
sented four times. Identical pairs were included also to pro-
vide a means of consistency-checking. 20 listeners participated
in the test, which took place in sound-proof listening booths us-
ing good quality audio presentation equipment and headphones.
Each participant was presented with three rounds of 60 pairs, for
a total of 180 pairs. The pairs were ordered in 5 groups such that
no participant listened to the same pair twice, except for reverse
order pairs, and presentation order was randomised such that no
participant listened to all pairs in the same order.

Participants were asked to listen to each pair of sentences
and rate their similarity on a 4-point scale in which the points
were labelled 1: Very dissimilar, 2: Dissimilar, 3: Similar,
and 4: Very similar. They were told that they could listen to
each pair more than once and were encouraged to take breaks
if needed; between each round, participants could take a longer
break. Participants were not given any further instruction as to
what kind of similarity to rate; if asked, the experimenter gave
a deliberately vague answer that they should rate according to
what they found similar. This was in order to avoid biasing par-
ticipants towards rating any specific form of similarity.

2.3. MDS Analysis

The resulting scores were averaged across listeners and pre-
sentations for each speaker pair and a two-dimensional multi-
dimensional scaling (MDS) analysis was performed in order to
visualize the results. The MDS space is shown in Figure 1:
there do appear to be clusters of similar speakers.

In addition to their speech, we have additional meta-data
about the speakers in our set, such as self-reported accent, ge-
ographical information, age, etc. Inspection of the metadata in
connection with the MDS space reveals a general division ac-
cording to “accent” – each accent forms a distinct cluster. Only
three speakers deviate from this pattern: one SE speaker in the
OU cluster and two OU speakers in the SE cluster. Another
tendency is that speaker age is lower on the left and increases
towards the right – this might be a consequence of the SE speak-
ers being generally older than OU speakers, although the two

OU speakers in the SE cluster are both relatively old, which
suggests otherwise.

3. Prediction of Speaker Similarity Scores
Since perceptual data are expensive to obtain, and because the
size of the perceptual test scales badly with the number of
speakers being compared, it is desirable to find an objective
measure which can perform the same job.

3.1. Stepwise Multiple Linear Regression

To explore which acoustic and meta-data factors are related to
perceptual judgements of speaker similarity and thus to predict
such speaker similarity scores automatically, a stepwise multi-
ple linear regression analysis was performed. We used SPSS
Statistics version 19. The stepwise multiple linear regression
uses a variation of the forward algorithm, in which the signif-
icance of the change in the F-score is used as a criterion to
add explanatory variables to the multiple linear regression. As
the variables for multiple regression, we considered the follow-
ing factors and used Euclidean distances of the individual fac-
tors as the actual explanatory variables (except age and accent).
Acoustic variables are calculated from audio downsampled to
48kHz at 16 bit depth.

• Accent: A binary accent decision was made in which a score
of 1 was given to a pair if they were of the same accent group
(as used in the MDS) and 0 if the accent differed.

• Age: The difference in age (in years) between the speakers.

• Duration: Two measures of duration were used, one for the
whole sentence excluding pauses and phone duration.

• Mel-cepstral coefficients: Six different subsets of the Mel-
cepstral co-efficients were used: low-range (dimensions 1-
20), mid-range (dimensions 21-40), high-range (dimensions
41-59), mid-low (1-40), mid-high (21-59) and c0 alone. Each
of these were used as the average over the whole sentence and
as the average for each phone. The Mel-cepstral coefficients
were extracted from the STRAIGHT spectrum [6].

• Aperiodic Component (AC): The full band and two sub-
bands (0-4 kHz and above 4-24 kHz) of AC [7] were included,
both as an average value for the whole sentence and the aver-
age per phone.

• Discrete Cosine Transformation (DCT) of log F0: A DCT
was applied to the log F0 values of voiced segments of phrases
and the whole sentence [8]; the first three DCT coefficients
were used. The 0th DCT coefficient is the mean of the logF0
of the segments, and the 1st and 2nd DCT coefficients are ex-
pected to capture F0 tilt and local prosody to some extent, re-
spectively. We calculated the mean of the three DCT coeffi-
cients over the whole sentence (where F0 exists).

• Jitter and Shimmer: Jitter and shimmer are both measures
of perturbations in the vibrations of the vocal folds. This is
speaker-dependent and contributes to perceived voice qual-
ity. Jitter quantifies perturbations in periodicity and shim-
mer quantifies perturbations in intensity of vibration. They
were included because they have been used to describe voice
quality of the elderly [9] and between-gender differences [10],
amongst other things, and they also seem to relate to perceived
qualities such as hoarseness and roughness [11].

• Harmonic-to-Noise Ratio (HNR): While similar to AC;
HMN is a ratio of the amount of non-periodic energy in the
speech where AC is the component itself. HMN reflects the



Table 1: Stepwise Multiple Linear Regression Results. The numbers represent the weight (beta-coefficient) of the explanatory variables
automatically chosen using the forward algorithm based on the F-score. + represents mel-cepstral distance using low-mid dimensions
(1-40). Adjusted R2 values are shown in the last column.

Explanatory Variables
Duration Mcep Aperiodicity DCT F0

Model Accent Age Phone Sent Phone Sent All freq 0-4kHz 4kHz– 0th 1st 2nd Jitter Shimmer HNR SpecTilt Adjusted R2

Full -0.62 -0.27 -0.14 -0.14 -0.08 0.14 -0.12 0.63
Meta -0.67 -0.13 0.49

Acoustic -0.30 -0.16 + -0.11 -0.22 -0.28 0.12 0.29

ratio between harmonic (periodic) vs noise (non-periodic) en-
ergy in the voice; it is represented as a log ratio in dB. HNR
has been found to vary with “vocal age” [12] and relate to “vo-
cal attractiveness” [13].

• Spectral Tilt: Spectral tilt is a measure of a speech signal’s
distribution of power against frequency. The spectral tilt may
be used as a cue by listeners [14] and is one of the key prop-
erties of Lombard speech [15]. The calculation of the spectral
tilt was based on the definition in [15].

The first two variables are self-reported meta-data features and
the remainder are continuously-values acoustic properties. We
performed three sets of stepwise multiple linear regression: one
including both the meta features and acoustic features, one us-
ing only the meta features, and one using only the acoustic
features. They will be referred to as the “Full,” “Meta,” and
“Acoustic” regression models, respectively.

3.2. Results of Stepwise Multiple Linear Regression

Table 1 shows the results of the stepwise multiple linear regres-
sion. The numbers are the weight of explanatory variables au-
tomatically chosen using the forward algorithm based on the
F-score. + denotes the cases where the Mel-cepstral distance
using low-mid dimensions (1-40) was the chosen variable. Ad-
justed R2 values are given in the last column. We can see
that meta-data-based multiple regression obtains better R2 value
than acoustic feature-based regression, but that they are comple-
mentary: combining meta-data and acoustic features results in a
multiple regression model that can explain 63% of the variation
in the perceptual judgements.

In contrast to the results of others (e.g. [16]), Mel-cepstral
features were not chosen in our “Full” regression model. This
is presumed to be because we have an accent variable that itself
implicitly explains phonetic (segmental) differences among ac-
cents. It is also interesting that our regression models (full and
acoustic) did not choose the 0th DCT coefficient (which is the
average of log F0), but rather the 1st DCT coefficient. Since our
speakers have varied accents, F0 movements represented by the
1st DCT coefficient appear to be more useful to listeners in dis-
tinguishing between speakers than differences of global average
log F0.

4. Average Voice Models Using Speaker
Clustering

4.1. Speaker Clustering for Average Voice Model Training

In order to verify the effect of speaker clustering for average
voice model training, a second perceptual similarity test was
conducted using HMM-based speech synthesis. Three of the
speakers used in the first test were selected as target speakers

Table 2: Average Voice Model Definition

Condition Description
Average Global average voice model trained on 29 female

speakers and a total of 9966 sentences

Perceptual selection
Perceptual Eight closest speakers selected using the percep-

tual similarity scores
MDS Eight closest speakers selected using Euclidian

distance in the 2d MDS perceptual space

Automatic selection
Full Eight closest speakers selected using the Full re-

gression model
Meta Eight speakers selected using the Meta regression

model
Acoustic Eight closest speakers selected using the Acoustic

regression model

Random Eight randomly chosen speakers

for speaker adaptation, one from the SE cluster (v26), one OU
(v3) and one NA (v15). For each target speaker, the seven aver-
age voice models shown in Table 2 were constructed. All mod-
els, except “Average”, were trained on eight speakers using 400
sentences each giving a total of 3200 sentences. For each condi-
tion the average voice model was adapted to the target speaker
using only 25 sentences. For full details of the HMM-based
speech synthesis and speaker adaptation methods used in the
experiment, please refer to [17].

4.2. Listening Test

Natural speech from each target speaker was used as the ref-
erence (X). All permutations, except identical samples, of syn-
thetic sentence pairs matching each target speaker were created
and presented in both orders (XAB and XBA), to avoid recency
effects, for a total of 146 target/samples-pairs. 40 native speak-
ers of English were recruited to take part. Each participant was
presented with all 146 stimuli and asked to judge which they
found to be the most similar to the reference natural speech.
The test was divided into three sections, in which participants
made 50 judgements in section 1 and 2 and the remaining 46 in
section 3; the order of presentation was randomized per partici-
pant. Between each section, participants had a small break with
shorter breaks during each section. The listening test took ap-
proximately 50 minutes to complete. With 40 participants each
making 146 judgements each the total number of judgements



Figure 2: Results of the ABX test

was 5840.

4.3. Results and Discussion

Figure 2 shows the averaged preferred percentage scores with
95% confidence intervals. First we can see that (as expected) the
Percep condition provides the best results. The MDS condition
is also as good as the Percep condition. Both are significantly
better than all other conditions. This shows that choosing per-
ceptually similar speakers improves speaker adaptation perfor-
mance, supporting our main hypothesis. More specifically, an
average voice model trained on perceptually similar speakers
using only 3,200 sentences provides better speaker adaptation
performance than adaptation from a global average voice model
using 9,966 sentences – about three times amount of data.

However, all of the automatic methods for choosing per-
ceptually similar speakers (Full, Acoustic, Meta) have worse
performance than the methods based directly on perceptual data
(Percep, MDS). Despite seemingly reasonable R2 values (0.63),
the linear regression models are not able to choose perceptually
similar speakers. Surprisingly, the preference score of the Meta
model is worse than that of the Acoustic model and in fact just
as as bad as the Rand condition, even though the Meta model
has a higher R2 value than the Acoustic one. A possible ex-
planation could be that average voice models using the Meta-
feature regression do not always reduce the required transform
distance; this method makes no use of acoustic information.

5. Conclusion
This paper has introduced several methods for speaker clus-
tering for speaker-adaptive HMM-based speech synthesis. We
have confirmed our main hypothesis: it is better to use a smaller
number of carefully chosen speakers than a large number of ar-
bitrary speakers. However, the only methods which can suc-
cessfully identify such speakers require perceptual judgements.
Automatic methods, even though learned from such perceptual
data, fail to select appropriate speakers. It remains future work
to find an automatic method for speaker selection: this is nec-
essary to scale the method up, and in particular, to be able to
create average voice models for new target speakers in cases
where we have no perceptual data on that target speaker.
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