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Abstract

HMM-based systems for Automatic Speech Recognition typically model

the acoustic features using mixtures of multivariate Gaussians. In this

thesis, we consider the problem of learning a suitable covariance ma-

trix for each Gaussian. A variety of schemes have been proposed for

controlling the number of covariance parameters per Gaussian, and

studies have shown that in general, the greater the number of param-

eters used in the models, the better the recognition performance. We

therefore investigate systems with full covariance Gaussians. However,

in this case, the obvious choice of parameters – given by the sample

covariance matrix – leads to matrices that are poorly-conditioned, and

do not generalise well to unseen test data. The problem is particularly

acute when the amount of training data is limited.

We propose two solutions to this problem: firstly, we impose the re-

quirement that each matrix should take the form of a Gaussian graph-

ical model, and introduce a method for learning the parameters and

the model structure simultaneously. Secondly, we explain how an

alternative estimator, the shrinkage estimator, is preferable to the

standard maximum likelihood estimator, and derive formulae for the

optimal shrinkage intensity within the context of a Gaussian mixture

model. We show how this relates to the use of a diagonal covariance

smoothing prior.

We compare the effectiveness of these techniques to standard methods

on a phone recognition task where the quantity of training data is

artificially constrained. We then investigate the performance of the

shrinkage estimator on a large-vocabulary conversational telephone

speech recognition task.



Discriminative training techniques can be used to compensate for the

invalidity of the model correctness assumption underpinning maxi-

mum likelihood estimation. On the large-vocabulary task, we use dis-

criminative training of the full covariance models and diagonal priors

to yield improved recognition performance.
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Chapter 1

Introduction

1.1 Data-driven automatic speech recognition

On its simplest level, Automatic Speech Recognition may be viewed as a pattern

recognition problem (Bishop, 1995). In computer pattern recognition (specifically,

classification) we are presented with an input associated with one of a discrete

set of classes, and we wish to find some means of automatically determining

the correct class. We seek a mapping from X , the set of possible inputs, to

C = {C1, C2, . . . }, the set of possible outputs. This usually takes the form of a

mathematical function, h : X → C In this context, x is a a feature vector.

In practice, finding a good function h can be extremely complex. In data-

driven pattern recognition (also called machine learning), we split the problem

into two parts: we write

h(x) ≡ h(x; θ)

So that h depends on some parameter θ. The form of the function is specified

using human knowledge, whilst θ is determined automatically from representative

training data, a process known as training or learning. The training data may

consist of sample pairs (xr, yr) of inputs, together with the correct output classes,

in which case the training is supervised, or simply example inputs xr, in which

case it is unsupervised.

Typically pattern recognition problems have inherent variability: a given out-

put Ck is not associated with a fixed input. It may even be that across all the

data we find instances where an identical input is associated with multiple classes,

1



1.1 Data-driven automatic speech recognition

so that it is not even possible to obtain a function capable of classifying all data

correctly. This motivates statistical pattern recognition: here we model the vari-

ability explicitly, so that an input x has a conditional probability P (y|x) of being

associated with class y. Classifying an input according to

ŷ = arg max
y∈C

P (y|x) (1.1)

then gives the highest probability of the classification being correct. Of course,

this probability is unknown. In data-driven statistical pattern recognition, we

attempt to approximate it by a parametrised version, Pθ(y|x). Our classification

function h becomes

h(x) = arg max
y∈C

Pθ(y|x) (1.2)

as the pattern recognition problem is split into three parts: choosing the form of

the parametrised probability Pθ(y|x); learning the optimal θ automatically from

training data; and finally, given input data x, finding the class that maximises

the probability. If we know the underlying frequencies of the respective classes,

P (y), we can use Bayes’ theorem to rewrite the above equation as

h(x) = arg max
y∈C

pθ(x|y)P (y) (1.3)

Almost all modern speech recognition systems are based on these techniques.

In building a speech recognition system, we construct a mathematical model that

takes a recorded speech utterance as its input and returns a natural language

transcription as its output. To do this, we must specify the form of the probabil-

ity model, then train its parameters using some transcribed training utterances.

When presented with new utterances, we then compute the most likely transcrip-

tion, using the trained model.

Speech recognition is a hard machine learning problem:

• The input space X is high-dimensional: digital recordings of speech com-

monly sample the speech at frequencies of 16khz. We might extract some-

where between 12 and 60 continuous frequency coefficients for each 10ms in-

terval , so that a 10s utterance could be associated with a 60,000-dimensional

input space.

2



1.1 Data-driven automatic speech recognition

• The output space, too, is high-dimensional. A large-vocabulary system

might have a vocabulary of the order of hundreds of thousands of words.

• Speech is inherently dynamic. The feature vector is not fixed in length: it

depends on the length of the utterances. The output is not a single word:

it is a string of words of unknown length. Moreover, it is unknown which

parts of the feature vector correspond to which word, or even which part of

a word.

• Speech is highly variable. It varies between groups of speakers due to dif-

ferences in accent, and between individuals due to physical differences in

speech production, most obviously due to differences in age and sex. It

varies with speaking rate and speaking style.

• In real-world situations, recorded speech data may be degraded due to back-

ground noise or reverberation. Additionally, the data may be degraded due

to channel conditions, for example, when the signal has been transmitted

by telephone.

Humans find speech recognition difficult too. When the speaker has an unfamiliar

accent, or is speaking in a crowded room, or over the telephone, we often struggle

to hear what is being said. In these situations we rely on strong intuitions about

what is likely to be said, based on our knowledge of language, the speaker, and the

situation. When we are unable to rely on this mental model – for example, when

recognising strings of isolated alphanumeric characters, such as postcodes, about

which we have no prior knowledge – we often fail to recognise speech correctly.

In designing a statistical ASR system, then, we require a model which:

1. can deal with the dynamic, high-dimensional nature of speech and written

language;

2. uses the knowledge we have about human speech perception;

3. uses a powerful statistical model capable of modelling the variability in

speech, whose parameters we can learn from available data

3



1.1 Data-driven automatic speech recognition

Early ASR systems used dynamic time warping (Sakoe & Chiba, 1978; Vintsyuk,

1968) to force two utterances to be compared to have the same length. However,

since the early 90s, Hidden Markov Models (HMMs) have become predominant.

Introduced by a team at the Institute for Defense Analyses (Ferguson, 1980) and

in the Dragon system by Baker (1975), and developed extensively by the IBM

speech research group (Bahl et al., 1983), HMMs essentially reduce the dynamic

training and recognition problems to a series of static inference and classification

problems, one for each frame. They do this by making simple assumptions about

the conditional independence of successive frames of speech, given some hidden

variable.

Human knowledge plays a role in system design: in constructing the feature

vector x from the frames of speech, we employ front-end processing that is typi-

cally motivated by speech production or perception. Linear prediction coefficients

(Markel & Gray, 1976, for example) arise from modelling the human vocal tract

as an all-pole filter. The Mel-filterbank (Stevens & Newman, 1937) models the

frequency response of the ear. Perceptual linear prediction (Hermansky, 1990)

combines the two. Motivated by linguistic theories, we model words as sequences

of discrete, perceptually categorical speech sounds, known as phones. To sub-

stitute for the role of high-level domain knowledge in human speech recognition,

we use a prior model for the lexical content of speech, called a language model,

independent of the speech acoustics. N-gram language models, described in Chap-

ter 2, are powerful and can be conveniently integrated into the HMM-decoding

process.

In an HMM system, acoustic modelling is concerned with finding the proba-

bility pθ(x|y) - (from Equation 1.3) for the feature vector x for each frame. In this

context y represents some categorical acoustic variable, such as a phone. In early

HMM systems (Shikano, 1982), the probability was obtained via a discretisation

of the acoustic space using a process known as Vector Quantisation (VQ). Using

a clustering algorithm, a set of codebook vectors is obtained, and the acoustic

space is then partitioned into segments according to which codebook vector is the

closest. Rabiner et al. (1985) first used parametric continuous probability distri-

butions with HMMs for acoustic modelling, modelling pθ(x|y) using mixtures of

multivariate Gaussians (GMMs). Probably the most widely used acoustic mod-

els used in ASR systems, GMMs are flexible and powerful, and we use them for

4



1.1 Data-driven automatic speech recognition

all systems described in this thesis. We refer to the HMM-GMM combination

as a continuous-density HMM (CD-HMM). The density of each Gaussian m is

parametrised by its mean µm and covariance matrix Σm.

Humans learn speech recognition from a limited set of speakers, but we possess

a capacity to generalise what we learn to new speakers and speaking conditions

with minimal new examples, in a way that is unmatched by any automatic sys-

tem. However, we have very little understanding of the learning mechanism used

by the brain, and efforts to replicate it have met with limited success. The most

effective alternative is to use complex models with very high modelling power,

and train them using very large amounts of data. CD-HMMs are very suitable

for this purpose: from an engineering perspective, they have the attraction that

there are well-understood and computationally tractable algorithms for param-

eter inference and probability maximisation using these models. We describe

them in Chapter 2. The complexity of the models may easily be controlled by

several different means: controlling the cardinality of y; varying the number of

Gaussians in the mixture model; and varying the number of free parameters of

each Gaussian.

We could imagine that, were we supplied with a near infinite quantity of train-

ing data, covering every possible set of speaker characteristics, accent, speaking

style and environmental condition, and given sufficient computational resources,

we could build an CD-HMM system capable of recognising speech as well as a

human – or at least as well as a human listening to speech of unfamiliar con-

tent, without strong linguistic prior knowledge. Certainly systems perform well

enough when the input is from a single speaker with prescribed conditions, and

there is plenty of representative training data. In practice, the limited availability

of training data, relative to the range of speech that the system is required to

process, poses a major problem. If the system is complex enough to deal with all

potential input speech, it will be prone to over-fitting to the specific training data

available and will perform poorly on new data, whilst if it is too simple, it will

lack the power to model the full range of expected input – this is illustrated in

Figure 1.1. It is usually necessary to seek a trade-off between the two extremes.

The problem is one of generalisation. It is essential to have a system that is

tuned so that, given the quantity of training data available, it generalises as well

as possible to unseen data.

5



1.1 Data-driven automatic speech recognition

Complexity

Performance
Training data

Test data

Figure 1.1: An illustration of the problem of model generalisation: when the

model is too simple, it generalises to unseen test data, but lacks the modelling

power necessary for high performance. When the model is too complex, it over-

fits to the data used to train it, performing well on this data, but generalising

poorly to unseen data.
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1.2 Contribution

In this thesis we assume that training data is always limited. We investigate

methods for maintaining generalisation ability when very high-complexity models

are used. We focus specifically on the estimation of the covariance matrices,

Σm, used to compute the Gaussian densities, which are used in turn to compute

pθ(x|y). In their unconstrained form the covariance matrices have very large

numbers of free parameters, so the issue of generalisation versus modelling power

is particularly pertinent.

We are particularly interested in developing methods to maintain generalisa-

tion that are universally applicable, without requiring extensive task-dependent

hand tuning. Our goal is to automatically adjust the model for optimal perfor-

mance given the available training data using the knowledge with which we are

naturally provided about its quantity and variability. Ultimately, we seek meth-

ods which, when averaged over all the training sets we might encounter, result in

pθ(x|y) being as close as possible to the real, model-free p(x|y) (or at least, for the

classification decisions made using the respective probabilities to be close). That

requires not only models that generalise well, but also models that compensate

the limitations of our CD-HMM parametrisation.

1.2 Contribution

Having presented the broad motivations of this thesis, we now outline the process

which lead to these goals; we briefly summarise the novel research undertaken.

Work by Bilmes (1999) on Buried Markov Models and continuous variable

Dynamic Bayesian Networks lead us to begin study of full covariance Gaussian

systems. In a Buried Markov Model, the dependency structure between elements

of the acoustic feature vector varies with the hidden state. This is equivalent to

imposing a sparsity structure on the covariance parameters. When the depen-

dency structure is specified using an undirected graphical model, this corresponds

to the sparsity structure of the inverse covariance matrix. This was first studied

by Dempster (1972), and can be viewed within a more general class of precision

matrix models (Sim & Gales, 2004).

Working within a generative modelling framework, we first investigated the

problem of learning the sparse dependency structures directly from data, with the

aim of finding a globally optimal solution. This lead us to the recently-developed

7



1.2 Contribution

optimisation method of Banerjee et al. (2006). Their method is related to the

lasso (Meinshausen & Bühlman, 2006), and requires an l1 penalty term to be

included when maximising the likelihood. This work motivated a more general

consideration of the desirable properties of a covariance estimator, leading us

to investigate, as an alternative, a shrinkage estimator (Stein, 1956). Here, the

full matrix is interpolated with a lower dimensionality estimator to optimise the

trade-off between variance and bias.

We implemented the two estimation techniques for training the parameters

in an CD-HMM system, and compared their performance for phone recognition

using the TIMIT corpus, artificially constraining the training data available. We

found that the performance of the shrinkage estimator was significantly higher

than that of the lasso estimator. We went on to investigate the former’s perfor-

mance on a large-vocabulary conversational telephone speech recognition task.

We compared it with smoothing methods described slightly earlier by Povey &

Saon (2006). We carried out a detailed analysis of the statistics used by the

shrinkage estimator to relate the two techniques.

The generative framework has been shown to be sub-optimal for ASR due to

its reliance on the assumption of model correctness. This can be remedied by

explicitly discriminative parameter estimation. We therefore integrated discrim-

inative training into the full covariance techniques. We describe the recipes used

for training based on the MMI criterion (Bahl et al., 1986).

This thesis includes a thorough review of the work of others in the field of

covariance modelling. We also describe other work that has been used to im-

prove ASR performance, where we have incorporated that work in our systems.

The style of prose used, and particularly the fact that we have attempted to

express the work of others using a consistent framework throughout the docu-

ment, occasionally makes it difficult to discriminate between existing research

and new research carried out for this thesis. We therefore briefly list the original

contributions:

• the use of l1-penalised likelihood for learning sparse precision matrix struc-

ture within a Gaussian mixture model framework for ASR; experiments

varying the penalty parameter on an ASR task;
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1.3 Structure

• a comparison of the effect of varying the quantity training data on the

performance of different covariance models for phone recognition;

• an in-depth analysis of the effect of off-diagonal smoothing of full covariance

models on both phone recognition and large vocabulary ASR tasks;

• a mathematical comparison of Bayesian and classical methods for covariance

estimation; the derivation of a formula for estimating shrinkage parameters

for an CD-HMM system from data, and a method for sharing the required

statistics across Gaussians;

• a comparison of the effects of covariance smoothing when models are gen-

eratively and discriminatively trained.

In addition, we have tried to make accessible some literature from outside the

field of ASR – most notably that related to convex optimisation for l1-penalised

likelihood maximisation and consistency of covariance estimation under weak

asymptotic assumptions. To this end, the thesis contains substantial mathemat-

ical reformulation of the original work, so that whilst the results are not new,

several of the derivations are.

The following publications are almost entirely composed of work contained in

this thesis:

Bell, P. & King, S. (2007). Sparse Gaussian graphical models for speech

recognition. In Proc. Interspeech.

Bell, P. & King, S. (2008). A shrinkage estimator for speech recognition

with full covariance HMMs. In Proc. Interspeech.

Bell, P. & King, S. (2009). Diagonal priors for full covariance speech recog-

nition. In Proc. ASRU .

1.3 Structure

The remainder of the the thesis is structured as follows:
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1.4 Notation

• In Chapter 2 we describe the main components of a CD-HMM speech recog-

nition system. We introduce the main algorithms used for HMM training

and decoding and discuss the common system refinements.

• Chapter 3 introduces covariance modelling. We consider the desired proper-

ties of a covariance model, and describe parameter estimation. We discuss

various approaches to covariance modelling previously employed in ASR

systems.

• Chapter 4 gives background on graphical modelling and relates work in this

area to covariance modelling. We discuss structure learning in graphical

models, and describe the convex optimisation methods used in this thesis.

• Chapter 5 describes the shrinkage estimator and its properties. We derive

formulae for the optimal shrinkage parameter, and compare this to other

covariance smoothing methods.

• In Chapter 6 we present results on the TIMIT phone recognition task using

the two techniques for full covariance estimation, when the amount of avail-

able training data is constrained. We then describe our large vocabulary

system, and present a range of full covariance results.

• Chapter 7 explains the need for discriminative training, gives background on

the techniques used. We derive formulae for full covariance discriminative

training, and considers covariance regularisation within a discriminative

framework.

• In Chapter 8 we describe our recipes for training discriminative full co-

variance models for the large vocabulary recognition system, and present

results.

• Chapter 9 summarises the work and discusses potential future research.

1.4 Notation

When choosing mathematical notation, we have tried to strike a balance between

maintaining consistency throughout the thesis and retaining consistency with

10



1.4 Notation

original references or standard conventions in the literature. Inevitably, the latter

concern means that notational conflicts occur: for example, β is used to denote

HMM forward probabilities, but also sums of state posteriors. In these cases, the

use should be clear from the context. For quantities recurring throughout this

document, however, we have tried to use standard symbols, even when these may

differ from those used in the original references.

Some general conventions that we adopt are: vectors and scalars are not

differentiated, since usually the difference is unimportant; matrices are denoted

by upper case letters; and for statistical parameters, we use Greek letters for

unknown parameters and Roman letters for estimates obtained from training data

and for random variables. Overleaf is a description of recurrently-used symbols.

11



1.4 Notation

O Sequence of observation vectors
ot Observation at time t
Q Sequence of hidden HMM states
qt HMM hidden state at time t
W Sequence of words
γ State/Gaussian occupation probability
β Sum of state posteriors

m Index over Gaussians
r Index over utterances
i, j Indices over matrix/vector elements (usually)
t Index over time

A Arbitrary matrix
R Arbitrary rotation matrix
T As superscript, matrix/vector transpose; otherwise, total time frames
Σ Unknown “true” covariance matrix
S Sample covariance matrix
U Covariance matrix learned from data, constrained by some model
P Precision matrix learned from data
D Diagonal matrix (NB. also has other uses)
Λ Diagonal matrix of eigenvalues
λ Eigenvalue of a symmetric matrix

τ Smoothing prior weight
α Shrinkage parameter
ρ Likelihood penalty parameter
x Arbitrary sample vector
y Class label
n Number of samples
d Dimensionality
θ Arbitrary set of parameters

12



Chapter 2

Speech recognition with

continuous-density HMMs

Applying front end feature processing to a recorded utterance, we obtain a series

of d-dimensional observation vectors O = (o1, o2, . . . , oT ), where T is the number

of frames. The goal of an ASR system is to predict the correct word sequence W

for the utterance. We aim to find the most likely word sequence, given by

Ŵ = arg max
W

P (W |O) (2.1)

Following 1.3, we can use Bayes’ theorem to write this as

Ŵ = arg max
W

p(O|W )P (W ) (2.2)

The problem of finding P (W ) – which is independent of the recorded utterance

– is termed language modelling. We discuss this briefly in Section 2.2.3. Find-

ing p(O|W ) is termed acoustic modelling. We now explain how this may be

approximated using a continuous-density hidden Markov model.

In practice, we compute log probabilities to avoid numerical underflow, and

scale the language model log probabilities by a factor ν to compensate for the

fact the the acoustic models lead to a distribution that is narrower than the true

distribution, due to the conditional independence assumptions made. Thus, we

seek the maximum of

log p(O|W ) + ν logP (W ) (2.3)

In this chapter we describe the standard features of an ASR system using continuous-

density hidden Markov models. We focus particularly on acoustic modelling. We
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2.1 The hidden Markov model

first introduce the HMM and describe algorithms used for parameter training and

decoding, and describe practical issues of model construction. We then describe

the Gaussian mixture model, used as the probability density function for the

acoustic space. Finally, we discuss some commonly-used refinements for acoustic

modelling.

2.1 The hidden Markov model

2.1.1 Model assumptions

The hidden Markov model (HMM) models p(O|W ) via an intermediate sequence

of discrete hidden (i.e. unobservable) variables Q = (q1, ... . . . , qT ), one for each

frame t. Q is called the state sequence. We assume that the value of the hidden

variable qt exclusively determines the acoustic properties of that frame. In other

words, we assume that an observation ot is conditionally independent of all other

observations, and other hidden states, given qt:

p(ot|O,Q) = p(ot|qt) (2.4)

These are known as the HMM observation or “output” probabilities, and we say

that the hidden state “generates” the observation.

We also make a first-order Markov assumption: that given the preceding state,

each state is conditionally independent of all earlier states

P (qt|q1, . . . qt−1) = P (qt|qt−1) (2.5)

The state sequence is therefore a Markov chain (Grimmet & Stirzaker, 1982).

These assumptions are illustrated in the Graphical Model in Figure 2.1. Using

the assumptions, the probability of the observed acoustics is computed as:

p(O|W ) =
T∏

t=1

P (qt|qt−1)p(ot|qt) (2.6)

q0 may be set as some fixed entry state. The word transcription W is used to

constrain the model topology. Indexing the set of possible states by j, we write

the output probabilities as

bj(ot) := p(ot|qt = j) (2.7)
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2.1 The hidden Markov model

and also the transition probabilities

aij := P (qt = j|qt−1 = i) (2.8)

We use θ as a shorthand to refer to all the parameters of the HMM, and occasion-

ally use pθ(O), pθ(O|W ), etc to denote that the probabilities are computed with

HMM assumptions and parametrisation, contrasting with the true underlying

probabilities.

qt-1 qt qt+1

ot-1 ot ot+1

Figure 2.1: A graphical model illustrating the dependencies in an HMM. The

lack of an arrow between two variables indicates that they are conditionally in-

dependent.

2.1.2 HMM topology

To relate the state sequence Q to the word sequence W , it is necessary to define

the state sequence topology. We take words to be strings of sub-word units, say

phones. Ignoring pronunciation variation, the mapping is deterministic. Most

systems model phones as HMMs with three distinct “emitting states” (states

associated with an observation), each with their own output probability functions.

By convention these are labelled from 2-4, to allow for entrance and exit states,

which simplifies the topology. In the Markov chain, transitions can occur from

each emitting state to the next, and from each emitting state to itself. In this

15



2.1 The hidden Markov model

2 3 4

o1 o4o2 o3 o5 o6

Figure 2.2: The topology of an HMM with three emitting states. In this example

there are six observations.

way, each phone state can “generate” multiple successive observations. This is

illustrated in Figure 2.2

Ignoring pronunciation variation, the sequence of phone states is determinis-

tically related to the word sequence W . This is specified by a lexicon. During

training, when the word transcription is supplied, the model topology for the ut-

terance is fully specified. During decoding, the probability of transitions between

words is supplied by the language model. Figure 2.3 illustrates a simple network

for word recognition with a small vocabulary.

sh iy

hh iy

l ey

ih z

Figure 2.3: A network of HMMs for recognition of (she/he)(lay/is). The word

models are constructed from three-state phone models, each with three emitting

states. Inter-word phone transitions are deterministic.
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2.1 The hidden Markov model

2.1.3 The forward-backward algorithm

To update the HMM parameters during training, it is necessary to compute

P (qt|O,W, θ), where θ is some initial parameter set. This may be computed

efficiently using the forward-backward algorithm (Rabiner & Juang, 1993). We

define the forward probabilities

αt(j) = p(o1, . . . , ot, qt = j|θ,W ) (2.9)

and backward probabilities

βt(j) = p(ot+1, . . . , oT |qt = j, θ,W ) (2.10)

Then we have

p(O, qt = j|θ,W ) = αt(j)βt(j) (2.11)

p(O|W ) =
∑

i

αt(i)βt(i) (2.12)

with the latter holding for any t. Then

P (qt = j|O, θ,W ) =
p(O, qt = j|θ,W )

p(O|θ,W )
=

αt(j)βt(j)∑
i αt(i)βt(i)

(2.13)

We denote this by γj(t) and refer to it as a state posterior probability. The

forward and backward probabilities are computed inductively:

αt+1(j) =
∑

i

αt(i)aijbj(ot+1) (2.14)

βt(i) =
∑

j

aijbj(ot+1)βt+1(j) (2.15)

The use of the forward-backward probabilities for HMM parameter estimation

using the Expectation-Maximisation algorithm is known as the Baum-Welch al-

gorithm (Baum et al., 1970), and is discussed in Section 2.3.2.

2.1.4 The Viterbi algorithm

The Viterbi algorithm is used to find the hidden state sequence giving the highest

likelihood to the observations:

Q̂ = arg max
Q

p(Q,O|θ) (2.16)
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2.2 Components of an HMM-based ASR system

We define

φj(t) = max
Q

p(o1, . . . , ot, qt = j|θ) (2.17)

where the maximum is taken over all paths ending in state j at time t. These

probabilities can be computed inductively:

φj(t) = max
i
{φi(t− 1)aij}bj(ot) (2.18)

At each time we store, for every j, the probability φj(t) and the identity of

the previous state i from which the probability was obtained. This allows the

complete most likely sequence to be recovered by back-tracing after the iterations

are complete. The use of the Viterbi algorithm for decoding is discussed further

in Section 2.2.4.

2.2 Components of an HMM-based ASR system

We briefly describe the main components of an HMM-based ASR system. This is

to facilitate the description of our experimental systems in later chapters; a more

complete introduction may be found in Young (2008).

2.2.1 Acoustic feature extraction

The acoustic front-end processes the raw speech waveform to extract the acoustic

features ot for use in the HMM. The aim of the process is to obtain features that

are useful for phone discrimination, whilst removing those conveying non-lexical

information such as emphasis and emotion. The feature extraction should also

minimise the effect of variation due to speaker and recording conditions. The

features should not be strongly correlated to avoid redundant model parameters.

The two most commonly used features are Mel Frequency Cepstral Coeffi-

cients (MFCCs) (Davis & Mermelstein, 1980) and Perceptual Linear Prediction

(PLPs) (Hermansky, 1990). The speech is transformed to the frequency domain

using a Fourier transform with a Hamming window. In the HTK implementation

we used, a Mel-scale filterbank is then applied. This attempts to replicate the

frequency response of the human ear. To obtain PLPs we estimate the coeffi-

cients of an all-pole filter modelling the vocal tract transfer function. In both

cases coefficients are converted into the cepstral domain, and a discrete cosine
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2.2 Components of an HMM-based ASR system

transform is applied. For more details see Young et al. (2006). Using cepstral

domain features has the advantage that some of the channel effects can be re-

moved by normalising the mean of the coefficients. This is known as Cepstral

Mean Normalisation (CMN). The mean is usually estimated on a per-recording

basis. Similarly, Cepstral Variance Normalisation (CVN) can be applied.

The feature vectors are usually appended with the coefficient differentials,

second differentials, and possibly third differentials. This helps compensate for

the invalidity of the assumption that successive observations are conditionally

independent without adding undue complexity.

2.2.2 Sub-word units

In all but a very small vocabulary recognition system, it is necessary to identify

sub-word units to define the HMM states. Phones – perceptually distinct speech

sounds, of which there are 40-50 in English – are a natural choice of unit. How-

ever, the acoustic realisation of a phone is strongly dependent on the context,

particularly in faster, spontaneous speech, due to co-articulation. To solve this

problem, context-dependent phone units are used. Triphones are composed of

a central phone, with one adjacent phone of context on either side. Context is

included across word boundaries.

sil sh iy ih z hh ae p iy sil

sil sil-sh+iy sh-iy+ih ih-ih+z ih-z+hh z-hh+ae hh-ae+p ...

...ae-p+iy p-iy+sil sil

Figure 2.4: Monophone form for she is happy converted to cross-word triphone

representation

The number of possible triphones is very large. Although many of them will

not occur in speech at all, a problem arises when triphones that do occur naturally

are not observed in the training data; and more generally, rarely seen triphones

will have insufficient data for reliable parameter estimation. To avoid this, similar

triphones are tied, sharing HMM states. Following Young et al. (1994) the tying

is accomplished using binary decision trees with phonologically-based questions

at each node.
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2.2 Components of an HMM-based ASR system

2.2.3 Language modelling

Language modelling is the process of estimating the prior probability of a string of

words, W = (w1, . . . wK). This is the P (W ) from Equation 2.2. An N-gram model

makes the simplifying assumption that words are conditionally independent, given

the N − 1 previous words, so that

P (W ) =
K∏
k

P (wk|wk−1, . . . wk−N+1) (2.19)

Given sufficiently high N (say 3 or 4), these simple models are surprisingly good

at modelling language. The probabilities are estimated using word co-occurrence

counts in training data, C(wk−N+1, . . . , wk). These counts, however, are fre-

quently close to zero for higher N , resulting in estimates that do not generalise

well. One of the most successful solutions to this problem is modified Kneser-

Ney smoothing (Chen & Goodman, 1999; Ney et al., 1994), in which the language

model probabilities are obtained using an interpolation from different order N-

grams, with greater weight given to the lower order N-grams when data is sparse.

2.2.4 Decoding

The Viterbi algorithm, described in Section 2.1.4 is commonly used as a basis for

decoder implementations. Some refinements are required to avoid the high com-

putational cost due to the large search space in large-vocabulary decoding. Beam

search removes tokens that deviate in likelihood by more than some fixed amount

(the beam width) from the most likely hypothesis at each frame t. The beam

width should not be too small, to prevent the most likely path being missed. The

recognition network can be tree-structured so that computation (before pruning

is effective) is shared for words sharing the first few phones.

Instead of producing a single output hypothesis, it is possible for the decoder

to store multiple tokens at each frame to produce a lattice, efficiently encoding

several of the most likely hypotheses (Richardson et al., 1995; Thompson, 1990).

In the standard representation, nodes in the lattice represent word start and end

times, and arcs represent words, to which acoustic and language model probabil-

ities can be attached.
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Lattices can be used to efficiently apply a more powerful language model,

such as a trigram or 4-gram. Known as rescoring, the arcs are updated with the

new language model probabilities, and the new one-best hypothesis obtained. In

addition, lattices may be used to specify the network for a second pass of decoding.

This is particularly useful when the new acoustic models have a much greater

computational costs. In both cases, it is important to ensure that the lattices

are sufficiently large to ensure that some of the most accurate transcriptions are

contained in the lattice.

2.3 Observation probabilities: the Gaussian mix-

ture model

In this section we introduce the Gaussian mixture model (GMM) and explain

how its parameters may be estimated using the EM algorithm.

2.3.1 The model

We model the output probabilities bj(ot) = p(ot|qt = j) using a Gaussian mixture

model. Given the state j, this assumes that the observation has a probability cjm

of being generated by a multivariate Gaussian distribution with density function

fjm(ot)

p(ot|qt = j) =

Mj∑
m

cjmfjm(ot) (2.20)

The cjm are also referred to as the mixture weights. To simplify the notation,

where appropriate we drop the dependence on j, and use m as an index to the

global collection of Gaussians and weight parameters; note, however, that in our

systems, as in standard CD-HMMs, Gaussians are shared only between states

that have been explicitly tied.

The Gaussian probability density function fm(ot) is defined as

fm(ot) = f(ot ; µm,Σm) = (2π)−d/2|Σm|−1/2 exp{−1

2
(ot − µm)T Σ−1

m (ot − µm)}
(2.21)

where µm and Σm are the mean and covariance parameters respectively. The

Gaussian distribution has a number of desirable properties. It is a member of the
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2.3 Observation probabilities: the Gaussian mixture model

exponential family of distributions. The variable ot appears only in the exponen-

tial term, which can be written

−1

2
(ot − µ)T Σ−1(ot − µ) =− 1

2
tr Σ−1(ot − µ)(ot − µ)T (2.22)

= tr(Σ−1.− 1

2
oto

T
t ) + Σ−1µoT

t −
1

2
Σ−1µµT (2.23)

so we see that the density function can be written in canonical exponential form,

with parameters (Σ−1µ,Σ−1) and statistics (oT
t ,−1

2
oto

T
t ). It is well known that

the exponential distribution with canonical statistics T (x) is the maximum en-

tropy distribution, given T (x). The Gaussian is therefore the maximum entropy

distribution with fixed first and second order statistics. This is the distribution

with the highest degree of uncertainty, given the data. We return to this theme

in Chapter 4.

Unlike a standard Gaussian distribution (regardless of the number of param-

eters used), the mixture model is of course capable of modelling skewed and mul-

timodal distributions; it is readily able to model data that forms distinct clusters

in acoustic space. The complexity of the model can most easily be controlled by

varying the number of Gaussians in the model.

2.3.2 Parameter estimation with the EM algorithm

In this section we describe the method for estimating the parameters of the Gaus-

sian mixture model using the forward-backward probabilities introduced in Sec-

tion 2.1.3. We do not discuss the estimation of other HMM parameters here (see

Rabiner & Juang, 1993).

For now we adopt the standard approach, and assume that we wish to find

parameters θ to maximise the likelihood of the training data. Given a training

utterance with observations O and transcription W , we attempt to maximise the

log-likelihood:

FML(θ) = log p(O|θ,W ) (2.24)

No analytic solution exists for this maximisation. However, given some initial

parameter set, it is possible to find an auxiliary function such that adjusting θ to

increase the auxiliary function guarantees an increase in the objective function

(2.24). For notational clarity we only consider one utterance here. However,
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the summations derived below easily extend over an entire collection of training

utterances.

The procedure we describe is known as the Expectation-Maximisation (EM)

algorithm (Dempster et al., 1977). Its application to HMM parameter estimation

using the forward-backward probabilities is known as the Baum-Welch algorithm

(Baum et al., 1970). Suppose that we have an initial parameter set θ0. We

first use this parameter set to compute the joint posterior probability of a state

sequence Q, and sequence of emitting Gaussians M , P (Q,M |O, θ0,W ). This is

known as the E-step. We define the auxiliary function at θ0 by

G(θ, θ0) :=
∑
Q

∑
M

P (Q,M |O, θ0,W ) log p(O,Q,M |θ,W ) (2.25)

The increase in the log likelihood is given by:

FML(θ)− FML(θ0) = log p(O|θ,W )− log p(O|θ0,W ) (2.26)

By conditioning on Q and M , we can express this increase as

log
[∑

Q

∑
M

P (Q,M |O, θ0,W )
p(O,Q,M |θ,W )

P (Q,M |O, θ0,W )

]
− log p(O|θ0,W ) (2.27)

≥
∑
Q

∑
M

P (Q,M |O, θ0,W ) log
( p(O,Q,M |θ,W )

P (Q,M |O, θ0,W )

)
− log p(O|θ0,W ) (2.28)

=
∑
Q

∑
M

P (Q,M |O, θ0,W )
[
log p(O,Q,M |θ,W )− logP (Q,M |O, θ0,W )p(O|θ0,W )

]
(2.29)

=
∑
Q

∑
M

P (Q,M |O, θ0,W )
[
log p(O,Q,M |θ,W )− log p(O,Q,M |θ0,W )

]
(2.30)

= G(θ, θ0)−G(θ0, θ0) (2.31)

where the first step uses Jensen’s inequality, and (2.29) uses the fact that∑
Q

∑
M

logP (Q,M |O, θ0,W ) = 1 (2.32)

So at each step, an increase in G(θ, θ0) is guaranteed to increase the log likelihood.

We attempt to find new parameters to maximise this function – this is known

as the M-step, a process we explain in more detail below. By repeating this
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procedure iteratively, we will find at least a local maximum of the objective

function. This is illustrated in Figure 2.5. Note that the gradients of the objective

function F (θ) and the auxiliary G(θ, θ0) are equal at θ0.

θ0 θ1 θ2

Figure 2.5: An illustration of two iterations of the EM algorithm. The objective

function is shown in black. The auxiliary functions at θ0 and θ1 are shown in red.

The horizontal axis represents parameter space; the vertical axis represents the

value of the objective and auxiliary functions.

To use G(θ, θ0) to update the GMM parameters, we reformulate the sums over

the sequences Q and M by a sum over the frames t, denoting posterior probability

of Gaussian m and state j at time t by

γjm(t) = P (m, qt = j|O, θ0,W ) (2.33)

This may be computed using the forward-backward algorithm (see Equation 2.13).

Ignoring the transition probability terms, which are not required for this discus-

sion, the log probability log p(O,Q,M |θ,W ) may be factorised as a sum of log-

probabilities
∑

t log p(ot,m|θ,W ), since ot is dependent only on the state qt, and

24



2.3 Observation probabilities: the Gaussian mixture model

we have

G(θ, θ0) =
∑

t

∑
j

∑
m

γjm(t) log [p(ot|m)P (m|qt = j)] (2.34)

=
∑

t

∑
j

∑
m

γjm(t)(log fjm(ot) + log cjm) (2.35)

To update the parameters pertaining to the Gaussian jm, therefore, we need only

maximise ∑
t

γjm(t)(log fjm(ot) + log cjm) (2.36)

=
∑

t

γjm(t)[−1

2
log |Σjm| −

1

2
(ot − µjm)T Σ−1

jm(ot − µjm)] (2.37)

As mentioned earlier, we usually drop the dependence on j.

For initialisation, it is common to set all parameters to the global mean and

variance (known as a “flat start”). Alternatively, an earlier model set may be

used, if it exists. For example, when training triphone models, parameters from

from the corresponding monophones may be used.

2.3.3 Fitting the mixtures

GMMs are usually initialised with a single Gaussian. Increasing the number of

Gaussians per state is normally achieved using a simple greedy algorithm. To add

an additional Gaussian to the model for a state, the Gaussian with the largest

weight is selected and split into two new Gaussians, each with half the weight of

the original. These are separated by perturbing the means by some proportion

of the standard deviation. The parameters are then re-estimated by using the

procedure above. This procedure is known as “mixing up”.

As the number of Gaussians is increased, some components may have very low

training data counts. In this situation, even when covariances are constrained to

be diagonal, the component variances computed from the training samples may be

very small, leading to over-fitting to the training data. A standard remedy to this

(Young et al., 2006) is to use variance flooring: typically each diagonal variance

element is floored at some fixed proportion (say 10%) of the mean within-state

variance for that dimension, which may be computed globally. As an alternative,
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components with very low training data counts may be pruned. Further problems

occur with covariance estimation in limited-data situations when covariances are

not constrained to be diagonal: these are the subject of discussion in chapters 3,

4 and 5.

It is worth noting that the greedy algorithms for Gaussian mixture fitting

do not guarantee a globally optimal solution for any fixed number of Gaussians.

In addition, choosing the number of Gaussians is a hard problem: simply using

a maximum likelihood approach would lead to a number of Gaussians equal to

the number of points of training data, with one Gaussian centred on each point,

which would generalise very poorly to unseen data. In practice, the number is

often set by trial and error using development data, or simply fixed at some

standard number, for example, 12 or 16 per state. We discuss this further in

Chapter 3.

2.4 Acoustic modelling refinements

Here we discuss a selected set of acoustic modelling refinements, being the ones

that we employ in our systems.

2.4.1 Dimensionality reduction

Having earlier discussed front-end feature processing, we now describe model-

dependent feature transforms. Linear discriminant analysis (LDA) is a method

for choosing a linear projection of the feature vector Rp → Rd (d ≤ p). LDA

is an explicitly discriminative method: we seek a transform that maximises the

ratio of the between-class variance to the within-class variance. In its classical

formulation (see Duda & Hart, 1973), however, the assumption is made that all

within-class covariances are equal.

Kumar & Andreou (1998) introduced heteroscedastic (linear) discriminant

analysis (commonly referred to as HLDA), which removes the equal variance as-

sumption, and derived a method for estimating the transform using the standard

EM algorithm for parameter updates. We write the transformation as

o′t = Aot (2.38)
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2.4 Acoustic modelling refinements

where A is a p-dimensional square matrix, with the final p−d rows corresponding

to ‘nuisance’ dimensions which are removed from the final transformed feature

vector: we denote this split by

A =

(
Ad

Ap−d

)
(2.39)

Since the nuisance dimensions are assumed to contain no class discrimination

information, we model them with a p − d dimensional global mean µ(g) and

covariance Σ(g). The remaining dimensions are modelled with Gaussian-specific

d-dimensional parameters µm,Σm. The parameters of the transformed vector Aot

are:

µp
m =

(
µm

µ(g)

)
,Σp

m =

(
Σm 0
0 Σ(g)

)
(2.40)

From (2.37), we change variables to obtain the log likelihood of the transformed

vectors:

G(θ, θ0) = −1

2

∑
m

∑
t

γm(t)[log |Σp
m|+ (Aot − µp

m)T Σp
m
−1(Aot − µp

m)− log |A|2]

(2.41)

(The final term is the Jacobian of the transformation). Holding A fixed and

maximising this expression with respect to µp and Σp, we obtain

µm = Adx̄m (2.42)

µ(g) = Ap−dx̄ (2.43)

Σm = AdWmAd
T (2.44)

Σ(g) = Ap−dTAp−d
T (2.45)

where

x̄m =

∑
t γm(t)ot∑
t γm(t)

Wm =

∑
t γm(t)(ot − x̄m)(ot − x̄m)T∑

t γm(t)
(2.46)

x̄ =

∑
m

∑
t γm(t)ot∑

m

∑
t γm(t)

T =

∑
m

∑
t γm(t)(ot − x̄)(ot − x̄)T∑

m

∑
t γm(t)

(2.47)

are the within-class 2.46 and global 2.47 means and variances, respectively. Sub-

stituting these into (2.41) and ignoring constant terms, we obtain

G(θ, θ0) = −1

2

∑
m

βm[log |AdWmAd
T |+ log |Ap−dTAp−d

T | − log |A|2] (2.48)
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2.4 Acoustic modelling refinements

where βm =
∑

t γm(t). The transform A is found to maximise this function. A

method for this optimisation was developed by Gales (1997, 1999) in the context

of semi-tied covariance matrices. We discuss this in Chapter 3.

2.4.2 Speaker adaptation

As mentioned in Chapter 1, much of the variability in the acoustic realisation of

phonemes is due to speaker-specific variation, which cannot all be removed by

the front-end normalisation described in Section 2.2.1. It would be desirable to

train speaker-specific model parameters. This presents two difficulties:

• for most applications, it is likely that the speakers encountered in test data

do not appear in the training set;

• the data available for an individual speaker may not have good phonetic

coverage.

The limited data necessitates an adaptive approach: rather than training a new

parameter set for each new speaker, we modify a speaker-independent set of

parameters to be more suitable for that speaker. In some situations it may be

possible to perform supervised adaptation by recording prescribed utterances

from the target speaker; however, this is often not possible, and adaptation must

be performed using the test data in an unsupervised manner: the new data is

first transcribed using the initial speaker-independent model set and adaptation

is performed using this reference transcription. This process can be iterated.

In Maximum A Posteriori (MAP) adaptation (Gauvain & Lee, 1994), the

speaker-independent model set is used as a prior for the speaker-dependent model.

By choosing the density of the prior appropriately, the speaker-dependent param-

eters may be obtained by a linear combination of the independent parameters and

the speaker data. For example, for the means of a speaker s,

µ(s)
m =

τµm +
∑

t γm(t)ot

τ +
∑

t γm(t)
(2.49)

where the sum is over the adaptation data for speaker s, and the weights γm

have been obtained from the transcription obtained with the original parame-

ter set. The MAP approach has the attractive property that as the amount
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2.4 Acoustic modelling refinements

of adaptation data reduces to zero, the adapted parameters tend to the origi-

nal speaker-independent parameters. However, this does not solve the problem

that the adaptation data is required to have good phonetic coverage for effective

adaptation.

An alternative approach (Gales & Woodland, 1996; Leggetter & Woodland,

1995) is to use a set of linear transforms to adapt the speaker-independent pa-

rameters:

µ(s)
m = A(s)µm + b(s) (2.50)

Σs
m = B(s)ΣmB

(s)T (2.51)

where A(s) and B(s) are speaker-specific linear transforms and b(s) is a speaker-

specific bias vector. The transforms can be trained using maximum likelihood –

the technique is known as Maximum Likelihood Linear Regression (MLLR). The

technique has the advantage that the linear transforms may be readily shared

across Gaussians, so that all Gaussians may be transformed, regardless of the

amount of adaptation data. Typically only a small number of transforms are

used, with Gaussians clustered using a regression class tree. Constraining the

mean and variance transforms to be equal, A(s) = B(s) (Digalakis et al., 1995;

Gales, 1998) is known as Constrained MLLR (CMLLR). This has the advantage

that the parameter transformation can be formulated as a transformation of the

feature vector:

o′t = A(s)ot + b(s) (2.52)

The translation term can be incorporated into a single transform by extending

the feature vector and transform:

ζt =

(
1
ot

)
, R(s) =

(
b A(s)

)
(2.53)

so that (2.52) becomes

o′t = R(s)ζt (2.54)

To find the maximum likelihood transform R, we use a similar procedure to

HLDA. The equivalent of Equation 2.41 is

G(θ, θ0) = −1

2

∑
m

∑
t

γm(t)[log |Σm|+ (Rζt − µm)T Σ−1
m (Rζt − µm)− log |A|2]

(2.55)
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2.4 Acoustic modelling refinements

where the sum is over all adaptation data for speaker s. This gives an objective

function

− 1

2

∑
m

βm(tr Σ−1
m RSmR

T − log |A|2) (2.56)

where

Sm =

∑
t γm(t)(ζt − ζ̄m)(ζt − ζ̄m)T∑

t γm(t)
, ζ̄m =

∑
t γm(t)ζt∑
t γm(t)

(2.57)

The optimisation of this function for the case when Σm is diagonal is described in

Gales (1998). The case when full covariance models are used has been considered

by (Povey & Saon, 2006).

2.4.3 Speaker adaptive training

Speaker adaptive training (SAT) is a technique for explicitly allowing for inter-

speaker variation during model training. The aim is to create a single model

set that specifically does not model inter-speaker variation, allowing non-speaker

sources of variation to be modelled more effectively. This speaker independent

model set must be adapted to each test speaker in order to perform well.

SAT can be performed using an iterative procedure. An initial model set is

trained and then adaptation transforms are trained for each training speaker.

These transforms are used to “normalise” the data from each training speaker

for a second iteration of model training. The procedure was suggested by Anas-

tasakos et al. (1996). Gales (1998) derived efficient formulae for using CMLLR

transforms for SAT.
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Figure 2.6: An illustration of an ASR system, incorporating several of the meth-

ods introduced in this chapter.
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Chapter 3

Covariance modelling

In this chapter, we will explain the need for covariance modelling in an CD-HMM

ASR system, and discuss the issues that arise during training and decoding that

mandate the choice of model, and the method used to obtain its parameters. We

review a range of methods used to resolve these issues.

3.1 Issues in covariance modelling

In a CD-HMM system, the need for covariance modelling arises (as we have seen

in Chapter 2) in the computation of the Gaussian probabilities during decoding.

For an observation vector ot, the probability density of a Gaussian m is given by

fm(ot) = f(ot ; µm,Σm) = (2π)−d/2|Σm|−1/2 exp{−1

2
(ot − µm)T Σ−1

m (ot − µm)}
(3.1)

or using log probabilities and ignoring constants:

log fm(ot) = −1

2
log |Σm| −

1

2
(ot − µm)T Σ−1

m (ot − µm) (3.2)

Covariance modelling is concerned with obtaining a suitable Σm for this compu-

tation, given some labelled training data. We use Um to denote the covariance

matrix for a Gaussian m obtained from the training data, using our model. In

contrast to Σ, which we usually take to be some fixed but unknown parameter

that describes the true distribution of the data, we view Um as a function of

the available training data, that may have its form restricted in some way by

limitations we impose on the model structure.

32



3.1 Issues in covariance modelling

Suppose that Σ∗
m is the (unknown) “optimal” covariance matrix to use (we

will define what exactly we mean by “optimal” later). Then when selecting a

covariance model, we broadly desire the following:

1. The model should enable an accurate value of fm(ot) (from Equation 3.1) to

be computed: in other words, fm(ot ;µm, Um) should be close to fm(ot ;µm,Σ
∗
m).

2. It should be possible to learn the model parameters, Um, from a (possibly

limited) quantity of training data.

3. Practically speaking, it should be computationally feasible to obtain the

Um, to store them in memory, and to compute fm(ot ;µm, Um).

In what follows, we sometimes suppress the dependence on m for clarity.

Choosing a model requires a trade-off between the above properties. Assuming

that Σ∗
m has the maximum 1

2
d(d+1) free parameters, we would expect to be able

to compute fm(ot) most accurately when Um has a maximum number of free

parameters also. However, this does, of course, maximise the cost of storing

the parameters and computing the densities. Furthermore, as the number of

parameters increases, it becomes more difficult to reliably estimate them from

limited training data. Of crucial importance, too, is the conditioning of the

matrix Um. If the matrix is ill-conditioned – that is to say, the ratio between

the largest and smallest eigenvalues is large – then numerical errors are amplified

when inverting the matrix or computing its determinant. Generally speaking,

the chance of Um being ill-conditioned increases as the number of free parameters

increases relative to the size of the training data.

As a motivating example, consider an artificial three-way classification prob-

lem in two dimensions, with data from each of the three classes distributed ac-

cording as a single multivariate Gaussian, as shown in Figure 3.1. (Each class has

an equal prior probability). We wish to classify the data using single-Gaussian

parametric models for each class. Estimating the full covariance parameters from

the data using maximum likelihood yields decision boundaries as shown in Fig-

ure 3.2. 1.2% of samples are incorrectly classified.

Now suppose that we use simpler, diagonal covariance models. If we estimate

the parameters of the diagonal models by the diagonal elements of the full co-

variance matrices, the error rate is increased to 5.3%; the reduction in modelling
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Figure 3.1: Samples from three classes, each drawn from a single Gaussian
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Figure 3.2: Samples from three classes, with decision boundaries obtained using

maximum-likelihood full covariance Gaussian models
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3.1 Issues in covariance modelling

power limits the functional form of the new decision boundaries, which are shown

in Figure 3.3.
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Figure 3.3: Samples from three classes, with decision boundaries obtained using

maximum-likelihood diagonal covariance Gaussian models

This motivates the use of more complex covariance models than the diagonal

models commonly used. However, a number of questions arise.

• Could the lack of sufficient complexity in covariance modelling be avoided

by increasing model complexity elsewhere? For example, by increasing the

number of Gaussians.

• The use of the complex models works well in this scenario, where there

is sufficient data to estimate the parameters reliably – but what happens

when data is limited?

• Are there learning methods that could be employed to allow the lower com-

plexity models to achieve improved classification performance?

We will consider all these questions in the following chapters, and at times refer

to the example presented here.

Although we will give regard in this chapter to the practical issues of pa-

rameter storage and density computation, modern high-performance computing
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3.1 Issues in covariance modelling

facilities are such that these requirements do not pose any hard limits on the

models that may be used – in experimental systems, at least. We have found

that it is quite possible to train and decode with full-parameter matrices in large-

vocabulary recognition systems. We therefore do not discuss these issues in detail.

In the following sections, however, we consider further the problems of matrix

conditioning and parameter estimation.

As a general point of notation, we use ot, to refer to a d-dimensional acoustic

feature vector, generated from a mixture of Gaussians. We use x, or xi to refer to

an abstract feature vector generated from a single known Gaussian distribution

– or occasionally to refer to an arbitrary observation of a continuous random

variable.

3.1.1 GMM covariance estimation

We briefly describe the process of covariance estimation within an CD-HMM.

We seek parameters for Gaussian m to maximise the auxiliary function given in

Equation 2.37 on page 25:

G(θ, θ0) =
∑

t

γm(t)[−1

2
log |Um| −

1

2
(ot − µm)TU−1

m (ot − µm)] (3.3)

= −1

2
βm log |Um| −

1

2
tr[U−1

m

∑
t

γm(t)(ot − µm)(ot − µm)T ] (3.4)

= −βm

2
(log |Um|+ trU−1

m Sm) (3.5)

where Sm is the sample covariance matrix, defined by

Sm =

∑
t γm(t)(ot − µm)(ot − µm)T

βm

(3.6)

We have used the fact that the trace of a scalar is that scalar, and that the trace

operator is invariant to cyclic permutations.

For the purposes of estimating the covariance matrix by maximising this func-

tion, all that matters is that for each Gaussian m, each observation ot has been

assigned a weighting γm(t). If the motivation is to maximise the log likelihood of

the observations using the EM algorithm, then γm(t) is the posterior probability

of ot having been drawn from the Gaussian m, given the whole observation se-

quence, O, and the previous parameter set. However, the analysis applies equally
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3.1 Issues in covariance modelling

when the weights have been chosen in some other way – we discuss this in more

detail below.

Setting Pm = U−1
m , we can write (3.5) in precision matrix form:

G(θ, θ0) =
βm

2
(log |Pm| − trPmSm) (3.7)

Assuming a full covariance matrix, we maximise (3.5) with respect to Um by

differentiating and setting the result equal to zero:

0 = U−1
m − U−1

m SmU
−1
m (3.8)

⇒ Um = Sm (3.9)

Note that in this formulation, the statistic Sm is dependent on µm, which is

typically an unknown parameter. However, it follows from differentiating (3.5)

with respect to µm, that it can be maximised by setting

µm =
∑

t

γm(t)ot

βm

(3.10)

independently of the eventual choice of Um – or alternatively, µm may be set to

some previously-determined value.

It is not necessary that the weights γm(t) are the posterior probabilities (al-

though of course it is necessary to ensure that the weights used have the effect that

the auxiliary results in an increase in the desired objective function at the end

of the iteration). As an example, when using a discriminative objective function

such as MMI (Bahl et al., 1986) we would set

γm(t) = γn
m(t)− γd

m(t) (3.11)

where γn
m(t) and γd

m(t) are the posterior probabilities given the correct models and

all possible models, respectively. This is described in more detail in Chapter 7.

However, one problem arises here: in the case where some of the γm(t) are

negative (which is of course possible from equation 3.11), Sm is no longer guar-

anteed to be positive semidefinite (see below). However, it is possible to add

a smoothing term to (3.3) to ensure a positive definite matrix (Normandin &

Morgera, 1991); again, we discuss this further in Chapter 7.
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3.1 Issues in covariance modelling

3.1.2 Matrix conditioning

A covariance matrix Σ is not simply a collection of independent scalar parameters:

it has a meaning in d-dimensional feature space. For the Gaussian distribution,

the curve xT Σ−1x = C2 (where C is a constant) defines an ellipse in feature

space. The principal axes of the ellipse are given by the eigenvectors of Σ, and

the variance in the dimension given by each axis is given by the corresponding

eigenvalue. An example is shown in Figure 3.4. This shows 500 samples from

a 2-dimensional Gaussian distribution. The ellipses in black enclose the regions

within one and two standard deviations of the mean. (Corresponding to C =

{1, 2}).
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Figure 3.4: 500 samples from a 2-dimensional Gaussian distribution, with ellipses

enclosing regions within 1 and 2 standard deviations of the mean.

Considering this interpretation, it is important to ensure that a covariance

matrix U is “well-behaved”, in terms of the ellipse that it defines. We first define

some terms.

A symmetric matrix A is positive definite if xTAx > 0 for all x ∈ Rd; or that

all eigenvalues λi of A are strictly positive, λi > 0. A is positive semidefinite if
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3.1 Issues in covariance modelling

vTAv ≥ 0 for all v ∈ Rd; or that all λi ≥ 0. We denote the set of symmetric

d-dimensional matrices by Sd, the set of positive semidefinite matrices by Sd
+, and

the set of positive definite matrices by Sd
++. Note that if Σ is positive definite,

then it is invertible, and its inverse is also positive definite, with eigenvalues given

by λ−1
i .

The property of positive-definiteness can be used to define a partial ordering

on the set of symmetric matrices. We write

A � B if B − A ∈ Sk
+

A ≺ B if B − A ∈ Sk
++

If A � B then we can also write B � A, and so on. The notation A � 0 is often

used to denote that A is positive definite. Any covariance matrix Σ is clearly

symmetric. The physical interpretation given earlier in this section implies that

it is also positive definite.

We define the condition number of a symmetric, positive semidefinite matrix

A to be the ratio of the largest and smallest eigenvalues:

κ(A) =
λmax(A)

λmin(A)
(3.12)

with κ(A) = ∞ when λmin(A) = 0. (For a wider class of matrices, the condition

number may be expressed as a ratio of maximum and minimum singular values,

but this is not necessary here). The condition number becomes important when a

matrix is inverted, as it is in the computation of the Gaussian probability density.

From a theoretical perspective, suppose a vector x has been obtained with error

e. Then we consider the error in xTA−1x relative to the error in x:

|(x+ e)TA−1(x+ e)− xTA−1x|/|xTA−1x|
‖(x+ e)− x‖/‖x‖

(3.13)

≈ 2|xTA−1e|
‖e‖

.
‖x‖

|xTA−1x|
(3.14)

= 2
|xTA−1e|
‖x‖

.
‖x‖

|xTA−1x|
(3.15)

≤ 2.λ−1
min‖x‖.

1

λ−1
max‖x‖

= 2
λmax

λmin

(3.16)

so the error in computing f(ot) is directly related to the condition number of

the matrix U used in the computation. Practically speaking, standard matrix
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3.1 Issues in covariance modelling

inversion algorithms fail to operate well when U is ill-conditioned. Of course, if

U is singular (when one or more of the eigenvalues are zero) then f(ot) cannot

even be computed. We say that a matrix is well-conditioned when the condition

number is small.

Suppose that U is set to the sample covariance matrix S, as defined in Equa-

tion 3.6. Note that S is positive semidefinite. However, S will have some eigen-

values equal to zero if the number, n, of linearly independent sample observations

ot for which γ(t) is non-zero, is less than d. For Gaussians used in ASR systems,

d is typically 39, and could even be 52 – so this is a practical consideration in

systems with relatively large numbers of Gaussians and small amounts of data.

Moreover, consider the case when S is an unbiased estimator for a true matrix

Σ. It can be shown that on average, the eigenvalues of S are more dispersed about

their mean than the eigenvalues of Σ, and so we expect the sample covariance

matrix to be less well-conditioned than the true covariance matrix. We derive

this result in Appendix A.2; it follows from the fact that the eigenvalues are the

most dispersed diagonal elements of RTSR for any rotation R. This suggests

that choosing U = S for our covariance model would be a bad choice if a well-

conditioned U is desired.

We end this section with a simple illustration. The most popular covariance

model for ASR systems is to set U to be the diagonal elements of the sample

covariance matrix, corresponding to the variance in each dimension of feature

space. We denote this by D. The diagonal covariance matrix will:

1. Almost always be non-singular

2. Always be at least as well-conditioned as S, and almost always better con-

ditioned.

(1) holds when all the diagonal elements are non-zero. A diagonal element will

only be zero if the samples are identical in that dimension, something we would

expect to occur only with very small sample sizes. (2) is true because the eigen-

values of D are just the diagonal elements themselves, so D(D) is given by the

dispersion of the diagonal elements of S. Earlier, however, we showed that the

diagonal elements of S are less dispersed than its eigenvalues, with equality oc-

curring only when S itself is diagonal (which would occur when all features were

perfectly uncorrelated).
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3.1 Issues in covariance modelling

Figure 3.5 gives an illustration. With a very small number of samples (but

still with n > d), the diagonal covariance matrix, shown with red dashes, has

a much smaller variation in length between its two principal axes than the full

sample covariance matrix, shown in solid black.
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Figure 3.5: 5 samples from a 2-dimensional Gaussian distribution, with ellipses

enclosing regions within 1 and 2 standard deviations of the mean for: true covari-

ance matrix (dots); diagonal sample covariance matrix (dashes) and full sample

covariance matrix (solid)

3.1.3 Generalisation

Generalisation, in the context of statistical learning, refers to the ability of a

model whose parameters are learnt from limited training data to work appropri-

ately when applied to unseen test data. How can this notion be expressed more

formally? Suppose that both our training and test data are selected randomly

from a single pool of all possible data that could exist in the given domain. We

assume that this data has probability density p(x, y) (x being the observed fea-

tures, y the labels). In training, we want each matrix U computed from this
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3.1 Issues in covariance modelling

random training data to be close to the matrix that would have been used for the

random test data. However, the test data is not known when the parameters are

learnt. The best we could do, therefore, is to find the U that is most likely to be

appropriate, according to the distribution of test data. This could be achieved

with perfect knowledge of p(x, y), which we would attain as the amount of train-

ing data approached infinity. Let LU(x, y) be a measure of the loss incurred by

using a matrix U when the data presented is (x, y). The risk, R(U) is defined as

the expected loss under the true distribution of data:

R(U) = Ep(x,y)LU(x, y) (3.17)

The optimal matrix U∗ would be chosen to minimise this risk, within the con-

straints of the model:

U∗ = arg min
U
R(U) (3.18)

In practice, we do not know the distribution p(x, y), we can instead attempt to

minimise an estimate of the risk, called the empirical risk on the training set

Vapnik (1995). For a training set of size n, this is given by

Remp =
1

n

n∑
r

LU(xr, yr) (3.19)

We can obtain U(n), the (random) matrix obtained from n items of training data

by

Un = arg min
U
Remp(U) (3.20)

A model is said to generalise well if we expect that, for any chosen training

data, the learnt parameters Un will give a performance close to that of U∗ – if

the empirical risk is close to the actual risk. In practice, we do not know the

distribution p(x, y) or the parameters U∗, so how is this notion helpful? Though

there are theoretical bounds on the gap between the two functions (Vapnik, 1995),

in broad terms, we know that the generalisation ability of a trained model is higher

if:

• the number of samples is large;

• the number of parameters is small.
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3.1 Issues in covariance modelling

A model is often said to be over-fitted to training data if the number of param-

eters is too large relative to the amount of training samples, leading to worse

performance on test data – the model generalises poorly.

Full covariance models have 1
2
d(d+ 1) parameters per Gaussian, compared to

just dmean parameters per Gaussian, and are thus much more susceptible to over-

fitting. So how can we ensure that a covariance model has good generalisation

for a fixed amount of training data? Techniques can be placed in the following

categories:

• restrict the dimensionality of the model by fixing the values of some param-

eters;

• share the parameters over multiple Gaussians, thus increasing the amount

of data available to train each parameter;

• modify the learning method to control the number of parameters automat-

ically – for example, by including penalty terms in the objective function –

or to explicitly improve generalisation.

Some techniques may fall into more than one category.

3.1.4 Types of covariance model

In the following sections we describe a variety of covariance models. These can

be broadly placed in two categories, according to whether they explicitly model

the covariance matrix, or its inverse, the (true) precision matrix, Ωm = Σ−1
m . The

distinction is motivated by the observations that, when modelling the covariance

matrix using Um:

1. Um must typically be learnt from sample data via the statistic Sm

2. Um is required for the computation of fm(ot) during decoding. From equa-

tion 3.2, we have

log fm(ot ;µm, Um) = −1

2
log |Um| −

1

2
(ot − µm)TU−1

m (ot − µm) (3.21)

=
1

2
log |Pm| −

1

2
(ot − µm)TPm(ot − µm) (3.22)

where Pm = U−1
m .

43



3.2 Simple approximations

It can be seen that we have a choice between modelling Um directly – in which

case, we would expect each matrix to be readily obtained from sample data –

or, instead, modelling its inverse, Pm. In the latter case, we need never find an

expression for Um itself, and the computation of fm(ot) would be simplified, at the

cost of greater complexity in estimating Pm from data. Since Pm approximates

the precision matrix Ωm, Pm is termed a precision matrix model.

3.2 Simple approximations

3.2.1 Diagonal matrices

Most GMM systems for ASR model the covariance matrices as diagonal matri-

ces, implicitly assuming that the features are uncorrelated, given m. Under this

restriction, the auxiliary function (3.3) is maximised by setting

Um = diag(Sm) (3.23)

We denote this diagonal model by Dm. This diagonal approximation has both

practical and theoretical advantages:

• Dm has low variance compared to the full matrix Sm, so has good general-

isation.

• As discussed in Section 3.1.2, Dm is always better conditioned than Sm,

and on average, is better conditioned than Σm.

• Storing Dm requires storing only d parameters per Gaussian.

• It is trivial to invert Dm, and the inverted version has the same number of

parameters. It is therefore easy to use during decoding.

3.2.2 Block-diagonal matrices

Use of block-diagonal covariance matrices is a compromise between the full co-

variance and diagonal covariance cases. Here, the feature vector is partitioned
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3.3 Parameter tying and basis decomposition

into sets. Features within each set are assumed fully correlated; features in differ-

ent sets are assumed independent. Re-ordering the features so that the elements

within a set are adjacent, the covariance matrix has block diagonal form:

Um =


B

(m)
1 0(d1×d2) · · · 0(d1×dn)

0(d2×d1) B
(m)
2 · · · 0(d2×dn)

...
...

...

0(dn×d1) 0(dn×d2) · · · B
(m)
n

 (3.24)

where di is the cardinality of the ith set,
∑

i di = d, and Bi is the covariance

matrix for the ith set. The standard case is that this correlation structure is the

same for all Gaussians.

A block-diagonal matrix may again be simply estimated from the sample

covariance matrix, constraining the relevant entries to zero. The use of the block-

diagonal matrices gives more modelling power than the diagonal covariance case,

but maintains advantages over using full covariance matrices:

• The block-diagonal matrix has fewer parameters than the full covariance

matrix, so the estimator has lower variance.

• The block-diagonal matrix is better conditioned than the full matrix. In

particular, the matrix is invertible if there are at least max
i
di samples.

• Inverting the matrix can be achieved by inverting each block independently,

and is more efficient than inverting the full matrix. Moreover, the inverse

matrix has the same block diagonal structure.

Block-diagonal schemes used in ASR tend to use prior knowledge to specify the

covariance structure. Typically, the feature vector is partitioned into sets cor-

responding to the static features, and first and second differentials. This does,

however, require the generally false assumption that features are not correlated

with their respective differentials.

3.3 Parameter tying and basis decomposition

3.3.1 Covariance tying

A simple method for reducing the number of covariance parameters in the system

is to tie all covariance parameters between Gaussians in a specified class. Suppose
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3.3 Parameter tying and basis decomposition

we have a class r, and a set M(r) of Gaussians that belong to it. Then the tied

covariance may be estimated by

U r =

∑
m∈M(r)

∑
t γm(t)(ot − µm)(ot − µm)T∑
m∈M(r)

∑
t γm(t)

(3.25)

This increases the amount of data available to estimate each matrix, so makes

the estimates more robust. However, this is at the cost of reduced inter-Gaussian

discrimination. It is preferable to preserve Gaussian-specific parameters where

possible: a diagonal covariance system of Gaussians is to be preferred over a

system with more covariance parameters, but with those parameters shared over

multiple Gaussians. Semi-tied covariance matrices, explained below, is an im-

proved parameter tying scheme where the number of covariance parameters is

increased from a diagonal system, without the number of Gaussian-specific pa-

rameters being reduced.

3.3.2 Semi-tied covariance matrices

(Gales, 1999) proposed a scheme for decomposing a covariance matrix into a

Gaussian-specific diagonal matrix and a class-specific transformation. This scheme

is known as Semi-tied covariance matrices (STC). Again denoting the tied class

by r, the covariance matrix for Gaussian m is given by

Um = H(r)ΛmH
(r)T (3.26)

where Λm is a diagonal matrix with diagonal elements (σ
(m)2
1 , , σ

(m)2
2 , . . . , σ

(m)2
d )

Writing A(r) = H(r)−1, the auxiliary function (see Equation 3.3) is given by

G(θ, θ0) = −1

2

∑
m∈M(r)

∑
t

γm(t)[log |Λm|−log |A(r)|2+(ot−µm)TA(r)T Λ−1
m A(r)(ot−µm)]

(3.27)

This can be compared to the auxiliary functions in equations 2.41 and 2.55, for

HLDA and CMLLR respectively. It is clear that A(r) can be viewed as a feature-

space linear transform – the technique is also known as a maximum-likelihood

linear transform (MLLT) model. The equation can be re-written as

G(θ, θ0) = −1

2

∑
m∈M(r)

βm[log |Λm| − log |A(r)|2 + tr Λ−1
m A(r)SmA

(r)T ] (3.28)
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3.3 Parameter tying and basis decomposition

The optimal diagonal variances Λm and transform A(r) are dependent on each

other, but it is not possible to optimise them jointly. Instead, the parameters are

iteratively updated. Using an initial transform (usually just an identity trans-

form), we obtain

Λm = diag(A(r)SmA
(r)T ) (3.29)

To find the optimal transform, it is helpful to re-express the transformed precision

matrix:

Pm = A(r)T Λ−1
m A(r) =

d∑
i

1

σ
(m)2
i

aT
i ai (3.30)

where ai denotes the ith row of A(r). (The superscript r is dropped for notational

clarity). Then (3.27) can be rewritten as

G(θ, θ0) = −1

2

∑
m∈M(r)

βm

[
log |Λm| − log |A(r)|2 + tr

∑
i

aT
i ai

1

σ̂
(m)2
i

Sm

]
(3.31)

We therefore maximise

β log |A(r)|2 − tr
∑

i

aT
i aiK

(ri) (3.32)

where

K(ri) =
∑

m∈M(r)

βm

σ̂
(m)2
i

Sm, β =
∑

m∈M(r)

βm (3.33)

The expression is iteratively maximised with respect to each ai with the other

rows of the transformation held constant. (See Gales, 1999). The maximisation

requires the inverse of K(ri) to be computed. When data is limited, these matrices

may be poorly-conditioned (although this is unlikely if the set M(r) is chosen to

be large enough). Gales (1999) constrained the matrices to be block-diagonal,

reducing the likelihood of them being poorly-conditioned.

The STC scheme represents the precision matrix in a compact form as a sum

of d basis elements. This allows efficient computation of the likelihood for the

Gaussian; the Jacobian term log |A(r)|2 need only be evaluated once for each

semi-tied class.
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3.3 Parameter tying and basis decomposition

3.3.3 Precision matrix subspace methods

Precision matrix subspace models represent a general class of precision matrix

models. Each precision matrix is decomposed as the linear combination of a

global set of k basis elements, given by symmetric matrices Wi, and k Gaussian-

specific coefficients, λ
(m)
i

Pm =
k∑
i

λ
(m)
i Wi (3.34)

Provided that k < 1
2
d(d + 1), this represents a reduced dimensionality model

compared to the use of a full covariance model for each state.

The STC scheme with a single semi-tied class can be viewed as precision

matrix subspace model. Consider the STC precision matrix decomposition in

Equation 3.30:

Pm =
d∑
i

1

σ
(m)2
i

aT
i ai (3.35)

Comparing to 3.34, we can see this is a subspace model with dimensionality

k = d, with rank-1 positive definite basis matrices Wi = aT
i ai, and positive basis

coefficients λi = 1

σ
(m)−2
i

.

Extended MLLT (Olsen & Gopinath, 2004) is a natural extension to this

scheme where the number of basis matrices is increased from d, up to the max-

imum size of the space Sd
+, d

2
(d − 1). A single set of basis matrices across all

Gaussians is assumed. The EMLLT scheme allows a smooth increase in the num-

ber of Gaussian-specific covariance parameters up to the full covariance case.

Since the precision matrix is modelled directly, decoding with EMLLT models is

efficient. However, no closed-form solution exists for updating the basis matrices

when the dimension of the space is greater than d.

The precision-constrained GMM (PCGMM) and subspace for precision and

mean (SPAM) schemes (Axelrod et al., 2005) are a further generalisation of EM-

LLT, where the basis elements are arbitrary symmetric matrices (of any rank). In

this case the precision matrices are not automatically guaranteed to be positive

definite, and this must be explicitly ensured when the per-Gaussian coefficients

are optimised. Axelrod et al. (2005) found these schemes to give improved per-

formance over EMLLT on ASR tasks.
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3.3 Parameter tying and basis decomposition

3.3.4 Factor analysis

Factor analysis reduces the dimensionality of the covariance matrix by modelling

the observation ot as being generated by a lower-dimensional intermediate vector

of “factors”, xt, via a linear transform, with the addition of a noise term:

ot = Cxt + vt (3.36)

The vector xt is unobserved. The simplest case is when there is just one Gaussian

per state, and x is modelled by a single Gaussian too. Without loss of generality,

we can assume that xt has zero mean and unit variance, xt ∼ N (0, I), and

vt ∼ N (µ
(o)
j ,Λ

(o)
j ). It is important that Λ

(o)
j is a diagonal matrix.

p(ot|xt, qt = j) = f(ot;µ
(o)
j + Cjxt,Λ

(o)
j ) (3.37)

The covariance matrix for the Gaussian j is then given by

Σ = CjC
T
j + Λ

(o)
j (3.38)

If x has dimension k, then the covariance matrix has d(k + 1) parameters, so

we require k < 1
2
(d − 1) for a reduction in parameter number. It is possible to

find the parameters Cj and Λ
(o)
j maximising the likelihood of the data by finding

the eigenvalues of the sample covariance matrix (Stoica & Jansson, 2009). Cj is

set to be the matrix of eigenvectors corresponding to the largest k eigenvalues,

scaled by the respective eigenvalues. However, this has some drawbacks: firstly,

it requires good initial estimates of the eigenvalues; secondly, it is not invariant

to arbitrary scaling of the feature dimensions.

The Factor-Analysed Covariances Invariant to Linear Transforms (FACILT)

scheme (Gopinath et al., 1998) was proposed as an extension to this scheme where

a linear transformation is applied to the vector vt; the authors derived an EM

algorithm for estimating this transformation and the parameters Cj and Λ
(o)
j in an

HMM setting, when they are shared independently between Gaussians or states.

As an alternative extension to the above formulation, Rosti & Gales (2004)

proposed the factor-analysed HMM (FAHMM). Both the vector xt and the noise

term vt are drawn from independent GMMs. The factors, and transform Cj are

shared between all Gaussians for the state. We set ω
(x)
t to be the random variable
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3.3 Parameter tying and basis decomposition

setting the Gaussian for xt, indexed by n, and ω
(o)
t to be the equivalent for vt,

indexed by m.

p(xt|qt = j) =
N∑
n

cjnf(xt;µ
(x)
jn ,Λ

(x)
jn ) (3.39)

p(ot|xt, qt = j) =
M∑
m

cjmf(ot;µ
(o)
jm + Cjxt,Λ

(o)
jm) (3.40)

The total number of mean and covariance parameters is 2Nk + 2Md + dk. The

distribution of ot, given ω
(x)
t and ω

(o)
t , is another Gaussian:

p(ot|qt = j, ω
(x)
t = n, ω

(o)
t = m) = f(ot;µjmn,Σjmn) (3.41)

where

µjmn = Cjµ
(x)
jn + µ

(o)
jm (3.42)

Σjmn = CjΛ
(x)
jn C

T
j + Λ

(o)
jm (3.43)

The covariance matrix for the joint system is given by

var

[(
xt

ot

)]
=

(
Λ

(x)
jn Λ

(x)
jn C

T
j

CjΛ
(x)
jn Σjmn

)
(3.44)

from which it follows that the conditional distribution of xt is

p(xt|ot, qt = j, ω
(x)
t = n, ω

(o)
t = m) = f(xt;µ

(x|o)
jmn ,Σ

(x|o)
jmn ) (3.45)

with

µ
(x|o)
jmn (t) = µ

(x)
jn + Λ

(x)
jn C

T
j Σ−1

jmn(ot − Cjµ
(x)
jn − µ

(o)
jm) (3.46)

Σ
(x|o)
jmn = Λ

(x)
jn − Λ

(x)
jn C

T
j Σ−1

jmnCjΛ
(x)
jn (3.47)

The parameters may be jointly optimised using the EM algorithm. The transform

Cj is optimised using a similar method to STC.

A problem with the FAHMM is that the inverse matrix Σ−1
jmn, required for de-

coding, does not have a compact representation. If the inverses are pre-computed

then decoding is as expensive, in terms of computation and memory, as when un-

constrained full covariance models are used. However, the matrix may be inverted

using the formula

Σ−1
jmn = Λ

(o)−1
jm − Λ

(o)−1
jm Cj(C

T
j Λ

(o)−1
jm Cj + Λ

(x)−1
jn )−1CT

j Λ
(o)−1
jm (3.48)
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3.4 Full covariance models

which requires inverting a single k-dimensional matrix, CT
j Λ

(o)−1
jm Cj + Λ

(x)−1
jn ,

rather than a full d-dimensional matrix. This allows a compromise between in-

verting the matrices as required during decoding, with higher computational cost,

or pre-computing them, with higher memory cost. Evaluating the likelihood re-

quires O(dk) computations.

3.4 Full covariance models

Full covariance models use the maximum d
2
(d+ 1) untied covariance parameters

per Gaussian, giving the highest possible discriminative power. These models

have the following properties:

• Parameter estimation is simple to achieve: the maximum likelihood esti-

mator is just the sample covariance matrix Sm. There is no need for the

complicated optimisation schemes required for EMLLT and SPAM models.

• The models are expensive in terms of the memory needed for parameter

storage and the computational cost of decoding: both are O(d2).

• Large amounts of training data are required for reliable full covariance es-

timation: otherwise, as we discussed in earlier sections, the matrices are

often poorly-conditioned, and do not generalise well.

Despite the shortcomings above, full covariance systems have been successfully

used for large vocabulary ASR, the most notable example being in the 2004 IBM

system (Chen et al., 2006; Soltau et al., 2005), where the computational cost was

reduced by aggressively pruning Gaussians during the full covariance likelihood

computation.

In their comprehensive review of covariance modelling, Axelrod et al. (2005)

conclude that full covariance models achieve the highest performance. In addi-

tion, recent advances in computing mean that the requirements imposed by full

covariance models no longer impose hard constraints on the systems that can be

built. We therefore consider full covariance modelling to be a promising direction

for research, and in the following chapters of this thesis, focus mainly on resolving

the final point above.
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3.5 A note on choosing the number of mixture components

3.5 A note on choosing the number of mixture

components

Choosing the number of Gaussians to use in the mixture models is a research

question with implications for covariance modelling. There have been a number

of theoretically-motivated methods proposed for choosing the optimal number of

components, based, for example, on the Bayesian information criterion (Schwarz,

1978), or using discriminative growth functions (Liu & Gales, 2007). However,

systems often optimise the number of components by measuring the performance

on held-out data, or simply use a preset number – for example, 16 Gaussians per

state.

Using multiple Gaussians can act as a proxy for increasing the number of

covariance parameters by implicitly modelling feature correlations, and we would

expect fewer covariance parameters to be required in systems with more Gaus-

sians. However, it is not clear how this trade-off could easily be optimised, par-

ticularly when increasing the number of covariance parameters incrementally, for

example by increasing the number of classes in STC or the number of basis matri-

ces in the EMLLT and PCGMM schemes. In our phone-recognition experiments

in Chapter 6 we briefly investigate this issue experimentally. In our large vocab-

ulary system, however, we simply use the same number of Gaussians for the full

covariance system as in the baseline diagonal system, which we assume has been

previously optimised.

An important question is whether all the performance gains derived from

increasing the number of covariance parameters could be achieved (perhaps even

more cheaply) by increasing the number of Gaussians. This was investigated

in the context of large-vocabulary ASR by Axelrod et al. (2005), who conclude

that they cannot: they find that a full covariance system with 10,000 Gaussians

outperforms a 600,000-Gaussian system with a global linear transform, despite

the former system having one-eighth of the number of parameters in total.

3.6 Summary

In this chapter we described the role of covariance modelling in ASR systems.

We described the basic process of estimating the parameters of covariance mod-
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3.6 Summary

els, and explained the need for models to generalise to unseen test data, and

for the covariance matrices to be well-conditioned, in addition to the practical

requirements for memory usage and the computational costs of decoding.

We then described commonly-used methods for covariance modelling: con-

straining the matrices to be diagonal or block-diagonal; factor-analysed models;

and precision matrix subspace methods. We explained our motivation for inves-

tigating full covariance models.
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Chapter 4

Gaussian graphical modelling

Graphical models (Lauritzen, 1996) are a means of intuitively representing the de-

pendencies present in multivariate data. In this chapter we explain how graphical

modelling can be applied to multivariate Gaussian data, and how the assignment

of a prescribed conditional dependency structure to acoustic feature vectors can

be viewed as a covariance model, and describe how parameter estimation may

be performed. We consider these models in the context of CD-HMM systems

using the formalism of buried Markov models (Bilmes, 1999). Graphical model

structure can be learnt from data, and we briefly review work in this area used

for ASR.

We consider graphical modelling with reference to the covariance modelling

criteria from Chapter 3, and introduce alternative structure learning and param-

eter estimation methods from other fields, which we later use experimentally for

full covariance GMM acoustic modelling.

4.1 Graphical models introduced

4.1.1 Types of graphical model

A graphical model is a graph with vertices corresponding to individual random

variables and edges corresponding to dependencies between variables. The vari-

ables may be observed or hidden, discrete or continuous. Hidden (or latent)

variables may even be specially constructed in order to simplify the dependency

structure between other variables. The graphs may be directed and acyclic, in
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4.1 Graphical models introduced

which case variables can be ordered according to parent-child relationships, with

the parent taken to have some causal effect on the child; or undirected, where

relationships are symmetric. The former are also known as Bayesian Networks,

the latter as Markov Random Fields. The HMM can be presented as a directed

graphical model with variables indexed over time – known as a dynamic Bayesian

network (DBN). This is illustrated in Figure 4.1. DBNs have been successfully

used to implement explicit models for speech decoding (Bilmes & Bartels, 2005)

without recourse to speech-specific software.

qt-1 qt qt+1

ot-1 ot ot+1

Figure 4.1: Graphical Model representation of a Hidden Markov model. By

common convention discrete variables are represented by squares and continu-

ous variables by circles; observed variables are shaded and latent variables are

unshaded.

Bilmes (2000a) introduced dynamic Bayesian Multinets (DBMs). A Bayesian

multinet is a graphical model, the structure of which is determined by the value

of one or more of the discrete variables. These variables are known as “switching

parents”. If a series of Bayesian multinets, one for each frame of speech, are

chained together, the resulting model is a DBM, also known as a Buried Markov

Model (Bilmes, 1999). In this case, potential dependencies can extend over multi-

ple frames. As used in (Bilmes, 2000a), the single switching parent in each frame

is the hidden class variable of interest and all other variables are observed and

continuous. The switching dependencies are implemented with a directed Gaus-

sian graphical model, although an undirected graphical model could also be used.

Both directed and undirected graphical models model conditional dependencies
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4.1 Graphical models introduced

between variables. Their use for ASR is motivated by the theory that the acoustic

features we wish to model have an underlying sparse dependency structure.

We can view a Buried Markov Model as a covariance model. The latent

“switching parent” variable is the Gaussian index, m. Then the covariance matrix

Um is constrained to satisfy the dependency structure specified by m. We can

avoid the need to explicitly extend dependencies over multiple frames simply by

extending each feature vector, ot, as necessary. We explain this in more detail in

the following sections, and go on to discuss how the dependency structure may

be specified.

4.1.2 Gaussians as directed graphical models

Suppose we have a set of continuous random variables X = (X1, X2, . . . , Xd),

with a continuous distribution1 . A directed graphical model (DGM) for X is

a graph G = (V,E) with vertices V = {1, . . . , d} and directed edges E ⊆ V ×
V . Each vertex i ∈ V corresponds to variable Xi, and each edge (i, j) ∈ E,

which we also write as j → i, corresponds to causal relationships between the

variables Xi and Xj, with Xj being the parent. The parents can be indexed by

pa(i) ⊆ {1, . . . , i− 1}, with Xpa(i) ≡ {Xj : j ∈ pa(i)}. (Note that this ordering

convention varies between authors.)

The dependencies are represented on the graph by a directed arc j → i indi-

cating that j ∈ pa(i). Of course the graph must be acyclic.

Given their parents, variables are conditionally independent of all other po-

tential parents. This is known as the Markov property, and can be stated as:

Xi |= Xj |Xpa(i) for all j < i, j /∈ pa(i) (4.1)

Equivalently, the density function of X can be factorised in terms of the condi-

tional density functions as:

fX(x) =
d∏

i=1

f(xi|xpa(i)) (4.2)

1In the following sections it is helpful to distinguish between random variables, X, and
samples, x
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4.1 Graphical models introduced

The idea is that parents should be explanatory variables for their children, with a

relationship that can be explicitly represented in an expression for the distribution

of the child.

A Gaussian DGM (see Pennoni, 2004, for example) is equivalent to a series of

linear regression systems, with Xi expressed as a linear function of its parents and

a residual, the independent random variable εi ∼ N(µi, σ
2
i ) Since the relationships

are linear, we can write this as

Xi = ωi1X1 + ωi2X2 + · · ·+ ωi,i−1Xi−1 + εi (4.3)

where the ωij are the partial regression coefficients and are zero if Xj is not a

parent of Xi (j /∈ pa(i)). Alternatively, this can be expressed as

LX = ε (4.4)

where matrix L is lower triangular, with diagonal elements all equal to one.

Its lower-triangular elements consist of the negatives of the partial regression

coefficients, Lij = −ωij. From this, we obtain

X = L−1ε (4.5)

from which it can be seen that X has a multivariate Gaussian distribution. Note

that as L is lower triangular, so is L−1. Writing

cov(ε) := Λ =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
...

0 0 · · · σ2
k

 (4.6)

we obtain

U = L−1Λ(L−1)T (4.7)

for the covariance matrix of X.

This process can be reversed to obtain a DGM structure from a covariance

matrix U , provided the indices of the matrix correspond to the desired variable

ordering. This is because any positive definite symmetric matrix has a unique

decomposition LDLT , where L is lower triangular with ones along the diagonal

and D is diagonal (this can be obtained from the Cholesky factorisation).
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4.1 Graphical models introduced

Furthermore, we see that the DGM can be represented in precision matrix

form,

P = LT Λ−1L (4.8)

It is clear that the matrices L, specifying the graphical model structure, could be

shared over multiple Gaussians, with the parameters Λ remaining specific to each

individual Gaussian, similar to the semi-tied covariance matrix scheme discussed

in Section 3.3.2.

4.1.3 Gaussians as undirected graphical models

Like a DGM, an Undirected Graphical Model (UGM) for the set of variables X

is a graph G = (V,E) as above, except that no variable ordering is required, and

the arcs between variables are undirected. The absence of an arc between i and j

indicates that Xi and Xj are conditionally independent, given all other variables

in the system:

Xi |= Xj |X\{Xi, Xj} (4.9)

This is equivalent to it being possible to factorise the density function as:

fX(x) = f(xi, xj|xs)f(xs) = f(xi|xs)f(xj|xs)f(xs)

where xs = {xl : l 6= i, l 6= j}. Furthermore, writing XA = {Xi : i ∈ A} for any

A ⊆ V , we have the global Markov property

XA |= XB |XS (4.10)

if S separates A from B in the graph – that is, all possible paths in G from

elements of A to elements of B pass through S. Equivalently, the distribution

can be factorised according to the cliques, C of G:

fX(x) =
∏
c∈C

ψ(xc) (4.11)

A multivariate Gaussian with a sparse conditional dependency structure may

be readily represented as a UGM by considering the zeros of the precision ma-

trix P = U−1. A non-zero element Pij in the precision matrix corresponds to

the presence of an arc between vertices i and j in the graphical model. If the

element is zero, there is no arc. This is a well-known result (see Lauritzen, 1996).
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Imposing a UGM structure on a multivariate Gaussian can therefore be viewed

as a precision matrix model. Such models – also known as covariance selection

models – were first studied by Dempster (1972); many associated results were

derived by Porteous (1985).

As an illustration (Jones & West, 2005), consider the density function of the

system:

fX(x;P ) ∝ exp{−1

2
xTPx} (4.12)

⇒ f(xi, xj|xs;P ) ∝ exp{−1

2
(2xiPijxj + g1(xi, xs) + g2(xj, xs))} (4.13)

where g1(xi, xs) and g2(xj, xs) are just the other terms of the matrix multiplica-

tion, and again xs = {xl : l 6= i, l 6= j}. From this we can see that the conditional

density can be factorised into f(xi|xs) and f(xj|xs) terms if and only if Pij = 0.

4.2 Introduction to structure learning

As we have seen in Section 4.1, graphical modelling, applied to Gaussian systems

via the formalism of Buried Markov Models, is equivalent to imposing a spar-

sity structure on each precision matrix, or some factorisation thereof. Bearing

in mind the criteria for covariance modelling specified in Section 3.1, for GMs

to be useful covariance models, we require our imposition of sparsity to result in

learned matrices that are either better conditioned, or have improved generali-

sation ability, whilst retaining sufficient modelling power from the unconstrained

case. GM covariance modelling can be divided into two sub-problems:

• Obtaining the optimal sparsity structure;

• Learning the optimal parameters for the desired structure.

However, as we shall show, the two problems may be solved simultaneously.

The principal advantage of the DGM representation introduced in Section 4.1.2

is that the parameters pertaining to dependency structure may be learned sepa-

rately to the Gaussian-specific conditional variances, Λm. However, the usefulness

of being able to impose sparsity on the matrices L is then limited: by sharing
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4.2 Introduction to structure learning

parameters across multiple Gaussians in the manner of STC systems, we can con-

trol the amount of data available to estimate them. We therefore consider only

the case where no parameters are shared across Gaussians.

As we have seen in Section 4.1.3, the natural DGM representation for speech

can be converted to a UGM representation; so the structure learning problem is

equivalent, considering the variables of interest as a multivariate Gaussian system,

to selecting which elements of the precision matrix, Pm, should be set to zero.

This is, of course, very different to selecting zeros of a sparse covariance matrix:

for example, consider a model where the graph is a chain. In this case, the

precision matrix would have a banded-diagonal structure, whereas the covariance

matrix would have no zero elements. This can be contrasted with the approaches

in Section 3.2, where instead a sparsity structure is imposed directly on the

covariance matrix.

4.2.1 Structure learning with mutual information

Information theory has long been used for language modelling for ASR, and more

recently attempts have been made to utilise it for acoustic modelling. The en-

tropy, H(Xi), of a random variable Xi is a measure of how uncertain its outcome

is, with H(Xi) at a maximum for the uniform distribution. The mutual informa-

tion between two variables Xi and Xj is a measure of the additional information

gained about Xi by observing Xj or vice verse, and is given by

I(Xi;Xj) = H(Xi)−H(Xi|Xj) = H(Xj)−H(Xj|Xi) (4.14)

where H(Xi|Xj) is the conditional entropy of Xi, given Xj. For the discussion

that follows we assume the variablesXi to be continuous. The mutual information

is given by

I(Xi;Xj) =

∫
f(xi, xj) log

f(xi, xj)

f(xi)f(xj)
dxidxj (4.15)

Mutual information for feature selection has been used by Scanlon et al. (2003)

for phone classification: elementsXi from a time-frequency space grid are selected

as input to a neural network classifier if the I(Xi;Y ) are sufficiently high, with

Y being the class-label of interest.

Bilmes (1998) used mutual information for modelling the joint distribution

of features from a time-frequency grid, where, for a feature variable Xi, the
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4.2 Introduction to structure learning

correlations between Xi and possible dependencies Xj are modelled if I(Xi;Xj)

is sufficiently high. This was extended (Bilmes, 2000b; Bilmes et al., 2001; Ellis

& Bilmes, 2000) to condition the mutual information on the class of interest, Y .

This is known as conditional mutual information (CMI), given by

I(Xi;Xj|Y ) =
∑

y

∫
f(xi, xj, y) log

f(xi, xj|y)
f(xi|y)f(xj|y)

dxidxj (4.16)

Further to this, Bilmes (2000a); Zweig et al. (2002) introduce a discriminative

mutual information based measure for dependency selection in the context of

DBMs (where the Xj are the parents in the graphical model) called the explaining

away residual or EAR measure, given by

EAR(Xi, Xj) = I(Xi;Xj|Y )− I(Xi;Xj) (4.17)

and show that choosing dependencies XJ = ∪jXj to maximise this measure

will maximise the expected class posterior probability E[P (Y |Xi, Xj)] for a fixed

number of dependencies.

There are a number of drawbacks to this approach: firstly it is not practical

to compute the globally optimal XJ directly, and so variables Xj are selected one

at a time using a greedy search based on the EAR measure. This means that it is

necessary to check that each additional parent adds class-conditional information

above that provided by existing parents – this will be the case if I(Xi;Xj|Y ) is

high relative to I(Xpa;Xi|Y ) where Xpa is the set of parents already selected.

Secondly, in the usual case where the system is assumed to be a DGM, the

mutual information between single variables Xi, Xj is a monotonically increasing

function of their correlation, ρxixj
, given by

I(Xi;Xj) = −1

2
log(1− ρ2

xixj
) (4.18)

so computing the mutual information from data is essentially equivalent to ob-

taining estimates of the correlation coefficients. The method is not robust to

limited data, high-dimension situations where the sample covariance matrix is a

poor estimate of the true matrix.

Also note that the approaches described here ignore the advantage of the

DGM/UGM formulation, that a sparse conditional independence structure, such

as that determined by the zeros of the precision matrix, may be a more natural
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4.3 Parameter estimation

representation than a sparse marginal independence structure, determined by the

zeros of the covariance matrix, or equivalently zeros of mutual information.

4.3 Parameter estimation

4.3.1 Basic methodology

Recall once more that our problem of determining graphical model structure

within the covariance selection framework is equivalent to fixing the zeros of

each precision matrix, Pm (We drop the dependency on m in what follows).

The problem of how to determine this matrix from data was first considered by

Dempster (1972). We assume for the moment that the graph structure is fixed,

and there is only one class to consider.

Suppose we have a sample covariance matrix S, and assume an undirected

graph G = (V,E) representing the structure of the multivariate Gaussian data.

It is wished to obtain an optimal estimate of the covariance matrix, Û , or its

inverse, P̂ , corresponding to this graphical model.

Dempster proposed the following rules:

• P̂ should match the graph structure: set P̂ij = 0 for (i, j) /∈ E

• Û should agree with S as much a possible: set Ûij = Sij for (i, j) ∈ E

Dempster showed that a covariance matrix chosen according to the above has the

following attractive properties:

1. Assuming that S itself is positive definite, a unique Û always exists and is

positive definite

2. Of all possible Gaussian models such that Uij = Sij for (i, j) ∈ E, the choice

Û is the maximum entropy model, often considered optimal for prediction.

3. Of all possible Gaussian models such that Pij = 0 for (i, j) /∈ E, the choice

P̂ has maximum likelihood.

The Û or P̂ specified by Dempster’s theory cannot be computed directly.

In (Dempster, 1972) an iterative procedure is described, based on the theory
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4.3 Parameter estimation

of exponential distributions, using the Newton-Raphson method. The solution

converges quickly; however, each iteration requires O(n2) computations, where

n is the number of free parameters in P . Dahl et al. (year unknown) details

how the computations can be made more efficient by means of triangulating G
(equivalently referred to as finding a chordal embedding of G).

4.3.2 Estimation as an optimisation problem

We now approach the estimation problem from an alternative direction, demon-

strating the parallels with Dempster’s work. From equation 3.7, we have:

`(P ) := log f(o ; P ) =
β

2
(log |P | − trPS) (4.19)

and the problem of finding P to maximise the likelihood, subject to the constraints

of a given graphical model, can be expressed as a convex optimisation problem:

minimise − log |P |+ trPS

subject to P � 0

Pij = 0 (i, j) /∈ E

(4.20)

This type of problem, where P is symmetric, is known as a semidefinite pro-

gram. The first constraint expresses the requirement that P be positive semidef-

inite1. We introduce the dual variable Θ given by

[Θ]ij =

{
0 (i, j) ∈ E

θij otherwise
(4.21)

This definition allows us to readily express the equality constraints of the opti-

misation problem in the Lagrangian dual. This is given by

g(Θ) = inf
P�0

{− log |P |+ trPS + tr ΘP} (4.22)

The last two terms can be combined into one by making a changing of variables.

We define

[Φ]ij =

{
Sij (i, j) ∈ E

ϕij otherwise
(4.23)

1In practice we require P to be positive definite for use in our models; the relaxation here
ensures that a solution exists to the optimisation problem
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4.4 Penalised likelihood method of GM structure learning

where ϕij = θij + Sij. (The Sij are of course fixed). The Lagrangian becomes

g(Φ) = inf
P�0

{tr ΦP − log |P |} (4.24)

To find the minimum, we differentiate with respect to P and set the derivative

equal to zero, obtaining

Φ = P−1 = U (4.25)

noting that the requirement that P is positive definite implies that its inverse

must also be. Substituting this into the dual function we have

g(Φ) = d+ log |Φ| (4.26)

so the dual optimisation problem is:

maximise log |Φ|

subject to Φ � 0
(4.27)

or equivalently

maximise log |U |

subject to U � 0

Uij = Sij (i, j) ∈ E

(4.28)

This is known as a maximum-determinant positive-definite matrix completion

problem. We can see that problem of finding P to maximise the likelihood,

subject to the constraints of the graphical model, can be converted to the problem

of finding the U with maximum determinant, subject to constraints based on the

sample covariance matrix, being the same constraints obtained by Dempster.

4.4 Penalised likelihood method of GM struc-

ture learning

4.4.1 Background

We consider how the optimal set of edges of G may be determined for the covari-

ance selection models. As discussed at the beginning of this chapter, our goal is

to select dependencies that result in models with good modelling power that are
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4.4 Penalised likelihood method of GM structure learning

robust when data is limited. This is different to many applications of the models,

including Dempster (1972), where it may be more important to determine only

and all the dependencies which truly do exist in data – an example might be the

functional grouping of genes in Bioinformatics. In this case it would be natural

to infer a dependency only if the data provide statistically significant evidence

for it – this is not appropriate here.

We cannot simply select the edges which give the maximum likelihood of the

data, since this will be at a maximum when the number of parameters are at

a maximum – when the graph is complete. A solution to this issue would be

instead to maximise a penalised version of the likelihood where the penalty is

related to the number of edges, learning the parameters simultaneously with the

graph structure. For example:

P̂ = arg max
P
{`(P )− βλ|E(P )|} (4.29)

Note that |E|, the number of edges of the graph, is equal to the number of non-

zero off-diagonal elements of Ω. The method is similar to that of choosing a

set of edges of a fixed size in such a way as to maximise the likelihood. The

problem in both cases is typically solved (approximately) in a similar manner to

the EAR-measure problem in Section 4.2.1, by means of a greedy search. This is

computationally intensive, and will not necessarily result in an optimal solution.

An alternative is to replace the penalty with the sum of the magnitude of the

off-diagonal elements. The use of this penalty term was proposed by Tibshirani

(1996) for regression and is known as the Lasso. The objective function, expressed

as

P̂ = arg max
P
{`(P )− βν

∑
i6=j

|Pij|} (4.30)

is a convex optimisation problem, which can be efficiently solved. The use of the

Lasso has been used for graphical model structure learning by Meinshausen &

Bühlman (2006), selecting the neighbours of each variable in the model: but this

method does not ensure that the final matrix is well-conditioned. Yuan & Lin

(2007) use a similar method, but explicitly ensure that the resulting matrices are

positive definite.

For the graphical modelling work in this thesis, we adopt an alternative ap-

proach, that of Banerjee et al. (2006), which we describe in detail in the following
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4.4 Penalised likelihood method of GM structure learning

section. The technique adopts an alternative penalty term equal to the sum of

the magnitude of all elements of P , and the optimisation guarantees bounds on

the eigenvalues of the resulting matrix.

4.4.2 Penalised likelihood with the l1 norm

We define the lq norm of a matrix A by1

‖A‖q = (
d∑
i

d∑
j

|Aij|q)
1
q (4.31)

for q ≥ 1. This an example of an entry-wise norm. In the case q = ∞, the largest

term in the sum dominates, so this is the maximum value norm.

Banerjee et al. (2006) proposed using the l1 norm of the matrix P as a penalty

term for the likelihood. We maximise

`(P )− ρβ‖P‖1 (4.32)

We show in Appendix A.3.4 that q = 1 is the unique choice for which the resulting

P̂ is a sparse matrix. The optimisation problem (4.20) becomes:

minimise ρ‖P‖1 − log |P |+ trPS

subject to P � 0
(4.33)

The parameter ρ > 0 controls the size of the penalty, and hence the sparsity of

the solution. In Appendix A.3.3, we show that the problem may be solved via its

dual:

maximise d+ log |U |

subject to ‖U − S‖∞ ≤ ρ

U � 0

(4.34)

Banerjee et al. (2006) show that for any ρ > 0, the solution is bounded as follows:

aI � P̂ � bI (4.35)

where

a =
1

‖S‖SV + dρ
, b =

d

ρ
(4.36)

These bounds are equivalent to imposing bounds on the largest and smallest

eigenvalues of U , and hence on its condition number.

1The notation ‖.‖q, which we adopt from Banerjee et al. (2006), is not standard – it may
also be used to denote the operator norm of a matrix.
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4.4 Penalised likelihood method of GM structure learning

4.4.3 An algorithm

We now describe the algorithm used by Banerjee et al. (2006) for solving the

dual problem. The idea is to maximise |U | by optimising over one row and

column at a time. The diagonal elements of the solution, Ûii will be set to

Sii + ρ, their maximum value under the constraints imposed by the l∞ norm: we

therefore initialise U0 = S + ρI. Since S � 0, U � 0 for any ρ > 0. Also note

that after removing any row/column pair from U , the resulting matrix is still

positive definite (this follows directly from the definition, by choosing the vector

appropriately).

To optimise over the ith row and column the matrix is permuted so that they

are the last row and column. This does not change the determinant. Then we

partition U as

U =

(
U11 u12

uT
12 u22

)
(4.37)

We have U11 ∈ Sd−1
++ , u12 ∈ Rd−1. As for all diagonal elements, u22 is fixed.

We wish to find the vector u12 maximising the determinant, subject to the con-

straint ‖U − S‖∞ ≤ ρ, which translates as ‖u12 − s12‖∞ ≤ ρ. Taking the Schur

complement1 of U11, we obtain

detU = detU11 det(u22 − uT
12U

−1
11 u12) (4.38)

and the maximisation problem becomes

û12 = arg min {uTU−1
11 u | ‖u− s12‖∞ ≤ ρ} (4.39)

which can be solved by standard off-the-shelf Quadratic Programming algorithms.

After every iteration, the matrix U is positive definite. The convergence

of the algorithm can be checked after each cycle through the rows/columns by

computing the difference between the values of the primal and the dual,

f(P (n))− g(U (n)) = ρ‖P (n)‖1 + trP (n)S − d (4.40)

1 See Appendix A.3
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4.4.4 Practical issues

In a practical implementation of the penalised likelihood method for sparse GM

learning, a number of practical issues must be considered. Choosing the penalty

parameter ρ is important. Meinshausen (2005) showed that the estimator is

not consistent as the quantity of training data tends to infinity, if ρ is fixed.

Assuming that optimal model estimation, rather than a restriction on the number

of parameters, is the primary objective, it is clear that as β → ∞ we should

have ρ → 0 to recover the optimality of the sample covariance matrix in this

case. Banerjee et al. (2006) suggest a heuristic for ρ which approximately yields

ρ ∝ β−1/2, proportional to the estimator variance. This would mean setting the

parameter on a per-Gaussian basis.

A second issue is the fact that the method as presented is not invariant to

arbitrary feature scaling. Since it is the precision matrix in the penalty term, the

logical option would be to scale the system so that the diagonal elements of the

precision matrix (corresponding to the conditional correlation coefficients) are all

one. However, this is not possible, since a good estimate of the precision matrix

is not known in advance in the case when the sample covariance matrix is poorly

conditioned.

4.5 Summary

In this chapter we introduced Gaussian graphical modelling as a form of co-

variance modelling. We explained the correspondence between the dependency

structure of the graphical model and the sparsity structure of the precision ma-

trix. We described methods used for learning the structure of graphical models

used for ASR, and discussed parameter estimation using the covariance selection

framework. Finally, we introduced a technique for learning the model parameters

and structure simultaneously by maximising a penalised-likelihood function. We

carry out ASR experiments using this technique the following chapter.
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Chapter 5

The shrinkage estimator

In this chapter we introduce the “shrinkage estimator”, an alternative to the

maximum likelihood estimator for full covariance modelling. We adopt a gen-

erative approach here, and broadly follow the analysis of Ledoit & Wolf (2004).

Whilst the maximum likelihood estimator (MLE) has several attractive asymp-

totic properties, they argue that weaker asymptotic assumptions are more ap-

propriate, under which consistency of the MLE does not hold. The shrinkage

estimator corrects for this, and explicitly improves upon the sample covariance

matrix in terms of generalisation ability and conditioning.

The shrinkage estimator has been employed for covariance estimation in high-

dimensionality situations when the number of matrices to estimate is relatively

small, for example, portfolio selection in financial modelling (Ledoit & Wolf, 2003)

and gene association in Bioinformatics (Schäfer & Strimmer, 2005). In this work

we extend it for use in large-scale ASR systems. In particular, we adapt the

methods for use in GMMs with many thousands of Gaussians. We show how

the shrinkage estimator can be related to Bayesian techniques that have been

successfully used for covariance smoothing in ASR (Chen et al., 2006).

5.1 Shrinkage introduced

5.1.1 Generative approach

In Chapter 3 we were somewhat non-committal about what precisely was meant

by an optimal covariance matrix U∗. In this chapter we generally adopt a classical
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statistical approach, using a generative model. That is to say, we assume that

our statistical model is correct, and moreover, that the model parameters, whilst

unknown, have fixed, true values. All expectations are taken with respect to this

true distribution. Throughout this chapter we drop dependence on the Gaussian

m for simplicity of presentation, and denote the true matrix by Σ. Most of the

analysis below was derived by Ledoit & Wolf (2003) for situations where there

are no hidden variables; we describe our method for removing this requirement.

Within this generative framework, the performance of an estimator may be

measured by its expected squared deviation from the true parameter, the mean

squared error (MSE):

MSE(U) = E‖U − Σ‖2 (5.1)

In this respect, the maximum likelihood estimator (MLE) has several attrac-

tive properties. Firstly, it is consistent : the MLE of a parameter θ, based on n

samples, converges (in probability) to θ as n → ∞. Secondly, it is asymptoti-

cally efficient : as n→∞, the MLE variance converges to the minimum variance

possible for any unbiased estimator, given by the Cramer Rao lower bound. So

that if n is large, the variance of Sn is close to the minimum achievable. The

consistency of the MLE tells us that the sample covariance matrix based on n

samples, Sn obeys

lim
n→∞

E‖Sn − Σ‖ = 0 (5.2)

whilst the asymptotic efficiency property tells us that if n is large, the variance

of Sn is close to the minimum achievable for that value of n.

From these results it would appear that Sn is a good choice of estimator.

However, rarely can we consider the amount of training data to be approaching

infinity, so it is questionable whether these results are useful. An alternative is

suggested in Section 5.1.2 below.

The Frobenius norm

To measure the error of a matrix estimator, we use the Frobenius norm1,

‖A‖F = (
∑

i

∑
j

|Aij|2)
1
2 =

√
trATA (5.3)

1 Following the notation of Chapter 4, we could denote this by ‖.‖2, but here we follow the
more standard notation.
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This arises from the inner product 〈A,B〉F = trATB. In the equations that

follow, the Frobenius norm and corresponding inner product are used implicitly.

An important property of the Frobenius norm is that it is invariant to rotation:

‖RTAR‖2 = tr(RTAR)T (RTAR) (5.4)

= trRTATRRTAR (5.5)

= trATARRT = trATA = ‖A‖2 (5.6)

where we use the fact that RTR = I, for any rotation R, and the fact that the

trace operator is invariant to cyclic permutations.

5.1.2 Covariance estimation with weak asymptotic assump-

tions

Ledoit & Wolf (2004) note that the usual n→∞ assumption underpinning MLE

is not appropriate in the situation where the number of parameters is large relative

to the number of samples. They analyse the sample covariance matrix under a

weaker set of assumptions which they term general asymptotics. The principal

of these is that the ratio d/n is bounded, so that while n may grow to infinity,

it does not grow faster than the dimensionality d. This may be more reasonable

for covariance modelling for ASR, where, as the amount of training data grows,

we may extend the feature vector (using windowing, for example), increase the

number of Gaussians, or split the state space to include more context.

We summarise some of the technical results from Ledoit & Wolf (2004) using

the notation introduced in Section 3.1.2. For simplicity here we set the mean

to zero and take x(k) to be random samples from the distribution. The sample

covariance matrix is given by

Sn =
1

n

n∑
k

x(k)x(k)T (5.7)

We decompose the true covariance matrix as

Σ = ΓΛΓT (5.8)

where Λ is diagonal. Then z(k) = ΓTx(k) are samples for which all elements are

uncorrelated, with E(z(k)z(k)T ) = Λ
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In this analysis, to account for the fact that d is not held constant, we nor-

malise the error by d. If there are n samples, the mean squared error is given

by

1

d
E‖Sn − Σ‖2 =

1

d
E‖ΓTSnΓ− Λ‖2 (5.9)

=
1

d
E
∥∥∥ 1

n

n∑
k

z(k)z(k)T − Λ
∥∥∥2

(5.10)

=
1

dn
E‖zzT − Λ‖2 (5.11)

=
1

dn

d∑
i

d∑
j

E(z2
i z

2
j )−

1

dn

d∑
i

λ2
i (5.12)

where z is an arbitrary uncorrelated sample from the distribution. The first step

uses the fact that the Frobenius norm is invariant to rotation, and (5.11) uses

the fact that the samples are uncorrelated. This expression is dominated by the

first term. Using the fact that the the elements of z are uncorrelated, we can

re-express this as:

1

dn

d∑
i

d∑
j

E(z2
i z

2
j ) =

d

n
E

(
1

d

d∑
i

z2
i

)2

(5.13)

=
d

n

(
E

1

d

d∑
i

z2
i

)2

+
d

n
var

(
1

d

d∑
i

z2
i

)
(5.14)

=
d

n
λ̄2 +

d

n
var

(
1

d

d∑
i

z2
i

)
(5.15)

So we see that the MSE does not generally vanish for bounded d/n. This analysis

motivates an alternative choice of covariance estimator. We aim to find one which

can consistently minimise the MSE under these weaker asymptotic assumptions.

5.1.3 Shrinkage: the bias-variance trade-off

Stein (1956) first introduced the concept of “shrinkage” as applied to high-

dimensional estimators (specifically, of the mean of a distribution), deriving the

surprising result that the performance of the MLE can always be improved upon

by shrinking by a given factor α (the “shrinkage intensity”) towards some central
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value. More recently, Ledoit & Wolf (2004) showed how this procedure can be

applied to covariance matrices. The shrinkage estimator of Σ, is given by

U = (1− α)S + αD (5.16)

where D, the “shrinkage target”, is a diagonal matrix. It can be seen that as α

is increased to one, the off-diagonal elements of U shrink towards zero.

The estimator MSE, introduced in Equation 5.1 can be decomposed into vari-

ance and bias terms as follows:

E‖U − Σ‖2 = E‖(U − EU) + (EU − Σ)‖2 (5.17)

= E‖U − EU‖2 + ‖EU − Σ‖2 (5.18)

= var(U) + bias2(U) (5.19)

Typically, a higher dimensional estimator will have a lower bias, but higher vari-

ance – minimising the MSE of the shrinkage estimator can be viewed as optimising

the trade-off between the two.

S is an unbiased estimator of Σ, whilst D is biased in its off-diagonal ele-

ments. The shrinkage procedure can therefore be viewed as “backing off” from

the high-variance, unbiased S to the low-variance, biased D. This is illustrated

in Figure 5.1. It will be seen below that the optimal shrinkage factor α can be

obtained analytically.

In Ledoit & Wolf (2004), D is taken to be a uniform diagonal matrix D = ρI.

However, Schäfer & Strimmer (2005) discuss a variety of alternative targets. As

they explain, the case where D consists of the diagonal elements of S is attractive:

it preserves the diagonal elements of the matrix and makes it easy to estimate an

optimal α in a scale-free manner. It is this target which we use throughout this

work.

5.1.4 Bayesian interpretation

It is also possible to obtain a shrinkage-style estimator using a Bayesian approach.

The MSE of an estimator U can be replaced by the Bayes’ risk with a quadratic

loss function which is minimised by setting U to the posterior mean. If a non-

informative prior is chosen, we obtain the minimum risk at U = S as in the
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Figure 5.1: An illustration of the bias-variance trade-off with varying shrinkage

intensity, using simulated data (taken from the example in Section 3.1)
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classical MLE case. To obtain the shrinkage estimator, we use a conjugate prior

to the multivariate Gaussian, the inverse-Wishart distribution:

p(Σ) = W−1(τ + d+ 1, τD) (5.20)

where D is the shrinkage target, and the first hyperparameter, τ , reflects the

strength of the prior (we refer to τ as the prior weight). We use β to represent

the number of training samples, for consistency with later sections. Setting U to

the posterior mean gives

U =
βS + τD

(β + τ + d+ 1)− d− 1
(5.21)

=
S

β + τ
+

τD

β + τ
(5.22)

= (1− α)S + αD (5.23)

for suitably chosen α. (5.22) has the obvious Bayesian interpretation, that as the

amount of training data available is reduced, resulting in a small value for β, the

influence of the prior is increased, and the minimum Bayes’ risk estimator becomes

closer to D. This form of off-diagonal smoothing was mentioned briefly by Povey

(2003) and further in Povey (2006); it was used in the IBM full covariance system

(Chen et al., 2006).

In the Bayesian interpretation, τ here is a constant that must be manually

specified. In the references above, it was set to 100 or 200. In Section 5.2.6 we

consider whether the analytically obtained shrinkage parameter can be expressed

using such a constant, and later compare the two approaches experimentally.

5.1.5 Matrix conditioning

We discussed matrix conditioning in Chapter 3. We showed that when applying

a rotation R to symmetric matrix A, the most dispersed diagonal elements that

can be obtained are the eigenvalues of A. This was used to show that the sample

covariance matrix S has eigenvalues that are, on average, more dispersed than

those of the true matrix Σ, and also that the diagonal elements of the sample

matrix are less dispersed.
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5.2 The shrinkage parameter

We now consider the dispersion of the eigenvalues of the shrinkage estimator.

We denote the eigenvalues by li. Note that the expected mean of the eigenvalues

is given by

E
1

d
trU = E

1

d
trS = λ̄ (5.24)

From (A.13) the expected dispersion is obtained from

E‖U − λ̄I‖2 = E tr(U − λ̄I)2 = E
d∑
i

(li − λ̄)2 (5.25)

This can be expressed as a weighted sum of the dispersion of the eigenvalues of

S and D:

E‖U − λ̄I‖2 = (1− α)2E‖S − λ̄I‖2 + (1− (1− α)2)E‖D − λ̄I‖2 (5.26)

Since the eigenvalues of D are always less dispersed than those of S, this shows

that eigenvalues of the shrinkage estimator are also less dispersed that the eigen-

values of S.

5.2 The shrinkage parameter

5.2.1 Optimising the shrinkage parameter

Ledoit & Wolf (2004) obtained a method for computing the optimal shrinkage

intensity analytically, whilst Schäfer & Strimmer (2005) generalised this to a

variety of shrinkage targets. We seek α to minimise

E‖U − Σ‖2 = E‖α(D − Σ) + (1− α)(S − Σ)‖2 (5.27)

= α2E‖D − Σ‖2 + (1− α)2E‖S − Σ‖2

+ 2α(1− α)E〈D − Σ, S − Σ〉
(5.28)

The derivative with respect to α is given by

d

dα
E‖U − Σ‖2 = 2αE‖D − Σ‖2 + (α− 1)E‖S − Σ‖2

+ 2(1− 2α)E〈D − Σ, S − Σ〉
(5.29)

Setting this equal to zero, we obtain

E‖S − Σ‖2 − E〈D − Σ, S − Σ〉

= α[E‖D − Σ‖2 + E‖S − Σ‖2 − 2E〈D − Σ, S − Σ〉]
(5.30)

= αE‖(S − Σ)− (D − Σ)‖2 (5.31)
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5.2 The shrinkage parameter

We decompose Σ into its diagonal and off-diagonal elements: Σ = Σdiag + Σod.

Since ES = Σ, E〈Σod, S − Σ〉 = 0. We add this to the second term on the

left-hand side, giving

E〈D − Σdiag, S − Σ〉 = E‖D − Σdiag‖2 (5.32)

since the off-diagonal terms then vanish from the inner product. We therefore

obtain

α̂ =
E‖S − Σ‖2 − E‖D − Σdiag‖2

E‖S −D‖2
(5.33)

When D consists simply of the diagonal elements of S, then the numerator in

(5.33) becomes ∑
i6=j

E(Sij − Σij)
2 =

∑
i6=j

varSij (5.34)

(since S is unbiased) whilst the denominator becomes∑
i6=j

ES2
ij (5.35)

The numerator can be recognised as the off-diagonal elements of the matrix

var(S). From (5.33) it can be seen that α increases with this variance, so that

when the sample matrix has higher variance, the shrinkage target, D, achieves

more prominence, as we would expect.

As presented, the calculations are not invariant to arbitrary scaling of feature

dimensions. To remedy this we adopt the approach of Schäfer & Strimmer (2005),

dividing each element Sij by
√
SiiSjj. Note that due to the choice of shrinkage

target, the diagonal elements themselves are not changed by the smoothing pro-

cess.

5.2.2 Shrinkage parameter estimation

Note that neither the numerator (5.34) nor the denominator (5.35) terms above

can be obtained directly, and must themselves be estimated from the training

data. We define

w
(k)
ij = x

(k)
i x

(k)
j (5.36)

from which we can estimate

Sij = w̄ij =
1

n

n∑
k

w
(k)
ij (5.37)
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5.2 The shrinkage parameter

We can treat the wij as IID random variables, with an sample variance given by

ṽarwij =
1

n− 1

n∑
k

(w
(k)
ij − Sij)

2 (5.38)

Using the IID assumption, we can then estimate the variance of Sij by

ṽarSij =
1

n2

n∑
k

ṽarw
(k)
ij (5.39)

=
1

n2
.n.ṽarwij (5.40)

=
1

n(n− 1)

n∑
k

(w
(k)
ij − Sij)

2 (5.41)

The expectation in the denominator term (5.35) may simply be replaced with

the sample equivalent. We can use these estimates to obtain an estimate of the

optimal shrinkage parameter, α̃, say. If we use U(α̂) to denote the shrinkage

estimator obtained using the true optimal parameter, and U(α̃) to denote its

counterpart using α̃, then an important result proved by Ledoit & Wolf (2004) is

that

E‖U(α̃)− U(α̂)‖2 → 0 (5.42)

under the weaker asymptotic assumption that d/n is bounded, but does not nec-

essarily vanish, as n → ∞. Effectively this means that it is easier to find a

consistent shrinkage estimator than a consistent estimator of the covariance ma-

trix itself. In the following sections we show how these results can be practically

applied to an CD-HMM system.

5.2.3 The shrinkage parameter for an CD-HMM system

We now explain how the sample variance of Sij can be obtained within the con-

text of the EM algorithm. In this analysis, we fix the number and weighting of

observations for each Gaussian (i.e. the γ(t) and β), but assume that the actual

observations vary randomly according to the true distribution and are IID. This

allows us to obtain an estimate of varSij by adapting the formulae of Section 5.2.2

to take account of the weights γ(t). We redefine

wij(t) = (oi(t)− µ̂i)(oj(t)− µ̂j) (5.43)
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5.2 The shrinkage parameter

The sample covariance matrix S is the sample mean of these observations:

Sij =

∑
t γ(t)wij(t)

β
(5.44)

It should be noted that the all estimates of variance presented here are slightly

biased. This could be remedied by applying a correction factor at each stage

given by
β2

β2 −
∑

t γ(t)
2

(5.45)

which is the equivalent of the usual n
n−1

sample variance correction. However, we

found that this correction makes little difference in practice.

The (i, j)th term of the numerator (5.34) can be estimated by

ṽarSij =

∑
t γ(t)

2

β2
ṽarwij(t) (5.46)

=

∑
t γ(t)

2

β2
.
1

β

∑
t

γ(t)(wij − Sij)
2 (5.47)

=

∑
t γ(t)

2

β2

[∑
t γ(t)w

2
ij

β
− S2

ij

]
=
δ

β
ηij (5.48)

where ηij =
P

t γ(t)w2
ij

β
− S2

ij and δ =
P

t γ(t)2

β
. The estimate of the numerator itself

can be expressed in terms of these quantities by∑
i6=j

ṽarSij =
δ

β
η :=

δ

β

∑
i6=j

ηij (5.49)

δ can be viewed as a correction term to allow for the increased variance when

samples from nearby Gaussians “overlap” in feature space.

To estimate the ES2
ij terms in the denominator (5.35) we follow Schäfer &

Strimmer (2005) and simply replace the expectation by the squared sample values

S2
ij. As we explained in Section 5.2.2, this leads to a consistent estimator for α̂

under general asymptotics. It is possible to obtain a new estimate of α̂ at each

iteration of the EM algorithm. The computation of α̂ requires two additional sets

of statistics to be accumulated in the E-step, namely the sums of w2
ij and γ2.
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5.2 The shrinkage parameter

5.2.4 Computational issues

We briefly discuss the practical issues when estimating the shrinkage parameter

from data. The estimation is computationally inexpensive since the computa-

tional cost is dominated by the computing of the γ(t) during the E-step of the

EM algorithm, which is required anyway for estimation of the other parame-

ters. Another issue is the storage of the statistics: computing δ for each Gaussian

requires the sums of w2
ij to be stored, which could potentially require O(d2) mem-

ory, equivalent to storing an additional covariance matrix. However, this can be

avoided by the summing over i and j on the fly (scaling where necessary) and

subtracting the Sij terms after all the statistics have been accumulated.

5.2.5 Parameter sharing

Our main references in this chapter are concerned with estimating a single full

covariance matrix. When applying the techniques to GMM systems for ASR,

however, there are could be hundreds thousands of covariance matrices to esti-

mate. Without reducing the number of free covariance parameters per Gaussian,

we therefore investigate the extent to which the statistics required for estimating

the parameter α for each Gaussian may be shared across Gaussians.

Since the estimator variance reduces with the amount of training data, it is

clear, from the bias-variance decomposition in Section 5.1.3 and the computations

in Section 5.2.1, that the shrinkage parameter for a Gaussian will be smaller

when there is more training data. It is therefore not appropriate to tie α across

Gaussians. In order to tie parameters, it is necessary that they do not depend on

the amount of training data, β.

Since they are effectively means over all samples, and because all statistics

are scale-free, we might expect η to be independent of β. We carried out an

empirical analysis using the 120,000 Gaussians of our Conversational Telephone

Speech (CTS) system (described in Chapter 6, page 103). Figure 5.2 shows

a scatter plot of η against β. The Pearson correlation coefficient between the

two variables is -0.053, which is a small, but statistically significant correlation.

Although there may be a better approach, we propose to tie η across Gaussians.
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5.2 The shrinkage parameter

Figure 5.2: Scatter plot showing values of η and β for 120,000 Gaussians, and a

mean trendline.
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5.2 The shrinkage parameter

Pooling the denominator estimates of ES2
ij is less straightforward. Decompos-

ing

ES2
ij = (ESij)

2 + varSij (5.50)

we see that the expression consists of a expectation term which we would expect to

be constant with β and a variance which reduces with 1
β
. This is illustrated by our

empirical analysis of these statistics for the CTS Gaussians, shown in Figure 5.3

Sij has a Wishart distribution, and so the total variance can be approximated by∑
i6=j

varSij ≈
2δη

β
(5.51)

so that

ES2
ij ≈ (ESij)

2 +
2δη

β
(5.52)

This is illustrated in Figure 5.4, plotting the sums S2
ij against δ/β for each Gaus-

sian. We would expect the bias term to be constant, and we can obtain a shared

value for it by averaging (5.35) by

C =
∑
i6=j

S2
ij −

2δη̄

β
(5.53)

across all Gaussians. In Figure 5.4, we indeed find the equation of the trendline

to be given by C + 2δη
β

with a good measure of fit. For the denominator, we can

then use

ES2
ij = C̄ +

2δη̄

β
(5.54)

5.2.6 Comparisons with the Bayesian approach

Recall the Bayesian formulation (Equation 5.22):

U = (1− α)S + αD (5.55)

=
S

β + τ
+

τD

β + τ
(5.56)

When the shrinkage statistics are shared across all Gaussians in the system, is

the same form of smoothing recovered? Using the shared statistics above, the
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5.2 The shrinkage parameter

Figure 5.3: Scatter plot showing values of
∑

i6=j S
2
ij and β for 120,000 Gaussians,

and a mean trendline.
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5.2 The shrinkage parameter

Figure 5.4: Scatter plot showing values of
∑

i6=j S
2
ij and δ

β
for 120,000 Gaussians,

and a mean trendline with equation y = 3.3 + 1410x. The R-squared coefficient

measuring the model fit is 0.77.
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5.3 Summary

shrinkage parameter is given by

α =
ηδ/β

C + 2ηδβ
(5.57)

=
ηδ/C

β + 2ηδ/C
(5.58)

Comparing to (5.56) we see that this is similar to using a prior with weight ηδ/C,

except the weighting is doubled in the denominator, so that in the limit as the

quantity of training data is reduced towards zero, the off-diagonal elements are

reduced by half, rather than vanishing to zero. This is equivalent to using, as

prior,

p(Σ) = W−1(2τ + d+ 1, 2τ.
1

2
(D + S)) (5.59)

for which

U =
S

β + 2τ
+
τ(S +D)

β + 2τ
(5.60)

The difference can be explained by the fact the original Bayesian approach mod-

els the diagonal prior as fixed, whilst the shrinkage formulation takes into the

variance of the diagonal elements into account.

5.3 Summary

In this chapter we introduced the shrinkage estimator, an alternative estimator

for the full covariance matrix that corrects for the fact that the standard sample

covariance matrix is not consistent under weaker assumptions about the asymp-

totic nature of the dimensionality of the feature space relative to the number of

training samples.

We explained how the optimal shrinkage parameter for these models may be

estimated consistently under the weaker asymptotic assumptions, and obtained

formulae for estimating the parameter within a GMM system. Based on investi-

gations using a large-vocabulary ASR system, we suggested a method for tying

the parameter across Gaussians. We compared the shrinkage technique with a

Bayesian approach.
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Chapter 6

Covariance modelling

experiments

6.1 TIMIT phone recognition

6.1.1 The task

We carried out all early covariance modelling experiments on the TIMIT cor-

pus. The corpus consists of 6300 read sentences: 630 speakers, drawn from eight

dialect regions of the US, spoke ten sentences each. Two single sentences (the

‘SA’ sentences) were repeated by all speakers. To avoid distorting the results, we

ignored these sentences throughout training and testing, leaving 5040 sentences.

The remaining sentences were designed to provide good phonetic coverage (the

‘SX’ sentences) and phonetic diversity (the ‘SI’ sentences). All sentences were

recorded in clean conditions. Phonetic transcriptions are provided for all record-

ings using a 61-phone set.

We built a system for the standard phone recognition task using the TIMIT

corpus. The standard training set consists of 3696 sentences, and we used the

core test set, 192 sentences from 24 speakers. Following standard practice, perfor-

mance was evaluated using a reduced 39-phone set (Lee & Hon, 1988), described

in Table B.9 in Appendix B.2 . The task has several advantages for develop-

ing new techniques: the relatively small size of the corpus, and the fact that only

phone-level decoding is required, makes it quick to train and test new models; and
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6.1 TIMIT phone recognition

the recording conditions and speaking style reduce the need for context-dependent

modelling and noise reduction techniques

Since our particular interest lies in the case when the amount of training data is

small, we conducted experiments where the amount of training data is artificially

reduced. Utterances were removed at random from the training corpus. In the

smallest case, data consisted of just 10% of the full training set.

6.1.2 Baseline system design

Our baseline system was a monophone HMM system using 48 phone models,

each with three emitting states. The models were trained using the phonetic

transcriptions provided, with the 61-phone set collapsed to the 48 phones, listed

in Table B.9. The acoustic feature vector consisted of 12 MFCCs plus energy com-

ponent, their deltas and double-deltas. A phone-based bigram language model

was used for decoding. Following an initial search, the language model scaling

factor and insertion penalty were fixed for all experiments at 5.0 and 2.5 re-

spectively. When computing phone accuracy scores, the silence phone, ‘sil’, was

ignored. Including it, which is the normal practice, increases the accuracy by

more than 3%.

The number of Gaussians per phone state was increased using the mixing up

procedure described in Section 2.3.3. Using the full training set, we obtained

accuracy results on the test set with the number of Gaussians increasing from 1

to 100. These are shown in Figure 6.1 and Table B.1 (most of the large tables

are contained in Appendix B) . The results indicate a performance peak for the

diagonal covariance models of 66.0% accuracy, attained at 72 Gaussians per state.

The figures are consistent with those obtained by others using a similar system,

for example, Valtchev et al. (1997). The largest system shown in the table, with

100 Gaussians, contained 7800 mean and covariance parameters per state. For

comparison, a full covariance system with 12 Gaussians has 9828 parameters.

The same mixing up procedure was carried out to train GMMs on each of the

reduced training sets. Phone accuracy results with these reduced-data models

are compared Figure 6.2 and Table B.2 and. It can be seen that when the

models have few parameters, the size of the training set makes little difference

87



6.1 TIMIT phone recognition

0 20 40 60 80 100
50

52

54

56

58

60

62

64

66

68

Number of Gaussians per state

P
ho

ne
 a

cc
ur

ac
y

Figure 6.1: Phone accuracy of diagonal covariance models trained on the full

training set. See Table B.1 for data.
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to performance; as the number of parameters increases, more data is required to

achieve good performance.

0 10 20 30 40 50 60 70 80 90
50

52

54

56

58

60

62

64

66

Number of Gaussians per state

P
ho

ne
 a

cc
ur

ac
y 

(%
)

 

 

Full data

75% data

50% data

40% data

20% data

10% data

Figure 6.2: Phone accuracy of diagonal covariance models trained on selected

subsets of the full training set. See Table B.2 for the data.

In each case, full covariance GMMs were initialised from diagonal covariance

models with the same number of Gaussians. These models were used to accu-

mulate full covariance statistics centred on the existing means. An alternative

scheme that has been suggested is to carry out the mixing up procedure with full

covariance models (this is discussed for semi-tied covariance matrices in Gales,

1999). The suggested advantage to this method is that it avoids Gaussians re-

dundantly modelling feature correlations, allowing a fixed number of Gaussians

to instead model the multimodal nature of the distribution more effectively. How-

ever, we did not do this: we found that poorly-performing covariance modelling

techniques cause rapid over-training when the number of Gaussians is still small,

making the mixing up ineffective, and providing poor comparisons between differ-

ent techniques when the number of Gaussians is large. Additionally, the former

technique keeps the computational cost of training much lower by avoiding the

need for many Baum-Welch re-estimations with full covariance models.
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Figure 6.3: Phone accuracy of covariance models trained on the full training set,

with varying number of Gaussians. See Table B.5 for the data.
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6.1 TIMIT phone recognition

Figure 6.3 compares phone accuracy results with varying number of Gaussians

for three standard covariance models of varying complexity: diagonal covariance,

semi-tied covariance, and full covariance. The figures are contained in Table B.5.

As discussed above, the semi-tied and full covariance models were initialised di-

rectly from the diagonal Gaussians after mixing up. In the semi-tied covariance

case, the transforms were tied at the state level. Note that the semi-tied system

achieves slightly lower performance compared to the full covariance system when

there is a single Gaussian per state, when they would be expected to perform

the same – this because the number of iterations used to re-estimate the trans-

forms was limited. When training baseline full covariance systems, we use a naive

technique suggested by Povey (2009): each covariance matrix is estimated by the

sample covariance matrix, unless there are fewer than d (in this case, 39) samples,

in which case, we back off to the diagonal matrix. We refer to this as “naive” full

covariance.

In these experiments we are more interested in comparing covariance mod-

elling techniques with varying hyper-parameters and varying quantities of data,

rather than exhaustively optimising every parameter for every condition. We

assume correct the findings of Axelrod et al. (2005), discussed in Section 3.4,

that full covariance models can achieve higher performance than other models,

regardless of the number of Gaussians. Therefore we do not specifically seek to

demonstrate that our full covariance models are always capable of outperforming

semi tied models and diagonal models; this would require careful optimisation of

the latter systems. Rather, results with these models are shown for comparison:

they are not necessarily indicative of the best performance attainable.

In presenting results here, some choices must be made. When showing the

effects of varying covariance hyperparameters, we generally fix the number of

Gaussians at 12 per state, and illustrate the effects with models trained using

three different quantities of training data: on 10%, 50%, and the full training

set. When no hyperparameters are involved, as with the naive full covariance

estimator and the shrinkage estimator, we show performance changes with a

greater range of sizes of training data. We also show the how these models

perform when the number of Gaussians is varied, again using the three training

sets.
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6.1.3 Gaussian graphical modelling

We conducted experiments with sparse Gaussian graphical models, which we

trained using the l1-penalised maximum likelihood method described in Sec-

tion 4.4. Figures 6.4, 6.5 and 6.6 show phone accuracy results for three dif-

ferent training data conditions when the penalty parameter, ρ is increased from

zero (which corresponds to the naive full covariance system). All models have

12 Gaussians per state. The results are contained in Table B.3 We counted the

number of non-zero parameters in the resulting GM systems; these are included

in the table.
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Figure 6.4: Phone accuracy of sparse GM models with varying penalty parameter,

ρ, trained on the full training set.

In the two cases where the full covariance models have higher performance

than the diagonal models, the steady decline in performance as the penalty pa-

rameter is increased is consistent with the results reported in (Bilmes, 2000b).

In the 10% data case the performance is dramatically improved by penalising

the likelihood, illustrating the benefits of covariance regularisation; however, the

performance attained remains lower than the diagonal models. Given the more

positive results attained using the shrinkage estimator, described in the follow-
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Figure 6.5: Phone accuracy of sparse GM models with varying penalty parameter,

ρ, trained on 50% of the training set.
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Figure 6.6: Phone accuracy of sparse GM models with varying penalty parameter,

ρ, trained on 10% of the training set.
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ing section, we did not conduct further detailed experiments using the Gaussian

graphical modelling techniques.

6.1.4 Shrinkage estimator

In this section we present results using the shrinkage estimator as an alternative

to the naive full covariance estimator. We investigated the performance of the

models with varying quantities of training data, and varying number of Gaus-

sians. Note that the term shrinkage estimator could refer to any models with

off-diagonal smoothing. However, here we use it more specifically to refer to

models where the shrinkage parameter α was analytically obtained, as described

in Section 5.2. We compared the performance of these models with those where

the prior weight, τ , was chosen heuristically.

Varying prior weight

Figures 6.7, 6.8 and 6.9 compare the performance of smoothed models where the

shrinkage parameter is estimated directly from the training data to models where

a prior weight is chosen heuristically. All models have 12 Gaussians per state.

Phone accuracy results are shown with three different training sets, for a variety

of selections of prior weights. The result are contained in Table 6.1. Although

technically there is a slight difference, we use a prior weight of zero to denote a

naive full covariance system.

These results appear to validate the method used to determine the optimal

shrinkage parameter: in all the data conditions investigated, the shrinkage estima-

tor performance never falls more than 0.6% below the best-performing smoothed

model, and the gap is generally less than that (in four of the cases, the differ-

ence is no worse than 0.1%). There is no clear correlation between the optimal

parameter τ and the quantity of training data, which supports the conclusions of

Section 5.2.6.

Varying training data

Figure 6.10 compares the performance of the shrinkage estimator with the naive

full covariance estimator – and also semi-tied and diagonal systems – when the

amount of training data is varied. The results are contained in Table 6.1. It can
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Figure 6.7: Phone accuracy of smoothed full covariance models, with varying

prior τ (solid red) compared with analytic shrinkage parameter (dashed blue),

trained on the full training set.
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Figure 6.8: Phone accuracy of smoothed full covariance models, with varying

prior τ (solid red) compared with analytic shrinkage parameter (dashed blue),

trained on 50% of the training set.
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Figure 6.9: Phone accuracy of smoothed full covariance models, with varying

prior τ (solid red) compared with analytic shrinkage parameter (dashed blue),

trained on 10% of the training set.
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Proportion of full training set used

Prior τ 10% 20% 30% 40% 50% 60% 75% 100%

0 41.1 56.4 61.8 63.5 65.1 65.6 66.6 67.2

5 51.9 60.5 63.6 64.2 65.6 66.3 66.8 67.4

10 56.0 62.0 64.0 64.6 66.1 66.6 67.1 67.6

20 58.5 62.7 64.4 64.8 66.4 66.5 67.1 67.6

40 59.3 63.2 64.3 65.0 66.3 66.6 67.2 67.3

60 59.8 63.1 64.3 65.1 66.1 66.3 67.1 67.1

80 59.7 62.9 63.9 64.9 65.9 66.5 67.1 67.1

100 59.5 62.7 64.2 64.7 65.8 66.3 66.9 67.0

125 59.4 62.6 63.8 64.6 65.6 66.3 66.5 66.8

150 59.5 62.6 63.9 64.5 65.6 66.3 66.3 66.9

175 59.5 62.3 63.6 64.3 65.4 66.3 66.5 66.7

200 59.6 62.3 63.5 64.2 65.3 66.0 66.5 66.7

300 59.7 62.3 63.3 63.9 65.0 65.7 66.1 66.2

400 59.3 62.4 63.2 63.9 64.8 65.4 65.9 66.1

Diagonal 58.7 60.1 61.7 61.3 61.0 61.6 61.9 61.8

Shrinkage 59.2 63.3 64.2 65.0 66.4 66.4 67.1 67.2

Semi tied 53.0 60.2 62.5 63.3 63.7 64.2 64.2 64.5

Table 6.1: Phone accuracy of with varying prior τ , 12 Gaussians per state.
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be seen that the system using the shrinkage estimator outperforms all the other

systems, for all quantities of training data. The performance of the standard

full covariance system drops rapidly as the amount of training data is reduced,

whilst the shrinkage system maintains its robustness. At 10% data, it continues

to outperform the diagonal system.
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Figure 6.10: Phone accuracy of covariance models with 12 Gaussians per state,

with varying amounts of training data. See Table 6.1 for the data.

Figure 6.11 is a similar plot, but shows only smoothed full covariance systems:

the shrinkage estimator, and four systems with the prior weights set to 25, 50, 100

and 150 respectively (additional data is contained in Table B.4). This illustrates

the effect of varying the prior weight, and supports the conclusion that the optimal

prior weight does not vary with the quantity of training data. It also demonstrates

that the shrinkage estimator achieves close to the best possible performance over

all the data conditions. However, the results demonstrate that it is possible for
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a single appropriately chosen prior weight – 50 in this case – to achieve equally

good, or better, results across almost all conditions.
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Figure 6.11: Phone accuracy of smoothed full covariance models, with varying

amounts of training data. Data are contained in Table 6.1 and additionally

Table B.4

Varying number of Gaussians

For completeness, we also investigated the performance of the various covariance

models with varying numbers of Gaussians per state. Increasing the number of

Gaussians increases the modelling power, but it effectively reduces the amount of

training data available to estimate the covariance parameters of each Gaussian,

causing problems for models which do not generalise well. Figures 6.12, 6.13 and

6.14 show phone accuracy results for the three training data sets. The data are
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contained in Tables B.5, B.6 and B.7. Table B.8 gives the total number of mean

and variance parameters in each system.
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Figure 6.12: Phone accuracy of covariance models trained on the full training set,

with varying number of Gaussians. See Table B.5 for the data.

The results show that, initially, increasing the number of Gaussians in the

system increases performance for all covariance models. When the number of

Gaussians is small, the naive full covariance system outperforms models with

fewer covariance parameters; however, when the number of Gaussians increases,

the performance of the naive models begins to decline first – and most rapidly –

due to the failure of these models to generalise. The effect is most pronounced,

and begins to occur at a lower number of Gaussians, when the amount of training

data is smaller. In contrast, the shrinkage systems, despite having the same

number of parameters, consistently achieve the highest performance.
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Figure 6.13: Phone accuracy of covariance models trained on 50% of the training

set, with varying number of Gaussians. See Table B.6 for the data.
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Figure 6.14: Phone accuracy of covariance models trained on 10% of the full

training set, with varying number of Gaussians. See Table B.7 for the data.
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Summary

Under all the quantities of training data used for model training, the highest

phone accuracy results on the test set were achieved by full covariance mod-

els smoothed with a diagonal prior. The shrinkage estimator, with analytically

obtained shrinkage parameter, achieved close to the optimum in all conditions

investigated. However, it was usually possible to achieve a higher score with

a constant well-chosen prior weight across all Gaussians, and a single weight,

τ = 50 performed at least as well as the shrinkage estimator in almost all data

conditions.

As would be expected, the improvement derived from smoothing, compared

to the naive full covariance estimation, was greatest when the quantity of training

data was smallest. As a similar effect was observed when the number of Gaussians

was increased: this effectively reduced the quantity of training data available to

train the parameters of each Gaussian, and again, the beneficial effect of the

smoothing was greater. We did not exhaustively search for the optimal diagonal

or semi-tied covariance systems, but the results obtained do seem to support

the findings of Axelrod et al. (2005), that full covariance models are capable

of performance not achievable simply by increasing the number of Gaussians.

For example, in the full data condition, the peak performance of the shrinkage

estimator exceeds the peak diagonal performance by 1.2%, including cases when

the diagonal system has more parameters in total. In the 50% and 10% data

conditions the shrinkage estimator achieved the highest peak performance over

1-48 Gaussians per state. However, we cannot make definitive claims about the

peak performance attainable by the diagonal and semi-tied systems.

6.2 Conversational telephone speech recognition

6.2.1 Experimental setup

We performed large-vocabulary speech recognition experiments on a conversa-

tional telephone speech (CTS) task. Our test set was the the NIST Hub5 2001

evaluation set1, comprising 6 hours of conversational telephone speech from the

1http://www.nist.gov
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6.2 Conversational telephone speech recognition

Switchboard-1, Switchboard-2 and Switchboard-cellular corpora, with 60 male

and 60 female speakers. The reference transcriptions contained a total of 62,890

words.

Our baseline system was derived from the 2005 AMI recogniser (Hain et al.,

2005a,b,c) which was evaluated on the same CTS task. From this system we

used:

• Bigram and trigram language models interpolated from a variety of corpora

– including Switchboard, Call Home and Fisher – smoothed using Kneser-

Ney discounting (Ney et al., 1994).

• A pronunciation lexicon derived from the accent-independent Unisyn lexi-

con (Fitt, 2000), with manual corrections for out-of-vocabulary pronuncia-

tions.

• Automatic segmentations of the test data into individual utterances using

statistical speech activity detection.

• Baseline cross-word triphone acoustic models, with standard three-state

topology, clustered with a phonetic decision tree. These models comprised

approximately 120,000 diagonal-covariance Gaussians – 16 per state – and

were trained using maximum likelihood estimation. The acoustic feature

vector contained 12 PLP plus energy coefficients, their delta and double

deltas, with CMN and CVN applied on an entire-channel basis.

These features of the system are described in more detail in (Garau, 2008). For

our acoustic model training, we used the same training set as that used to train

the baseline models, 277 hours of speech from the Switchboard-1, Switchboard-2

and Call Home corpora. Our models were initialised from the diagonal-covariance

models and we did not alter the number of Gaussians, or the triphone clustering.

We used HTK’s HDecode1 tool with a bigram language model to generate

lattices for the segmented test utterances, using the baseline acoustic models. To

reduce the computational cost of decoding with the full covariance models, we

instead used acoustic rescoring of these baseline bigram lattices. For consistency

with the full covariance results, all the results with diagonal systems we present

1http://htk.eng.cam.ac.uk/
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6.2 Conversational telephone speech recognition

here used the same rescoring technique; we found that this typically resulted in a

word error rate (WER) around 0.2% higher than when a full decoding was used.

The final lattices were then rescored with a trigram language model to produce

a one-best transcription. We used the NIST scoring tools to obtain the WER. In

all cases, language model probabilities were scaled by 12.0.

Statistical significance

We used the NIST scoring tools to check the statistical significance of WER dif-

ferences between key systems. Significance was evaluated using a matched-pair

sentence segment word error (MAPSSWE) test (Pallett et al., 1990). Unless

stated otherwise, all WER differences described in the following sections as sta-

tistically significant were significant at the p < 0.1% level; in all cases a two-tailed

test was used.

It would be cumbersome to quote statistical significance for all possible pairs

of results. However, a simple rule of thumb (due to Povey, 2003) may be used

to approximately gauge the significance of those results for which significance

is not explicitly stated. Suppose that there are n tokens in the reference tran-

scription, and in the transcription produced by the recogniser, each of these has

probability p of being incorrectly expressed. Assuming errors are independent,

the distribution of total errors, E is then Bin(n, p), which for large n can be

accurately approximated by a normal distribution with the same mean and vari-

ance, N (np, np(1 − p)). The proportion of errors E/n, equivalent to the WER

has distribution N (p, 1
n
p(1− p)). p can be estimated by the observed WER. As-

suming a constant variance, a change in error rate is significant at the 5% level

if it exceeds 2 standard deviations, and at the 1% level if it exceeds 2.6 standard

deviations.

For the CTS task, there are 62,890 tokens. For error rates close to 30%, we

estimate the standard deviation by 0.18%. Therefore, using this approximate

approach, we can judge a change in WER between two systems to be significant

at the 5% level if it exceeds 0.4%, and at the 1% level if it exceeds 0.5%. In

practice this approach is often found to be conservative: we found some pairs of

results differing by only 0.2% absolute WER to be significantly different at the

0.1% level using the MAPSSWE test with the NIST scoring tools.
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6.2 Conversational telephone speech recognition

6.2.2 Diagonal covariance system refinements

We implemented the acoustic modelling refinements described in Section 2.4.

The feature vector was extended to include third-differential coefficients, and a

global HLDA projection was applied to reduce the dimensionality from 52 back

to 39. Additionally, we applied speaker adaptation with block-diagonal CMLLR

transforms with 32 regression classes per speaker. (A single transform was used

for silence models).

Finally, we performed SAT, estimating CMLLR transforms for each training

speaker using the same regression classes. The models were re-trained using these

transforms. We repeated this procedure for two iterations. The SAT models were,

of course, always used with CMLLR on the test speakers. We did not apply any

vocal tract length normalisation (VTLN), though we would expect it to give

further improvements on the results shown here. Table 6.2 shows the results

from the diagonal covariance systems. WER improvements down the table are

all statistically significant.

System Bigram LM Trigram LM

Baseline 40.3 37.2

HLDA 38.5 35.5

CMLLR 36.5 34.5

HLDA + CMLLR 35.6 33.3

HLDA + SAT + CMLLR 35.3 32.9

Table 6.2: %WER results for diagonal covariance system refinements with bigram

and trigram language models.

6.2.3 Full covariance systems

As in the TIMIT experiments, we compared the full covariance models to semi-

tied covariance matrices. We trained full-parameter semi-tied transforms after

the application of the global HLDA transform. The transforms were estimated

just once; the other Gaussian parameters were updated with a further two rees-

timations. We investigated transforms tied at monophone level and also at the

monophone state level.
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System Trigram WER

Baseline 37.2

STC (monophone) 36.0

STC (monophone state) 35.6

CMLLR 34.5

CMLLR + STC (monophone) 34.1

CMLLR + STC (monophone state) 34.3

HLDA 35.5

HLDA + STC (monophone) 35.1

HLDA + STC (monophone state) 34.8

HLDA + CMLLR 33.3

HLDA + CMLLR + STC (monophone) 33.2

HLDA + CMLLR + STC (monophone state) 33.1

HLDA + SAT + CMLLR 32.9

HLDA + SAT + CMLLR + STC (monophone) 33.3

HLDA + SAT + CMLLR + STC (monophone state) 33.4

Table 6.3: %WER results for STC systems.
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We again applied speaker adaption. For adaptation of a full-covariance sys-

tem, CMLLR has the advantage that it can be formulated as a feature-space

transform rather than a model-space transform, so it is not necessary to recom-

pute full covariance matrices. For the adaptation of both the full covariance and

semi-tied systems, we implemented an approximation described by Povey & Saon

(2006) and Sim & Gales (2005): the transforms are obtained by optimising the

objective function given in Equation 2.55 (page 29), using just the diagonal ele-

ments of the covariance matrix. In fact the results for the full covariance systems

shown below use an even simpler approach – we just use the CMLLR transforms

estimated for the diagonal models used for initialisation (“initial CMLLR”), so

that the same transforms were used with all full covariance models; the same

method is employed in the experiments in Chapter 8. Limited investigations

found the approximate diagonal method to reduce the WER by a further 0.1%.

Results from various semi-tied systems are shown in Table 6.3. We found

that STC is ineffective when used with the CMLLR transforms (improvements

when STC was used were not statistically significant) – this is because the phone-

specific semi-tied transforms are effectively absorbed into the CMLLR transforms.

Properly adapting these systems requires a more sophisticated approach (Gales,

1997).

Following the approach taken in the TIMIT experiments, we initialised the

full covariance models directly from the final set of diagonal-covariance Gaussians.

We found that the estimation of the full-covariance models was quick to converge,

so the models used for the results presented below were ML-trained using just

one iteration with full covariance, keeping the Gaussian means fixed. We found

that a further mean and variance re-estimation reduced the WER by 0.1%. Using

just one iteration allowed multiple prior weights to be investigated rapidly, since

the full covariance E-step statistics could be re-used for every smoothed model.

Table 6.4 shows the refinements applied to the shrinkage system, where the

shrinkage parameter was estimated analytically. Firstly, models were initialised

from the diagonal HLDA models, and the CMLLR transforms from these models

applied. We then investigated the effect of pooling the shrinkage statistics η and

C, as described in Section 5.2.5). This resulted in a 0.2% absolute WER improve-

ment. (For interest, we found η = 740, C = 3.1 and a mean δ = 0.75, giving

an average shrinkage parameter α = 0.23, equivalent to an average smoothing
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parameter τ = 118). All these improvements were statistically significant. The

same result was obtained when pooling globally and at monophone level. We

then applied the same techniques using SAT: here, the full covariance model

was initialised from the diagonal HLDA+SAT model, with the previous CMLLR

transforms for both training and test speakers used. The equivalent diagonal

models are shown for comparison. It can be seen that the shrinkage full covari-

ance models result in a substantial improvement over the diagonal models, 2.7%

and 2.5% absolute WER for the non-SAT and SAT models respectively.

System Trigram WER

HLDA + Shrinkage 32.2

+ initial CMLLR 30.8

+ pooled η and C 30.6

+ SAT 30.4

HLDA + CMLLR 33.3

HLDA + SAT + CMLLR 32.9

Table 6.4: %WER results for shrinkage systems with additional refinements.

We again compared models where the shrinkage parameter was estimated di-

rectly from the training data to models using a manually specified prior weight.

For non-SAT systems, the results are given in Table 6.5 and displayed in Fig-

ure 6.15, and for SAT systems, in Table 6.6 and Figure 6.16. (Note that WER,

rather than accuracy, is graphed). In all cases, a single full covariance re-

estimation was carried out, and CMLLR transforms from the diagonal models

were applied. Estimation of the shrinkage parameter used the globally-pooled

version of the shrinkage statistics.

The results demonstrate that off-diagonal smoothing is essential for good per-

formance with full covariance models on the CTS task: the reduction in WER

over diagonal models is more than doubled, compared to the naive full covariance

systems, when the optimal prior weight is used. The differences, both between

the best smoothed systems and the unsmoothed system, and between every full

covariance system and the diagonal system, are highly statistically significant.

Comparing identically smoothed full covariance systems, the application of SAT

generally resulted in weakly significant WER improvement (p < 5%).
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With and without SAT, the best results were obtained with an single, ap-

propriately tuned prior weight τ , in this case found to be approximately in the

range 80–100. However, the analytic method for obtaining a shrinkage parameter

directly from the data was again shown to be effective, achieving close to the best

performance obtained by tuning τ on the test set. Differences in WER between

the τ = 80 and τ = 100 smoothed systems and the shrinkage system were not

statistically significant.

Prior τ Trigram WER

0 32.1

10 31.3

20 31.0

40 30.7

60 30.6

80 30.5

100 30.5

125 30.6

150 30.7

175 30.7

200 30.8

300 31.0

400 31.3

Diagonal 33.3

Semi tied 33.1

Shrinkage 30.6

Table 6.5: %WER results for full covariance systems smoothed with a diagonal

prior, with varying prior weight, τ .

6.2.4 Effects on condition number

In Section 3.1.2 we discussed the importance of having well-conditioned covariance

matrices, and in Section 5.1.5, made claims about the benefits of the shrinkage

estimator in this regard. We briefly illustrate the effects of off-diagonal smoothing

on the condition number of the covariance matrices.
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Figure 6.15: %WER results for full covariance systems smoothed with a diagonal

prior, with varying prior weight, τ .
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Prior τ Trigram WER

0 32.1

10 31.1

20 30.9

40 30.5

60 30.4

80 30.3

100 30.4

125 30.4

150 30.4

175 30.5

200 30.6

300 30.9

400 31.1

Diagonal 32.9

Shrinkage 30.4

Table 6.6: %WER results for full covariance SAT systems, smoothed with a

diagonal prior.
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Figure 6.16: %WER results for full covariance SAT systems, with smoothed with

a diagonal prior, with varying prior weight, τ .
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Figure 6.17 shows the drop in the mean condition number (taken over all

Gaussians in the system) as the prior weight is increased. However, the mean

condition number is less important to the system performance than a reduction in

Gaussians with very high condition number; we therefore also show, in Figure 6.18

the change in the standard deviation of the condition number. There is a dramatic

fall in this value when a diagonal prior is used, compared to the use of the naive

unsmoothed matrix – this matches the sharp fall in error rate demonstrated in

Figures 6.15 and 6.16.

0 50 100 150 200 250 300 350 400
4000

4500

5000

5500

6000

6500

Prior weight, τ

M
ea

n 
m

at
rix

 c
on

di
tio

n 
nu

m
be

r

Figure 6.17: Mean covariance condition number across all Gaussians, with varying

prior weight, τ .

6.3 Summary

In this chapter we have described experimental results with full covariance models

on the TIMIT phone recognition task and on a large-vocabulary conversational

telephone speech task. On the TIMIT task, we investigated sparse Gaussian

graphical models and models smoothed with an off-diagonal prior, varying the
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Figure 6.18: Standard deviation of covariance condition number across all Gaus-

sians, with varying prior weight, τ .
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quantity of available training data; for the CTS system, we compared smoothed

full covariance systems with diagonal models.

Results with the sparse GM systems were not promising. However, we found

that off-diagonal smoothing was essential for good performance of the full covari-

ance models, particularly when the quantity of training data was reduced. With

appropriate smoothing, the full covariance systems generally outperformed diag-

onal equivalents by a significant margin. Systems with an analytically obtained

shrinkage parameter achieved close to the optimal performance from a range of

smoothing weights, but for both tasks the best performance was consistently ob-

tained by an appropriately chosen prior weight, found to be approximately 50 for

the TIMIT task and 100 for the CTS task.
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Chapter 7

Discriminative training methods

7.1 Discriminative training criteria

In introducing discriminative training, we return to the formulation of statistical

pattern recognition presented in the Introduction. In this simplified account of

the speech recognition problem, an input x is classified as class y having the

maximum posterior probability:

ŷ = arg max
y∈C

p(y|x) (7.1)

In this context, p(y|x) is a discriminant function. In the traditional approach, we

wish to obtain a good approximation to p(y|x), given training data (xr, yr). It is

possible to approximate p(y|x) directly using, for example, Conditional Random

Fields (Lafferty et al., 2001) or Artificial Neural Networks (ANNs) (Bourlard &

Morgan, 1994). These approaches are implicitly discriminative. However, for

ASR, the high-dimensional nature of both the input space and the output space

make a parametric generative modelling approach attractive. The classification

becomes

ŷ = arg max
y∈C

p(x, y) (7.2)

≈ arg max
y∈C

pθ(x|y)p(y) (7.3)

= arg max
y∈C

Dθ(x, y) (7.4)

where Dθ(x, y) = log pθ(x|y)P (y) is the discriminant function. The subscript θ

indicates the parametrised version of the generative probability, which we take to
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use the CD-HMM, for its many attractive properties discussed in earlier chapters.

The discriminant function is manually specified and the parameters are learned

from data; together they form a learning machine.

In ML training, we aim to find parameters that “best explain” the observed

training data. Given inputs xr labelled with the correct class yr, We seek θ giving

the highest log-likelihood of the data by maximising the objective function:

FML(θ) =
∑

r

Dθ(xr, yr) (7.5)

We have seen that ML training has deficiencies when training data is limited.

Even in the limiting case of infinite training data, the optimality of ML training

for classification requires the assumption that the generative model is correct.

The simplifying assumptions used in the CD-HMM framework mean, of course,

that this is not true.

7.1.1 Minimum classification error

The discriminative training approaches we introduce here retain the generative

modelling method for computing the discriminant function, but seek to correct for

the lack of model-correctness by explicitly considering the classification decisions

made by the model. If the correct class for input xr is yr, it is not the size of

Dθ(xr, yr), that is important per se, rather that Dθ(xr, yr) should be larger than

Dθ(xr, y) for all competing classes, y 6= yr. We define the margin Er by

Er = Dθ(xr, yr)−max
y 6=yr

Dθ(xr, y) (7.6)

So that the classification decision (7.4) is correct for the rth example if Er >

0. This motivates the Minimum Classification Error (MCE) criterion (Juang &

Katagiri, 1992) for training:

FMCE(θ) =
∑

r

H(Er) (7.7)

where H(x) is the step function

H(Er) =

{
0 Er < 0

1 Er ≥ 0
(7.8)
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This is non-differentiable, so difficult to optimise, but the step function can be

replaced by a sigmoid:

H(Er) =
1

1 + e−aEr
(7.9)

McDermott & Katagiri (2004) show that, subject to the choice of the parameter

a, the expected classification error using the MCE-trained models converges to

the expected error under the true model-free probabilities.

7.1.2 Maximum mutual information and conditional max-

imum likelihood

For ASR, the MCE criterion has the disadvantage that the 0/1 error function

for each utterance does not closely match the typical performance metrics for

ASR, where we measure the number of words correctly recognised, rather than

the number of complete utterances. In particular, the MCE criterion is highly

sensitive to how the training data is segmented into utterances. Consequently,

MCE training has most commonly been applied to isolated word recognition. An

alternative criterion used more widely for large vocabulary ASR is the Maximum

Mutual Information (MMI) criterion (Bahl et al., 1986). The objective is to

maximise the estimated mutual information between the acoustic features and

the transcriptions:

FMMI(θ) =
∑

r

log
p(xr, yr)

p(xr)P (yr)
(7.10)

=
∑

r

[
log

p(xr, yr)

p(xr)
− logP (yr)

]
(7.11)

=
∑

r

[
log

pθ(xr|yr)P (yr)∑
y pθ(xr|y)P (y)

− logP (yr)
]

(7.12)

If the prior probabilities P (y) are held constant (in other words, if the language

model is fixed), maximising FMMI(θ) is equivalent to maximising the sum of the

first terms above. This is the conditional maximum likelihood criterion (Nádas,

1983)

FCML(θ) =
∑

r

logP (yr|xr) =
∑

r

log
pθ(xr|yr)P (yr)∑

y pθ(xr|y)P (y)
(7.13)

Henceforth we assume the priors are fixed and treat the two criteria as equivalent

(we usually denote them by MMI). Again, it can be shown (Bouchard & Triggs,
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7.1 Discriminative training criteria

2004; Schlüter & Ney, 2001) that that expected error rate using MMI-trained

models converges to the model free expected error rate in the limit of infinite

training data.

The use of the MMI/CML criteria may also be motivated from a margin

perspective. Suppose we have the goal of minimising the margin by which utter-

ances are incorrectly classified. We redefine the margin Er to include the correct

hypothesis in the second term,

Er = Dθ(xr, yr)−max
y
Dθ(xr, y) (7.14)

so that Er = 0 for a correctly classified utterance, Er < 0 otherwise. Then the

objective is to maximise

F (θ) =
∑

r

Er (7.15)

The maximisation in the second term can be approximated by a soft upper bound:

max
y
Dθ(xr, y) ≤ log

∑
r

eDθ(xr,y) (7.16)

and therefore a lower bound on the objective function (7.15) is given by:

F (θ) =
∑

r

[
Dθ(xr, yr)− log

∑
y

eDθ(xr,y)
]

(7.17)

=
∑

r

[
log pθ(xr|yr)P (yr)− log

∑
y

pθ(xr|y)P (y)
]

(7.18)

=
∑

r

log
pθ(xr|yr)P (yr)∑

y pθ(xr|y)P (y)
= FCML(θ) (7.19)

In this thesis we use the MMI criterion for discriminative training. Returning

to the notation of Chapter 2, where a training utterance r has word transcription

Wr and acoustic observations Or, the MMI objective function is given by

FMMI(θ) =
∑

r

log p(Wr|Or, θ) (7.20)

=
∑

r

log
p(Or|Wr, θ)

κP (Wr)∑
W p(Or|W, θ)κP (W )

(7.21)

The denominator is a sum over all possible word sequences. κ is a scaling factor

set to ν−1, the inverse of the language model scaling factor used during decoding,

to compensate for the fact that the acoustic model simplifications lead to them

overestimating the probability.
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7.2 Objective function maximisation

7.1.3 Minimum Bayes risk

Minimum Bayes risk training (Doumpiotis & Byrne, 2004; Kaiser et al., 2000)

is a general discriminative training framework whereby we seek parameters to

minimise the expected posterior loss on the training set. The general form of the

objective function is

FMBR(θ) = −
∑

r

∑
w

P (W |Or, θ)L(Wr,W ) (7.22)

where L(Wr,W ) is a loss function measuring the error between the hypothesised

sentence W and the correct sentence Wr (typically it is computed using the Lev-

enstein distance). This aims to more closely optimise the WER by which ASR

performance is measured. In this category, the Minimum Word Error (MWE) cri-

terion attempts to minimise the expected word error directly; a more commonly-

used alternative is the Minimum Phone Error (MPE) criterion (Povey & Wood-

land, 2002). where the loss function is computed a the phone level. This gives a

greater ability to generalise to test data.

To obtain good test set performance1 with MPE-trained models Povey &

Woodland (2002) found it necessary to smooth the parameter updates with values

of the parameters obtained using both ML and MMI criteria. Although MPE is

used in many state-of-the-art large-vocabulary ASR systems, we elected not to

use MPE training for the discriminative experiments reported below, because

the interaction between the various smoothing constants tends to obscure the

experimental analysis of full covariance smoothing.

7.2 Objective function maximisation

7.2.1 MMI auxiliary functions

A method for training CD-HMM parameters using the MMI objective function

was developed by Normandin & Morgera (1991). From

FMMI(θ) = log p(Or|Wr, θ)
κP (Wr)− log

∑
W

p(Or|W, θ)κP (W ) (7.23)

1We discuss the generalisation abilities of discriminatively-trained models in a later section
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7.2 Objective function maximisation

(the sum over utterances r is dropped for clarity). Given some initial parameter

set θ0, it can be shown, using a similar procedure to that in Section 2.3.2, that

the function

Gnum(θ, θ0) =
∑
Q

∑
M

P (Q,M |O, θ0,Wr)
κP (Wr) log p(O,Q,M |θ,W ) (7.24)

is a lower bound for the first term in (7.23), with equality at θ = θ0. Similarly,

Gden(θ, θ0) =
∑
Q

∑
M

∑
W

P (Q,M |O, θ0,Wr)
κP (Wr) log p(O,Q,M |θ,W ) (7.25)

is a lower bound for the second term, again with equality at θ = θ0. The two

functions are respectively known as the numerator and denominator auxiliary

functions. Re-expressing the sums as over the frames t, and ignoring terms that

do not vary with the Gaussian parameters, we obtain:

Gnum(θ, θ0) =
∑

t

∑
j

∑
m

γnum
jm (t) log fjm(ot) (7.26)

Gden(θ, θ0) =
∑

t

∑
j

∑
m

γden
jm (t) log fjm(ot) (7.27)

where γnum
jm (t) and γden

jm (t) are the occupancy probabilities given the correct tran-

scription, and over all possible transcriptions, respectively. The probabilities can

be found using the forward-backward algorithm. In the case of large vocabu-

lary ASR, clearly summing over all possible word transcriptions is intractable. A

solution was proposed by Povey & Woodland (2000): for the denominator prob-

abilities, an existing set of models is used to perform recognition on the training

data, generating a lattice for each utterance containing the most closely compet-

ing potential transcriptions. The forward-backward probabilities are computed

over the arcs of these lattices. The numerator probabilities can also be computed

using lattices that match the known transcription but contain multiple alignment

hypotheses.

7.2.2 Parameter updates

Using the two auxiliary functions, we define

G(θ, θ0) = Gnum(θ, θ0)−Gden(θ, θ0) (7.28)
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7.2 Objective function maximisation

Whilst the functions Gnum(θ, θ0) and Gden(θ, θ0) are lower bounds for their re-

spective terms in the objective FMMI(θ), their difference is not a lower bound for

the objective, due to the subtraction. However, at θ0 the gradients are equal:

∂FMMI(θ)

∂θ

∣∣∣∣∣
θ0

=
∂G(θ, θ0)

∂θ

∣∣∣∣∣
θ0

(7.29)

G(θ, θ0) is known as a weak sense auxiliary function for FMMI(θ): an increase in

the value of the auxiliary will increase the objective, in a region close to θ0.

A variety of schemes have been proposed for using the weak sense auxiliary

for maximising the MMI objective. The principal concerns are that the updated

parameters are valid (in particular, covariances must be positive definite) and that

the update is sufficiently small that the auxiliary remains a good approximation

to the objective. Schemes include making the denominator term in the auxiliary

function a linear function of the covariance (Povey, 2003) and using a line search

with convex constraints (Liu & Soong, 2008; Liu et al., 2007). We investigated

full covariance updates using Newton’s method with convex constraints on the

TIMIT task (Bell & King, 2008). However, for the large vocabulary experiments

presented below, we used the smoothing technique proposed by Normandin &

Morgera (1991), with refinements by Povey & Woodland (2000). This is known

as the extended Baum-Welch (EBW) algorithm.

We maximise a smoothed version of the auxiliary given by

G(θ, θ0) = Gnum(θ, θ0)−Gden(θ, θ0) +Gsm(θ, θ0) (7.30)

where Gsm(θ, θ0) is a smoothing function with the same functional form as the

other two functions, with a a maximum at θ = θ0, so that the gradient of the

auxiliary at θ0 is unaffected by its addition.

We adopt the notation of Sim & Gales (2006) for discriminative training with

full covariance. Equation 7.30 can be expressed as a sum over all Gaussians.

We describe the optimisation of the parameters of Gaussian m (dropping the

dependence on j), so consider only those terms. In Section 3.1.1 we wrote the

log-density of a Gaussian m as∑
t

γm(t) log fm(ot) =
∑

t

γm(t)
[
−1

2
log |Σm|−

1

2
(ot−µm)T Σ−1

m (ot−µm)
]

(7.31)
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7.2 Objective function maximisation

In discriminative training, µm is no longer simply set to the sample mean, so it

is more helpful write the density (7.31) in terms of non-centralised statistics:∑
t

γm(t)
[
−1

2
log |Σm| −

1

2
tr Σ−1

m

∑
t

γm(t)(oto
T
t − otµ

T
m − µmo

T
t + µmµ

T
m)
]

(7.32)

=− 1

2

[
βm log |Σm|+ tr Σ−1

m (Ym − xmµ
T
m − µmx

T
m + µmµm)

]
(7.33)

with statistics βm, xm and Ym. In the MMI case, the statistics for Gnum(θ, θ0) are

given by

βnum =
∑

t

γnum
m (t), xnum

m =
∑

t

γnum
m (t)ot, Y num

m =
∑

t

γnum
m (t)oto

T
t (7.34)

and the statistics for Gden(θ, θ0) by

βden =
∑

t

γden
m (t), xden

m =
∑

t

γden
m (t)ot, Y den

m =
∑

t

γden
m (t)oto

T
t (7.35)

The combined statistics, for Gnum(θ, θ0)−Gden(θ, θ0) are then

βc
m = βnum

m − βden
m , xc

m = xnum
m − xden

m , Y c
m = Y num

m − Y den
m (7.36)

The statistics for the smoothing term are derived from the original parameters

(µ0
m,Σ

0
m), and are given by

βsm = Dm (7.37)

xsm
m = Dmµ

0
m (7.38)

Y sm
m = Dm(Σ0

m + µ0
mµ

0
m

T
) (7.39)

Dm is known as smoothing constant. The terms of 7.30 including Gaussian m

can be expressed as

−1

2

[
(βc

m+βsm
m ) log |Σm|+tr Σ−1

m (Y c
m+Y sm

m −(xc
m+xsm

m )µT
m−µm(xc

m+xsm
m )T +µmµ

T
m)
]

(7.40)

Then G(θ, θ0) is maximised by setting

µ̂m =
xc

m + xsm
m

βc
m + βsm

m

(7.41)

Σ̂m =
Y c

m + Y sm
m

βc
m + βsm

m

− µ̂mµ̂
T
m (7.42)

It can be seen that the larger the magnitude of the smoothing constant, the

smaller the size of the parameter updates.

124



7.2 Objective function maximisation

7.2.3 Choosing the smoothing constant

Povey & Woodland (2000) proposed setting the smoothing constants on a per-

Gaussian level, and suggested setting them at twice the level necessary to ensure

positive variances, floored at twice the denominator occupancy,
∑

t γ
den
jm (t). In

the full covariance case the equivalent is to ensure that the covariance matrix is

positive definite. Equation 7.42 can be expressed as:

Σ̂m =
Y c

m + Y sm
m

βc
m + βsm

m

− (xc
m + xsm

m )(xc
m + xsm

m )T

(βc
m + βsm

m )2
(7.43)

=
(Y c

m + Y sm
m )(βc

m + βsm
m )− (xc

m + xsm
m )(xc

m + xsm
m )T

(βc
m + βsm

m )2
(7.44)

Separating this into terms that are quadratic, linear and constant in Dm, we have

Σ̂m = B0 +DmB1 +D2
mB2 (7.45)

where

B0 = βc
mY

c
m − xc

mx
c
m

T (7.46)

B1 = Y c
m + βc

mY
sm
m − xc

mµ
0
m

T − µ0
mx

c
m

T (7.47)

B2 = Σsm
m (7.48)

We require

B0 +DmB1 +D2
mB2 � 0 (7.49)

Which can be ensured by setting Dm to the largest solution of the quadratic

eigenvalue problem

|B0 + λB1 + λ2B2| = 0 (7.50)

We discuss the solution of this in Appendix A.1. In their full covariance system,

Chen et al. (2006) avoid the need for this by using an iterative procedure: choosing

a value for Dm, checking whether the resulting update yields a positive definite

matrix, and doubling Dm if not. For precision matrix subspace methods, if only

basis coefficients are updated then Dm can be found in a memory-efficient manner

by solving a quadratic equation for each dimension (see Sim & Gales, 2006).
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7.3 Generalisation of discriminative estimators

The situation is even simpler if we update the variances without updating the

means. Then

Σ̂m =
Y c

m + Y sm
m

βc
m + βsm

m

− µ0
mµ

0
m

T
(7.51)

=
Y c

m − βc
mµ

0
mµ

0
m

T

βc
m + βsm

m

(7.52)

and we require

B0 +DmB1 � 0 (7.53)

where B0 = Y c
m − βc

mµ
0
mµ

0
m

T
, B1 = Σ0. This can be guaranteed by setting Dm to

the largest eigenvalue of B0B
−1
1 .

7.2.4 Parameter initialisation

The standard EM algorithm guarantees convergence to at least a local optimum of

the ML objective function; it is not possible to obtain such convergence properties

for the MMI auxiliary function. As we have seen, it is necessary to restrict the

size of parameter updates to ensure an increase in the objective. For this reason

a good choice of initial parameters is important. The standard practice is to

initialise the EBW algorithm with ML-trained parameters, obtained using the

EM algorithm.

7.3 Generalisation of discriminative estimators

As discussed earlier, when using full covariance models with many parameters, it

is particularly important to consider the generalisation performance. The model-

free optimality properties of the discriminative estimators discussed above do not

guarantee good generalisation when the amount of training data is limited. In

this section we discuss standard methods used for improving the generalisation

of MMI models, before describing large-margin techniques that have been more

recently investigated. We go on to consider the generalisation of full covariance

models within a discriminative framework, when lower dimensional smoothing

priors are used.

Seemingly different methods for improving generalisation in a discrimina-

tive setting can sometimes be shown to be broadly equivalent, and, since the
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7.3 Generalisation of discriminative estimators

shrinkage-based covariance refinements we introduce are largely motivated by

this goal, we feel that this merits the detailed analysis presented here.

7.3.1 Increasing confusable data

Generalisation ability is of course increased if the amount of training data is in-

creased. For a fixed amount of training data, the generalisation of discriminative

estimators can be increased by increasing the number of acoustically confusable

examples (those contributing to the posterior γden). As explained by Povey &

Woodland (2001), this can be achieved by weakening the language model used

for the forward-backward computations over the lattices. Typically, a unigram

LM is used. Similarly, it is the desire to increase the confusable examples which

motivates the use of κ, the inverse LM scaling factor, when computing γden us-

ing the forward-backward algorithm, rather than scaling-up the language model

probabilities.

7.3.2 I-smoothing

ML trained parameters are known to have lower variance than MMI-trained

parameters (Bouchard & Triggs, 2004; Nádas, 1983), and several authors have

proposed using a linear combination of the two to improve generalisation perfor-

mance. An example used for ASR is the H-criterion of Gopalakrishnan et al.

(1988). Povey & Woodland (2002) proposed weighting the linear combination

according to the quantity of training data available, so that in the limiting case

of infinite training data, the MMI criterion is used. This is known as I-smoothing.

To G(θ, θ0) is added additional prior term GI(θ, θ0) with weight τ I and statistics

proportional to the ML (numerator) statistics:

βI
m = τ I (7.54)

xI
m = τ I x

num
m

βnum
m

(7.55)

Y I
m = τ I Y

num
m

βnum
m

(7.56)

More recently a similar smoothing effect has been achieved by instead smoothing

towards the previous parameter values by incrementing the value of Dm; this

127



7.3 Generalisation of discriminative estimators

has been shown to yield slightly improved performance over the earlier technique

(Povey et al., 2008).

7.3.3 Large-margin estimation

Vapnik (1995) introduced Support Vector Machines (SVMs). These are binary

linear classifiers shown to possess optimality properties with regards to generali-

sation ability. The SVMs are trained to maximise the margin of correct classifica-

tion of the training data, and it can be shown (Burges, 1998) that under certain

conditions, the size of the margin controls a bound on the generalisation ability.

Whilst binary classification techniques are not suitable for large vocabulary ASR,

these results have motivated the use of large margin estimation for discrimina-

tive training for ASR, as a means of controlling the generalisation ability of the

models.

For an ASR system, the margin may be defined with reference to the discrim-

inant functions. Returning to the notation of earlier in this Chapter, defining the

margin for an utterance r by

Er = Dθ(xr, yr)−max
y 6=yr

Dθ(xr, y) (7.57)

a canonical large-margin objective function to maximise would be

FLM(θ) = min
r
Er (7.58)

or equivalently

FLM(θ) = max ρ, Er > ρ (7.59)

However, this is not a bounded problem; nor is it tractable. Efforts to incorporate

large-margin techniques into CD-HMM parameter estimation have focused on

approximations to the objective function for which a solution is feasible. Jiang

et al. (2006); Li & Jiang (2006) restrict, at each iteration, the set of utterances

used in (7.58) to those for which 0 ≤ Er ≤ ε with some preset ε, and recast the

parameter updates as a constrained convex optimisation problem.

However, this excludes misclassified utterances from contributing to the ob-

jective function. Li et al. (2006) proposed soft-margin estimation (SME). Here,
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7.3 Generalisation of discriminative estimators

the separation ρ is chosen heuristically, and all utterances for which the margin,

Er, of correct classification is less than ρ are included:

FSME(θ) =
∑

r

Er, Er < ρ (7.60)

In this work, the margin was normalised by by the number of frames in the

utterance to avoid longer utterances naturally having higher separation. SME

does, however, suffer from sensitivity to outliers in the training data that are

misclassified by a large margin, since these are able to dominate (7.60). This

can be remedied (Yu et al., 2008) by replacing the linear function in (7.60) by

a step function (or a sigmoid, its soft equivalent) as in MCE – this is known as

large-margin MCE (LM-MCE):

FLM-MCE(θ) =
∑

r

H(Er − ρ) (7.61)

with H(x) as in (7.8) or (7.9).

As we discussed with reference to MCE earlier, the methods described above

do not readily extend to sequence classification as required for ASR – indeed,

they have largely been employed for isolated digit recognition. This disadvantage

motivated Sha & Saul (2007) to propose a margin scaled by the (frame-wise)

Hamming distance H between the correct sequence and the hypothesis. Rather

than penalising Er − ρ < 0 in the objective function, we apply a penalty when

min
y 6=yr

[
Dθ(xr, yr)−Dθ(xr, y)− ρH(y, yr)

]
< 0 (7.62)

We use the left-hand side to define a new margin function

EH
r (ρ) = min

y 6=yr

(Dθ(xr, yr)−Dθ(xr, y)− ρH(y, yr)) (7.63)

= Dθ(xr, yr)−max
y 6=yr

[
Dθ(xr, y)− ρH(y, yr)

]
(7.64)

giving a large-margin objective∑
r

EH
r (ρ), EH

r (ρ) < 0 (7.65)

Saon & Povey (2008) showed that using a smoothed version of this margin leads to

the large-margin objective function being expressible as a simple modification of
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7.4 Full covariance modelling with MMI

the standard MMI objective, making it suitable for large-vocabulary systems. We

can incorporate the correct transcription into the maximisation in (7.64) without

affecting the objective. Replacing the maximisation with a soft upper bound as

in Equation 7.16 and noting that the constraint EH
r (ρ) < 0 is then automatically

satisfied, yields the objective function

FLM-MMI(θ) =
∑

r

[
Dθ(xr, yr)− log

∑
y

eDθ(xr,y)+ρH(y,yr)
]

(7.66)

This function can be maximised by a relatively straightforward modification to

the procedure described in Section 7.2. When computing the forward-backward

probabilities over the denominator lattices, used to compute the γden posteriors,

the acoustic log-likelihood of each are increased by the contribution of that arc

to the total Hamming distance for the transcription.

Throughout the analysis in this Section we have presented ρ as some preset

constant. A larger margin is more desirable (although not in the limit of infinite

training data), and so we might more properly treat ρ as a variable, present a

large-margin objective as a function of ρ. We would then attempt to find

arg max
θ,ρ

[
ρ+ λFLM(θ, ρ)

]
(7.67)

for some scale factor λ. In fact this is not particularly important, since the

optimal ρ is dependent on the choice of λ, and the joint optimisation is typically

achieved by selecting ρ from a limited set of possible values. In practice, we can

view it as hyperparameter that must be tuned using test data.

7.4 Full covariance modelling with MMI

We now focus on the use of discriminative techniques for estimating full covari-

ance parameters. The experimental results presented in Chapter 6 showed that

when using full covariance models, a shrinkage estimator outperforms the stan-

dard sample covariance matrix, with the effects more pronounced when training

data is limited. Put another way, off-diagonal smoothing – or use of a diagonal

covariance prior – is necessary for good performance on test data. We explained

how the shrinkage estimator optimises a bias/variance trade-off to obtain good

generalisation performance.
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However, the approach adopted was explicitly generative: the estimators

were essentially trained using the ML criterion, and the the analytically-obtained

shrinkage parameter was chosen to minimise the expected deviation from some

true unobserved covariance matrix. In reality, any models used are far from being

a correct model for speech, and there are no “true” matrices; in this section we

ask whether similar techniques can be used to improve the performance of full

covariance models when the aim is to maximise a discriminative criterion. The

analysis presented here is somewhat empirically-based; however, we use it as a

motivation for the “recipes” for full covariance discriminative training that we

investigate on the CTS recognition task in the following chapter.

7.4.1 Model correctness

As an illustration, we return to the artificial three-way classification problem

presented as a motivating example in the introduction to Chapter 3. Data for

each class was generated by a full covariance Gaussian. Recall that when a large

number of samples was used for training with ML, diagonal covariance models

achieved an error rate of 5.3%, whilst full covariance models achieved an error

rate of 1.2%. Our first observation is that applying MMI training improves the

performance of the weaker models: after 12 iterations of the EBW algorithm,

the error rate is reduced to 1.6%. The decision boundaries from the ML-trained

and MMI-trained diagonal models are compared in Figure 7.1. Applying MMI

training to the full covariance models does not result in a performance improve-

ment. This illustrates the principle that MMI training corrects for the invalidity

of model correctness assumptions; when the model is correct, as in the case of

the full covariance models in this setting, there is no advantage to be gained.

7.4.2 Discriminative bias and variance

For our purposes, the simulations in the previous section are unrealistic due to

the use of a very large number of training samples. As in the general asymptotic

analysis in Chapter 5, we instead consider the case where, closer to the reality in

ASR, the number of training samples for each Gaussian is of the same order as

the dimensionality. A justification for this approach may be found in our CTS

system: approximately 10,000,000 frames of training data are shared over 120,000
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Figure 7.1: Decision boundaries obtained using diagonal covariance models,

trained using ML (top) and MMI (bottom)
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39-dimensional Gaussians, giving an average of approximately 2.1 samples per

Gaussian per dimension. In this situation, if we consider the training data to be

randomly sampled from the true distribution, then the estimator will have high

variance.

When comparing the performance of estimators of differing dimensionality

in Section 5.1.3, we used the notion of a trade-off between bias (in the lower

dimensional case) and variance (in the high-dimensional case). We seek to extend

the concepts of bias and variance to the discriminative setting. We adopt the

bias/variance decomposition of Domingos (2000) (see also Valentini & Dietterich,

2004).

The situation is more complicated than the generative case because we need

to define expectations over both the training and the test data. Define TR to

be a random training set containing R labelled training examples (xr, yr) drawn

from p(x, y). The model parameters learned from this training set are denoted by

θ(TR). Given new unseen data (xt, yt), also drawn from p(x, y), the classification

decision made by this learning machine is given by

ŷ(xt) = arg max
y
Dθ(TR)(xt, y) (7.68)

It is a function of the random TR and the random test data xt. The expected

classification loss is given by

Ep(xt,yt)[ETR
L(yt, ŷ)] (7.69)

where L(yA, yB) is the loss incurred by classifying yA as yB. The inner expectation

is over the training data; the outer expectation is over the test data.

An optimal learning machine, minimising the expected loss under the true

distribution, would classify test data xt as

y∗(xt) = arg min
y

Ep(y|xt)L(y, yt) (7.70)

which corresponds to the optimal Bayes classifier. The main prediction, ym,

associated with input xt is the class that would lead to the best performance

from the learning machine, averaged over all training data:

ym(xt) = arg min
y

ETR
L(y, ŷ) (7.71)
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7.4 Full covariance modelling with MMI

Domingos (2000) defines the “bias” of the classifier to be the loss between this

average prediction, and the optimal prediction:

bias(xt) = L(ym, y
∗) (7.72)

whilst the “variance” of the classifier can be defined as average loss relative to

the main prediction:

var(xt) = ETR
L(ym, ŷ) (7.73)

All these functions are random quantities of the test data. Domingos (2000)

showed that for a general loss function, the error of the classifier (7.69) can be

decomposed as

Ep(xt,yt)[ETR
L(yt, ŷ)] = Ep(xt,yt)[c1ETR

[L(ym, ŷ)] + L(ym, y
∗) + c2L(y∗, yt)] (7.74)

= Ep(xt,yt)[c1 var(xt) + bias(xt) + c2N(xt, yt)] (7.75)

with the values of the constants c1 and c2 depending on the loss function used.

The final term is a noise term, representing the loss that is unavoidable even if

the optimal classifier is used, due to classes overlapping in feature space.

In practice the true distribution is unknown, so it is not possible to analytically

obtain expectations over all possible training sets as required for the decompo-

sition (7.75). Given a limited labelled training set, an approximate procedure

suggested by Valentini & Dietterich (2004) is to construct multiple training sets

of the same size by sampling with replacement from the full set. For each set, a

learning machine is constructed; the test set performance is approximated by eval-

uating the learning machine on the remaining training examples (approximately

e−1 of the full training set, on average).

The procedure is not feasible for large-scale ASR systems. We limit our anal-

ysis here to the artificial classification task described earlier, and do not carry out

cross-validation. This has the advantage that multiple training sets can be easily

sampled from the true distribution. We estimated the expectation over training

sets using 500 sample sets, and estimated the error of the resulting models using a

test set of 3000 samples. Figure 7.2 shows the bias-variance decomposition using

the 0/1 loss function on this task, with a varying quantity of training data used

to train the Gaussian models (the noise term is constant and included as part
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Figure 7.2: Classification error (blue) decomposed into variance (green) and bias

(red), for three-class simulated data, with varying number of training samples

per class. Solid lines show full covariance models; dashed lines show diagonal

covariance models.
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7.4 Full covariance modelling with MMI

of the bias). The performance of full covariance and diagonal covariance models

(both ML-trained) is compared.

The graph shows that this measure of variance conforms to the expected prop-

erties of a variance measure, in that it reduces with the number of samples, whilst

the bias remains approximately constant. It can be seen that the diagonal models

have a higher bias than the full covariance models. With just three samples, the

high variance of the full covariance models leads to a higher classification error,

despite the lower bias. For higher number of samples the variance of the full co-

variance models falls to slightly lower than that of the diagonal models, contrary

to what we would expect from the traditional measure. This can be explained by

the fact that the variance about a bias ym tends to be higher than the variance

about an unbiased ym.
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Figure 7.3: Error, variance and bias (coloured as in Figure 7.2) comparing ML-

trained diagonal models (dashed) with MMI-trained diagonal models (solid)

In Figure 7.3, we show a similar graph comparing ML-trained and MMI-

trained diagonal models. The MMI-trained models yield consistent improvement

– this is primarily due to a reduction in bias, rather than a change in variance.
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7.4 Full covariance modelling with MMI

MMI training reduces the error due to the over-simplicity of the model, but does

not improve generalisation.

7.4.3 Estimation with a diagonal prior

We now analyse the performance of the shrinkage estimator on the artificial data,

using the new bias-variance decomposition. We present results here for 3 and 5

samples per class, noting from Figure 7.2 the fact that the diagonal and full

covariance models are closest in classification error when the number of samples

is in this range. Figure 7.4 (solid lines) shows the effect of varying the shrinkage

parameter α, interpolating between the full sample covariance matrix (α = 0)

and a diagonal version (α = 1).

It can be seen that there is a steady increase in the bias as α is increased

towards the diagonal model. However, initially this is more than offset by the

sharp reduction in variance as α is increased from zero. As we found in the

experiments on speech data in Chapter 6, the lowest mean error is considerably

smaller than the error of both the diagonal and standard full covariance models,

this being due to the reduction in variance. The optimal α is considerably lower

than value minimising the parameter MSE, which occurs at α = 0.5 for n = 3

and α = 0.3 for n = 5.

We propose to improve the performance of the shrinkage estimator by re-

placing the ML-trained diagonal prior with an MMI-trained diagonal prior. As

we have showed in Figure 7.3, the MMI-trained diagonal models have a lower

bias than the ML-trained models, and no higher variance. By using this prior,

we would hope to maintain the improved error reduction caused by the lower

variance, whilst gaining a further reduction by backing off to models with lower

bias.

We denote the mean and variance of the MMI-trained diagonal models by

µD
m, ΣD

m. Since the means of the two model sets may now be different, the esti-

mation formulae are slightly changed. Recall from Section 5.1.4 the a smoothed

covariance matrix may be expressed equivalently as

Um = (1− α)Sm + αDm ≡ Sm

βm + τ
+

τDm

βm + τ
(7.76)
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Figure 7.4: Error, variance and bias (as in Figure 7.2) for full covariance shrink-

age models, with varying shrinkage parameter α, using a standard ML-trained

diagonal prior (solid) and an MMI-trained prior (dashed). Models trained with

three samples per class (top) and five samples per class (bottom)
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7.5 Summary

We can therefore convert the shrinkage parameter α to an equivalent weight τ

using τ = αβm(1−α)−1. Then using the notation of Section 7.2.2, the smoothed

parameters are obtained via the smoothed statistics

µ̂m =
xm + τµD

m

βm + τ
(7.77)

Σ̂m =
Ym + τ(ΣD

m + µD
mµ

D
m

T
)

βm + τ
− µ̂mµ̂

T
m (7.78)

We use only ML statistics here; only the diagonal models are discriminatively

trained. The dashed lines in Figure 7.3 show the performance with the MMI

priors. A slightly lower minimum error rate is achieved. However, a lower error

rate is maintained for a large range of values of α away from the optimum, making

a good choice of α (or τ) less important.

7.5 Summary

In this chapter we described various discriminative training criteria, having the-

oretical benefits for classification performance when the generative model used

is not correct. We motivated the MCE and MMI criteria from a margin per-

spective. We discussed a standard approach to model training using the MMI

criterion, focusing particularly on full covariance estimation in this setting. We

discussed methods for improving the generalisation ability of discriminative esti-

mators. Finally, we returned to the theme of Chapter 5: we presented simulations

to illustrate the concepts of variance and bias in a discriminative setting, and,

considering the use of full covariance models, motivated extensions of the use of

a diagonal smoothing prior when discriminative training criteria are used.
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Chapter 8

Discriminative training

experiments

In this chapter we investigate incorporating discriminative training techniques

into full covariance model estimation. We present results on the conversational

telephone speech recognition task used for the earlier experiments in Section 6.2.

Our objective is to obtain an optimal recipe for full covariance training.

8.1 Diagonal baseline systems

Our baseline diagonal system was the same as that used for the earlier exper-

iments: a global HLDA transform was used to project the feature vector from

52 to 39 dimensions. Speaker adaptation was performed on the test set using

block-diagonal CMLLR transforms with 32 regression classes per speaker. All

transforms were estimated using the ML criterion. Our early experiments were

performed without SAT; however we later repeated a selection of the experiments

with SAT. When using SAT, CMLLR transforms were estimated for the training

speakers using the baseline HLDA models, and these transforms were used for all

subsequent SAT experiments. Recognition of the test utterances was carried out

by rescoring baseline lattices with the new acoustic models, and then rescoring

with the trigram language model to obtain a one-best transcription.

Following the procedure described in Young et al. (2006), numerator and

denominator lattices were generated for each training utterance using the baseline

models; in the denominator case, a bigram language model was used, and the
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8.2 Discriminatively trained priors

lattices were heavily pruned. HDecode was used to add phone alignments to each

arc. The lattices were rescored with a unigram language model, and the acoustic

probabilities were scaled by 1/12, the inverse of the language model scaling factor

used during decoding. The same lattices were used for all discriminative training.

The mean and variance parameters of the ML-trained diagonal models were

updated using MMI training. We adopted the standard method (Povey & Wood-

land, 2000) of flooring the smoothing constant Dm at 2βden
m . We found that the

performance reached a peak after around four EBW iterations. WER results for

the MMI-trained diagonal systems are shown in Table 8.1. It can be seen that

substantial performance gains over the ML-trained models are achieved. All gains

obtained using MMI are statistically significant; in addition, the use CMLLR and

SAT continued to yield significant improvements with MMI.

System ML MMI (by iteration)

1 2 3 4

HLDA 35.5 34.2 33.5 33.1 33.1

HLDA + CMLLR 33.1 32.4 31.8 31.4 31.2

HLDA + SAT + CMLLR 32.9 32.0 31.3 31.1 30.9

Table 8.1: %WER for diagonal covariance systems with means and variances

updated with MMI training.

8.2 Discriminatively trained priors

The experiments in Chapter 6 showed that the performance of full covariance

models is dramatically improved when a diagonal smoothing prior is used. In

Section 7.4.3 we proposed substituting the ML-trained prior for a discriminatively

trained prior, as a means of the reducing the increase in bias when backing off to

the diagonal models; the potential advantages were demonstrated by simulations.

We applied the technique to the CTS models. To ensure a match between

the full covariance statistics for each Gaussian and the respective priors used,

the means and Gaussian weights were fixed to the same values for both. In both

cases, the values used were those obtained by four iterations of MMI training (the
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8.2 Discriminatively trained priors

models whose performance was reported in the previous section). Full covariance

statistics were accumulated, centred about the fixed means, using the standard

ML state posteriors. These were smoothed with the diagonal prior according to

the formula (7.78). Full covariance discriminative training was not performed at

this stage, but was applied in later experiments described in Section 8.3. Speaker

adaptation was performed using the CMLLR transforms estimated for the ini-

tialising models.

Table 8.2 compares the effects of three different smoothed full covariance sys-

tems: the first column shows the standard ML-trained smoothed full covariance

systems, used in the experiments in Chapter 6. The second shows full covari-

ance models with MMI-trained means, smoothed with an equivalent ML-trained

diagonal prior; the third shows the full covariance models smoothed with MMI-

trained smoothed with the MMI-trained diagonal covariance models. In each case

we investigated the performance for a range of values of τ , the prior weight. We

also estimated models using the prior weight obtained from the optimal shrinkage

parameter α using global sharing of the shrinkage statistics (this is labelled as

“shrinkage”). We did not adjust the formulae for estimating α to make them

explicitly discriminative. The results are shown graphically in Figure 8.1.

The results show that when the diagonal models are discriminatively trained,

the use of full covariance models results in a smaller performance improvement

over the diagonal models – in fact, the differences are not statistically significant.

This is to be expected, since discriminative training compensates for the lack of

model-correctness, which is of greater importance when there are fewer param-

eters. However, the necessity of off-diagonal smoothing is again demonstrated,

yielding significant improvements over both diagonal and unsmoothed full co-

variance systems. Furthermore, the use of the discriminatively-trained diagonal

prior leads to a lower WER minimum, and also results in a low WER being main-

tained for a wide range of values of τ . The simulations carried out Section 7.4.3

appear to mirror the performance of the ASR models fairly well. The method for

analytically-obtaining the optimal prior weight continues to yield results close to

the optimum for all three systems, again, with the differences not significant.

The experiments using the MMI prior were repeated with SAT systems. The

results are given in Table 8.3 and Figure 8.2. Again, the new systems are com-

pared to the original ML systems. The results show the same trends as for the
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8.2 Discriminatively trained priors

Initialising model (prior model)

Prior τ ML (ML) [a] MMI (ML) [b] MMI (MMI) [c]

0 32.1 31.5 31.1

10 31.3 30.7 30.7

20 31.0 30.5 30.5

40 30.7 30.3 30.2

60 30.6 30.3 30.1

80 30.5 30.3 30.1

100 30.5 30.3 30.1

125 30.6 30.4 30.0

150 30.7 30.5 30.1

175 30.7 30.5 30.1

200 30.8 30.6 30.1

300 31.0 30.8 30.1

400 31.3 30.9 30.2

Diagonal 33.3 - 31.2

Shrinkage 30.6 30.4 30.1

Table 8.2: %WER results for full covariance systems, with covariance paramters

updated with ML and smoothed with a diagonal prior. Models use HLDA and

CMLLR.
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Figure 8.1: %WER results for the systems referred to in Table 8.2, shown as [a]

solid, [b] dashed and [c] dash-dotted. In each case, blue lines show the shrink-

age estimator; the green dashed line shows the diagonal MMI-trained models

(diagonal ML-trained models are not shown for reasons of plot scaling).
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8.3 Discriminative full covariance updates

non-SAT systems. The addition of SAT again resulted in statistically significant

performance improvements for the optimal smoothed systems.

Prior/initialising model

Prior τ ML [a] MMI [c]

0 32.1 31.0

10 31.1 30.6

20 30.9 30.3

40 30.5 30.1

60 30.4 29.9

80 30.3 29.9

100 30.4 29.9

125 30.4 29.9

150 30.4 29.9

175 30.5 29.9

200 30.6 29.9

300 30.9 30.0

400 31.1 30.0

Diagonal 32.9 30.9

Shrinkage 30.4 29.9

Table 8.3: %WER results for SAT-trained full covariance systems, with covariance

parameters updated with ML and smoothed with a diagonal prior.

8.3 Discriminative full covariance updates

Finally, we performed MMI estimation directly on the full covariance models. It is

essential to initialise the off-diagonal elements with ML estimation before apply-

ing MMI updates. Since full covariance models are prone to rapid over-training,

the choice of this initial full covariance model is important. A related issue is the

question of how off-diagonal smoothing, shown to bring benefits to ML-trained

models, may be incorporated; and whether it continues to yield advantages when

full covariance MMI training is applied.
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Figure 8.2: %WER results for the systems referred to in Table 8.3, shown as [a]

solid and [c] dash-dotted. In both cases, blue lines show the shrinkage estimator;

the green dashed line shows the diagonal MMI-trained models (diagonal ML-

trained models are not shown for reasons of plot scaling).
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8.3 Discriminative full covariance updates

If a diagonal prior is used for the ML estimation used generate the initialising

models, then it influences the MMI estimation via the smoothing term Gsm(θ, θ0).

(In addition, the state posteriors used in the EBW algorithm are likely to be more

accurate). Under the standard method for setting the smoothing constant Dm,

the influence of the initial model is likely to be greater in the full covariance case

that the diagonal covariance case due to the higher dispersion of the eigenvalues

of (7.50) in the former case. An alternative is to apply the prior in the style of

MMI-MAP (Povey et al., 2003). Here the diagonal prior is used to obtain a MAP

(shrinkage) estimate:

µmap
m =

xm + τµD
m

βm + τ
(8.1)

Σmap
m =

Ym + τ(ΣD
m + µD

mµ
D
m

T
)

βm + τ
− µmap

m µmap
m

T (8.2)

which in turn is used as a prior for the MMI estimation, leading to parameter

updates given by:

µ̂m =
xc

m + xsm
m + τmapµmap

m

βc
m + βsm

m + τmap
(8.3)

Σ̂m =
Y c

m + Y sm
m + τmap(Σmap

m + µmap
m µmap

m
T )

βc
m + βsm

m + τmap
− µ̂mµ̂

T
m (8.4)

where τmap is a new prior constant, which Povey et al. (2003) suggest setting to

100.

We performed full covariance MMI training with a range of initialising full co-

variance systems, updating only covariance matrices. Table 8.4 compares WER

results across these systems (described using the notation from Tables 8.2 and

8.3). In each case, results are shown from the original diagonal system are pre-

sented; then the full covariance system obtained from that diagonal system using

ML estimation; and finally, the results following an iteration of MMI estimation.

Initial experiments were performed without SAT; we later repeated the most suc-

cessful training recipes with SAT. The smoothed systems shown in the table use

a prior weight τ = 100.

As with the original ML estimation, a single full covariance MMI update was

performed: we found that further iterations reduced performance. Applying an

additional prior resulted in slight performance degradation when the initialising
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8.4 Summary

System Diagonal Initial MMI

Systems without SAT

[a] + naive FC 33.3 32.1 31.1

[a] + smoothed FC 33.3 30.5 30.4

[c] + naive FC 31.2 31.1 30.2

[c] + smoothed FC 31.2 30.1 29.4

[c] + shrinkage FC 31.2 30.1 29.5

Systems with SAT

[c] + naive FC 30.9 31.0 30.0

[c] + smoothed FC 30.9 29.9 29.2

Table 8.4: %WER results for MMI-trained full covariance systems, shown in

the final column. The first column shows the WER for the original diagonal

covariance system; the second shows the WER for the initialising full covariance

system.

full covariance system had been estimated with smoothing. The results show

that the performance of full covariance MMI estimation is indeed sensitive to the

initial full covariance model: the need for off-diagonal smoothing is not removed

by applying discriminative training. The differences between smoothed and un-

smoothed systems are statistically significant in each case, as are the differences

with and without the application of MMI training, except in the second row of

the table where there was no MMI training of the diagonal models.

8.4 Summary

In this chapter we presented results on the Conversation Telephone Speech recog-

nition task, incorporating discriminative training techniques into full covariance

model training. Experiments showed that off-diagonal smoothing is essential to

improve the performance of full covariance models over discriminatively-trained

diagonal models; in addition, the use of a discriminatively trained prior (using the

MMI criterion) gives improved performance over a generative prior, even when

the full covariance parameters are trained using maximum likelihood, and the

results are less sensitive to the choice of smoothing parameter. Updating the full
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8.4 Summary

covariance parameters using MMI yields further performance improvements, but

this does not remove the need for off-diagonal smoothing at an earlier stage in

the training process.

Combining all the results in this chapter suggests the following training pro-

cedure for full covariance models:

1. Train diagonal covariance models with the desired number of Gaussians

using the EM algorithm.

2. Update the diagonal models using several iterations of discriminative train-

ing.

3. Train full covariance models using ML estimation, smoothing with the MMI-

trained diagonal models.

4. Apply a further iteration of discriminative training to the full covariance

models
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Chapter 9

Conclusion

9.1 Work done

When using Gaussian mixture models as acoustic models for automatic speech

recognition, effective modelling of the covariance matrices is important for good

recognition performance on unseen speech data. This thesis investigated full

covariance modelling for the Gaussian covariance matrices. We were motivated

by previous work for ASR using the formalism of graphical modelling to specify

a rich dependency structure between acoustic features, and first tried to improve

upon methods for learning the model structure automatically from data.

We considered the graphical modelling problem in the context of estimating

sparse precision matrices for Gaussian mixture models. We used recent results

from outside the body of ASR literature to obtain efficient algorithms for si-

multaneous parameter and model structure learning using l1-penalised maximum

likelihood estimation. We implemented these techniques to estimate the covari-

ance parameters of an HMM-GMM system for ASR.

The early graphical modelling work, particularly the benefits of the bounds

on matrix conditioning imposed by the penalised maximum likelihood estimation,

prompted the main research question of the thesis:

Full covariance models are capable of higher modelling power than

alternatives, but how can we overcome the difficulties in parameter

estimation when training data is limited?

We identified three requirements for effective full covariance estimation:
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• covariance matrices should be well-conditioned;

• full covariance models should generalise well to unseen test data, even when

trained on limited data;

• parameter estimation should compensate for the fact that underlying mod-

elling assumptions are not correct.

These considerations led us to investigate the use of a shrinkage estimator as an

alternative full covariance estimator to the standard sample covariance matrix,

which can be viewed as a method of off-diagonal smoothing.

We discussed the beneficial properties of the shrinkage estimator with regard

to the requirements of matrix conditioning and generalisation. We derived formu-

lae for the estimation of the optimal shrinkage parameters in a GMM system, and

obtained a method for sharing the relevant statistics across multiple Gaussians

in a system. We related the shrinkage techniques to a Bayesian approach to full

covariance estimation using a diagonal smoothing prior.

When applying statistical models for classification, the invalidity of model cor-

rectness assumptions gives the need for discriminative training to be applied. We

therefore considered the properties of the shrinkage estimator in a discriminative

context. We integrated the smoothing techniques into discriminative parameter

estimation with MMI estimation, developing recipes for full covariance training.

9.2 Outcomes

To test the various techniques, we carried out initial experiments on the TIMIT

phone classification task, varying the quantity of training data to simulate sparse-

data conditions. We found the graphical modelling approach did not yield im-

provements over the better-performing of the standard full covariance and di-

agonal covariance models. However, the shrinkage estimator was found to yield

consistent performance improvements over both diagonal covariance and stan-

dard full covariance systems, regardless of the quantities of training data used.

However, the best results could almost always obtained using a single, hand-tuned

prior weight.
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We evaluated the smoothed full covariance systems on a large vocabulary

conversational telephone speech recognition task. On this task, we found that

off-diagonal smoothing is essential for the good performance of full covariance

models. With the best smoothing weight, the performance improvement over

diagonal-covariance systems was more than doubled compared to the standard

full covariance models; the results were similarly improved when the optimal

shrinkage parameter was estimated from data. With speaker adaptation applied

during training and decoding, word error rate was reduced from 32.9% with di-

agonal models to 30.3% with the best smoothed system. In contrast, a standard

full covariance system achieved a rate of 32.1%.

When discriminative training was applied, the performance of diagonal covari-

ance models was reduced to 30.9%. The best system without smoothing achieved

a rate of 30.0%. We demonstated that the application of the smoothing tech-

nique continued to give significant improvements to the discriminatively-trained

system, leading to a reduction in WER to 29.2%.

9.3 Future work

We briefly consider how some of the shortcomings of the work presented in this

thesis might be addressed in future work, and discuss directions for related re-

search. Both sections are somewhat speculative.

Given the additional statistics obtained from the data, it is somewhat frus-

trating that is not possible to set the shrinkage parameter on a Gaussian or class-

specific basis such that the models outperform those with any global smoothing

factor. This would presumably require some form of clustering but it is not clear

how this could be best performed. Alternatively, it is possible that the genera-

tive approach to shrinkage parameter estimation is not suitable when the goal is

accurate classification. We discuss this further in Section 9.3.1 below.

An application of full covariance modelling that we have we have considered

only briefly in this work is in the estimation of full-covariance linear transforms

for speaker adaptation, most notably CMLLR. Here, limited-data techniques may

often be more important due to the lack of adaptation data. We discuss this

briefly in Section 9.3.2.
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9.3 Future work

9.3.1 Shrinkage estimators with an MMI-based perfor-

mance measure

In Section 7.4 we presented simulations of a bias-variance decomposition using a

loss function matching the MCE criterion for training. The results suggested that

the optimal shrinkage parameter for the goal of good classification performance is

not the same as the optimal parameter from a generative modelling perspective.

We would like to be able to be able to optimise the parameter with regard to a

discriminative criterion.
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Figure 9.1: Comparing the MCE (solid) and MMI (dashed) loss functions for

shrinkage estimators with varying α, 5 samples per class. The loss functions have

been scaled so that the minima of both may be compared on a single plot.

It is possible to replace the MCE loss function by an MMI-like expected loss:

Ep(x,y)[ETR
log pθ(TR)(y|x)] (9.1)

To simulate the performance of the models using this loss, we repeat the procedure

of sampling large numbers of small test sets to estimate the inner expectation,

then estimating the outer expectation on a large test set. The MMI loss is, how-

ever, highly sensitive to outlier observations in the test set (those with very low
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9.3 Future work

pθ(xr|yr) under the ML model) with which lead to very low posterior probabilities

even if the models are well-trained. To avoid this, we use a similar approach to

Sha & Saul (2007), and remove the lowest 10% of outliers.

As an example, Figure 9.1 compares this MMI loss function with the MCE

loss, for varying α. The minima with respect to α are close. Given that we can

consistently estimate the classical variance by using additional sample statistics,

we speculate that it may be possible to derive analytic methods to estimate the

minimum of the MMI loss function without need for cross-validation, based on

these statistics. Further work is needed here.

9.3.2 Applications to speaker adaptation

We speculate that the full covariance techniques presented here may find ap-

plication to the common approach to speaker adaptation using full-covariance

linear transforms. Recall from (2.57) in Section 2.4.2 that to perform CMLLR

adaptation, speaker-specific full covariance statistics Sm are required, given by

Sm =

∑
t γm(t)(ζt − ζ̄m)(ζt − ζ̄m)T∑

t γm(t)
(9.2)

These are aggregated over all Gaussians in the adaptation class. Estimates of

the transform parameters, based on these statistics, may be unreliable when the

amount of adaptation data for a given speaker is limited.

The standard remedy to the problem of limited data is to use tying to re-

duce the number of adaptation classes, effectively increasing the amount of data

available for estimating each transform; other implementations of CMLLR often

may ensure more reliable estimation by restricting the transforms to be diagonal

or block-diagonal. However, these solutions reduce modelling power and hence

discriminative ability. We highlight two recently-proposed alternatives: (Ghoshal

et al., 2010; Povey et al., 2010) have presented a subspace technique where the

speaker transform R(s) is decomposed the linear combination of B basis matrices

Wb:

R(s) = W0 +
B∑
b

λ
(s)
b Wb (9.3)
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9.3 Future work

and also provide a method for optimising the coefficients λb. This has the ad-

vantage of reducing the number of parameters that must be estimated whilst

retaining the full-covariance form of the transforms.

Yamigishi et al. (2009) developed Constrained Structural MAP Linear Re-

gression (CSMAPLR). Here, CMLLR is employed, but the statistics used are

smoothed with lower-dimensional priors using a MAP approach, explicitly main-

taining the robustness of the estimation when data is limited. In this work, the

authors applied the technique only to speaker adaptation of HMM-based models

for text-to-speech. To our knowledge, results using the same technique for ASR

have not yet been reported.

These respective approaches are somewhat analogous to covariance modelling

using subspace methods and using smoothed full covariance models. It is the

latter approach that suggests a use of the shrinkage techniques presented in this

thesis, for adaptation within a similar framework to CSMAPLR, where improve-

ments might be gained with appropriate choices of prior and smoothing parame-

ters.
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Appendix A

Derivations & Proofs

A.1 The quadratic eigenvalue problem

We describe the solution of the quadratic eigenvalue problem

(λ2M + λC +K)v = 0 (A.1)

where M , C and K are all d-dimensional symmetric matrices and x ∈ Rd. We

summarise here from Meerbergen & Tisseur (2001). In general there are 2d

eigenvalues λ. We define

u = λv (A.2)

and then substitute this into (A.1), to obtain

λMu+ Cu+Kv = 0 (A.3)

The joint solution of (A.2) and (A.3) can be written as(
−K 0
0 I

)(
v
u

)
− λ

(
C M
I 0

)(
v
u

)
(A.4)

or equivalently (
−K 0
0 M

)(
v
u

)
− λ

(
C M
M 0

)(
v
u

)
(A.5)

This is a linear eigenvalue problem in 2d dimensions,

Ax− λBx = 0 (A.6)
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A.2 Eigenvalues of the sample covariance matrix

where

A =

(
−K 0
0 M

)
, B =

(
C M
M 0

)
, x =

(
v
u

)
(A.7)

with A and B both symmetric matrices. This is solved by finding the eigenvalues

of the symmetric matrix B−1A.

A.2 Eigenvalues of the sample covariance ma-

trix

Let S, the sample covariance matrix, be an unbiased estimator for a true covari-

ance matrix, Σ. In this section we show that the eigenvalues S, are, on average,

more dispersed than the eigenvalues of the true covariance matrix, Σ, even though

S is unbiased. We summarise from Ledoit & Wolf (2004). Denote the eigenvalues

of S by li, and their mean by l̄. (We use roman letters here to emphasise that

they are estimates from training data, in contrast to the eigenvalues of Σ, which

are fixed but unknown). Their expected dispersion is given by

D(S) = E
d∑
i

(li − l̄)2 (A.8)

Since the trace of a matrix is given by the sum of its eigenvalues, the diagonal

elements of S also have mean l̄. Their dispersion about this mean obeys the

following inequality:

d∑
i

(Sii − l̄)2 ≤
d∑
i

(Sii − l̄)2 +
d∑
i

d∑
j 6=i

S2
ij

= tr(S − l̄I)2

(A.9)

For any rotation R (having RTR = I), we have

1

d
trRTSR =

1

d
trS = l̄ (A.10)

We now consider the dispersion of the diagonal elements of RTSR about their

mean:

tr(RTSR− l̄I)2 = tr[RT (S − l̄I)R]2 (A.11)

= tr(S − l̄I)2 (A.12)
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A.2 Eigenvalues of the sample covariance matrix

If we set R to be G, the matrix of eigenvectors of S, RTSR is the diagonal matrix

consisting of the eigenvalues of S. So we have

tr(S − l̄I)2 =
d∑
i

(li − l̄)2 (A.13)

Comparing to the result in Equation A.9, this implies that the eigenvalues are

the most dispersed diagonal elements of RTSR for any rotation R.

Similarly, the dispersion of the eigenvalues of Σ is given by

D(Σ) =
d∑
i

(λi − λ̄)2 (A.14)

If Γ is the matrix of eigenvectors of Σ, then ΓT ΣΓ is the diagonal matrix consisting

of the eigenvalues of λi of Σ. Since S is an unbiased estimator of Σ, we have

El̄ = λ̄, and also, ΓTSΓ is an unbiased estimator of ΓT ΣΓ (Γ is a parameter, not

a random variable). Therefore the dispersion of the diagonal elements of ΓT ΣΓ

obeys:

E
d∑
i

([ΓTSΓ]ii − l̄)2 ≥
d∑
i

([ΓT ΣΓ]ii − l̄)2 (A.15)

=
d∑
i

(λi − λ̄)2 = D(Σ) (A.16)

(The first step uses Jensen’s inequality). However, from the earlier results we

know that the most dispersed diagonal elements of RTSR, for any rotation R,

are found when R = G, the matrix of eigenvectors of S, and are given by the

eigenvalues li. Therefore

D(S) = E
d∑
i

(li − l̄)2 (A.17)

= E
d∑
i

([GTSG]ii − l̄)2 (A.18)

≥ E
d∑
i

([ΓTSΓ]ii − l̄)2 ≥ D(Σ) (A.19)

So we expect the eigenvalues of S to be more dispersed than the eigenvalues of

Σ.
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A.3 Graphical model structure learning with penalised likelihood

A.3 Graphical model structure learning with pe-

nalised likelihood

In this appendix we provide further detail concerning the work of Banerjee et al.

(2006) on the use of penalised likelihood maximisation for GM structure learning,

using convex optimisation techniques. Unless noted, the theorems here are all

long-established results. A useful reference is Boyd & Vandenberghe (2004). We

have provided our own proofs of propositions A.3.5 and A.3.6.

A.3.1 Norms and their duals

Definition A.3.1. If ‖.‖ is a norm on Rk, then the dual norm, denoted ‖.‖∗ is

defined by:

‖u‖∗ = sup
‖x‖≤1

uTx (A.20)

Proposition A.3.2. For any x, u ∈ Rk then

xTu ≤ ‖x‖‖u‖∗ (A.21)

Proof. For any x, define x̄ = x
‖x‖ , so that ‖x̄‖ = 1. Then for any u, by the

definition

‖u‖∗ ≥ x̄Tu

⇒ ‖x‖‖u‖∗ ≥ xTu

The converse of Proposition A.3.2 is also true: suppose we have two norms,

‖.‖a and ‖.‖b. Then if for all x, u we have xTu ≤ ‖x‖a‖u‖b, and furthermore,

if for every u, there exists an x such that the relation holds with equality, then

‖.‖a∗ = ‖.‖b. In other words, ‖.‖b is the dual of ‖.‖a. By the symmetry of the

relation it we see also that ‖.‖b∗ = ‖.‖a – the dual of a dual norm is the original

norm.

Example A.3.3. Consider the entry-wise (lp) norms ‖.‖p and ‖.‖q, defined by

‖u‖p = (
∑
|ui|p)

1
p , with p, q ≥ 1. If

1

p
+

1

q
= 1 (A.22)
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A.3 Graphical model structure learning with penalised likelihood

then the two norms are duals of each other.

This result can be obtained via Proposition A.3.2 using Hölder’s Inequality,

which itself is obtained from Young’s Inequality for scalars x, u:

xu ≤ 1

p
xp +

1

q
uq (A.23)

where p and q obey the relation above. A special case is that ‖.‖1∗ = ‖.‖∞
and vice verse. (This can also be verified directly from the definition of the dual

norm). The lq matrix norms we use in this section, as in Chapter 4, are entry-wise

norms. As a consequence these can be treated identically to norms on Rk.

A.3.2 The penalised likelihood problem

Recall from Equation 3.7 that to obtain a maximum likelihood estimate of the

precision matrix, P , we can equivalently maximise

log |P | − trPS (A.24)

The aim is to maximise a penalised version of this expression, where the penalty

term is some function of the parameters P , designed to encourage sparsity in the

matrix, and hence a sparse graphical model structure.

It is of course desirable to ensure that the resulting problem is easy to solve.

This can be best achieved by ensuring that it is convex: if the penalty term

is simply a count of the number of non-zero parameters, for example, then the

problem is not convex. A solution is to use a matrix norm of P as the penalty

term: converting the problem to a minimisation problem, the objective function

is then

f(P ) = ρ‖P‖+ trPS − log |P | (A.25)

The penalty parameter, ρ > 0, can be used to control the size of the penalty, and

hence (we shall see), in the special case where the l1 norm is chosen, the sparsity

of the solution. It can easily be verified that this function is convex, and that the

constraint set, given by P � 0, is also convex.

172



A.3 Graphical model structure learning with penalised likelihood

A.3.3 Solving the problem via the dual

We first find a linear lower bound for the objective function of the primal problem

A.25. This can be achieved by writing the penalised covariance matrix by U =

S + Θ, introducing a dual variable Θ.

Proposition A.3.4. A lower bound for f(P ) on P � 0 is given by

g(Θ) = inf
P�0

{tr(S + Θ)P − log |P |} (A.26)

provided that ‖Θ‖∗ ≤ ρ. (It is clear that this is linear in Θ)

Proof. As noted at the end of Section A.3.1, the dual of a dual norm is the original

norm, so that ‖P‖ is the dual of ‖Θ‖∗. Therefore

‖P‖ = sup
‖Θ‖∗≤1

tr ΘP (A.27)

⇒ ρ‖P‖ = sup
‖Θ‖∗≤1

tr ρΘP (A.28)

= sup
‖Θ‖∗≤ρ

tr ΘP (A.29)

Therefore for ‖Θ‖∗ ≤ ρ we have

f(P ) ≥ tr ΘP + trSP − log |P | (A.30)

≥ inf
P�0

{tr(S + Θ)P − log |P |} = g(Θ) (A.31)

We can find the infimum by differentiating with respect to P and setting the

result equal to zero:

S + Θ− P−1 = 0 (A.32)

⇒ P = (S + Θ)−1 (A.33)

with the condition P � 0 leading to the condition (S+Θ) � 0. Substituting this

into the expression for g(Θ) gives

g(Θ) = tr I − log |S + Θ|−1 = k + log |S + Θ| (A.34)

where k is the dimension of the matrix. The solution to the dual problem is found

by maximising this expression, subject to the constraints (S+Θ) � 0, ‖Θ‖∗ ≤ ρ;

or equivalently, maximising k + log |U |, subject to ‖U − S‖∗ ≤ ρ.
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A.3 Graphical model structure learning with penalised likelihood

A.3.4 Properties of the solution

We denote an optimal point of the dual problem by Θ̂, with the corresponding

point of the original problem being given by P̂ = (S + Θ̂)−1. The optimal value

of the dual is given by g(Θ̂). Because the primal problem is convex, the optimal

value of the dual is the same as the optimal value of the primal: f(P̂ ) = g(Θ̂),

from which it can be seen

ρ‖P̂‖+ trSP̂ − log |P̂ | = k + log |(S + Θ̂)| (A.35)

⇒ ρ‖P̂‖ = k − trSP̂ (A.36)

The following result explains why the l1 norm should be chosen in the construction

of the original problem.

Proposition A.3.5. Amongst choices of lp norm as for the penalty term, the

choice p = 1 is the unique choice for which the resulting precision matrix has a

sparse structure. Specifically, if for some i, j, |Θ̂ij| < ρ, then the equivalent entry

in the precision matrix has P̂ij = 0.

Proof. For the optimum of a convex problem with differentiable objective func-

tion, we must have that, for all Θ in the constraint set,

tr∇g(Θ̂)(Θ− Θ̂) ≤ 0 (A.37)

⇒ tr P̂ (Θ− Θ̂) ≤ 0 (A.38)

which follows from differentiating log |S + Θ| with respect to Θ. Since we know

that P̂ 6= 0, Θ̂ must lie on the edge of the constraint set, with ‖Θ̂‖∗ = ρ. The

dual of the l1 norm is the l∞ norm, and so the constraints of the dual problem

are that Θ must lie within a box with sides at ±ρ in all dimensions.

If |Θ̂ij| < ρ for some i, j then Θ̂ does not lie at a “corner” of the box. We can

find an ε > 0 for which |Θ̂ij| ≤ ρ− ε, and set Θ± to be the matrices for which all

elements are identical to Θ̂ except for1

Θ±
ij = Θ̂ij ± ε (A.39)

Then crucially (this holds only for the l∞ norm) both Θ+ and Θ− are in the

constraint set, ‖Θ±‖∞ ≤ ρ. Therefore from (A.38):

Pij.ε ≤ 0 and Pij.(−ε) ≤ 0 (A.40)

⇒ Pij = 0 (A.41)

1And of course all the matrices are symmetric, so the same holds for Θ±ji too
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A.3 Graphical model structure learning with penalised likelihood

The following results all assume that the l1 norm has been chosen as for the

penalty term in the original problem.

Proposition A.3.6. An optimal point Θ̂ has diagonal elements all equal to ρ.

Proof. The dual problem seeks to maximise log |S+Θ| with S+Θ � 0. Suppose

that Θ is an optimal point, with some diagonal elements of Θ not equal to ρ.

Then we can find a diagonal matrix D with Dii ≥ 0 for every element, such that

‖Θ +D‖∞ ≤ ρ. Writing U = S + Θ,

log |U +D| = log |U
1
2 (I + U− 1

2DU− 1
2 )U

1
2 | (A.42)

= log |U |+
∑

log(1 + λi) (A.43)

where the λi are the eigenvalues of U− 1
2DU− 1

2 . The factorisation is valid because

U � 0. Since all the diagonal elements of D are non-negative, D is positive

semidefinite, and so is U− 1
2DU− 1

2 . So (provided D 6= 0)
∑

log(1 + λi) > 0.

In other words, Θ + D is a feasible point giving a higher value to the objective

function than Θ. This contradicts the assumption that Θ is an optimal point.

To prove the following proposition, the following results are needed.

Lemma A.3.7. If a square matrix A is positive definite, the matrix norms satisfy

‖A‖SV ≤ ‖A‖F ≤ ‖A‖1 (A.44)

Proof. Denote the eigenvalues of A by λi. Since A is positive definite, they are

all positive. We have

1. ‖A‖SV = max
i
λi

2. ‖A‖F = (
∑
λ2

i )
1
2

and also

(iii) ‖A‖1 =
∑

ij |Aij| ≥ trA =
∑
λi

The first inequality follows trivially. The second follows by observing that, for

λi ≥ 0

(
∑

λi)
2 =

∑
λ2

i +
∑
ij

λiλj ≥
∑

λ2
i (A.45)
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Lemma A.3.8. For any X � 0,

‖X‖SV ≤ b⇒ X � bI (A.46)

and also

‖X‖SV ≤ b⇒ X−1 � b−1I (A.47)

Proof. For X � 0 the maximum singular value norm is given by the maximum

eigenvalue of X. Therefore, for any v ∈ Rk,

‖X‖SV ≤ b⇒ vTXv ≤ vT bv = vT bIv (A.48)

⇒ vT (bI −X)v ≥ 0 (A.49)

⇒ bI −X � 0 ⇒ X � bI (A.50)

The condition on the singular value norm also implies that the smallest eigenvalue

of X−1 is greater than or equal to b−1, so similarly

vTX−1v ≥ vT b−1Iv (A.51)

from which the second result follows.

Proposition A.3.9 (Banerjee et al., 2006). For any ρ > 0, the optimal solution

P̂ is bounded as follows:

aI � P̂ � bI (A.52)

where

a =
1

‖S‖SV + kρ
, b =

k

ρ
(A.53)

Proof. To prove the first inequality, by Lemma A.3.8, we need to show that

‖P̂−1‖SV ≤ a−1 (A.54)

Using the triangle inequality:

‖P̂−1‖SV = ‖S + Θ̂‖SV ≤ ‖S‖SV + ‖Θ̂‖SV (A.55)

Using Proposition A.3.7, and the fact that ‖Θ̂‖∞ ≤ ρ,

‖Θ̂‖ ≤ ‖Θ̂‖F = (
∑
i,j

Θ̂2
ij)

1
2 ≤ (k2ρ2)

1
2 = kρ (A.56)

and so the result is proved.
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A.3 Graphical model structure learning with penalised likelihood

For the second result, we need that ‖P̂‖SV ≤ b. Using Proposition A.3.7

again, ‖P̂‖SV ≤ ‖P̂‖1. From the condition that the dual-primal gap is zero

(equation A.36) we have

ρ‖P̂‖1 = k − trSP̂ (A.57)

But since S � 0 and P̂ � 0 then trSP̂ ≥ 0, and so

‖P̂‖1 ≤
k

ρ
(A.58)
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Appendix B

TIMIT phone recognition

B.1 Phone recognition results

The following pages contain tables phone accuracy results on the TIMIT test

data. These results are referenced in Chapter 6.
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B.1 Phone recognition results

# Gaussians per state Phone accuracy (%) # Params

1 50.8 11,232

2 54.1 22,464

4 56.9 44,928

6 58.9 67,392

8 59.5 89,856

10 61.0 112,320

12 61.8 134,784

16 63.0 179,712

20 63.2 224,640

24 63.7 269,568

28 63.8 314,496

32 64.5 359,424

36 64.4 404,352

40 64.6 449,280

44 64.4 494,208

48 64.5 539,136

52 65.0 584,064

56 65.2 628,992

60 65.2 673,920

64 65.6 718,848

68 65.8 763,776

72 66.0 808,704

76 65.7 853,632

80 66.0 898,560

84 65.7 943,488

88 65.7 988,416

92 65.7 1,033,344

96 65.4 1,078,272

100 65.3 1,123,200

Table B.1: Phone accuracy of diagonal covariance models trained on the full

training set, also showing the number of mean and variance parameters.
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B.1 Phone recognition results

Proportion of full training set used

# Gaussians 10% 20% 30% 40% 50% 60% 75% 100%

1 50.3 50.5 51.0 50.6 50.6 50.8 50.5 50.8

2 53.5 53.2 53.9 54.4 53.8 53.6 54.2 54.1

4 55.8 57.7 57.4 57.6 57.1 57.6 57.5 56.9

8 57.6 59.8 59.5 59.3 59.3 59.3 59.8 59.5

12 58.7 60.1 61.7 61.3 61.0 61.6 61.9 61.8

16 58.2 60.2 61.9 61.5 62.2 62.0 63.0 63.0

20 58.5 60.9 61.7 62.6 62.5 62.4 63.4 63.2

24 57.8 61.0 61.5 63.1 62.7 63.3 64.1 63.7

32 - 61.0 61.9 63.9 63.4 63.4 64.5 64.5

40 - 60.9 61.7 63.9 63.6 63.8 64.9 64.6

48 - - 61.4 63.7 64.3 64.4 65.1 64.5

56 - - 61.5 62.8 63.8 64.4 64.9 65.2

64 - - - 63.1 63.6 64.5 65.2 65.6

72 - - - 63.0 63.1 64.0 64.8 66.0

80 - - - - 63.4 63.5 64.6 66.0

Table B.2: Phone accuracy of diagonal covariance models trained on subsets of

the full training set.
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Full data 50% data 10% data

ρ Acc # params Acc # params Acc # params

0.0 67.2 1,415,232 65.1 1,415,232 41.1 1,415,232

0.005 66.2 1,401,049 64.7 1,398,878 45.9 1,409,197

0.01 65.9 1,381,307 64.5 1,383,103 47.4 1,401,745

0.02 65.6 1,343,641 64.3 1,347,198 49.1 1,379,110

0.03 65.4 1,320,814 64.1 1,322,443 50.4 1,357,421

0.04 65.1 1,307,283 63.9 1,308,283 51.5 1,341,786

0.05 64.8 1,298,833 63.8 1,298,287 52.0 1,328,355

0.06 64.5 1,292,878 63.7 1,292,208 52.3 1,319,076

0.1 63.7 1,275,523 63.4 1,274,459 54.2 1,293,674

0.15 63.2 1,253,411 62.7 1,253,756 54.8 1,276,112

0.2 62.8 1,231,128 62.3 1,234,122 55.2 1,261,418

0.3 - - - - 55.8 1,235,100

0.4 - - - - 55.8 1,212,036

0.5 - - - - 56.1 1,190,211

0.6 - - - - 55.7 1,165,171

0.8 - - - - 55.7 1,107,059

1.0 - - - - 55.2 1,039,944

1.5 - - - - 54.3 871,635

2.0 - - - - 54.0 722,542

Semi tied 64.5 353,808 63.7 353,808 53.0 353,808

Diagonal 61.8 134,784 61.0 134,784 58.7 134,784

Table B.3: Phone accuracy of sparse GM models with 12 Gaussians per state,

varying penalty parameter, showing the number of Gaussian parameters. Mean

parameters are included, although they are not reduced to zero by the penalisa-

tion.
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Proportion of full training set used

Prior τ 10% 20% 30% 40% 50% 60% 75% 100%

0 41.1 56.4 61.8 63.5 65.1 65.6 66.6 67.2

25 59.1 62.9 64.3 64.9 66.5 66.5 67.1 67.5

50 59.6 63.3 64.4 64.9 66.3 66.5 67.2 67.2

100 59.5 62.7 64.2 64.7 65.8 66.3 66.9 67.0

150 59.5 62.6 63.9 64.5 65.6 66.3 66.3 66.9

Table B.4: Phone accuracy of covariance models with 12 Gaussians per state,

with varying amounts of training data

# Gaussians Diagonal Semi-tied Naive full Shrinkage

1 50.8 57.1 58.0 58.2

2 54.1 60.6 62.2 62.0

4 56.9 62.6 63.9 64.1

6 58.9 63.3 65.8 65.7

8 59.5 63.6 65.7 65.9

10 61.0 64.6 66.4 66.6

12 61.8 64.5 67.2 67.2

16 63.0 64.9 67.3 67.2

20 63.2 64.8 66.6 67.0

24 63.7 65.7 66.9 67.5

28 63.8 65.9 66.6 67.8

32 64.5 65.5 65.5 67.1

36 64.4 66.5 65.0 67.1

40 64.6 66.3 64.2 67.1

44 64.4 66.5 63.8 67.3

48 64.5 66.4 62.9 67.1

Table B.5: Phone accuracy (%) of covariance models with varying number of

Gaussians, trained on the full training set.
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# Gaussians Diagonal Semi-tied Naive full Shrinkage

1 50.6 56.6 57.4 57.4

2 53.8 60.6 61.2 61.4

4 57.1 61.9 62.9 63.1

6 59.3 62.9 64.7 64.6

8 59.3 63.4 64.6 64.8

10 60.5 63.5 65.1 65.6

12 61.0 63.7 65.1 66.4

16 62.2 64.2 64.7 66.2

20 62.5 64.6 63.5 65.9

24 62.7 64.4 61.8 65.9

28 63.1 64.9 60.1 66.0

32 63.4 64.6 57.3 65.2

36 63.5 64.5 55.6 65.5

40 63.6 64.6 54.1 65.3

44 63.5 64.6 52.6 64.4

48 64.3 64.8 51.1 64.4

Table B.6: Phone accuracy (%) of covariance models with varying number of

Gaussians, trained on the 50% training set.

# Gaussians Diagonal Semi-tied Naive full Shrinkage

1 50.3 54.6 56.1 56.4

2 53.5 56.0 58.4 59.2

4 55.8 55.3 56.3 59.8

6 56.7 55.0 53.7 60.3

8 57.6 54.7 49.2 60.1

10 57.8 53.3 45.0 59.8

12 58.7 53.0 41.1 59.2

Table B.7: Phone accuracy (%) of covariance models with varying number of

Gaussians, trained on the 10% training set.
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# Gaussians Diagonal Semi-tied Full covariance

1 11,232 230,256 117,936

2 22,464 241,488 235,872

4 44,928 263,952 471,744

6 67,392 286,416 707,616

8 89,856 308,880 943,488

10 112,320 331,344 1,179,360

12 134,784 353,808 1,415,232

16 179,712 398,736 1,886,976

20 224,640 443,664 2,358,720

24 269,568 488,592 2,830,464

28 314,496 533,520 3,302,208

32 359,424 578,448 3,773,952

36 404,352 623,376 4,245,696

40 449,280 668,304 4,717,440

44 494,208 713,232 5,189,184

48 539,136 758,160 5,660,928

Table B.8: Number of mean and variance parameters for three types of covariance

model, with varying numbers of Gaussians.
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B.2 Phone mappings

B.2 Phone mappings

39-phone set 48-phone set

b b

d d

g g

p p

t t

k k

dx dx

jh jh

ch ch

s s

z z

zh zh, sh

f f

th th

v v

dh dh

m m

n n, en

ng ng

r r

39-phone set 48-phone set

w w

y y

hh hh

el el, l

iy iy

eh eh

ey ey

ae ae

aa aa, ao

aw aw

ay ay

oy oy

ow ow

uh uh

uw uw

er er

ax ax, ah

ix ix, ih

sil sil, cl, vcl, epi

Table B.9: Comparing the 48-phone set used for acoustic modelling with the

39-phone set used to obtain phone accuracy scores.
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