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ABSTRACT

In this paper, we investigate imposture using synthetic speech.
Although this problem was first examined over a decade ago,
dramatic improvements in both speaker verification (SV) and
speech synthesis have renewed interest in this problem. We
use a HMM-based speech synthesizer which creates synthetic
speech for a targeted speaker through adaptation of a back-
ground model. We use two SV systems: standard GMM-
UBM-based and a newer SVM-based. Our results show when
the systems are tested with human speech, there are zero false
acceptances and zero false rejections. However, when the sys-
tems are tested with synthesized speech, all claims for the tar-
geted speaker are accepted while all other claims are rejected.
We propose a two-step process for detection of synthesized
speech in order to prevent this imposture. Overall, while SV
systems have impressive accuracy, even with the proposed de-
tector, high-quality synthetic speech will lead to an unaccept-
ably high false acceptance rate.

Index Terms— Speech synthesis, Speaker recognition,
Security

1. INTRODUCTION

The objective in speaker verification (SV) is to accept or re-
ject a claim of identity based on a voice sample [1]. During
the training stage speaker-dependent feature vectors, based
on mel-frequency cepstral coefficients (MFCCs), are ex-
tracted from training speech signals. Feature vectors from all
users are concatenated and modeled with a Gaussian mixture
model-universal background model (GMM-UBM), Aypwm
[1]. Next, individual speaker models, A, are constructed
through MAP-adaptation of the GMM-UBM [1]. Both Aypum
and )\, are each parameterized by the set {w;, ;, 2;} where
w,; are the weights, u; are the mean vectors, and X; are the
diagonal covariance matrices of the GMM. During the test-
ing stage feature vectors X,, are extracted from a test signal
and a log-likelihood ratio A(X) is computed by scoring the
sequence of test feature vectors X = {x1,...,X;s} against
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the claimant model, A and Aygm
AX) = logp(X|Ac) —logp(X|Aupm). (1)

The claimant speaker is accepted if
AX) =0 2)

or else rejected, where 6 is the decision threshold.

Support Vector Machines (SVMs) are binary discrimina-
tive classifiers that have more recently been applied to SV.
The use of kernel functions in speech-related applications
has led to many sequence kernels [2] and in particular, the
GMM-supervector kernel has been successfully used in SV.
The GMM-supervector kernel is defined as

w
K(x,Ac) = Y wipi S uf 3)
=1

where W is the number of component densities in A\ygnm, Ax
is the MAP-adapted (mean vectors only) model from test fea-
ture vectors X, 42X and ;. are the respective mean vectors of
Ax and Ao, and w; and 3J; are weights and covariance matri-
ces of A\ygm. The SVM classifier is then based on (3).

Synthetic speech potentially poses two related problems
for SV systems. The first problem is confirmation of an ac-
quired speech signal as having originated from a claimed in-
dividual. In this case, a synthesized speech signal might be
confirmed as having originated from an individual when it has
not. The second problem is in remote or on-line authentica-
tion. In this case, a synthesized speech signal could be used to
wrongly gain access to person’s account. We assume for this
second problem a text-prompted SV which does not present
a problem for a speech synthesizer. In both of these prob-
lems, the speech model for the synthesizer must be targeted
or matched to a specific person’s voice.

The problem of imposture against SV systems using
speech synthesized from hidden Markov models (HMMs)
was first published over 10 years ago by Masuko, et. al. [3].
In their original work, the authors used an HMM-based text-
prompted SV system [4] and an HMM-based speech synthe-
sizer. In the SV system, feature vectors were scored against



speaker and background models composed of concatenated
phoneme models (not GMM-based models). The authors also
used a HMM-based speech synthesizer which was adapted to
each of the human speakers [5].

When tested with 20 human speakers, the system had a
0% False Acceptance Rate (FAR) and 7.2% False Rejection
Rate (FRR) and when tested with synthesized speech (20 syn-
thetic voices) the system had over 70% FAR. In subsequent
work by Masuko, et. al. [6], the authors extended the research
in two ways. First they improved their synthesizer by gener-
ating speech using pitch information. Second they improved
their SV system by utilizing both pitch and spectral informa-
tion. By improving the SV system, the authors were able to
lower the FAR for synthetic speech to 32%, however, the FAR
for the human speech increased to 1.8%.

In the last 10 years, both SV systems and speech syn-
thesizers have improved dramatically. Around the time as
Masuko’s work, GMM-UBM-based SV was proposed [1]
which has been the standard method due to low equal-error
rates (EERs). Other kernel-based techniques have been re-
cently proposed and in some cases can lead to lower EERs
[2]. HMM-based speech synthesizers have also improved in
many ways yielding more natural-sounding speech. In ad-
dition, speaker models can now be adapted from an average
model (derived from other speakers) or a background model
(derived from one speaker) using only a small amount of
speech data. Taken together, state-of-the-art speech synthe-
sizers pose major challenges to state-of-the-art SV systems.

This paper is organized as follows. In Section 2, we de-
scribe our speech synthesis system. In Section 3, we describe
our speaker verification systems. In Section 4, we describe
the experimental evaluation and provide results using the hu-
man and synthesized speech corpus. Finally, we describe a
concept for the detection of synthesized speech in Section 5
and conclude the article in Section 6.

2. SPEECH SYNTHESIZER

All adapted synthesizers described here are built using the
framework from the speaker-adaptive “HTS-2007/2008” sys-
tem [7]. The models were adapted from a background speaker
model, which was trained with the speaker-dependent train-
ing methods described in [8]. The whole HMM-based speech
synthesizer, illustrated in Fig. 1, comprises three main com-
ponents: speaker-dependent training, speaker adaptation,
and speech synthesis. In the speaker adaptation part, the
speaker-dependent multi-stream left-to-right multi-space dis-
tribution hidden semi-Markov models (MSD-HSMMs) are
transformed using constrained structural maximum a posteri-
ori linear regression. In the speech generation part, acoustic
feature parameters are generated from the adapted MSD-
HSMMs using a parameter generation algorithm that consid-
ers both the global variance of a trajectory to be generated
and trajectory likelihood [9].
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Fig. 1. HMM-based speech synthesis system which is a mix-
ture of a speaker-dependent and speaker-adaptive systems.

3. SPEAKER VERIFICATION SYSTEM

Our GMM-UBM SV system uses feature vectors extracted
every 10ms using a 25ms hamming window. The vector ele-
ments are 15 MFCCs, 15 A-MFCCs, and log- and A-log en-
ergy. We apply feature warping to the feature vectors in order
to improve robustness. We use the Expectation Maximiza-
tion (EM) algorithm to compute the parameters of the GMM-
UBM and individual speaker models are obtained through
MAP-adaptation of the GMM-UBM (only the mean vectors).
Our 1024 component density, GMM-UBM SV system has
baseline results as follows. For the 630 speaker TIMIT corpus
(clean speech), we record 0.11% equal-error rate (EER) and
for the 330 speaker NIST 2002 corpus (one speaker detec-
tion cellular task), we record 11.95% EER. Our SVM GMM-
supervector SV system is based on the same parameters as the
GMM-UBM SV system. The baseline EER is 8.0% for NIST
2002 corpus (100 speakers’ test signals). These EERs closely
agree with published values [10], [2].

4. EXPERIMENTS AND RESULTS

We recorded speech material for 10 human subjects in near-
ideal recording conditions. The subjects were Austrian citi-
zens and speak in the German language. This material was
partitioned into three sets A, B, and C: set A was used for
training the speech synthesizer background model, set B was
used for training adapted synthetic voices, and set C was used
for the SV system. For the synthesizer, we used training mate-
rial (set A) from one speaker to create the background model
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Fig. 2. Approximate score distributions for GMM-UBM SV
system with human and synthesized speech. Distributions for
synthesized speech (black and blue lines) nearly match those
for human speech (green and red lines) leading to successful
imposture using synthesized speech.

and adapted this model using the other 9 speakers’ material
from set B. We chose this procedure using one background
speaker instead of training an average voice from multiple
speakers to make an optimal use of our data set. We used
varying lengths (19, 38, and 76 s) of training signals from set
B to adapt the models. The adapted models were used to cre-
ate synthesized speech for each of the 9 speakers (test signals
for the SV). Due to the synthesizer complexity, we are limited
in the number of speakers we can support in this research.

The one speaker used in building the background model
for the synthesizer is intentionally left out of SV experiments
so that the SV system would not be composed of any speakers
in the background model. This is an important step since in
areal-world SV system, the UBM and background model are
unlikely to contain any common speakers. For the SV system,
set C data from each of 9 speakers is split into 44 s training
and 11 s test signals. A 256 component density GMM-UBM
is computed from the 9 speakers’ training data and individual
speaker models are then adapted from the GMM-UBM. These
same models are used in the SVM GMM-supervector system.
The SV system is tested using the 9 human test signals and 27
synthesized speech signals (generated from models based on
19, 38, and 76 s of training data). Each of the 36 test signals
is scored against one of 9 (human) claimants leading to a total
of 324 tests.

When the SV systems (GMM-UBM and SVM GMM-
supervector) are tested with human speech there are zero false
acceptances (FAs) and zero false rejections (FRs), thus the
systems each perform perfectly. This is to be expected given
the performance of our systems with ideal/near-ideal record-
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Fig. 3. Proposed system for detection of synthesized speech
prior to speaker verification. System is composed of both
MEFCC distance measures of repeated utterances and ASR.

ings. The mean and variance of the log-likelihood scores for
the GMM-UBM SV system are computed and approximate
score distributions for human speech are shown in Fig. 2 with
green and red lines.

Next the SV systems are tested using synthesized speech.
We find that when the synthesized voices claim to be their hu-
man counterparts, i.e. matched claimant, the system accepts
the claim each time but rejects all other claims. Thus despite
the state-of-the-art performance of the SV systems, the qual-
ity of the synthesized speech is high enough to allow these
synthesized voices to pass for true human claimants. This is
true even for the synthesizer trained with as little as 19 s of
data. The mean and variance of the log-likelihood scores (1)
are computed and approximate score distributions for synthe-
sized speech (black and blue lines) are shown in Fig. 2. Most
worrisome in this experiment is the mean and variance of the
score distributions for true and matched claimants are nearly
equal. Thus adjustments in decision thresholding or standard
score normalization techniques are unlikely to differentiate
between true and matched claims originating from human and
synthesized speech.

5. DETECTION OF SYNTHESIZED SPEECH

As a consequence of our results, we propose a two-step sys-
tem for the detection of synthesized speech, which is depicted
in Fig. 3. The system relies on the high-degree of regularity of
repeated utterances from a speech synthesizer and the higher
error rates of an automatic speech recognizer (ASR) (trained
on human speech) subjected to synthesized speech. The sys-
tem parameters are the distance threshold 7, reference utter-
ance word string wy, and distance function d({x;}, {x2}).

In the first step, we compute the acoustic distance between
two realizations of the same utterance using dynamic time
warping (DTW) of MFCC features. This exploits the fact that
the HMM-based synthesizer will always produce the same
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Fig. 4. Distributions of DTW distance of MFCCs for human
and synthetic speech with different linguistic contexts and du-
rations.

Table 1. Speech recognition WERs and SERs in %.

Dataset Grammarl Grammar?2

(91 sentences) (199 sentences)
Human speech 9.54/ 8.76 13.44/13.38
Synthetic (76 sec.) 11.64/10.82 15.62/16.09
Synthetic (38 sec.) 14.44 /7 13.98 18.36/19.00
Synthetic (19 sec.)  26.50/29.52 31.33/36.16

globally optimal waveform in terms of maximum likelihood,
given a set of input phoneme labels while human speech will
always be different. In Fig. 4 we see that synthetic speech
phrases are more similar to each other than human speech,
even when using different linguistic contexts and durations,
which means that small changes in the synthesis parameters
are not sufficient to make synthetic speech less similar.

In the second step, we perform automatic speech recog-
nition (ASR) on input utterances. This can prevent some
FAs from synthesizers trained with small amounts of speech
as shown by the word-error-rates (WERSs) and sentence-eror-
rates (SERs) in Table 1. During this step, we verify the same
utterance was spoken twice (w; = w;) and reference utter-
ance was spoken (w; = wy). With these steps, the SV system
is able to prevent some impostures using synthesized speech.

6. CONCLUSIONS

In this paper, we have revisited the problem of imposture
against speaker verification (SV) systems using synthetic
speech. We used a HMM-based speech synthesizer where the
model for a targetted speaker is adapted from a background
model. We tested two different SV systems: a GMM-UBM
system and SVM GMM-supervector system. Our results

show that when the synthesized voices claim to be their hu-
man counterparts, i.e. matched claimant, the SV systems
accept the claim each time. Next, we proposed a system for
detection of synthetic speech based on acoustic distances be-
tween repeated utterances and speech recognition error rates.
Despite the state-of-the-art performance of all systems in-
volved, the quality of the synthesized speech is high enough
to allow these synthesized voices to pass for true human
claimants. This result suggests that high-quality synthetic
speech may lead to a high false acceptance rate and may pose
security issues for speech-based remote/online authentication
or incorrect identity confirmation from a speech signal. We
will evaluate this result in future work using broadcast news
speech corpora with hundreds of speakers.
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