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Abstract
This paper presents a comparison between a hidden Markov
model (HMM) based method and a novel artificial neural net-
work (ANN) based method for lip synchronisation. Both model
types were trained on motion tracking data and a perceptual
evaluation was carried out comparing the output of the mod-
els, both to each other and to the original tracked data. It was
found that the ANN based method was judged significantly bet-
ter than the HMM based method. Furthermore the original data
was not judged significantly better than the output of the ANN
method.
Index Terms: hidden Markov model, mixture density network,
lip synchronisation, inversion mapping

1. Introduction
Talking computer animated characters are now commonplace in
video games and films. Additionally, there has been an increas-
ing amount of research in the field of interactive virtual agents.
For all of these applications, the synchronisation of the charac-
ter’s face to their speech is essential to make the immersion or
the interaction believable. Although performing mouth anima-
tion by hand gives the best results, as evident in the quality of
animation in today’s computer animated films, it is not always
feasible because of cost or time constraints. Therefore, produc-
ing lip animation automatically is highly desirable. This paper
addresses this problem, which may be summarised as mapping
from speech to lip animation. In other words, given speech in-
put we desire a method to output lip animation automatically.

Previous approaches have utilised dominance functions [1]
which are linear combinations of trajectories selected according
to a phonetic transcription of the speech signal. Although this
method produces acceptable results, it is very difficult to tune
to new speakers. More recent methods are based on machine
learning techniques that automatically learn a mapping from
speech to some representation of the animation. This can also
be called acoustic-to-articulatory inversion because the configu-
ration of the mouth is inferred from an acoustic signal. The ben-
efit of using trainable models is that they can easily learn an in-
version mapping for different speakers, as long as training data
is available. The two main machine learning approaches used
in this area are artificial neural networks (ANNs) [2] and statis-
tical techniques like Hidden Markov Models (HMMs) [3, 4]. In
theory, the HMM approach has certain advantages arising from
its inherent construction and operation in terms of phones. The
expected phone string for an utterance can easily be used in the
HMM-based system (i.e. Viterbi alignment) as well as the in-
put acoustic signal. This provides a significant extra source of
information when generating lip movements phone-by-phone
for a novel utterance. In addition, working at the phone level
can make it straightforward to combine an HMM-based lip syn-
chronisation system with speech synthesis, as the synthesiser
can provide a phone string. Conversely, a possible advantage of
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Figure 1: HMMs are trained on speech (S) and lip motion (M )
data simultaneously. For synthesis the motion models that cor-
respond to the predicted speech models are used to generate the
output trajectories.

ANN-based approaches is that they typically work on a frame-
wise basis, mapping one input acoustic feature vector directly to
one output lip configuration. Theoretically, this means an ANN-
based approach can offer closer, more direct synchronisation
with the acoustic signal than the HMM, in which the mapping
is mediated through longer phone-size units. This paper aims
to evaluate these advantages by presenting a direct experimen-
tal comparison between an HMM-based method and a novel
ANN-based method.

2. HMM-based Inversion Method
Multi-stream HMMs are trained on speech and lip motion data
simultaneously. To synthesise lip motion, recognition is first
performed using only the acoustic feature streams of the multi-
stream HMMs, and a sequence of lip motion units is derived.
These units yield the sequence of context-dependent models
that are used for synthesising the lip motion trajectories. An
overview of the training and synthesis process for the multi-
stream HMMs is shown in Fig. 1.

2.1. Optimal motion

Theoretically, the above procedures can be justified as fol-
lows: A motion sequence OL = (oL1 ,oL2 , . . . ,oLT )
is generated from a given speech vector sequence OS =
(oS1 ,oS2 , . . . ,oST ) with a length of T frames by solving the
following optimisation:

O
∗
L = argmax

OL

P (OL|OS) (1)

By incorporating the motion-unit sequence uL =
(uL1 , ..., uLe), which represents the lip movements corre-
sponding to the given speech sequence, it can be approximated
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Figure 2: A sample trajectory generated from trajectory HMMs.
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Figure 3: The mixture density network we use combines a mul-
tilayer perceptron and Gaussian mixture model.

by

O
∗
L = argmax

OL

P (OL|OS) (2)

= argmax
OL

�

uL

P (OL|uL,OS)P (OS |uL)P (uL) (3)

� argmax
OL

P (OL|u∗
L) (4)

where

u
∗
L = argmax

uL

P (OS |uL)P (uL) (5)

Practically, we recognise the lip motion units uL from the
given speech data OS using the Viterbi algorithm and then gen-
erate a lip motion sequence from HMMs corresponding to the
recognised units. For the probability P (uL), we use back-off
bi-gram models estimated from the training database.

Trajectories are synthesised from the predicted units us-
ing the maximum likelihood parameter generation algorithm
(MLPG) as described in [3]. When single Gaussian distribu-
tions are used as the emission probabilities, we can easily solve
this problem in a closed form in a maximum likelihood sense
[5]. A sample of the trajectory generated from HMMs is shown
in Fig. 2, in which we can see that the generated trajectory (solid
line) becomes smooth. When mixtures of Gaussian distribu-
tions are used as the emission probabilities, the trajectory is op-
timised via the EM algorithm to select the optimal Gaussian
distributions.

3. MDN-based Inversion Method
In previous work, we have worked extensively on applying
ANNs to the inversion mapping, and have demonstrated the su-
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Figure 4: Average x- and y-coordinates (bottom and top group
respectively) for tracked points calculated on a file-by-file basis.

periority of one type of model in particular, the mixture density
network, over other more common variants such as the multi-
layer perceptron (MLP) [6, 7]. Hence, we continue to use this
model, and do not evaluate alternatives such as the MLP here.

Due to space constraints, we can only give a high level in-
troduction here. For a more explicit description, the reader is
referred to [7]. At the heart of our inversion mapping model is
the mixture density network (MDN). In the most general sense,
the MDN combines a trainable regression function (typically a
non-linear regressor such as an ANN) with a probability density
function. In our work, we have been used an MLP and a Gaus-
sian mixture model (GMM) for these purposes respectively, as
illustrated in Fig. 3. The role of the MLP is to take an input
vector in one domain (x, acoustic features in this case) and map
to the control parameters (priors, means and variances) of the
pdf over the domain of the target parameters (t, the lip parame-
ters). In this way, the MDN offers a model of probability density
over the target domain conditioned on the input domain, p(t|x).
Training consists of updating the MLP weights to minimise the
negative log likelihood of the target data.

To achieve a trajectory model, we can augment the tar-
get features with derived velocities and accelerations, and use
the MDN to provide conditional pdfs over these. Hence, once
trained, we can input the sequence of acoustic feature vectors
for an utterance and get as output a sequence of pdfs over the
static motion features and their delta and deltadeltas. We may
then apply a maximum likelihood parameter generation algo-
rithm (MLPG)[5] to this sequence of pdfs in order to obtain a
single, most probable trajectory which optimises the constraints
between the distributions of static features and their velocities
and accelerations.

4. Comparison Experiment
4.1. Data selection and processing

For this evaluation we decided to use the data provided as part
of the LIPS Challenge 2008 [8], since this matched our require-
ments and is likely to be familiar to other researchers as a stan-
dardised task. This dataset provides video of the face (50Hz
frame rate) and audio for a single female subject reading 278
phonetically balanced sentences. The overall aim of data pro-
cessing was to take the video and audio data from the LIPS
Challenge and derive a small number of parameters to describe
the movements of the subject’s mouth in synchrony with the
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Figure 5: Comparison of raw point-tracking data (left) with vi-
sualisation of first 4 principle component weights (right) for
the word “How”. The red contours indicate the final frame,
with frames going back in time represented with progressively
lighter grayscale contours.

acoustic speech signal. As a first step, 28 points around the in-
ner and outer contours of the lips were tracked in each video
frame. This was done using linear predictors, as detailed in
[3]. The next step was to correct for head movement which is
present throughout the recorded utterances. To achieve this, we
used principle components analysis (PCA). Through visualising
the eigenvectors, it was observed that the first principle compo-
nent weight corresponded entirely to horizontal movement of
the mouth (i.e. head movement in the x-direction). It was there-
fore trivial to use this component weight to remove the global
x-offset from the tracked points in each frame. Meanwhile, it
was also observed that the second PCA weight largely corre-
sponded to vertical displacement of the mouth, but with a small
degree of associated mouth opening. To remove only the verti-
cal displacement, we used the points at the mouth corners recon-
structed from the second PCA weight for each frame to identify
the displacement to remove from all points in that frame.

To verify data integrity, we calculated the mean x- and y-
coordinate for each tracked point in each utterance, as shown in
Fig. 4. We identified 17 utterances with gross tracking errors,
and discarded those files. We also noted local trends in the mean
positions of the tracked points, resulting from minor changes in
the subject’s pose over time. We used the adaptive mean nor-
malisation technique described in [9] to minimise these effects.

Next, we performed PCA again, and visualised the new
eigenvectors, both in isolation and in various combinations, to
empirically identify a suitable small set of PCA weights with
which to capture mouth shapes. Our aim was to find a com-
bination that resulted in plausible and smoothly varying recon-
structed mouth movements, with as little as possible of the noise
present in the raw point-tracking data. For example, the first
PCA weight was found to represent mouth opening and clos-
ing, while the second corresponded to lip spreading and puck-
ering, and so on. In fact, we found using just the first four PCA
weights resulted in reconstructed mouth shapes which were rel-
atively noise free, yet subjectively plausible and intelligible for
lip-reading. Fig. 5 demonstrates the effects of preprocessing.
The raw data is far noisier and less consistent than the move-
ments represented by the 4 PCA weights. Finally, these PCA
weight trajectories were lowpass filtered using a 2nd order But-
terworth filter with cutoff at 12.5Hz, upsampled to a frame rate
of 200Hz, and normalised by subtracting their mean and divid-
ing by 4 times their standard deviation. Meanwhile, the acoustic
signal was parameterised with 25 mel cepstrum coefficients at a
framerate of 200Hz to match the 4 PCA weights. A test and val-
idation set were selected, each containing 26 utterances drawn
evenly from throughout the corpus, while 209 utterances were
used for training.

Figure 6: Presentation of stimuli in the perceptual evaluation.

ANN HMM ANN ORG HMM ORG
17 % 50 % 8 %

Table 1: How often participants changed their mind for each
condition when viewing the stimuli in reversed order.

4.2. Evaluation

We trained a range of MDN networks, with all combinations
of hidden layer sizes in the set of [80, 100, 200] units, GMMs
with [1, 2, 4] mixture components and acoustic input context
window sizes of [1, 5, 10] frames. The scaled conjugate gradi-
ents algorithm was used for optimisation, using the validation
set with an early stopping criterion to avoid overfitting. Com-
parison of validation set results showed that the MDN with 200
hidden units, an input context window of 10 frames and just a
single Gaussian mixture component performed best. The fact
that a single Gaussian performed marginally better than 2 or 4
was surprising, and conflicts with previous work on the inver-
sion mapping using this model [7]. This may be due to the type
of data used here, which may not be as consistent as the data
provided by electromagnetic articulography that we have used
before. This point needs further investigation. The configura-
tion for the HMM was the same as the optimal system described
in [3], with 5 states and 4 mixture components per state. Both
model types were trained with exactly same features with the
same training and test sets.

To generate animation the first two PCA components were
mapped to deformation parameters of our talking head corre-
sponding to lip opening and pucker. The presented lip syn-
chronisation methods were evaluated perceptually by conduct-
ing a pairwise comparison experiment. A website was created
to present the stimuli to the participants. An example page is
shown in Fig. 6. For each stimulus the participant was presented
with two videos that could be watched as many times as de-
sired, although always in full. Participants were then requested
to identify the video with better lip synchronisation. Four utter-
ances were each synthesised in three different versions: using
the ANN output (ANN); the HMM output (HMM); and the orig-
inal tracking data (ORG). Three conditions were tested, consist-
ing of the comparison between any two versions, where all ut-
terances in each condition were presented in both orders. Thus
participants were shown 24 stimuli in total. There were 17 par-
ticipants: 11 male, 6 female; 8 native and 9 non-native speakers.

4.3. Results

Fig. 7 shows the raw scores for each condition averaged across
all participants, as there was no significant difference between
native and non-native speakers. From these results, we observe
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Figure 8: Comparison of trajectories for principle component weight 1 generated by HMM and ANN.
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Figure 7: Preference scores for the 3 conditions.

that both the original lip motion and the lip motion generated by
the ANN were preferred when compared to that generated by
the HMM-based method. A two-tailed binomial test indicates
both these preferences are statistically significant (p¡0.001).
Meanwhile, there is a slight preference for the lip motion gen-
erated by the ANN compared to the original lip motion, but this
difference is not statistically significant. Table 1 shows the con-
sistency for each pairwise testing condition. We see that sub-
jects were strongly consistent in their preference of ORG over
HMM, and reasonably strongly consistent in their preference of
ANN over HMM. However, the subjects were not so consistent
in their selection when choosing between ANN and ORG. This
indicates subjects had more difficulty in distinguishing between
ANN and ORG, and supports the preference scores in Fig. 7.

Overall, these results support the view that the perceptual
test subjects preferred the closer, frame-level synchronisation
of lip movements offered by the ANN method. Finally, exam-
ple output from the ANN and HMM for the 1st PCA weight
throughout utterance 079 is shown in Fig. 8. Again, this sup-
ports the view that the ANN can offer closer synchronisation to
the target movements (and thus the associated acoustic signal).

5. Conclusions
This paper has compared an ANN-based approach with an
HMM-based approach for lip synchronisation. To the best of
our knowledge our trajectory MDN method has not been used
for lip synchronisation before, and based on our results here
they seem very promising compared to HMMs. Whereas the
original tracked data was clearly rated better than the HMM

output, the MDN-based approach performed on a par with the
original data. We interpret this indeed reflects a preference for
the close, frame-level synchronisation offered by ANNs com-
pared to the longer unit-based synchronisation of HMMs. In
future work, we aim to apply our MDN-based method to a large
set of high quality data.
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