INTERSPEECH 2010

HMM-based Text-to-Articulatory-Movement Prediction and
Analysis of Critical Articulators

Zhen-Hua Ling', Korin Richmond?, Junichi Yamagishi*

HFLYTEK Speech Lab, University of Science and Technology of China, P.R.China
2CSTR, University of Edinburgh, United Kingdom

zhling@ustc.edu,

Abstract

In this paper we present a method to predict the movement
of a speaker’s mouth from text input using hidden Markov
models (HMM). We have used a corpus of human articu-
latory movements, recorded by electromagnetic articulogra-
phy (EMA), to train HMMs. To predict articulatory move-
ments from text, a suitable model sequence is selected and the
maximum-likelihood parameter generation (MLPG) algorithm
is used to generate output articulatory trajectories. In our ex-
periments, we find that fully context-dependent models outper-
form monophone and quinphone models, achieving an average
root mean square (RMS) error of 1.945mm when state dura-
tions are predicted from text, and 0.872mm when natural state
durations are used. Finally, we go on to analyze the prediction
error for different EMA dimensions and phone types. We find
a clear pattern emerges that the movements of so-called critical
articulators can be predicted more accurately than the average
performance.

Index Terms: Hidden Markov model, articulatory features, pa-
rameter generation, critical articulators

1. Introduction

When humans produce speech, it is the movement of articu-
lators, such as the tongue, jaw, lips and velum, that generates
the acoustic signal. Hence, articulatory features, which may be
recorded by EMA [1], can provide an effective alternative de-
scription of speech. Similar to acoustic text-to-speech (TTS)
synthesis, the generation of articulatory movements from text
has many potential applications. For example, it could help
users of a language tutoring system learn correct pronunciation;
it could be exploited in an animated talking-head system; or it
could form the heart of an articulation-based speech synthesis
system.

This paper presents an approach to predicting articula-
tory movements from text which adopts a similar framework
to HMM-based parametric speech synthesis [2]. HMMs are
trained using the recorded articulatory features and context la-
belling of the EMA data set. To perform synthesis, the trained
models are used in conjunction with a maximum-likelihood cri-
terion with dynamic feature constraints [3] to generate optimal
trajectories of articulatory movements.
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Related research on predicting or estimating articulatory
movements has been previously described in [4-7]. In [4], ar-
ticulatory movements were predicted from phone strings using
Gaussian distribution models at phone midpoints and an explicit
coarticulation model. In contrast, we use an HMM here to pro-
vide temporal modelling of articulatory movements.

The work described in [5] and [6] was similarly based
on the HMM. However, their focus was on the acoustic-to-
articulatory (inversion) mapping, for which the aim is to esti-
mate articulatory movements from a given acoustic speech sig-
nal. This limited them to using only simple context information
to define their set of HMMs. In contrast, our aim here is to
predict articulatory movements from fext. Therefore, we can
use much more “fine-grained” linguistic features to define our
model set.

Finally, a similar HMM-based approach was also described
in [7], where speaker adaptive training (SAT) was used to train
a speaker-independent model to predict articulatory movements
from text. The work presented here has two key differences.
First, unlike [7], we evaluate using a broad set of linguistic con-
text features for HMM training. Second, in [7], the state dura-
tions were not predicted, but derived from the recorded articu-
latory data by Viterbi alignment. In contrast, we use a statistical
model to predict state durations from text. Furthermore, we in-
vestigate the influence of different forms of context information
on state duration prediction in our experiments.

Finally, it is widely accepted that certain articulators may
be more key to the production of a given phone than others.
In [8], Papcun et al. presented evidence for what they termed
critical articulators. They demonstrated, for example, that the
variance of trajectories of a point at the tongue dorsum is sig-
nificantly lower for phones for which this articulator is critical
(i.e. for velar oral stops [k,g]) than for phones for which it is
not (i.e. alveolar and bilabial stops [t,d,p,b]). The implication
is that the movements of articulators that are critical to the pro-
duction of a given phone are inherently more constrained, and
may thus be estimated with lower error, than those which are
non-critical. In this paper, we analyze the accuracy of move-
ment prediction using the HMM-based method for the critical
articulators of different phone types.

This paper is organized as follows. Section 2 describes the
HMM-based articulatory-movement prediction method in de-
tail. Section 3 presents our experiment results, and Section 4
gives the conclusions we draw on the basis of these.

2. Method

The framework of our HMM-based text-to-articulatory move-
ment prediction method is similar to that of the HMM-based
parametric speech synthesis. Articulatory movements of di-
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mensionality D are recorded by human articulography to pro-
vide training data. A set of context-dependent HMMs A are
then trained to maximize the likelihood function P(X|)\). Here
X = [x],x],...,x}]" is the observed articulatory feature se-
quence, ()T denotes the matrix transpose and N is the length
of the sequence. The observation feature vector x; € R3P for
each frame consists of static articulatory parameters xs, € RP
and their velocities and accelerations such that

x¢ = [x5,, Ax§,, A%G,]) )

where
Axg, = O.5xst+1 —0.5xs,_, 2)
A2xst =XS,4, — 2Xs, +X5,_;- 3)

Following initial context-dependent HMM training, we use
a decision tree to cluster the models [9] in order to address prob-
lems of data sparsity and to estimate the parameters for models
whose context description is missing in the training set. Next,
state alignment results are calculated and used to train context-
dependent state duration probabilities [10].

To generate articulatory movements the result of front-end
linguistic analysis on the input text is used to determine the sen-
tence HMM by consulting the clustering decision tree built dur-
ing training. The MLPG algorithm [3] is then applied to gener-
ate the optimal articulatory trajectories using dynamic features,
such that

Xs

argmax P(X|\) = argmax P(WxXs|\) (4)
Xs Xg

arg max E P(WxXs,q|)).
S
vq

(&)

where X = WxXs; X5 = [xrql ,xgz, ...,ng]T is the static ar-
ticulatory feature sequence; Wy € R3NPXND ig determined
by the velocity and acceleration calculation functions in (1)-(3);
and ¢ = {q1, g2, ..., qn } denotes the state sequence for the ar-
ticulatory features. We solve (5) by keeping only the optimal
state sequence in the accumulation and approximating it as a
two-step optimization process

[X5,4"] ~ arg max P(WxXs, q|) ©6)
S
= wgmax PWXs L) Pgly) ()
S
where the optimal state sequence
q" = arg max P(gq|)\) 8)
q

is determined from the trained state duration probabilities [10]
and X7 is calculated by setting dlog P(WxXs|A,¢*)/0Xs= 0,
as introduced in [3].

3. Experiments
3.1. Database and System Construction

We have used a multichannel articulatory database for our ex-
periments (mngu0). The acoustic waveform was recorded con-
currently with articulatory movements using a Carstens AG500
electromagnetic articulograph. A male British English speaker
was recorded reading 1,263 phonetically balanced sentences.
Of these, 63 sentences were selected evenly from throughout the
corpus for a test set, while the remaining 1,200 sentences were
used for training. Acoustic waveforms were in 16kHz PCM
format with 16 bit precision. As depicted in Fig. 1, six EMA
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Table 1: RMS error (mm) of EMA features predicted from
text using monophone (MONO), quinphone (QUIN), and fully
context-dependent (FULL) models.

Predicted State Durations ~ Natural State Durations

MONO 2.178 1.147
QUIN 2.044 0.881
FULL 1.945 0.872

sensors were used, located at the tongue dorsum (T3), tongue
body (T2), tongue tip (T1), lower lip (LL), upper lip (UL), and
lower incisor (LI). Each sensor recorded spatial location in 3
dimensions at a 200Hz sample rate: coordinates on the x- (front
to back), y- (bottom to top) and z- (left to right) axes (relative to
viewing the speaker’s face from the front). All six sensors were
placed in the midsagittal plane, and their movements in the z-
axis were very small. Therefore, only the x- and y-coordinates
of the six receivers were used in our experiments, making a total
of 12 static articulatory features at each sample instant.

To create context-dependent HMMs, we first labelled the
database using Unilex [11] and Festival [12] tools. Phone
boundaries were determined automatically using HTK [13].
Our prediction implementation was based upon the HTS toolk-
its [14]. We evaluated 3 forms of HMMs:

e Monophone models. No context features used.

e Quinphone models. Context features comprised the
identity of the current phone, together with those of the
preceding and follow two neighbouring phones.

e Fully context-dependent models. A broad set of lin-
guistic and prosodic features were adopted, similar to
those used in HMM-based TTS systems [2], including
neighbouring phones (as for quinphone models), lexical
stress, part of speech, position in syllable, etc.

3.2. Evaluation of Prediction Accuracy

We have used RMS error calculated for the 63 test sentences
(silence segments excluded) and averaged over all 12 EMA fea-
tures as an objective measure to evaluate the accuracy of artic-
ulatory movement prediction. Results for the three model types
are given in Table 1. The “predicted state durations” were calcu-
lated by solving (8) under the constraint that the total number of
generated articulatory frames should be the same as that of the
natural utterance [10], in order to facilitate the error calculation.
Meanwhile, “natural state durations” were derived by Viterbi
alignment with respect to the natural articulatory recordings,
similar to [7]. A t-test informs us that the differences among
the three systems in each column are significant (p < 0.05),
with the exception of systems QUIN and FULL when natural
state durations were used. From these results, we make the fol-
lowing observations:

e Context-dependent modelling, which is commonly used
in HMM-based speech synthesis, is also effective for
predicting articulatory movements from text. Compared
with monophone models, using quinphone models im-
proves the accuracy of articulatory feature prediction sig-
nificantly, as the coarticulatory effects of nearby phones
may be taken into account.



e Fully context-dependent models are significantly better
than quinphone models when state durations must be
predicted. This difference, though, is no longer signif-
icant when natural state durations are given. This im-
plies the superiority of the fully context-dependent mod-
els lies in better duration prediction. This is reasonable,
since they take into account context features related to
prosody when training duration distributions.

e RMS error is greatly reduced for all 3 systems when
natural state durations are used instead of ones pre-
dicted from text. Interestingly, although fully context-
dependent models can provide better duration modelling
than the monophone and quinphone models, they still
fall well short of the performance achieved using natural
durations.

e Even when fully context-dependent models and natural
state durations are used, we still observe an RMS error
of 0.872mm. At least part of this error may be attributed
to inherent variability in articulatory movements them-
selves. Theory suggests the degree of this variability
depends on whether a given articulator is “critical” at a
given time or not. We explore this in more detail next.

3.3. Movement Prediction for Critical Articulators

In order to investigate whether the accuracy of movement pre-
diction might vary depending on how critical an articulator is to
the production of a given phone, we have calculated RMS error
for specific EMA sensor coordinates and phone types. Fig. 2
shows normalized RMS error for the y-coordinates of the LL,
T1, T2 and T3 sensors according to phone type. Fully context-
dependent HMMs and natural state durations have been used
here. We observe that the movements of critical articulators can
indeed be predicted more accurately than the average perfor-
mance. Specifically, we note:

For vowels The position of the tongue body is important for
defining the shape of the vocal tract. Fig. 2 shows that
T2_y has the lowest prediction error (0.303) among the
four EMA dimensions for type “Vowel”, which is lower
than the average T2_y error for all phones (0.317).

For consonants What constitutes a critical articulator depends
upon a phone’s place of articulation, e.g. the point where
an obstruction occurs in the vocal tract. Fig. 1 illustrates
the place of articulation for several consonant types, to-
gether with the placement of EMA sensors used in our
experiments. It shows that the critical articulators for
“Labiodental”, “Alveolar”, “Palatal” and “Velar” phone
types correspond to the LL, T1, T2 and T3 sensors re-
spectively. The clear pattern which emerges is that the
critical articulator for each consonant type has the lowest
prediction error among the four EMA dimensions. Fur-
thermore, these EMA dimensions are predicted more ac-
curately for the corresponding consonant types than for
the others.

We propose that the lower error we observe for critical artic-
ulators may be due to there being less variability overall in their
patterns of movement (i.e. across multiple instances) compared
to those of non-critical articulators. Hence the distributions over
EMA dimensions that correspond to critical articulators in the
trained HMMs are likely to be “tighter”, with lower variance.
In addition, the movements of critical articulators in the test set
are equally likely to be more constrained relative to those of
non-critical articulators.
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(a)

(RMSE) | Labiodental Alveolar Palatal Velar
LLy 0.283 0.330 0.283 0.387
Ty 0.342 0.289 0.333 0.369
T2y 0.321 0.338 0.162 0.260
T3y 0.352 0.364 0.227 0.128

Figure 1: Illustrations for (a) the placement of the six EMA
sensors used in our experiments and (b) the place of articula-
tion and the normalized RMS error of four EMA dimensions
for varying consonant types. We have underlined the EMA di-
mension which has the lowest prediction error among the four
dimensions for each consonant type.

In order to test this explanation, we calculated the nor-
malized average standard deviation of the trained distribu-
tions for each EMA dimension and phone type, using fully
context-dependent models and natural state durations. When
using fully context-dependent models together with decision-
tree-based model clustering, it is not straightforward to select
the distributions over EMA features for each phone directly. In-
stead, we used the test sentences to provide a state sequence
using Viterbi alignment. First, we identified the states corre-
sponding to a given phone type in the generated sequences for
the test sentences. Next, we calculated the sum of the standard
deviations in the corresponding Gaussian distributions over the
static EMA features for all the frames in the states correspond-
ing to a given phone type. We could then calculate their average
by dividing by their total number of frames. Finally, this aver-
age standard deviation was normalized by the global standard
deviation of each static EMA dimension separately.

The results for the y-coordinates of the LL, T1, T2 and T3
sensors are shown in Fig. 3. In this figure we see similar patterns
to those found in Fig. 2. For example, the average standard
deviation for the T3_y dimension is lower than the other three
for the “Velar” phone type, and is also lower for this phone type
than for any other type. This same pattern is also found in the
y-coordinate of T2 for “Palatal”, T1 for “Alveolar”, and so on.
This provides good support for our proposed explanation.

4. Conclusions

We have presented an HMM-based method to predict articula-
tory movements from text. Articulatory movements are gen-
erated from HMMs trained on articulatory features, using an
MLPG algorithm. Our experiments have shown that using rich
context features to define the model set reduces prediction error
significantly. When fully context-dependent models are used,
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Figure 2: Normalized RMS error for the y-coordinates of the LL, T1, T2 and T3 sensors for different phone types using fully context-
dependent models and natural state durations. RMS errors have been normalized by dividing by the global standard deviation for each

EMA sensor coordinate separately.
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Figure 3: Normalized average standard deviation in the trained HMMs for the y-coordinates of the LL, T1, T2 and T3 sensors for
different phone types. Fully context-dependent models and natural state durations have been used.

an RMS error of 1.945mm was achieved using predicted state
durations, which decreased to 0.872mm when natural state du-
rations were used. Furthermore, we have found that critical ar-
ticulators have tighter distributions in the trained HMMs and
consequently lower prediction error than non-critical ones for a
range of phone types. Considering the different roles of articu-
lators during pronunciation, to further improve the performance
of movement prediction for critical articulators, will be the fo-
cus of our future work.
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