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Abstract

Two speech inversion methods are implemented and
compared. In the first, multistream Hidden Markowdéls
(HMMs) of phonemes are jointly trained from synafoas
streams of articulatory data acquired by EMA aneesp
spectral parameters; an acoustic recognition systees the
acoustic part of the HMMs to deliver a phoneme rchzaid the
states durations; this information is then usedaltyajectory
formation procedure based on the articulatory pdrthe
HMMs to resynthesise the articulatory movements.tha
second, Gaussian Mixture Models (GMMs) are traimoed
these streams to directly associate articulatoaynés with
acoustic frames in context, using Maximum Likelidoo
Estimation. Over a corpus of 17 minutes utterecaliyrench
speaker, the RMS error was 1.62 mm with the HMMs and
2.25 mm with the GMMs.

Index Terms: Speech inversion, ElectroMagnetic
Articulography (EMA), Hidden Markov Model (HMM),
Gaussian Mixture Model (GMM), Maximum Likelihood
Estimation (MLE).

1. Introduction

Speech inversion is a long-standing problem, atifiées by
the famous work by Ataét al. [1] in the seventies. Speech
inversion was traditionally based on analysis-bytisgsis, as
implemented by [2], or by [3] who optimised codek®do
recover vocal tract shapes from formants. But sanckecade,
more sophisticated data-driven techniques have aapge
thanks to the availability of large corpora of eutatory and
acoustic data provided by devices such as therBMaeignetic
Articulograph (EMA) or motion tracking devices bdsen
classical or infrared video.

Our laboratory is thus involved in the developmeifitan
inversion system that allows producingugmented speech
from the sound signal alone, possibly associatetl wideo
images of the speaker’s fackugmented speectonsists of
audio speech supplemented with signals such adispiy of
usually hidden articulators such (e.g. tongue dumg by
means of a virtual talking head, or with hand gestias used
in cued speechy hearing-impaired people.

2. State-of-the-art

At least, two classes of statistical models of #peech
production mechanisms can be found in the recésriature:
Hidden Markov Models (HMMs) (cf. [4], [5] or [6])and
Gaussian Mixture Models (GMMs) (cf. [7]). In additi to the
structural differences between HMMs and GMMs,

important difference is that HMMs explicitly use gotetic
information and temporal ordering while the GMMsnply
cluster the multimodal behaviour of similar speebhinks.
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Hiroya & Honda [4] developed a method that detessin
articulatory movements from speech acoustics uaiftMM-
based speech production model. After proper laieliif the
training corpus, each allophone is modelled by ated-
dependent HMM, and the proper inversion is perfatrog a
state-dependent linear regression between the \@user
acoustic and the corresponding articulatory pararaetThe
articulatory parameters of the statistical modet ahen
determined for a given speech spectrum by maximizn
posteriori estimation. In order to assess the itgnoe of
phonetics, they tested their method under two éxmertal
conditions, namelwith andwithout phonemic information. In
the former, the phone HMMs were assigned accortbnigpe
correct phoneme sequence for each test utterantiee llatter,
the optimal state sequence was determined amompssible
state sequences of the phone HMMs and silence mddey
found that the average RMS errors of the estimated
articulatory parameters were 1.50 mm from the dpeec
acoustics and the phonemic information in the attee and
1.73 mm from the speech acoustics only.

Zhang & Renals [5] developed a similar approach.ifThe
system jointly optimises multi-stream phone-sizedMs on
synchronous acoustic and articulatory frames. Tkiersion is
carried out in two stages : first a representatiidM state
alignment is derived from the acoustic channelsmraothed
mean trajectory is generated from the HMM stataisege by
an articulatory trajectory formation model usinge teame
HMMs. Depending on the availability of the phonbdis for
the test utterance, the state sequence can be ethened by
an HMM decoder, or by forced alignment derived frphone
labels, leading to RMS errors of respectively In@ and
1.58 mm.

Toda and coll. [7] described a statistical apprdactboth
articulatory-to-acoustic mapping and acoustic-ticatatory
inversion mapping without phonetic information. Buan
approach interestingly enables language-indepensieetch
modification and coding. They modelled the joinblpability
density of articulatory and acoustic frames in eahtusing a
Gaussian mixture model (GMM) based on a paralleliatic-
articulatory speech database. They employed twierdift
techniques to establish the GMM mappings. Usingramum
mean-square error (MMSE) criterion with an 11 frame
acoustic window and 32 mixture components, thewiakt
RMS inversion errors of 1.61 mm for one female speaénd
of 1.53 mm for a male speaker. Using a maximunliliked
estimation (MLE) method and 64 mixture componettisy
improved their results to 1.45 mm for the femaleader, and
1.36 mm for the male speaker.

The studies described above do not allow concluding
about the optimal inversion method since data, kgreaand
languages are not comparable. Hiroya & Honda [4] 2mang
& Renals [5] have shown that using explicit phonetic
information to built HMMs gives better results. Eodnd coll.
[7], using GMMs and no phonetic information, getvéy



RMS errors. However, the corpora as well as trairangd
testing conditions are not completely comparableer&fore,
the aim of the present work is to compareteris paribusthe
HMM-based method used in [6] with a GMM-based mdtho
similar to that of [7] using the minimum mean-scuarror
(MMSE) criterion and subsequent MLE optimisatiom fhe
GMM-based mapping method.

3. Articulatory and acoustic data

3.1. Thecorpus

For this study, a corpus already recorded was (i8kdIt
consists of a set of two repetitions of 224 nonsevswel-
consonant-vowel (VCV) sequences (uttered in a slow a
controlled way), where C is one of the 16 Frenchsooants
and V is one of 14 French oral and nasal vowel® tw
repetitions of 109 pairs of CVC real French word$feding
only by a single cue (the French version of thegbdastic
Rhyme Test); 68 short French sentences, 9 longerqtically
balanced French sentences, and 11 long arbitramgrsees.
The corpus was recorded on a single male Frencfecub
which means that no speaker adaptation / normalisat
problems will be dealt with in this study.

The phones have initially been labelled for eacterahce
using a forced alignment procedure based on thi aighal
and the corresponding phonetic transcription basedMMs.
Subsequent manual correction of both phoneme |adeds
phoneme boundaries were performed usingPttaat software
[9]. The centres of allophones were automaticaligsen as
the average between beginning and end of the phesem
Altogether the corpus, from which long pauses vexauded,
contains approximately 100,000 frames, about 17 minutes
of speech, corresponding to 5132 allophones. The 36

phonemes areafeeiyuoogoe dé@dptkfsfbdgvz

smnglwyjoe __], where_and_ are internal short and
utterance initial and final long pauses respedfivel

3.2. Theacoustic and articulatory data

The articulatory data have been recorded by mednano
ElectroMagnetic Articulograph (EMA) that tracks naot of

flesh points of the articulators thanks to smadicalomagnetic
receiver coils glued on the organs. Studies hase/shhat the
number of degrees of freedom of speech articuldjavs lips,

tongue ...) for speech is limited, and that a smadldufficient

number of carefully selected measurement locatiamsallow

retrieving them with a good accuracy [8, 10]. I thresent
study, six coils are used: a jaw coil is attachedhte lower
incisors (jaw), whereas three coils are attachethéotongue
tip (tip), the tongue middle (mid), and the tondpaek (bck) at
approximately 1.2 cm, 4.2 cm, and 7.3 cm, respelgtiirom

the extremity of the tongue; an upper lip coil juahd a lower
lip coil (Iwl) are attached to the boundaries beatwethe
vermilion and the skin in the midsagittal plane.trexcoils

attached to the upper incisor and to the nose deas
references to compensate for head movements in

midsagittal plane. The audio-speech signal wasrdecbat a
sampling frequency of 22,050 Hz, in synchronizatidgth the

EMA coordinates, which were recorded at a 500 Hapimg

frequency, low-pass filtered at 20 Hz in orderaduce noise,
and down sampled to 100 Hz.

the

3.3. Overview of the data

We verified that the general articulatory charastis of each
phoneme were in accordance with our expectation by
displaying, in the midsagittal plane, the dispersadlipses of

the six coils estimated over the sets of all the&tances. The
minimum and maximum number of instances per phoneme
was 17 (for short pauses) and 348 (for /a/). Thistrates the
coherence and the validity of the data. Figure hjclwv
displays these ellipses for phoneme /t/, illusgdbe very low
variability of the tongue tip and jaw coils for,/ds could be
expected since the tongue is in contact with thd palate for
this articulation. It should however be remindeattithe
articulations were sampled at the instant midwayveen the
phone boundaries, which does not completely enthatit
corresponds to the actual centre of the phoneeifridjectories
are not symmetrical.
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Figure 1. Dispersion ellipses of the measured
coordinates of the six EMA coils for phoneme /t/.
These ellipses are computed from the samples &tken
the middle of the 231 instances of /t/ in the cerpu

3.4. Context classesfor phonemes

Due to coarticulatory effects, it is unlikely that single
context-independent HMM could optimally represergiven
allophone. Therefore, context-dependent HMMs weaiméd.
Rather than using a priori phonetic knowledge tange$uch
classes, confusion trees have been built for bothels and
consonants, based on the matrix of Manhattan aistaof the
coils coordinates between the centre frame of gmaih of
phone. Each allophone was represented by its mean al
the associated instances. Using hierarchical ciangteto
generate dendrograms we define six coherent clafses

vocalic contexts fe & |s e & |ei|y |u|ood3]), and ten
coherent classes for consonantal contextd @ | fv |¥ | 3
[l|tdszn]|j]|y]kg]|wl]). The schwa, the short and the

long pauses §[_ _]) are ignored in the context classes. Using
acoustic spectral distances did lead to classssskisfactory
from the point of view of phonetic knowledge.

4. HMM modéds

We recall the experiments published previously byn Be
Youssef et al. [6]. For the training of the HMMsoastic
feature vectors consisted of the 12 Mel-Frequencpstal
Coefficients (MFCC) and of the logarithm of the energy
along with the first time derivatives, computednfr¢he signal
over 25 ms windows at a frame rate of 100 Hz tochndhe
EMA sampling frequency. Articulatory feature vestor
consisted of thex andy coordinates of the six active coils.



Their first time derivatives are also added. TheANMaces
were down sampled to match the 100 Hz shift ratehef
acoustic feature vectors.

Various contextual schemes were tested: phonemes
without context(no-ctx) with left (L-ctx) or right contex{ctx-

R), and with both left and right contexts-ctx-R)

Left-to-right, 3-state phoneme HMMs with a mixtuoé
up to 16 Gaussians per state and a diagonal caceriaatrix
are used. For training and test the HTK3.4.1 tadkiused
[11]. The training is performed using the Expectati
Maximization (EM) algorithm based on the Maximum
Likelihood (ML) criterion.

The acoustic and articulatory features vectors are
considered as two streams in the HTK multi-streeaiming
procedure. Subsequently, the HMMs obtained are splb
articulatory HMMs and acoustic HMMs. The articulato
HMMs are modelled with a single Gaussian, while the
acoustic HMMs are modelled as multi-Gaussian megur

A bigram language model considering sequences of
phones in context is trained over the complete uwargNo
prosodic constraints such as a duration model ddeda The
acoustic-to-articulatory inversion is achieved wotstages.
The first stage performs phoneme recognition, basedhe
acoustic HMMs. The result is the sequence of reisegn
allophones together with the duration of each stateach
HMM. An inheritance procedure allows to replace a missin
HMM by the closest one aims to compensate for dloestmall
size of the training set [6].

The second stage of the inversion aims at recartstou
the articulatory trajectories from the chain of pame labels
and state durations delivered by the recogniti@mteudure. As
described in [12], the synthesis is performed usthg
trajectory formation procedure proposed by [13]hwthe
software developed by the HTS group [14-15]. A dine
sequence of HMM states is built by concatenating th
corresponding phone HMMs, and a sequence of oltgmmva
parameters is generated using a specific ML-baseangeter
generation algorithm [15].

4.1. Evaluation of the HM M -based inversion

Three criteria have been used to assess the iomerssults:
(1) the square root of the mean quadratic error (RMS
between the measured and recovered coordinatesth€?)
Pearson Product-Moment Correlation Coefficient (PMGC),
less conservative criterion that measures only lével of
amplitude similarity and of synchrony of the tragtes, and
(3) the recognition rates (percent correct and ipi@t) are
used to assess specifically the recognition stage.

A jack-knife training procedure is used: the dat@ split
into five partitions approximately homogeneous frahe
point of view of phone distribution; each partitimused in
turn to assess the performances of the HMM modaladd
with the four remaining partitions. The RMSE and PM&€
calculated over the five test partitions — therefthie whole
corpus —, excluding the long pauses at the beginaid the
end of each utterance. The recognition rates as® al
aggregated over the five partitions.

In a preliminary experiment, we varied the numbér o
Gaussians in the acoustic HMMs, and found thatohtémal
number was 10 Gaussians unless in both right aftd le
contexts was one Gaussian because of the limizdafithe
corpus. For the articulatory HMMs, using more thame
Gaussian did not improve the results, and theredotg one
Gaussian was used.

Table 1, which displays the recognition rates, gisin
8 Gaussians for the acoustic HMMs, the RMSE and
correlation coefficients for the HMM-based inversichows
that the use of phones in context increases tHferpances of
the inversion. The best results are however noaioétl for
the phones with both right and left contexts, bot the
phones with the right context. This is likely duethe limited
size of the corpus (the ratio of the number of miggest
phone HMMs over the total number of train phonesrisghe
average over the five training partitions is 4ad4d 12 % for
theL-ctx, ctx-R andL-ctx-Rcontexts, respectively).

We found that the use of state durations produgethé
recognition stage results in an improvement of ai@uo for
RMSE and about 4% for PMCC, compared to the previously
used z-scoring method. We found also that the missiMMs
inheritance mechanism increases the recognitioiomeances
by 1 to 5 %. The language model increase ratesamignition
/ accuracy from 72.29/34.22 % to 93.66 / 80.90Phis
spectacular improvement has however a low influemctehe
performances since, in right context, the RMSE gibes
1.83 to 1.66 mm and the correlation from 0.90 &20.

Besides, in order to assess the contribution oftridjectory
formation to errors of the complete inversion pchae, we
also synthesized these trajectories using a foatigdment of
the states based on the original labels, emulatingerfect
acoustic recognition stage. From Table 1, we cimate that
the contribution of the trajectory formation stagehe overall
RMSE amounts to nearly 90 %. This relatively higheleof
errors can likely be explained by the fact that ttagectory
formation model tends to oversmooth the predicted
movements and does not capture properly coartionlat
patterns.

Table 1. Recognition rates (PercentCorrect,
Accuracy) aggregated over the whole corpus (1).
RMSE (mm) and PMCC for the HMM-based
inversion: full inversion (2), with perfect recogoit
step (3). The star * indicates that the acoustic M
have 10 Gaussians.

no-ctx * L-ctx * Ctx-R * L-ctx-R

Cor| Acc| Cor| Acc| Cor| Acc| Cof Acq
(1) 87.5q 83.5092.29 87.3792.82| 87.78| 86.30] 81.84

RMSE| PMCH RMSH PMCE RMSE PMCLC RMYE PMGC
()| 2.00] 0.88 1.64 0.91 1.62] 092 1.93]| 0.88
(3)]1.91] 0.90( 1.5 099 15% 09814 [0.94

5. Multimodal GMM models

The GMM was trained using the expectation—maxinorat
(EM) algorithm with joint acoustic-articulatory vieecs as
feature vectors. The GMM-based mapping is then iegpl
using the minimum mean-square error (MMSE) criterio
which has been often used for voice conversion [di6]n
acoustic-to-articulatory inversion [7]. Moreoveg tmprove
the mapping performance, the maximum likelihoodhestion
(MLE) was applied to the GMM-based mapping methsdna
[7]. The determination of a target parameter ttajgcwith
appropriate static and dynamic properties is obthiby
combining local estimates of the mean and varidaceach
frame p(t) and its derivative 4p(t) with the explicit
relationship between static and dynamic featuresg. (



Ap(t) = p(t) — p(t-1) in the MLE-based mapping. In order to
take into account coarticulation [7] [17], the asta
information is taken from some time span arounditiséant
of interest. Besides, the dynamics of the articugate taken
into account by considering the time derivate of th
articulatory trajectories. Thus, if we denoteMyy(:, 1:n,o) the
matrix of the 12 measured MFCC + log-energy coeffitse
(nac=13) and byYeua(:, 1:ngma) the matrix of EMA coil
coordinates, the feature vector at each time instalexed by
j is the concatenation of n21’ of vectors of acoustic
parameters and of EMA coordinates [PCA(J, 1:m.));
Yema(, L:rema); AYema(, 1: nema)], where 4 denotesfirst
time derivation, and] =j+[-n:+n] denotes the time instant
indices of the set of input frames used for comiaixt
information. The number of input frames was varfean
phoneme size (n=4, ~90 ms) to diphone size8( ~170 ms),
but the dimension ‘{@2+1)xn,. of the resulting vector was
reduced to a fixed value of 24 by Principal Companen
Analysis (PCA). The number of mixture components was
varied from 8 a 64. Each Gaussian is representedulby
covariance matrix (4818), a vector of means (48) and an
associated weighting coefficient.

Table 2 displays the performances of the GMM-based
inversion for different parameters, using thek-knifemethod
on the same patrtitions as for the HMMs. The RMSEases
when the number of mixtures increases and reaches a
minimum for a context window of 110 ms. The moreely
explanation is that a diphone size window optimaliytains
the local phonetic features necessary for inversidre best
inversion precision is finally obtained for a comdiion of a
110 ms window with 64 Gaussians that seems to itotesthe
best representation of the 36 phonemes. Moreoverhave
found that the extra MLE optimisation stage incesashe
performances by about 5 %.

Table 2.RMSE (mm) and PMCC for the GMM-based
inversion as a function of number of Gaussians
(# mix) and size of context ctw (ms).

#mix 8 16 32 64

ctw RMSE| PMCC] RMSH PMCG RMSE PMCLC RMYE PMQC
90 | 2.68| 0.78] 2.61 0.8 238 0843 232 0.p4
110| 2.68| 0.78] 2.54 0.4 2.37 0.432.25]| 0.85
130) 2.66/ 0.78 251 0.8 236 0843 2.p7 05
150 ] 2.66] 0.78 25 08] 244 0842 282 0B4
170) 2.65| 0.78f 2.44 0.82 241 0842 2p9 04

6. Comparisonsand discussion
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Figure 2. Comparing RMSE of HMM and GMM
reconstruction using anova.

Figure 2 displays the statistics of the RMSE of galchneme
for the HMM-based and GMM-based methods.

It confirms that the global RMSE obtained with the
HMM-based inversion is lower than that obtainedhwihe
GMM-based one (the difference is highly signifigam10°).
This result is surprising if we refer to two of thmost
elaborate experiments available in the literatidé@oya &
Honda [4] found 1.73 mm with HMMs (which is close dur
results) whereas Todet al. [7] found 1.36 — 1.45 mm with
GMMs. Even taking into account the fact that these
experiments were based on different speakers arglidges,
we did not expect such a differende possible explanation
for this contrastive behaviour lays

perhaps in the fact that GMM-based techniques ameem
appropriate to deal with unimodal mappings wherenév in
source and targets are largely synchronous, whedéd-
based techniques are able to deal with contextrotbgre
mappings and delays between frames structured &te st
transitions.

A more detailed analysis can be found in Figurehdt t
displays the phoneme-specific RMSE computed over the
centres of all occurrences of each phoneme, somed
ascending order for the HMMs. It can be observext the
error is higher for back articulations than foraual ones. No
specific trend was observed for the individual RMBEeach
coil coordinates, except a lower error for the jhan for other
articulators (see Figure 5).

Another interesting way to analyse the charactesisof
the HMM and GMM inversion methods is to compare the
measured and resynthesised articulatory spaceseoEMA

Figure 3.Articulatory spaces of the EMA coils for the phosampled at centre. Light grey:
grey synthesized coordinates (left: HMM, right: GMM

measured coordisnalzark
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Figure 5.Individual RMSE for each EMA caoil.

coils, as done in Figure 3. We see that the spemmthesised
by the HMM-based inversion covers almost completbly
original space, while the space generated by thévididsed
inversion is quite smaller, especially for the haokd and
lower lip coils. These centralisation effects cohtrelated to
the smoothing effects possibly due to the MLE cigte used
in both the HMMs and the GMMs.

7. Conclusions and per spectives

We have implemented and compared two acoustic-to-
articulatory speech inversion techniques, whichtrast in the
way they capture and exploit a priori multimodahetence.

Both systems could be improved. HMM-based inversion
can include more sophisticated treatment of asdicuy-to-
acoustic asynchrony by introducing delay modelg trave
been quite effective in HMM-based multimodal sysikg18]
as well as other optimization criteria such as mimration of
reconstruction error [19]. The GMM-based systemlddwe
improved by considering other dimensionality reghrect
techniques such as Linear Discriminant Analysis Al Dhat
are quite effective in HMM-based inversion [17]. Bot
systems could also be improved by incorporatingualis
information as input and including this additiofralormation
more intimately in the optimization process thall wonsider
multimodal coherence between input and output petenst
lips are clearly visible and jaw is indirectly aledile in facial
movements.

This work tends to show that the inversion procssuld
be “phonetic-aware”. Several reserves can howeeembhde
on these first experiments.

The HMM system benefits from the phonotactics @ th
target language. Note however that French hashassittabic
inventory: we can imagine that results obtained hwit
languages such as Japanese, Polish or Spanishvavitius
syllabic complexities may lead to different results

Global objective measurements may not entirely anirr
phone-specific behaviour that may drastically inipac
subjective rating of generated articulation. Thecjmsion of
the recovery is of course a highly important elenfen the
evaluation but other elements such as the precisfothe
recovery of crucial elements such as vocal traosgations
are naturally also very important.

We have shown elsewhere [20] that viewers haveouari
performance fortongue reading and that performance
increases with training. Note also that the reala&fhmotion
may compensate for inaccurate detailed shaping: the
kinematics of the computed trajectories could beremo
important for perception that the accuracy of ttagettories
themselves.

Finally, the results of this study will allow us develop a
tutoring system for on-line phonetic correction Jj2h which
recovered articulatory movements will be used toveda
virtual 3D talking head with all possible articdag degrees-
of-freedom [22-23].
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