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Abstract

In this paper we present a novel technique to automatically syn-
thesise eye blinking from a speech signal. Animating the eyes
of a talking head is important as they are a major focus of at-
tention during interaction. The developed system predicts eye
blinks from the speech signal and generates animation trajec-
tories automatically employing a “Trajectory Hidden Markov
Model”. The evaluation of the recognition performance showed
that the timing of blinking can be predicted from speech with an
F-score value upwards of 52%, which is well above chance. Ad-
ditionally, a preliminary perceptual evaluation was conducted,
that confirmed that adding eye blinking significantly improves
the perception the character. Finally it showed that the speech
synchronised synthesised blinks outperform random blinking in
naturalness ratings.

Index Terms: animation, motion synthesis, time series analy-
sis, trajectory model

1. Introduction

Creating animations of life-like characters is very tedious and
time consuming work. A large number of repetitive operations
need to be performed in order to prepare satisfactory videos.
One of the most difficult problems is the synchronisation of the
character animation with speech. Several tools and systems ca-
pable of automatic lip synchronisation exist, however for the
character to act believable the whole face needs to be animated.

Considerable amount of work towards understanding the
connection of motion with speech, i.e. the non-verbal commu-
nication channel, has been done so far. Not only lip motions but
also various types of facial movements related to speech have
been investigated. For example head motion is related to fun-
damental frequency (FO) and root mean square (RMS) of the
amplitude [1], [2], eye-brow movement is related to FO, pauses,
and changes to the speech flow [3], [4]. Characteristics of eye
motion change according to the mode of whether it is talking or
listening [5]. Eye blinking takes place on accented words and
pauses (e.g.[6, 3]).

The authors have proposed HMM-based motion synthesis
of the lips and head of talking faces whose input is not text but
real human voice [7], [8], where a trajectory HMM [9] is em-
ployed to generate smooth motion trajectories without using a
heuristic post-processing filter. One of the advantages of em-
ploying machine-learning approach (e.g. [10]) over rule-based
or example-based approach (e.g. [11], [12]) is the trainability /
adaptability of the model on / to new data.

Compared to lip motions, eye blinking is less correlated
with speech. Thus, the purpose of the present study is to inves-
tigate whether the same approach is applicable to predict tra-
jectories of eye blinking from speech features. Although there
are several studies on synthesising eye motions based on statis-
tical models (e.g. [5]), to our knowledge, the present study is

the first attempt to control eye blinking according to a speech
signal using a statistical approach.

2. Proposed Approach
2.1. Architecture

The developed model is based on the work of [8] and is inte-
grated with it to create a system capable of producing a com-
plete animation of a speaking character. Similarly it aims to-
wards producing novel motion based exclusively on speech.
Since processing time-series of speech and motion is required,
the proposed approach uses Hidden Markov Models (HMMs).
It also focuses on a new type of motion that has not yet been
deeply investigated for purposes of automatic animation. This
motion - namely eye blinking - differs from the typical exam-
ples such as lip and head motion in at least two ways. First, the
degree of synchrony with speech is low. Second, the quality of
the motion is very short and rapid, that during pauses can be
considered as relatively static. Finally this project lends support
to the general speech based animation framework described in
[8].

In order to synthesise smooth and realistic motion, an ex-
tension of the HMM called Trajectory HMM [9] is used. Al-
though it is possible to obtain smooth trajectories by applying
additional post-processing, such as low pass filtering, the result-
ing output is not guaranteed to be optimal. The trajectory HMM
on the other hand produces smooth trajectories that are optimal
in the sense of maximum likelihood, moreover they can be used
to directly control the body parts of a 3D model.

2.2. Motion Generation

The blinks are predicted and synthesised using a two step sys-
tem using the same kind of model [8]. During the first step
a sequence of blinks represented by motion units is predicted
from the speech. The prediction in this case is finding the most
optimal - in a sense of maximum likelihood - stream of units. In
the second step - synthesis - this sequence is transformed into a
motion trajectory. Fig. 1 presents a simplified idea of the blink
synthesis process, while Fig. 2 shows an example of a synthe-
sised motion trajectory.

The models are trained on speech represented by a sequence
of feature vectors that include mel-frequency cepstral coeffi-
cients (MFCC), fundamental frequency (FO0), their first and sec-
ond time derivatives, and motion trajectories obtained by video
analysis.

This two-step architecture follows a simple theoretical anal-
ysis of the problem. Let the speech and motion be represented
by streams of feature vectors O™ = (o{”7 o, ... o) and
0% = (07,05, ...,0%) respectively. For simplicity the length
of both streams is assumed to be equal. The problem can then
be formulated as finding the optimal motion stream oM given
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oM = argmaxp(OM|OS; A) €))

oM

where A is a set of model parameters. Actual implementation of
the probabilistic calculation above can be done by introducing
model units for speech and motion, e.g. phonemes for speech.
For simplicity, we assume a common model unit for both speech
and motion in the present study, which results in the following
optimisation problem:

oY = argmapr(OM7 u|0®) )
oM
M s
~ argmaxp(O™ [u)p(O°[u)P(u)  (3)
oM 4
where u = (ul, ceey uN) denotes a sequence of models that

corresponds to the streams. The task can then be split into two
parts - the first is recognising model sequence @ from a speech
stream O using the Viterbi algorithm. The second is synthesis-
ing a motion stream O™ from the recognised model sequence
using the trajectory HMM . P(u) can be assumed to be con-
stant, effectively making all the model sequences equally likely.

OM ~ argmax p(O™ |4) 4
oM
@ = argmax p(O° |u) ®)

u

2.3. Motion Units

Derivation of the motion units from the prepared data corpus as-
sumes that no other motion than blinks occur, and the extracted
blinks are ensured to occur during speech. The median length
of blinks in data set is around 6 video frames (198ms).

K-means clustering performed over the blinks shows that
there are 3 different types. They differ in length and internal
structure (i.e. duration of eyelid closing, closed and opening
time). Using these categories as separate motion units would
reduce the available amount of training data, therefore only two
motion units - blink and no blink - are used during the experi-
ments.

3. Corpus

The corpus is prepared using analysis of video utterances. Two
sources of videos are used; the first is the AMI Project data
corpus (see www.amiproject.org), and the second are publicly
available videos on YouTube.com. From the videos, fragments
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Figure 1: Overview of blink synthesis process
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Figure 2: Example of synthesised (top), and original (bottom)
trajectories. It is clearly visible that the synthesised motion is
similar to the original, nevertheless some differences occur.

showing a speaking person are selected, resulting in a data set
containing around 45 minutes of video and almost 800 blinks.

The data set contains utterances of 6 speakers. Most of the
data comes from only two of them - one sourced from AMI
corpus (35%), the other from YouTube (39%). The rest of the
corpus (26% of the data) is a mixture of utterances by the re-
maining 4 speakers. This choice is driven by a suspicion that
the each of the speakers provide insufficient amount of the data.

The videos are analysed on frame-by-frame basis, discard-
ing disputable fragments. The frames with clearly visible mo-
tion are counted as a part of a blink, while boundary frames that
do not show clear motion (i.e. change to the eyelid position) are
not included.

Although discarding the frames might cause the data set
to be biased, the characteristics of the data fall into the frames
given by various researches focusing on the blinking [13], [14]
- as mentioned earlier the median of the blink length observed
is about 198ms (6 video frames). As such it is in most of the
cases possible to determine which direction the eyelid is moving
augmenting the collected data.

The obtained information is used to estimate the motion
basing on trajectories presented in [15]. It is assumed that ex-
cept for the blinking no other motion occurs (see Fig. 2).

Figure 3: Example of synthesised motion sequence.



4. Evaluation
4.1. Statistical Evaluation

Two types of experiments are performed in order to evaluate
the proposed approach. The first set is meant to investigate the
recognition performance of the model and considers only the
first step of the process described in the previous section. The
second part of the evaluation is described in section 4.2 and
deals with the final motion synthesised by the system.

The performance of prediction module is measured in terms
of recall rate R = NCIYFCN = % and precision P = NLﬁCNi,
where N denotes the number of all blinks on real video, N, is
number of correctly recognised blinks, Ny number of omitted
blinks (deletions), and IN; number of insertions. Both metrics
are combined into so-called F-score defined as a harmonic mean
of both: F' = Q;i}R. The aim of the model tuning is maximi-
sation of its value.

A blink is assumed to be correctly recognised if there is a
synthesised blink b, starting at the time the real blink b,. occurs.
This can be expressed as: |S(bs) — S(br)| < € where S(b) is
the time the blink b starts at, and ¢ is the timing margin. The
end time of the blink is ignored, as any differences in duration
can be easily corrected after unit prediction step. The size of
the margin is an arbitrary decision, though the value should be
chosen so a human is not able to distinguish the difference. Ob-
viously time shorter than the spacing between video frames is
unnoticeable, similarly differences shorter than the blinks them-
selves are unnoticeable. The durations of eye blink reported by
papers vary significantly between 95ms [13] and 240ms [14],
moreover that values depend on subjects age, performed tasks,
and many other factors [16]. As mentioned in section 2.3 our
findings indicate median of about 198ms, thus € of 90 ms ( 3
video frames) seems to be acceptable choice.

The models are trained and tested using mixed data -
formed by splitting the corpus into 2 disjoint data sets, ensur-
ing that samples uttered by each speaker are equally distributed
over them. One of these sets is used for training, the other for
testing. All the tests are cross-validated to reduce the possibility
of data dependent results.

A number of different model settings are tested in order
to find the best performing set. These settings include: the
number of HMM states (5 to 20), the number of Gaussian mix-
tures used to model probabilities density (1 - 12), allowed tran-
sition network, and details of training including context-free
and context-dependent strategies. Although all possible com-
binations are tried, Fig. 4 presents only some of the results for
context-dependent case, with left-to-right transition network.

It is clearly visible that the models easily reach an F-score
of above 52% with a recall rate of nearly 50% and a precision
above 50%. Relaxing the requirement of high f-score values
allows reaching a precision of about 61% with a recall rate of
40-43%.

That should be considered a very good performance, espe-
cially by taking into account the fact that blinking is not directly
related to speech. For comparison, results obtained by random
generation of blinks with distribution densities learnt from the
corpus data are much worse; the F-score rarely reaches val-
ues above 35%, with an average calculated over 100 runs of
33.62%, recall rate 45.59%, and precision 26.63%.

The results can probably be further improved by trying
larger HMMs and introducing additional audio features e.g. en-
ergy models. It is also important to remember that the recog-
nition performance is not the main concern in that case - much
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Figure 4: The performance of blink prediction unit for mixed
data model (top), and 1 speaker model (bottom).

more important is obtaining natural, believable motion.

Investigation of different speech feature sets revealed that
using MFCCs, FO and their time derivatives is the best choice.
Nevertheless using only FO and its time derivatives gives preci-
sion above 55%, however the recall rate decreases significantly
to about 20%. On the other hand using only MFCCs and their
time derivatives gives higher recall rates with very poor preci-
sion, resulting in almost random motion.

The tests are also repeated for a single speaker models (for
both of the corpus’ main speakers). Even though the amount of
the data used for training is significantly smaller (less than 40%
in both cases), the performance is slightly better with F-score
reaching 57%, and higher precision rate for HMMs with 15 to
20 states.

4.2. Perceptual evaluation

The second part of the preliminary evaluation investigates the
influence of generated eyelid motion on the perception of the
character. A set of 3 different utterances is prepared. Each ut-
terance comes in 4 different versions: with no blinks, the real,
the random, and the synthesised motion. The real motion comes
from the corpus itself, the random reflects the distribution of
spacing and lengths of the blinks from the corpus, and lastly
the synthesised is generated by the prepared model. All these
versions of a particular utterance have the same head, lip and
eyebrow motion, so the only difference is eyelid motion.

Each of the categories contains 3 different videos that are
shown to a group of 5 persons. The subjects are then asked to



assess to which degree the eyes are realistic, assigning a grade
from 1 (worst) to 5 (best). They are also asked to informally de-
scribe the general impression of the animated character. Fig. 5
presents the average score given to each of the video types.
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Figure 5: Average grade received by each type of videos

It is clear that videos showing the character without blink-
ing receive considerably lower grades. Moreover the character
with random blinking receives lower grades than the synthe-
sised and the real eye blink categories. The evaluators stated
however that the motion is believable, but indicate that the char-
acter is stressed or nervous, which does not match the tone of
the voice. Nevertheless real and synthesised blinks are graded
much higher and evaluators describe the motion as believable
and realistic in both cases. Another observation is that gen-
erated blinks are synchronised with characteristic head move-
ments (e.g. rapid shaking) even though the motion is not used
as the model’s input stream.

5. Summary

The work in this paper shows that in addition to lip, eyebrow
and head motion as described in [8], eye-blinks can also be
modelled using a Trajectory HMM. It shows that acceptable re-
sults can be produced even for motion that is not believed to be
directly synchronised with speech. Furthermore it also confirms
that very small changes to the character motion (i.e. adding a
blink) can significantly change its perception by the audience.

Even though the system is satisfactory, there are several
problems to be addressed. A relatively small data corpus was
used and the features were extracted using video analysis. In
order to improve the performance more data is needed, prefer-
ably coming from high resolution motion capture systems. That
would allow modelling eyelid motion trajectories more accu-
rately.

Moreover additional input streams, namely head motion,
eye-gaze and movements of other parts of the face should also
be used along with speech features for the training and the
recognition process. Finally the relationship between other mo-
tion and eye blinks, which has been noticed during this work
and has been reported by [17], should be exploited to improve

the quality of the produced animations.

Although it might seem that similar result can be achieved
using rule-based systems, the machine learning approach has a
significant advantage - not only blinking, but also various other
movements such as squinting can be easily synthesised given
appropriate training data set.
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