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Abstract

This thesis focuses on the problem of scalable optimizatiodialogue behaviour
in speech-based conversational systems using reinforddesning. Most previous
investigations in dialogue strategy learning have progdlkse reinforcement learning
methods, which are more suitable for small-scale spokdogiia systems.

This research formulates the problem in terms of Semi-Maikecision Processes
(SMDPs), and proposes two hierarchical reinforcemennlagrmethods to optimize
sub-dialogues rather than full dialogues. The first meths®sa hierarchy of SMDPs,
where every SMDP ignores irrelevant state variables aridrein order to optimize
a sub-dialogue. The second method extends the first one Isyraonng every SMDP
in the hierarchy with prior expert knowledge. The latter hoet proposes a learning
algorithm called ‘HAM+HSMQ-Learning’, which combines tvaxisting algorithms
in the literature of hierarchical reinforcement learnifghilst the first method gener-
ates fully-learnt behaviour, the second one generatesIeammt behaviour. In addi-
tion, this research proposes a heuristic dialogue sinuanvironment for automatic
dialogue strategy learning. Experiments were performedimmlated and real envi-
ronments based on a travel planning spoken dialogue sysixperimental results
provided evidence to support the following claims: Firgiffomethods scale well at
the cost of near-optimal solutions, resulting in slightthger dialogues than the op-
timal solutions. Second, dialogue strategies learnt withecent user behaviour and
conservative recognition error rates can outperform eorede hand-coded strategy.
Third, semi-learnt dialogue behaviours are a better atera (because of their higher
overall performance) than hand-coded or fully-learntatiale behaviours. Last, hierar-
chical reinforcement learning dialogue agents are feasibtl promising for the (semi)
automatic design of adaptive behaviours in larger-scalgepdialogue systems.

This research makes the following contributions to spokatodue systems which
learn their dialogue behaviour. First, tls®mi-Markov Decision Process (SMDP)
model was proposed to learn spoken dialogue strategies ¢alabdée way. Second,
the concept opartially specified dialogue strategie@gas proposed for integrating si-
multaneously hand-coded and learnt spoken dialogue balravinto a single learning
framework. Third, arevaluation with real usersf hierarchical reinforcement learning
dialogue agents was essential to validate their effeatiseim a realistic environment.
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Chapter 1

Introduction

Spoken dialogue interaction has been suggested by resesuaid practitioners as a

promising alternative way of communication between hunatsmachines (Zue and

Glass

200

0). A compelling motivation is the fact that cosa¢ional speech is the most

natural, efficient, and flexible means of communication agitwman beings. Because

of the complexity of human-human interaction, human-maelsionversations need to

be much simpler. In our contemporary world there are manyhmas used in our

daily lives such as computers, telephones, cars, and roMetsnay not want to talk to

them all the time; however, the following are sample scasasihere a talking machine

would be useful:

¢ while driving a car our eyes and hands are busy, but we may twamntrol the

car’s resources or access the internet;

e when many people call a company simultaneously to book acgeor request

information and have lengthy waits on the line due to busydmperators;

e when we have to do complex searches for information thatriepe a dialogue

history rather than on a single sentence and we only have hlssghoard;

e when giving instructions to a robot capable of a wide rang@asks;

e when a disabled person wants to interact with a machine;

e when a person does not want to use a keyboard.

Talking to a machine requires a spoken dialogue system. eféyestems may be al-

ternatively referred to in the literature as ‘conversagioagents’, ‘spoken |

systems’ or ‘conversational interfacés;glumkmnﬁiﬁalm .J:Iuang_el_iil

angua

20

ge
1
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McTear, 2004). Such systems should be able to understandanterson says, take
an appropriate action, and then provide a response. Igdsalbken dialogue systems
should yield successful, efficient and natural conversatwithin a given domain.
However, building such systems is still a challenge forrsogeand engineering.

A spoken dialogue system can be described as having foutimkisd modules:
speech recognition and understanding, a dialogue marlagguage and speech gen-
eration, and knowledge base (Figlrel 1.1). It operatesaaitfias follows: the user
makes a verbal response and the corresponding speech wagivensto the speech
recognition and understanding module to extract a commgresentation (referred
to as ‘meaning’) of what the user has said; such a meaningeid bg the dialogue
manager to choose an action based on the current dialogoeyhithe language and
speech generation module takes that action so as to geaesptiken response. The
cycle continues until one of the conversants (user or magé@mminates the dialogue.
In addition, the knowledge base keeps track of all the infdrom generated through
the dialogue history, which is queried and/or updated bydrilie system modules.

speech Sp??Ch meaning
—— | recognition and
understanding
User Knowledge base (g¢—Pp Dialogue manager
Language and
speech speech generation < action

Figure 1.1: A modular high-level architecture of a spoken dialogueaysinteracting
with a user. This thesis focuses on the dialogue manager imodu

Although currently available human language technologlesv the building of
working systems, they still face a number of problems andilkeéy to fail in the fol-
lowing situations: noisy environments, unknown vocaliakaand meanings, unknown
speech accents, requirements for world knowledge, orridiadogue behaviour. This
thesis is concerned with the design of spoken dialogue nesisdbjat are capable of
learning to optimize their dialogue behaviour in a scalaoié efficient way.
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1.1 Motivation

Designing the behaviour of spoken dialogue managers foresséul, efficient and
natural conversations is a challenging goal. Dialogue marsabehave by following a
dialogue strategy also referred to as ‘dialogue policy’ or ‘dialogue behawio Dia-
logue strategies are stochastic sequential decision maksilustrated in Figure 1.2.
For each situation (dialogue state) the strategy has tosehao action to change the
current state — these transitions are stochastic becagiskatlogue state is not known
with certainty. The task of the dialogue strategy is to cleoagpropriate actions for
each possible dialogue state. Such strategies are typicid-crafted by system de-
signers. However, it turns out that this approach has a nupofldenitations: (1) it is
not always easy to specify action-selection at some pairtisa dialogue (lack of op-
timization); (2) dialogue behaviour for the entire user plagion is generic and static
(lack of adaptivity); (3) this is a labour-intensive taskpecially for large systems.

state variables
machine Vo (U1|Vg] .... [Uy

dialogue
state

action: request
(Tell me your flight
information...)

action: confirm+request . . . .

(OK, a flight from
Edinburgh to London.
On what date...?)

Figure 1.2: lllustration of flat sequential decision-making for spokkalogue. Empty
circles are dialogue states and their possible transiticasslt from an executed action.

As an alternative approach to hand-crafted design, LevéhRirraccini [(1997)
framed the problem of dialogue strategy design as an omiioiz problem, and sug-
gested MDP-based reinforcement learning for such a pur@@seit has proved dif-
ficult to develop spoken dialogue systems under this framlewtwvo of the crucial
issues are that aincertaintyand scalability. In the former, the dialogue states are
assumed to be known with certainty; in the latter, the nunebanique dialogue states
grows exponentially as more information is incorporated.af alternative approach,
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Roy et al. (2000) suggested the POMDP model to handle umaigria the conversa-
tion, but it has been difficult to apply this model to largedecdialogue systems.

Previous work has optimized the behaviour of spoken digd@ystems for simple
interactions using a single dialogue goal with only a fewsslaf information. The
development and deployment of larger-scale systems reasaam important research
avenue for their application in the real world. Proposind evaluating a more scalable
dialogue optimization framework is what has motivated tesearch.

Designing the behaviour of conversational agents in amaatic way matches the
so called ‘rational agents’ also known as ‘intelligent agéand is central to artifi-
cial intelligence. Building and testing such kind of ageint¢arge applications is of
importance to the advancement of this research field, andedireed as follows.

For each possible percept sequence, a rational agent séeelct an
action that is expected to maximize its performance meagiwen the ev-
idence provided by the percept sequence and whatevelrbkittewledge

the agent has (Russell and Norvig, 2003).

1.2 Research goal

This thesis investigates how to optimize the behaviour okep dialogue systems in
a scalable, efficient and effective way under the reinfomeintearning paradigm. It
leaves aside the issue of uncertainty handling and foctsesténtion on scaling the
MDP-based reinforcement learning framework. For such agae this research aims
to answer the following questiontHow to learn dialogue strategies for large-scale
information-seeking spoken dialogue systems?

A solution to this problem would contribute towards the depenent of larger-
scale spoken dialogue systems than those attempted so flwatiend three objectives
are established. Firstly, to simulate and evaluate tasatad and multi-goal human-
machine conversations based on dialogue acts: this olgewstil be used to generate
a large number of conversations for dialogue strategy iegrim an automatic way.
Secondly, to learn spoken dialogue strategies for large-siztion spaces in order to
scale up the MDP (Markov Decision Process) framework witiegaanchical approach
(see next section). Although this research does not adthresssue of uncertainty in
the dialogue state, the resulting framework aims to proxétievant findings that may
be used to scale up other models. Finally, to validate thengsdfrom simulations by
evaluating learnt dialogue strategies in a realistic @mritent: this objective used a
real spoken dialogue system evaluated by real users.
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1.3 Approach

Most previous work on dialogue strategy learning aimed feingle global solution.
However, a dialogue strategy may not need to know the whottehaowledge in each
state. It may also not need the whole action set per states r€search tackles such
issues withhierarchical sequential decision making which aims for a hierarchy of
solutions (see Figufe1.3). Under this approach dialogqatestan be described at dif-
ferent levels of granularity, where actions can executabielur with either dialogue
acts or sub-dialogues. This approach offers the followiegdbits. First, modularity
helps to solve sub-problems that may be easier to solve kieawltiole problem. Sec-
ond, sub-problems may include only relevant dialogue kedge in the states and rel-
evant actions, thus reducing significantly the size of gissolutions: consequently
they can be found faster. Last, sub-solutions can be reubed wealing with new
problems. These benefits are possible at the cost of sulmalblutions. Nonethe-
less, they may be well worth the gains in terms of scalabibtjarge systems. This
thesis describes how to apply this approach to dialogueegiydearning.

state variables

vo|vs|vg] ... [un]

machine
dialogue
state

subdialogue:
offerFlights

subdialogue:
getFlightinfo

action: request
(Tell me your flight
information...)

subdialogue:
getinfoWithHelp

subdialogue:
getinfoWithoutHelp

action: confirm+request
(OK, a flight from

Edinburgh to London.
On what date...?)

Figure 1.3: lllustration of hierarchical sequential decision-makiftg spoken dialogue,
where empty circles represent dialogue states with knaydest different levels of
granularity, and their transitions result from executedlm and low-level actions.
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1.4 Contributions

The following contributions are derived from the work deised in this thesis:

(1) The Semi-Markov Decision Process (SMDP) model for spokedialogue
This research proposed the SMDP model for dialogue stra¢éegging. Other models
from previous investigations mostly use flat methods cpoading to the left branch
of Figure[1.4. This contribution proposed a ‘divide and asej approach using a
hierarchy of SMDPs, where every SMDP represents a subglialin the conversa-
tion. This approach produced dramatic state-action sgaltections of more than 99%,
showed itself to be feasible for a spoken dialogue systeim avitat state-action space
of 10?3 state-actions, and is promising for larger-scale systems.

Reinforcement Learning for
Spoken Dialogue Systems

Flat Hierarchical
Function Function
Tabular Approximation Tabular Approximation
MDP POMDP MDP POMDP SMDP HPOMDP MDP HPOMDP

Figure 1.4: Taxonomy of stochastic sequential decision-making fokepalialogue.
The shaded branch shows the model that forms the principakfof this thesis.

(2) Partially specified dialogue strategies This concept puts together hand-
crafted dialogue behaviours with learnt ones into a singienéwork. The former
consist of hierarchical finite state machines using detastic state transitions for ac-
tions easy to specify and stochastic state transitionsdtorss less easy to specify.
The latter are designed by a hierarchical reinforcemembieg agent. This contribu-
tion includes a learning algorithm called ‘HAM+HSMQ-Learg’' that combines two
existing algorithms in the literature of hierarchical feirtement learning.

(3) Evaluation of learnt dialogue behaviours with real uses. This includes the
development of a spoken dialogue system, with two metriesatuate simulated user
behaviour, and a metric for evaluating baseline dialogustesgies. The generated
real dialogues were crucial to evaluate fully-learnt, ségarnt and baseline machine
dialogue behaviours; and also to evaluate the realism aflaited dialogues.
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1.5 Outline

The rest of this thesis is structured as follows:

e Chaptet 2 presents a survey that bridges the fields of refoent learning and
spoken dialogue systems. This chapter reviews some of éveopisly proposed
approaches for learning spoken dialogue strategies aodelgews approaches
for simulating and evaluating human-machine dialogues.

e Chaptef B surveys hierarchical reinforcement learninghodg, and focuses on
approaches based on the Semi-Markov Decision Process (SMbdRel. It also
discusses methods with more potential application to spdieogue.

e Chaptef# proposes a simulation framework for generatimgamimachine con-
versations at the dialogue-act level using a heuristic@gugr. This chapter also
describes metrics for evaluating user simulations, andsalimee dialogue strat-
egy for assessing learnt dialogue behaviours.

e Chaptefb proposes an approach for learning dialogue gieatasing a hierar-
chy of Semi-Markov decision processes and hierarchicafosiement learning.
Experiments were performed in the flight booking and tral@hping domains.

e Chapte 6 extends the dialogue optimization approach optbeious chapter
with the concept of ‘partially specified dialogue strategi&uch strategies com-
bine prior expert knowledge and learnt behaviour into alsifrgmework.

e ChaptefV evaluates the performance of a travel-planniogespdialogue sys-
tem with three behaviours: deterministic, fully-learntdasemi-learnt. This is
the largest dialogue system using the reinforcement legqparadigm so far in-
vestigated in the literature. In addition, it evaluatesidated user behaviour
based on data from real dialogues.

¢ In chaptef B the thesis is summarized, promising futurectiors are discussed
and the findings on hierarchical dialogue strategy learanmegisted.

Three appendices complement the chapters above as fofisstsappendikA lists
the notations used for reinforcement learning dialoguentsgeSecond, appendiX B
describes dialogue data structures used to representaldddye of both conversants.
Finally, appendix C is a sample real dialogue showing hotriaal states, hierarchical
actions, and corresponding machine and user utterances.



Chapter 2

Reinforcement learning for spoken

dialogue systems

This chapter reviews literature in the field of reinforcemlearning applied to spoken

dialogue systems. It describes the proposal of ‘dialogusnasptimization problem’
' ' ' Ll&b?), which aims to contribute todgathe development of
more sophisticated dialogue systems. Sedfioh 2.2 revieevsabular reinforcement

learning framework. Sectidn 2.3 describes previous wonlkearforcement learning for
dialogue strategy design. Sectlon]2.4 describes previous @n dialogue simulation,
aiding the facilitation of the task of learning dialogueastgies. Section 2.5 discusses
some of the current challenges of learning efficient anccéffe dialogue behaviours
for spoken dialogue systems. The last section summaried®ihpoints of the chapter.

2.1 Dialogue as an optimization problem

Dialogue strategies control the behaviour of spoken disagystems, and have been
mainly hand-crafted by system designers and developerger&@eapproaches have
been proposed for such a purpose: finite state, frame-bagedda-based, information
state, plan-based, and agent-based. The finite state appsdhe simplest, and is suit-
able for system-initiative interactions, where the usewaers questions in the form of

simple commands (McTear, 1998). The frame-based and adesdal approaches are
suitable for mixed-initiative interactions, where the usen provide several items of
information in any order (Goddeau et al., 19|96' Chu-Cayi®B9; Rudnicky and Wu,
1999; Seneff and Polifrani, 2000; Pieraccini et al., 200ah&s and Rudnicky, 2003).
The information state approach is also suitable for mixetiaitive interactions, where
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an action is triggered from a set of rules and a given dialagate (Larsson and Traum,

2000). The plan-based approach is suitable for collab@r afialogues (Rich and Sid-

ner,1998). The agent-based approach is suitable for cangiéogue behaviour,

also includes planning, and involves behaviour in dynahlyichanging environments

llen et al.,[2001b,a). However, none of these approach&sreaate or optimize the
dialogue strategy design. They usually require lengthyesyof refinement in order to
fully deploy dialogue systems with reasonable performance

Levin and PieraccinL(lQ_é?) cleverly observed that thereevw® scientific guiding
principles for designing the behaviour of spoken dialogygtesms, which suggests
that this task can be considered more as an art, rather tigameening or science. This
Issue motivated them to cast the problem of dialogue styategign as anptimization
problem This proposal indeed matches the directionmtdlligent agentswhere they
have to behave rationally by choosing the best actions dogpto some performance

measur 03). In this context, autmgahe dialogue strategy
design shifts the practice from hand-coded static behasimuautomatic and adaptive
behaviours.

The idea ofdialogue as an optimization problemis as follows: given a set of
dialogue states, a set of actions, and an objective costifum@n optimal dialogue
strategy minimizes the objective function by choosing ttteas leading to the lowest
cost for every reached dialogue state. Such states deshebsgystem’s knowledge
about the conversation (e.g. user input, database infaymaitser information, etc.).
The action set describes the system’s capabilities (ekgn@sr confirming informa-
tion, querying a database, giving help, etc.). The costtfan@ssigns a cost for each
taken action. In this way, a dialogue can be seen as a finiteeseq of states, actions

and costs{sy,ap,C1,51,81,...,G-1,S }, Where the goal is to find an optimal strategy

automatically.I_LeAL'Ln_and_ElﬂLacAi J_(_’I.§9b; Levin ek MLZD_Qb) also suggested

employing the reinforcement learning framework for suchskt But, optimizing dia-

logue strategies is not a simple process, specially foelappken dialogue systems.
This chapter presents a survey bridging the fieldseaiforcement learningind
spoken dialogue systemis introduces the reinforcement learning framework and de
scribes approaches for optimizing dialogue strategiesstt surveys recent advances
in the related field of dialogue simulation. Finally, thisagher discusses issues that
currently limit the practical application of reinforcentdé@arning dialogue systems. In
this survey it was found that most of the literature has igddhe hierarchical learning
approach, and therefore it has been identified as a sigrifieaearch omission.
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2.2 Background on reinforcement learning

Reinforcement learning is a computational approach tcdbﬁlﬁgents that learn their
' .ﬂmmto,

s, 1996). réinforcement learning agentsenses and

behaviour by interacting with an environm
1998;| Bertsekas and Tsitsik
acts in its environment in order to learn to choose optimabas to achieve its goal.

It is not given a form of teacher, like other machine learrapgroaches such as super-

vised learning that learn from examples (Russell and Np 3;.Mitchell | 2004).

<

Instead, it has to discover by trial-and-error search hoactan a given environment.
For example, a robot may have sensors such as cameras amd soparceive the
environment state, and actions that change its state sunioaisig in different di-
rections. For each action the agent receives feedback rgfised to as a reward or
reinforcement) to distinguish what is good and what is bdek dgent’s task is to learn
a policy or control strategy for choosing the best actionghélong run that achieve
its goal. For such a purpose the agent maintaiograulative reward for each state
or state-action pair.

More specifically, reinforcement learning systems have foain elements: a pol-
icy, a reward function, a value function, and optionally, adal of the environment. A
policy defines the behaviour of the learning agent. It consists cdjgpimg from states
to actions — for each state the agent chooses the actionheathighest learnt value. A
policy can be represented with a look-up table, neural netyaecision tree, or with a
search algorithm. Policies are the core of reinforcemerhiag systems because they
are sufficient to determine the agent’s way of behavingeward function specifies
how good the chosen actions are. It maps each perceiveeostata pair to a single
numerical reward. The reward function awards the agenti$ogood or bad actions,
but only awards immediate actions. The ultimate objectiva earning agent is to
maximize the cumulative reward it receives in the long roonfthe current state and
all subsequent next states. value function specifies what is good in the long run.
The value of a given state is the total reward accumulatedariuture, starting from
that state. The learning agent’s action-selection meshamill be based on actions
with the highest values, not with the highest rewards. Theieft estimation of val-
ues is arguably the most important component of reinforcegr@arning algorithms.
Finally, themodel of the environmentis something that mimics the environment’s
behaviour. A simulated model of the environment may preithetnext environment
state from the current state and action. Reinforcementilegualgorithms using such a
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model perform ‘model-based learning’, otherwise they @anf‘model-free learning’.
The environment is usually represented as a Markov DecRioness (MDP) or as a
Partially Observable MDP (POMDP).

Reinforcement learning is distinguished from other magehéarning approaches
by the following characteristicgrial-and-error search anddelayed reward In the
former the agent has to try all actions per state many timesdar to discover which
actions lead to the highest cumulative reward. In the latter executed actions af-
fect not only the current reward, but also the subsequerdndsy In many problems

ﬁ(ﬂ ),28Bich has to be
back-propagated accordingly to the actions that produagel eeward. In summary,

such as games the reward is only given at the

reinforcement learning agents employ their own experiem@gder to improve their
performance over time.

2.2.1 Markov decision processes

A reinforcement learning agent interacts with an environttieat can be described by
a Markov Decision Process (MDP) — see Fiduré 2.1. An MDP isthematical model
used to optimize stochastic sequential decision makinglenas MM4;
L?Luthn_a.nd_B_aL{(L_lQbS). This model is defined as a 4-tay e\, T, R> characterized
as follows:

e S is a set of states in the environment, wh&re {sy,,...,Sv} andg is the
state at timé. The states in an MDP are directly observable, used to descri
all different situations in the environment, and the basrsaction-selection. In
an episodic task, the state set includes non-terminalsshaie terminal state (s).
The state at timg_; is also denoted as.

e A, is the set of actions available in the environment, whete {ap,as, ...,am }
anda; is the action at timé. When actiorg; is executed it changes the current
state of the world fron% to s1. The action at time_, 1 is also denoted aa.

e T(S,a,s), is a state transition function that observes the next stajwen the
current states and actiona. The state transitions are represented with a condi-
tional probability distributiorP(s'|s, a) satisfyingy ¢csP(S|s,a) = 1,V(s, ).

e R(d[s,a), is the reward function that specifies the immediate rewgaad timet
given to the agent for choosing actiamvhen the environment makes a transition
fromstos. The reward at time 1 is also denoted as.
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a=m8
( ) ] action
a

ENVIRONMENT
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actions

states st

< /

Figure 2.1: The agent-environment interaction for MDP-based reinéonent learning.

The solution to a Markov decision process is a decision-ngakinction or policy
11, which is a mapping from environment statss Sto actionsa € A with probability
11(s,a). The optimal solution for an MDP is that of taking the besi@tt; available
in states, i.e. the action that collected as much reward as possildetoue. A given
sequence of states, actions, and rewdsdsap,r1,S1,a1,r2, S, a...}, receives a total
cumulative discounted reward expressed as

-1
r=ri+yr2+yre+.y =Y Y, (2.1)
k=0

where the discount rate<Qy < 1 makes future rewards less valuable than immediate
rewards as it approaches 0. Such sequences can be episoditiauing. The former
last a finite number of time steps The latter last an infinite number of time steps
T = o and the rewards must be discounted with 1. In the equation above, the term
on the right-hand side is referred to as ‘the expected vditieeoreward’, and can be
computed recursively using a state-value funchdffs), which returns the value of
starting in states and then following policyitthereafter. The value-function is defined
by the Bellman equation for™ expressed as

VT(s) =Y m(s,a) Z P(ss,a) [R(S]s,a) + WT(s)]. (2.2)

Alternatively, the expected value of the reward can be atsoputed recursively
using an action-value functid@"(s,a), which returns the cumulative reward of starting
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Figure 2.2: Backup diagrams for (a) state value function, (b) actiofueafunction,
(c,d) optimal state- and action-value functions, respesdyi(Sutton and Bartag, 1998).

in states, taking actiona and then following policyrt thereafter. The action-value
function is defined by the Bellman equation Q¥ expressed as

Q"(s,a) = ZP(S’|S, a) [R(Ss,a) + WT(s)]. (2.3)

The Bellman equations f&f™ andQ™ are illustrated in Figurds 2.2(a) andl2.2(b).
They show the relationships when value information is edrbiack to the current state
(or state-action pair) from the next states (or state-agb@irs), these operations are
therefore referred to asackups An optimal policy t* can be found by using the
following Bellman equations that represent a system of ggjus, one for each state:

V*(s) = mT?xV"(s) — mgxg P(ss,a) [R(S]s,a) + W*(5)], (2.4)
or state-action pair:
Q*(s,a) = mﬁaxQ“(s, a)= P(s|sa) {R(s’\s, a) +ymaxQ*(s,a)| . (2.5)
g d

Figured 2.P(c) and 2.2(d) show the backups for the optinratfansV* andQ*.
Finally, anoptimal policy performs action-selection according to

' (S) = arg n)da>Q*(s, a). (2.6)
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The optimal policy can be learnt by either classical dyngmnigramming methods

such as value iteration (Putterman, 1994), or by reinfosggrtearning methods such
as Q-Learning or SARSA (Kaelbling et al., 1996; Bertsekas Bsitsiklis, 1996). The
next subsection explains why the latter are preferred.

h)

2.2.2 Tabular reinforcement learning algorithms

A reinforcement learning algorithm has the objective of potmg an optimal pol-
icy for behaving in a given environment described by a Mar#leeision process. A
learning algorithm computes a value functdnor action-value functio®* from the
following dynamics: at each time steghe algorithm is given the current environment
states € Sand a set of action&(s) € A, the algorithm takes an acti@mand the MDP
executes it, then the algorithm receives next stateS and reward’. If the current
state is a terminal state, the episode terminates its @recuthis process is executed
an infinite number of times until the learnt value functioalslizes.

Reinforcement learning algorithms offer two important ackages over classical
dynamic programming: they are online and can employ funcéipproximation to
represent their knowledge. In the former, they do not regaifull model of the envi-
ronment (complete probability distributions of all trai@ms). In the latter, alternative
representations can be used other than look-up tablesreE&® illustrates a unified
view of reinforcement learning methods: Dynamic Prograngr(DP), Monte Carlo
(MC) methods, and Temporal Difference (TD) Iearnilﬁa (Kéialpet al. | 1996; Sutton
and Barto| 1998). All of them are based on delayed rewardsandbe distinguished

in the way they employ backupsamplebackups are based on a sample trajectory,
full backups are based on all possible trajectogballowbackups are based on a one-
step trajectory, andeepbackups are based on trajectories reaching a terminal state
In this way, DP employs full and shallow backups, MC emplogmple and deep
backups, and TD employs sample and shallow backups. WHHsEeQuires complete
knowledge of the environment, MC methods require only epee, namely sample
sequences of states, actions and rewards. However, MC dsetlte not suited for
step-by-step incremental computation. Furthermore, Ebni@g is a combination of
DP and MC methods because it does not require a complete oftthel environment
and because it employs shallow backups. Each reinforcelemming method has its
own strengths and weaknesses, and one may pick one oveeadeftending on the
task. It is perfectly reasonable to apply a joint method \epects of more than one
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A Dynamic programming Exhaustive search
Full
backups
Temporal difference learning Monte Carlo
Sample
backups
v
< 4
Shallow Deep
backups backups

Figure 2.3: A unified view of reinforcement learning methtdﬂ&tLoLaad_Bar_Lo, 1998),
they can be classified according to their type of backupsatiot: empty circles rep-

resent states, dark circles represent actions, and redesngpresent terminal states.

kind, but these choices can be made later when the methodsedaather than when

they are designeb@uMn@nd.BLtM%S).

One of the challenges in reinforcement learning is the ttibetween explo-

ration and exploitation. The agent has to perf@xploration in order to discover bet-
ter behaviours, but it also has to perfoaxploitation of the already learnt behaviour
in order to obtain more reward. In this dilemma, a learningraignust try different
actions and progressively prefer those that seem to be #te e basic methods for

action-selection in reinforcement learning argreedyandsoftmax(Sutton and Barto,

1998). In the former the agent performs exploitation withxadiprobability 1- €, and
with probabilitye performs exploration:

(s :{ argmaxQ(s,a) if p(random <1-—¢ 27

randon{a c A) otherwise.
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In the latter method the agent performs exploration-exglimn according to a

probability distribution of cumulative reward(s, a):
eQ(&a)/T

P = S casT

(2.8)

The parameter represents the temperature used to decrease exploragotiroe.
One of the simplest and most goiular reinforcement learaiggrithms isQ-

Learning, see algorithm 89). It computes Q-values@licg to

Qs a) Qs+ |HymeQ(E,) - Qsa)] (2.9)

Q-Learning updates values for sample state-action paiag, where the execution
of actiona in statesyields states' and reward, y is a discount rate in the rang@ 1],
anda is a learning rate parameter that decays from 1 to O; for el@mop=1/(1+w),
wherev; = visitg(s,a) is the number of times that (s,a) has been visited until step

Jaakkola et al. (1994) proved that if the learning agent Hasta state-action space,

and if it tries every action infinitely often in every statedaf a is decayed according

to
T T

TIiLnOOt_ 0y = o0 and TILr?Ot_ a2 < oo, (2.10)
then it converges to the optimal action-value funci@nwith probability 1.
A similar algorithm to Q-Learning calle®ARSA (State-Action-Reward-State-
Action) computes the cumulative reward but without takingpiaccount the optimal

action in the next statg, and updates its values according to
Q(s,a) — Q(s,a)+ o [r+yQ(s,a) —Q(s,a)] . (2.11)

These two algorithms differ in the way they approach thedraff exploration and ex-
ploitation. The Q-Learning algorithm uses aff-policyapproach because it performs
learning based on two policies: a behaviour policy for exggion, and an estimation
policy for exploitation. In contrast, the SARSA algorithreas a single policy for both
exploration and exploitation. The advantage of the fornpgreach is that whilst the
estimation policy behaves greedily, the behaviour polaygles all possible actions.
This approach has received more attention for hierarchéeahing (see chaptef 3).

The reinforcement learning algorithms Q-Learning and SARfave been ex-
tended in many different ways. For instance, they can irmate eligibility traces
to update all action-values per time step according to tekgibility, which may

result in more efficient learning (Singh and Sulnlgn, J-SL%IL&aﬂd_BaHJO. 1998).

LAn eligibility trace e(s) is a value assigned for visiting stagewhich gradually decays over time.
Based on such eligibility traces, good or bad rewards intier® assign credit accordingly.
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Algorithm 1 The Q-Learning algorithm
1: function Q-LEARNING(StatesS, actionsA, transitionsT, rewardsR, discounty)

2: Initialize Q(s,a) arbitrarily, and initializex to 1

3 repeat(for each episode):

4 Initialize s

5 repeat(for each step of episode):

6: Choosea from s using policy derived fron@Q (e.g.&-greedy)
7 Take actiora

8 Observe fromR

9 Observes from T
10: Decaya (e.g.a = 1/(1+ visits(s,a))
11: Q(s,a) — Q(s,a) +alr+ymaxy Q(s,a) — Q(s a)]
12: s« ¢
13: until sis terminal
14: until convergence

15: return Q(s,a)
16: end function

Note: For simplification purposes, the learning algorithuiescribed in the rest of this thesis
declare a more compact set of parameters and omit the upidatelearning rate parametear

2.3 Approaches for dialogue optimization

Several approaches have been proposed for optimizing sgbague strategies us-
ing reinforcement learning. This section describes thengtths and weaknesses of
four approaches, where each one provides a novel optimizptbcess.

2.3.1 Dialogue as a Markov decision process

Levin and Pieraccinl_(lQ_b?) proposed learning the behanabspoken dialogue strate-
gies using the Markov Decision Process (MDP) formalism. ajue-based MDP is
characterized by a finite set of dialogue st&ea finite set of actioné corresponding

to dialogue acts, a state transition functib(s a,s) = P(s/|s,a), a reward function
R(s,a,s), and a dialogue strategy= T1(s) mapping states to actions. The state tran-
sition function employs th#&arkov property which specifies that the dialogue state at
timet + 1 depends only on the dialogue state and action at tjmegher than the full
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history of state and actions, expressed as

P(&+1‘&7 o, N, §—1,%-1,-.-,1,0, aO) = P(&+l|&7at) (212)

A dialogue-based MDP is episodic because human-machihegdes have a fi-
nite number of interactions, and differs from the standardhtulation as follows: (i)
probabilistic state transitior¥(s'|s,a) must generate dialogues that make sense to hu-
mans, alternatively, any state transition can be alloweslmnlated environments; and
(i) the learnt dialogue policyr*(s) must perform action-selection with reasonable be-
haviour. Most of the previous work in the field has focusedtenNIDP model, and a
list of representative investigations is shown in Tablé &.tan be observed that most
of them have focused on dialogue policies with few slots @®in concepts), learnt
in simulated environments, and few of them have been evedusith real users.

Three main problems affect the practical application of MHe@P model for dia-
logue strategy learning: the curse of dimensionality,ipbobservability, and learning
from real interactions. In the first, the state space growtéxponential in the num-
ber of state variables (e.g. state representations {20, 30,40,50} binary state
variables yield{10% 10°,10°,10'2 10'°} unique states, respectively). In the second,
the dialogue agent operates under uncertainty (the mosbudgource is automatic
speech recognition errors, but not the only source). Infird treinforcement learn-
ing methods require many dialogues to find optimal polici€eese problems offer
motives for proposing alternative optimization approache

2.3.2 Dialogue as a partially observable MDP

Roy et al. [(ZO_dO) proposed employing the Partially Obsde/Btarkov Decision Pro-
cess (POMDP) model for robust spoken dialogue behavioughwhk a generalisation
of the MDP model, but handles the uncertainty perceived filoenenvironment. It is
defined as a 6-tupleS A Q, T,O,R> characterized as follows: (Bis a set of states,
(2) Ais a set of actions, (3R = {01,02,...,0n} iS a set of observations or perceptions
from the environment (e.g. keywords from the user utterah¢é)T (s,a,s) is a tran-
sition function for transitioning to the next stafegiven the current statgand action

a with probability P(s'|s,a), (5) O(s,a,0) is the observation function that the agent
will perceive observation from selecting actiom in states with probabilityP(o|s,a),
and (6)R(s,a,s) is the reward function that specifies the reward given to genafor
choosing actiom when the environment makes a transition frem s'.
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Table 2.1: A summary of previous research on MDP-based dialogue gfydéarning.

Author(s) Slots| States| Actions | Learning Real User| Training
Algorithm Testing | Dialogues

(Levin et all., |_19_9|8 5 111 12 MC1 No Simulated

2000)

(Singh et al. 1999) 32 Vi No Simulated

(Young, 2000) 36 VI, MC1 No | Simulated

Lllman_el_aj |_20_d0 42 VI Yes Real

Singh et e[ 2002)

(Goddeau and_Pineali, n 3" 5 DP No Simulated

2000)

Walker, 2000) 18 17 Q-Learning Yes Real

Pietquin _and Renals, 7 3’ 24 | MC1 No Simulated

2002) |

(Scheffler and Young, 4 | 1229 6 | Q) No | Simulated

002)

(Denecke etall, 2004)| 4 | 972 | 5 |Fvi, FA Yes | Real

Henderson et al., 4 | 10% 70 | SARSA), No Real

2005; Lemon et al., LFA Yes Simulated

2006a)

(Frampton and 4 1539 6 SARSA) No Simulated

Lemon, 2005, 2006, 4 784 7 SARSA) No Simulated

2008) . 3 ? ? SARSA) Yes Simulated

ﬁ&sh_am_uﬁmbr, 4 | 5 | Mc2 No | Simulated
)

S_Qhalzmann_el_hl , 4 81 256 | Q-Learning No Simulated

2005)

Pietquin and Dutai 7 2187 25 Q) No Simulated

IZD.O.é;EIﬂLQMJII‘LZD.&?) 32768 6 Q) No Simulated

Cuayahuitl et ., 20 | 4127 26 Q-Learning No Simulated

2006a)

Prommer et all, 2006)] 3 | 16384 8 WatkingA) No Simulated

Abbreviations: MC1 = Monte Carlo with exploratory startsCi#2l = On-policy Monte Carlo;

DP = Dynamic programming; VI

= Value iteration; FVI =

mation; LFA = Linear function approximation.

Fitted;\FA = Function approxi-
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Because environment states are partially known, the soldtr a POMDP is a
H98). A belief statd(s) is
a probability distribution ove®. Thus, a POMDP can be seen as an MDP over a belief

1

function mapping belief states to actions (Kaelbling

space, where the observable states are replaced by bates.s¥Vhen the agent takes
actiona and receives observatianits belief on the next stat is updated as:

_ 0(8,8,0) ysT(s,a,9)b(s)
b(s) = pm;b) . (2.13)

The dynamics in a POMDP can be summarized in the following: vihg agent
executes actioa = 1t*(b) from the current belief statle, receives observation and
rewardr, computes the next belief stalbe using equation 2.13 (this is calldzklief
monitoring, and repeats the process until the end of the conversation.

Three main problems affect the practical application of HId to spoken dia-
logue: the curse of dimensionality, the curse of historyg Earning from real inter-
actions. The first and the last problems were described ipringous approach. The
curse of history refers to the number of distinct possibléaeobservation histories

with the planning horizon (Pineau et al., 2 mwm& Pineau et/al.

) optimized a hierarchy of POMDPs with a bottom-up apph, but still only
suitable for small state-action spaces. Most previousarebehas focused on keeping
belief monitoring tractable by using some sort of comp@ssif the belief state (Roy
et al.,[2000 al., 2001; Willia 6;

s, 2006, 2007b,cash and Pinea 0
).

2.3.3 Dialogue control using function approximation

Most of the currently available reinforcement learningoaithms approximate the
state-value function or action-value function using a lopktable. Although they
work well for small state spaces, they quickly become intéiale due to the curse of
dimensionality problem. A solution for dealing with largate spaces is to use func-
tion approximation, which replaces the table with a funttiepresentation such as a
linear function, decision tree, neural network, or kerbased method, among others.
Such a representation is an approximation because the dtue function might not
be represented in the chosen form. For example, in the vesidimear function

Ug(s) = 011(S) +02f2(S) +... + Onfn(S) (2.14)
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with set of featured; € F and parameter8 = {61,...6,,}, a reinforcement learning
agent can learn values for the parame€emshere the utility functiotJg approximates

to the true utility function|(Russell and Norvig, 2003).

Function approximation approaches represent value fumgtf very large state
spaces in a practical way, but their main benefit is that thlewahe learning agent to
generalise from visited states to unseen states. This slpedecause the updating
of 6; values also updates the value function, which then affdctates. But it also
may lead to an unstable function approxmatlrm;?_oa Q-Learning agent
can update the learning parameters using the followingtepdée between successive
states, wher® approximates the utility functiod of equatior 2.14:

aQ@(& a) )

% (2.15)

6 =61+ alr +ymaxQo(¥, &) — Qols.2))

Previous investigations have employed function approfonao learn dialogue

policies efficiently from small data set tLalQébQJroposed to employ
two state-action spaces: abstract and concrete. The fonciades all the state-action
pairs and the latter includes only the most frequently @csitThey performed learning
on the concrete state-action space and generalise théveaaras to the abstract space.

[I:Lendﬁr_sgn_el_iilL(ZQbS) proposed a hybrid approach for kaege state spaces, where

reinforcement learning is used to optimize a measure obdis reward and super-

vised learning is used to restrict the learnt policy to theipo of existing data. In

addition, Rieser and Lemolj (2007) applied an approach basaderarchical reactive

planning, SARSA, and linear function approximation ind Langley, 2002).
These investigations did not take into account uncertamtize conversation, and the
convergence to an approximated optimal solution is mofecdif to guarantee.

2.3.4 Dialogue control using evolutionary reinforcement | earning

Evolutionary Algorithms (EAs) are used for stochastic skeguroblems inspired by
the theory of evolution and natural selection. They oparaplicy space rather than

value-function space (Moriarty et a]l., 1999). The goal iis pproach is to search

for a policy or solution that is progressively refinéd, i, ", ..., 7t} until finding the
optimal policyrt*. Policies are encoded into structures called ‘chromosbriretable-
based policy representations they consist of conditidiniacules, where each condi-
tion is a predicate that represents a set of states. A fitnegsién or performance
measure is used for ranking potential solutions. EAs opevatan initial population
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of chromosomes and iterate as follows: (1) evaluate thesftioé chromosomes, (2)
select parent chromosomes stochastically according tofitmess, (3) evolve parent
chromosomes, and (4) replace the old population with thévedgarents. This pro-
cedure of finding the best solution is also referred to awvigarof the fittest'.
Previous work in dialogue strategy optimization has agptiee eXtended Clas-

sifier System (XCS) modeL(lqne;LelI A‘L‘_Zﬂ%mmmbeneralisation of

the Learning Classifier System (LCS) model. In this modatdition-action rules are

represented with strings based on the symi0l4,#}: e.g. the condition string 1#1
encapsulates the states 101 and 111. This model belongsldassaof evolutionary
reinforcement learning methods, where a genetic algonghused to evolve and eval-
uate a population of rules, and a reinforcement learningrahlgn is used to assign
rewards to the rules. The XCS learning algorithm comput@sutative rewards in a
similar way to Q-Learning. This approach was investigateadlight booking spo-
ken dialogue system with 2@nique state-actions. In general, this approach does not
properly address partial observability. It mitigates these of dimensionality problem
by using a more compact representation with regions of-stetiens, but less optimal
solutions may be found than tabular value functions. Thegch can also be com-
bined with function approximation approaches to solvedapgyoblems (Whiteson and
Stone| 2006).

2.3.5 Learning with real and simulated dialogues

Dialogue strategy learning has been examined using twerdiit conversational envi-
ronments: simulated and real. Each environment has its tremgths and weaknesses.
In both cases learning has been performed offline, and notgitive course of the di-
alogue with real users. Similarly, dialogue strategy tegtias been examined with
both environments, and the simulated ones have been mefdue to the extensive
resources required by the real environments.

On the one hand, since Levin et al. (2000) coined the termddige as an opti-
mization problem’, they observed that a large number ofodiaés would be required
for such a purpose. This motivated them to em@oyulated dialogues They pro-
posed to use supervised learning for training a probaicilsbdel of user behaviour,
and to use reinforcement learning for optimizing the dialgtrategy. The strength of
this approach is that dialogue simulators quickly geneadéege number of dialogues.
The main benefit of this approach is in the practical appbcabecause it can gen-
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erate infinite amounts of dialogues. Its drawback is thautated behaviour may be
different from the real behaviour. Nonetheless, this apgihdhas been widely used in

most of the previous work in the fiellj (Levin gﬂ $I.. Y D); Goddeau and
Pineau, 2000; Scheffler and Yo 2002; Lemon et al. npton and Lemon,

2005 ;O_OJG'En lish and Heeman, 2005; Schatzmann let abb2B@etquin and Dutoit
2006 Williams, Zi&dﬂml h, 2007: Cuayahuiti et lanmﬂmmmmjat_zdoe
hOJJe, MWM Lalu_beljmnELai _ZDdS)

among others. This approach was extended by Goddeau arslifR2@00); Pietquin

and Renals (2002) in order to learn dialogue policies in tiesgnce of speech recog-

nition errors. In addltlorLS_Qhalzma.nn_eIt LiL_(ZdOSb) fotivad the quality of the learnt
dialogue strategies is strongly dependent on the simuletedmodel, where good user
models help to find better policies than poor user modelss $hggests that dialogue
strategy learning should employ realistic simulated uséiour.

On the other hand, learning dialogue strategies usiabdialoguesis very appeal-
ing because it employs the dynamics from real conversdtemaronments. Related
work using real dialogues has adopted an offline learningcgg, where researchers
collect exploratory dialogue data from a real system and tiee it to learn dialogue
behaviours/(Singh et al. 109_9_:ﬂaﬂ er, 2000; Singh et 8022 Denecke et al., 2004).

Litman et al. [(2000) proposed the following methodologydptimizing dialogue

strategies on small state-action spaces: (a) design ao@pgie reward function, state
representation, and hand-coded state-action space — mgegtpies to reasonable ac-
tions; (b) build an initial state-based training system deplloy it to collect exploratory
data; (c) use the collected data to build an empirical MDPc@npute the optimal
dialogue policy; and (e) redeploy the system using the testate-action mapping.
Although this methodology was applied successfully, itimigot be very practical be-
cause larger state-action spaces are usually needed, @ngsbehe currently available
methods for dialogue strategy learning usually requireggelaumber of dialogues.
Walker ,20_Qb) extended the previous methodology by estmgdle reward func-
tion (instead of handcrafting it) using the PARADISE franmw_Walkﬂr_el_ai.l._lE)_dY),
based on the metrics shown in Tablel2.2 and a data set of expipdialogues. The

performance function is estimated with a multivariatedinegression: it employs user
satisfaction as the dependent variable; and task sucaaksyue quality and dialogue
efficiency as independent variables. The performance fpdaogue is defined by

Performance= (o« N(k Ziw, «N(ci), (2.16)
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Table 2.2: Evaluation metrics for spoken dialogumlmoom.

Group Metrics

Dialogue efficiency] Elapsed time, system turns, user turns

Dialogue quality | Mean recognition score, time-outs, rejections, helps,
cancels, barge-ins

Task success Task success as per survey

User satisfaction | The sum of TTS performance, ASR performance, task gasy,
interaction pace, user expertise, system response,

expected behaviour, comparable interface, future use

wherea is a weight on task success)( ¢; are the cost functions of efficiency and
qualitative metrics weighted by;, andN is a normalization function. The estimated
performance function can be tested using cross-validaiiotraining and test data
sets. If both data sets are statistically indistinguis@atilen it can be assumed that the
performance function will generalize to unseen dialogues.

In summary, real dialogues can be used if the state-actiacesis small enough to
be sufficiently explored, or if the reinforcement learningaaithms are very efficient
using dialogues that make sense to real users. In contirastiated dialogues can be
used if the state-action space cannot be sufficiently egloy real users. But, they
should be as realistic as possible in order to optimize gaadity dialogue strategies.

2.3.6 Evaluation of learnt dialogue policies with real user S

Previous work in evaluating learnt dialogue policies wehlrusers has reported results
based on average reward and the metrics shown in Table 2c¢h esaluations used
different types of baseline behaviours. Firstly, compaatesspaces with reasonable

actions were used to generate exploratory dialog i . ; l;lQbO;
[D_enegke_el_ehLZQb4) Secondly, hand-coded dialoguesgtest were used to specify

deterministic behaviour (Lemon et|al., 2006b; Toney, 2(®Ampton and Lemon,

2008). Thirdly, alternative models for dialogue controtlsias Rieser and Lemon

2008) used policies based on decision trees to evaluate bH3Bd policies, and Gasic
et al. (2008) used MDP-based policies to evaluate POMDRebpslicies.
In general, learnt dialogue policies usually outperformgtven baseline behaviour.

However, most of the evaluations do not demonstrate how gumbaselines are, with
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some exceptions (Singh et/ al., 2002). A learnt dialogudegyacould easily out-

perform a poor baseline, but may find difficulties in outpariong better baselines.
Baseline dialogue strategies should be measured to find [edrnt policies are better
than state-of-the-art behaviours. Establishing stanskeddaselines would contribute
towards better benchmarks, but they remain to be estallishe

SIMULATED USER MACHINE

speech signals
Text-to-speech +—— A Recognition

e N\

Response generation /\A Understanding
/ dialogue act(s) \

Dialogue control Dialogue control

\ dialogue act(s) /

Understanding Response generation

AN -

Recognition ¥—_ | Text-to-speech
speech signals

Figure 2.4: Conversational interaction between a simulated user maddla spoken
dialogue systertmaching, adapted from Eckert et al. (1997).

2.4 Approaches for dialogue simulation

The simulation of human-machine task-oriented dialogoneslves generating artifi-
cial dialogues between a spoken dialogue system and a $eduiser (see Figute 2.4).
The communication of both conversants can be achievedfatdit levels of granu-
larity such as speech signals, words, and dialogue actsaTifieial data can be used
to (re) train the machine’s components. For example, woatsbe used to train lan-
guage models, and dialogue acts can be used to train dialogdels. The latter
have been widely adopted for reinforcement learning ofodjaé strategies because
conversations at the dialogue act level are useful for imipgpdialogue behaviours.
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Generally speakinghe problem addressed in user simulation is to predict the ne

realistic user response given a current approximate usalogue state This is not

a trivial task due to the fact that the user dialogue stateespaay be large. A user

dialogue state can be represented with information sucheaast machine dialogue

act, the slot-values of all slots, the status of all slotg] aa forth. Tablé¢ 2]3 shows

a summary of user simulation approa@ne‘ﬁhey differ in two main aspects: (1) the

way in which they represent the dialogue state, and (2) theimvahich they choose

user responses. The rest of this section categorises thierfour broad approaches:

rule-based, probabilistic, probabilistic-goal-diretand deterministic-probabilistic.

Table 2.3: Previous works on user simulation approaches for slot fjlapplications.

Author(s) Approach Communication Data
Level Driven
(Eckert et al., 1997) Bigram Dialogue act Partially
(Levin et al., 2000) Constrained bigram Dialogue act Partially
(Scheffler, 2002) Goal directed model Dialogue act Partially

(Lbpez-Cozar et al., 2003)

(Chung, 2004)

(Pietquin, 2004)

(Filisko and Seneff, 2005)
(Filisko and Seneff, 2006)
(Georgila et al., 2005a, 200¢
(Cuayahuitl et al., 2005)
(Rieser and Lemon, 2006a)
(Schatzmann et al., 2007a)
(Schatzmann et al., 2007c)

Rule-based
Rule-based
Goal directed model, BNs
Rule-based
Rule-based
5)(Advanced) N-grams, LF(
Hidden Markov models
Cluster-based model
Agenda
Hidden agenda

Words, speech
Words, speech

Dialogue act
Words
Dialogue act
C Dialogue act
Dialogue act
Dialogue act
Dialogue act
Dialogue act

Hand-crafted
Hand-crafted
Hand-crafted
Hand-crafted
Yes
Yes
Yes
Yes
Hand-crafted
Yes

Abbreviations: BNs = Bayesian networks, LFC = Linear featcombination.

2.4.1 Rule-based sim

ulated user models

The behaviour of this approach is based on a set of rules ittatel how to act. Like

any other simulated user model, their behaviour can bergddrom data, or specified

in a heuristic way according to the system developer’s ezpee. The former has the

2See Schatzmann et al. (2006) for a more detailed review arsimalation for dialogue systems.
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advantage that more realistic behaviour can be generat¢dtsidisadvantage is the

cost of collecting and annotating the demaiﬂsko_aﬂd_BHZQQ_é). The latter has the

advantage that it can be developed and modified without rieguannotated corpora,

but its disadvantage is that the simulated behaviour majgléisantly different from
the real one. Previous work has employed heuristic behevitmugenerate user re-

sponses at the speech and word levels of granulm I..ZD.CLMbS

J,I_ZO_QI4LE|JJ§Iso_aDd_S_ede|tL2£b05) They have been usdiahd problematic
interactions, and to test the performance of spoken di@cgatems.

2.4.2 Probabilistic simulated user models

The behaviour of this approach is driven by conditional pimlity distributions for
user dialogue act selection, and can also be hand-crafestiorated from data. Eckert

et al. (19917) proposed generating user responses basedigramimodelP(u|s ),

wherey; is the user dialogue act at timegands is the last system’s dialogue act. This

model has been used in a number of investiqatibns_ i ): Schatzmann

etal. M&u&vahum etlal., 2006a; Hurtado et al. 7z i [ZD_O_Z_) Georgila
et al. al._TQA)G) extended the bigram model with n-graanging from 2-grams
to 5-grams.|_G_eng'LIa_el_La 06) also proposed simulatimased on linear feature

combination, mapping a vector of real-valued features for the user dialogue state

sto user actions with probability P(a|s). [Cuayahuitl et al. (2005) employed input-

output HMMs (one per dialogue goal) to predict user dialogoes with probability
P(u|at, ), and system dialogue acts with probabilRys|q;), whereg; are states in

the HMMs. [Rieser and Lembn (2006a) generated user respdnses by clusters

that group together feature vectors based on their sintyilari

These models are appealing because they can explore vakinetions of user
responses using dynamics estimated from real dialoguesir Wieakness is that they
may generate incoherent behaviour — due to the smoothingbapility distributions
to allow unseen user responses, or simply not applying dnocoigstraints to responses.

2.4.3 Probabilistic-goal-directed simulated user models

The behaviour of this approach is based on consistent usgomses following aser
goal, aiming to mitigate the inconsistencies observed from lguadom behaviour.
g_(Zbe__ZdOl) proposed user dialoguevimivdbased on a prob-
abilistic finite state machine and a predefined user gothle latter being a data struc-
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ture of slot-value pairs for the current dialogue. Pie &M) combined the bigram

model with a user goal to generate responses with probaBilit|s;, 9), and extended

this combined model with Bayesian networks (Pietquin andbi®u2006). Schatz-

mann et al.[(2007a) represented user dialogue states wahearda and user goal, and

generated responses from a prioritised stack of user dialagts. Schatzmann et al.

) extended the agenda model with hidden user dialsigiies, and trained this
model from real data. In general, a user goal can be viewedmas sort oknowledge
basefor the simulated user model, where the more informatiomgbrporates, the
more helpful it is to generate more consistent user resjgonse

2.4.4 Deterministic-probabilistic simulated user models

The behaviour of this approach is a combination of the previmodels because the
user behaviour may be driven by rules, may incorporate fbsac behaviour, and
user responses can be constrained with a user goal or kngsviese. This combi-
nation aims to bring together the benefits of the approadbegea Consequently, the
action selection mechanism for this approach can be fulhdkaafted E;IIQLZ_LDJ&?;
If;_ua;La.huﬂ._l_el_aJI 2006b), fully-learnt from data, or a donation of both (Scheffler
and Young X r, 2002; Torres etlal., 2008). Withiks former behaviour is
suitable when dialogue data does not exist, the latter thaavieurs are more suitable

when dialogue data does exist for (re) training the simdlaser model.

2.4.5 Evaluation of simulated dialogues

The evaluation of simulated user models has the purposesegsisig their quality in

order to use the best models for dialogue strategy learmitggting. The overall goal is
to find simulated user models that can help to build more stighted spoken dialogue
behaviours. Previous work has proposed several evaluat&rics for simulations

based on dialogue acts. They are summarized in Table 2.4cante grouped into
the following approaches: dialogue similarity and systerigrmance.

The dialogue similarity approach is based on the following assumption: given a
set of metrics, a set of simulated dialogues, and a set ofdialigues — the realism
of simulated dialogues increases as their scores apprbash bbtained by real ones.
Most previously proposed evaluation metrics fall withirstapproach. Although there
is no concrete definition for dialogue realism, researciretbe field agree that re-
alistic simulated user behaviour must exhibit the propefthyuman-like behaviour
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Table 2.4: Evaluation metrics for human-machine dialogue simulation

Author(s) Proposed metric

(Eckert et al., 1997) Dialogue length, task success

(Schatzmann et al., 2005a)Precision-recall, statistical metrics

(Schatzmann et al., 2005h)Policy similarity

(Georgila et al., 2005a) Perplexity
(Cuayahuitl et al., 2005) | The Kulback-Leibler divergence
(Georgila et al., 2006) Expected accuracy/precision/recall

(Rieser and Lemon, 2006a)Pragmatic error rate

(Williams, 2007a) The Cramér-Von Mises divergence

This property has been evaluated in different ways. Somestiyations have used
dialogue length and success metrisach as average number of system turns, average
number of dialogue acts, or binary task success per tashyeagough indication of
agreement between a set of real dialogues and a set of sadwaes L.,
1997;/Scheffler and Yoiﬁ(ﬁo. 2001; Scheftler, 2002; Sateatin et al., 2005a;
Filisko and Seneff, 20

usedprecision-recall and policy similarity metrid® quantify how closely simulated

e

6; Cuayahuitl et al., 2005heD investigations have

dialogue acts resemble real onles (Schatzmann et al., rgil [, 2005a;
Cuayahuitl et al., 2005; Rieser and Lemon, 2006a). Altimotinggse metrics evaluate
how well a model can predict training and test data, they jpsn&ighly simulated

dialogues that do not occur in the real data. Other invetsbige have usegroba-
bilistic metricsto quantify the probabilistic similarity of simulated areht dialogues.

rail ..(2005a) proposed perplexity to evaluate Wwell a model predicts se-

quences of elements in a test data-set. Their assumptioatigie lower perplexity the

better. I_C_ua;Lé.huleel_LllL(ZQIOS) proposed the Kulbackslegidivergence (distance)

with discrete probability distributions of system/usealdgue acts. This metric as-

sumes that the lower the divergence the better. In genbeaimetrics above are useful
for giving a rough indication of the similarity between silated and real dialogues.
Their main weaknesses are that they are not suitable foedgopenalizing unseen be-
haviour, and that they cannot distinguish if a given sege@fienachine-user dialogue
acts is realistic or not.

The system performanceapproach ranks simulated user models viewed as pre-
dictors of the performance of a dialogue system. Here, rabta derives from the
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fact that simulated user models should improve machineglied behaviours rather
than generating human-like conversatians. Willilam(ﬁ)@?oposed computing the
normalized Cramér-Von Mises divergence between reabdisd scores and simulated

dialogue scores, where the scoring function is similar tagaéodue reward function.

The assumption here is that as the predictive accuracy o$ithelated user model
increases, its divergence decreases: the lower the divezgthe better the simulated
user model. Although this is a promising approach for evatgauser simulators, it

is limited by the fact that it requires real dialogue datajolihmay not exist at early

stages of system development. This limitation also apptdbe metrics above that
assume an existing dialogue data set.

2.5 Open questions in dialogue strategy optimization

To date, important advances have been made in the field ofggielstrategy optimiza-
tion; however, the research questions described belowemtlyrremain open. This is
by no means a complete list of research gaps, but it gives seaeof current prob-

lems to be tackled. Further investigations can take themdotount in order to build

spoken dialogue systems that learn their behaviour in @ctafe and practical way. In

particular, this thesis addresses the first two questiodgstaothers are left as future
work.

(i) How to learn dialogue policies on large state-action spadésst of the avail-
able dialogue optimization methods use tabular or funcigoroximation rein-
forcement learners with a flat setting. The former works walsmall/medium
size search spaces. The latter has been shown to be feasidgyolarge ones
but with limited convergence guarantees. It remains to bestigated if the
tabular approach can be scalable; a potential directiooltov is hierarchical
approaches.

(i) How to incorporate prior knowledge into optimized dialoguehaviour. Pre-
viously proposed optimization approaches perform legoim constrained and
unconstrained search spaces. However, there is a lack af@apbed approach
for adding constraints to dialogue behaviours before ater &arning. This
limits the practical application of reinforcement leampidialogue systems in
real environments. Thus, effective methods for learnirdjugedating behaviours
where required remain to be investigated.
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(iii)

(iv)

(v)

(vi)

How to learn scalable and robust dialogue strategiéeevious work in the field
has been divided into learning dialogue strategies undéaingy, and planning
under uncertainty. Due to the fact that both research sffairn to contribute
towards adaptive and robust spoken dialogue behaviounsraugh integration
of efforts still remains to be explored.

How to learn dialogue strategies for complex behaviouvkst reinforcement
learning dialogue agents so far have optimized confirmaitndinative, and database
queries. But other dimensions require further investggato endow dialogue
systems with smarter behaviours; for example: learningye belp, learning

to ground, learning to clarify, learning to negotiate, teag to present infor-
mation, learning to recover from errors. Furthermore, titegration of a wide
range of optimized behaviours into a single unified framéwalso remains to
be explored.

How to simulate conversational environments for dialoguetsgy learning Al-
though important advances have been made in human-madhipguk simu-
lation, it is still not very clear how realistic spoken diglee behaviour can be
simulated. Consequently, there is no agreement on how toaeahe effective-
ness of models for simulating dialogue behaviour. The Ations mentioned
in the previous section suggest that simulation methodsesalliation metrics
need further investigation. Their strengths and weakisesseald be assessed so
as to propose more effective and practical alternatives.

How to learn dialogue strategies online with real usefs.main limitation of
the dialogue strategy optimization approaches proposddrdas that learning
is very slow. This issue has motivated researchers to perfearning in an
offline fashion: once dialogue strategies have been optidniey are put into
operation with frozen optimization. This means that spofilogue systems
with optimized policies employ static behaviours. An altgive approach is
to employ dynamic behaviours — dialogue strategies thatbeadynamically
improved over time. This would require some sort of lifeldegrning approach,
where very efficient and effective learning methods woulddeable.

All these research questions aim to contribute to the deveémt of spoken dia-

logue systems with more sophisticated dialogue behavidutsarning method solv-

ing the problems described above is still a major challenggis field. As a conclu-
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sion, due to the fact that hierarchical reinforcement legyapproaches have received
very little attention, this thesis will now narrow down itsgpe to investigate such
approaches for spoken dialogue systems.

2.6 Summary

This literature review chapter described previous workhia field of reinforcement
learning for spoken dialogue systems. After a brief inticichin to reinforcement learn-
ing, four approaches for dialogue strategy learning weserilged based on Markov
Decision Processes (MDPs), Partially Observable MDPs (P®8), function approx-
imation, and evolutionary reinforcement learning. In déiddi, this chapter surveyed
approaches for simulating the users’ dialogue behavibvatsd discussed current prac-
tices for evaluating learnt dialogue behaviours and sitedldialogues. Finally, some
current research gaps in the field were described. In tleistiire review it was found
that dialogue strategy learning on large search spacesriicalcissue that plays an
important role in the development of large-scale spokelogige behaviours.



Chapter 3

Hierarchical reinforcement learning: a

perspective on spoken dialogue

This chapter reviews the literature of hierarchical refoément learning — using a
number of worked examples — from the perspective of the desigpoken dialogue

strategies. Sectidn 3.2 reviews two of the most used mefootigerarchical reinforce-

ment learning, and comments on some recent extensionsoi®&c} gives an intro-

duction to the Semi-Markov decision process formalism ferdrchical reinforcement
learning. Section 3l4 summarizes the current state in the f&ectior 3.b discusses
the strengths and weaknesses of such methods for theirtdgpplication to large-

scale spoken dialogue systems. Finally, the last sectiomgurizes this chapter.

3.1 Introduction

A critical problem in flat reinforcement learning is scaldlisince it operates with a
single policy that behaves by executing only primitive @csi. The size of state spaces
grows exponentially with the number of state variables ipocated into the environ-
ment state — the ‘curse of dimensionality’. As a result, fi@icement learning agents
find solutions only very slowlyTemporal abstraction addresses these problems by
incorporating hierarchical structures into reinforceriearning agents. This is attrac-
tive for dialogue systems for several reasons. First, hudesamsion-making activity
occurs in sequential courses of action, where decision®tlbappen at each step, but
rather in temporally extended activities following thewrm policies until termination

Barto and Mahadevan, 2003). Second, hierarchical decis@kers can solve more

complex problems than flat ones (Dietterich, 2000a). Thedk-oriented dialogues

33
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have shown evidence of following hierarchical structui@so§z and Sidner, 1986;
Litman and Allen, 1987; Clark, 1996). This chapter reviets literature of hierarchi-
cal reinforcement learning, including the perspectiveiafadjue strategy learning.

3.1.1 Anillustrative decision-making problem

Consider that you have the task of designing a spoken dialsgategy for a flight
booking system. In such a system the user can say things stecfiight from London
to Prague for the twenty second of October in the morningailang with KLM’ —
alternatively, the user may provide the information acresgeral shorter utterances.
A dialogue strategy is a mapping from dialogue states t@astand specifies the sys-
tem’s way of behaving. The dialogue state (used to deschibedrrent situation in
the conversation) is defined by a vector of state variablebuasrated in Figuré 3]1.
This decision-making problem has 281250 stafgg {x | Xi|). A sample dialogue us-
ing this state space is shown in Tablel3.1. The mapping fratesto actions can
be done either manually, or using flat reinforcement legyrnirethods as described in
chaptef 2, or using hierarchical reinforcement learninthmés as described in the rest
of this thesis. The benefits of reinforcement learning idelautomatic design and op-
timal behaviour according to a performance measure, wiliarchical methods aim
to have a more practical application for systems with latgeesaction spaces.

departure time airline
departure date flight offer
destination city slot in focus
departure city W W ( database tuples

DIALOGUE | X | X, | X3 | Xy | X5 | Xo | X7 | Xs
| I | I |
Nawe Do Dy Dy Dy Dy D; D

if departure city (mandatory)
if destination city (mandatory)

ob_

0
0 if unknown slot 1 .
1 if known with low confidence D, = 2 ff departure d‘a,te (mandatory)
_ . . . 3 if departure time (mandatory)
Dp=<{ 2 if known with medium confidence . e . .
. 1 T 4 if airline (optional) 1 if none
3 if known with high confidence . . . .
. 5 if flight offer (terminal) Dy =¢{ 2 if few
4 if confirmed slot .
3 if many

Figure 3.1: Dialogue state for the flight booking spoken dialogue sggté&ach vari-
able X with domain values Phas five possible values, variable Kas six possible
values, and variable &has 3 possible values, resulting5f x 6 x 3 = 281250states.



Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 35

Table 3.1: Sample human-machine dialogue in the flight booking donvetirere the

dialogue state is formed by the state variables shown in[Eff. and a set of actions

is available per state. At this point action-selection ibignary (before learning).

I

Agent | Dialogue State Action | Sample Utterance

SYs | 0,0,0,0,0,0,0,1 req Tell me your flight information.

USR A flight from Edinburgh to Paris.

SYS | 3,2,0,0,0,0,0,1 acc

3,2,0,0,0,0,2,1] mic+req| OK, a flight from Edinburgh to Rome,

when do you want to travel?

USR | said ‘to Paris’.

SYS | 4,3,0,0,0,0,2,1 sic+req | OK, aflight to Paris,
when do you want to fly?

USR December first, flying with British Airways

SYS | 4,4,1,0,2,0,2,1 apo+req| I'm sorry, when do you want to travel?

USR On the first of December.

SYS | 4,4,3,0,2,0,2,1] acc

4,4,3,0,2,0,3,1] mic+req| Travelling on the first of December with

British Airways, at what time do you prefe
your flight?

USR In the morning.

SYS | 4,4,4,1,4,0,3,1 apo+req| Sorry, at what time do you prefer to fly?

USR In the morning.

SYS | 4,4,4,3,4,0,3,1 sec Did you say in the morning?

USR Yes please.

SYS | 4,4,4,4,4,0,5,1 dbg+sta| Please wait while | retrieve information ...

USR

SYS | 4,4,4,4,4,0,5,2 pre+ofr | All right, flights from Edinburgh to Paris or
the first of December...[present informatio
Which choice do you prefer?

USR The second one please.

SYS | 4,4,4,4,4,2,5,2 sec Did you say choice two?

USR That's right.

SYS | 4,4,4,4,4,4,5,2 [terminal state]

Notes: This example is used for illustration purposes awgvstbasic behaviour of more com-

plex interactions. Abbreviations: req=request, accTaiceghigh confidence, mic=multiple

implicit confirmation, sic=single implicit confirmationpa=apology, sec=single explicit con-

firmation, dbg=database query, sta=status of dialogueppesent info, ofr=offer choices.
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3.1.2 Temporal abstraction for dialogue strategy learning

A learning agent using flat decision-making is limited tonptive actions such as
those shown in Table_3.1. In contrast, an agent using terhgbséraction can choose
both primitive and composite actions, which are temporaktended actions corre-
sponding to sub-dialogues. For example, the last two disddgrns can be seen as the
sub-dialogue ‘presentFlightinfo’ that presents inforima&nd fill/confirm the terminal
slot. In general, hierarchical reinforcement learningrdgembrace properties such as
abstraction, modularity and reusability that are lackedldtyreinforcement learners.

Abstraction can be defined as the act of removing detail from a concept -or ob
ject. Abstraction can be divided into temporal abstractod state abstraction; the
latter is addressed in the next subsecti@amporal abstractiomefers to temporally
extended courses of action, where details of complex astioa ignored and treated
as composite activities such as the ‘presentFlightinfabac They can help to explore
the search space more quickly. Examples of proceduralaatistn include macros,
subroutines, abstract actions, composite actions, sidigm|options, behaviours and
subtasks. Such abstractions can be arranged into nestedsadbrming a hierarchy
of actions at different levels of granularity.

Modularity refers to a divide-and-conquer approach, where a learniolglgm
iIs decomposed into sub-problems, and the subsolutions argenh into an overall
solution. For example, the flight booking dialogue strategy be decomposed into
the sub-behaviours ‘getMandatorySlots’, ‘getOptionalS|and ‘presentFlightinfo’,
where they could be subsequently decomposed, and so on. ddhalan behaviours

make internal decisions, independent of external infoienaDayan and Hinton (1992)

refer to this as ‘information and reward hiding’. Modulgris also an important prop-
erty for enhancing the maintainability and testing of l¢alialogue behaviours.
Reusability occurs when sub-behaviours are shared by multiple paréavimirs.
A key idea is that behaviours do not need to learn everythimgndio (i.e. from
the beggining); instead, they can be based on previousinti@mes, and possibly
reused by other ones. For example, the dialogue sub-behapi@sentFlightinfo’
could be reused by other spoken dialogue systems. When ibersare reused in a

new problem, the learning speed is acceleralleﬁ_@i_eﬁ&m{ﬂa\).

These properties are crucial for learning the behaviouafd-scale spoken dia-

logue systems, where the dialogue state may be describeg adarge set of state
variables and/or the dialogue system may have support fmga humber of actions.
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3.1.3 State abstraction for dialogue strategy learning

The role of state abstraction is to compress the state, asguhat the learning agent
does not need to know all the knowledge in every state to taédeést actions. The
importance of state abstraction is to find solutions on a rnomepact state representa-
tion (also referred to as ‘abstract state space’) that fso0s relevant parts of the state
and ignore irrelevant ones, e.g. the dialogue states usget tiight information can
ignore the state space for presenting information. Stadgadiion is a key concept in
hierarchical reinforcement learning in order to overcome groblem of the curse of

dimensionality. Dietterich (2000a) proposed the follogvigipes of state abstraction:

1. Irrelevant variables a state variable is irrelevant for primitive or composite a
tion aif it does not affect the cumulative reward of the remainiagables, e.g.
the composite actions ‘getMandatorySlots’ and ‘getOgli8iots’ can ignore
the variables of the composite action ‘presentFlightinftn addition, lower-
level composite actions have fewer relevant variables tingimer-level actions.

2. Funnel abstractionsan action is described as a funnel if it causes a large set of
states to change into a small set of next states. In this Wayjamain value of a
state variable is irrelevant for composite acteoifiit does not affect the cumula-
tive reward of the remaining domain values. For example:mthe composite
action ‘getMandatorySlots’ is executed, the domain vafoesinfilled and con-
firmed slots are relevant to the parent, but the remainingegle.g. the status of
such slots, filled with different recognition confidencedksy could be ignored.

3. Structural constraintsif a composite action terminates in stater if the ter-
mination of a child composite action involves the termioatof its parent, then
there is no need to store values for that state. For exanteedmposite action
‘getMandatorySlots’ can ignore values at terminal states.

The first type of abstraction has a wider application in HRgoalthms, and the
latter types require the decomposition of the value fumctibpguarantesafe abstrac-
tion. State abstraction is safe if the learnt policy in the alsstspace is also optimal
in the original state space. Previous work has applied stagtraction to small-scale

problems Mﬂd@bmmmmwm
IZQ.O.%J_M_a.Lth.i_QI_aI|LZQ_C|)é_;lQD_S_€ulﬂ_Zb08), and it remaing ovestigated in problems

with large sets of state variables. Alternatively, abstoms may be provided by the
system developel@%), but there are no guararteesafe abstractions.
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3.2 Hierarchical reinforcement learning approaches

The incorporation of hierarchical structures into reisfment learning agents was
also motivated by hierarchical planners such as HTN (Hobiaal Task Network),

which use a plan library with high-level activities decorspd into lower-level ones
rdoti, 197%; Currie and Talz%l). The strenghtseofiichical reinforcement
learning methods in comparison to flat methods are that theysilutions faster and

can solve more complex problems. The reinforcement legmiathods described in
this section are based on the Semi-Markov Decision Pro&€¥®P) model, a gen-
eralisation of the MDP model. An SMDP is a mathematical mddelsequential
decision-making in temporally extended courses of actiad,provides the fundamen-
tal theory for hierarchical reinforcement learning age®tgIDPs allow actions to take
a variable amount of time to complete, resulting in stateditions with large steps,
see Figurd_3]2. This allows the agent to explore the seaadtespore efficiently.

State trajectory
of an SMDP

State trajectory
of an MDP

states
e I I
rrrrrrrrrrrrrrrrrrrrrrrrrrr ol

time

Figure 3.2: Illustration of state trajectories in MDPs and SMDPs.

Work on hierarchical reinforcement learning can be broatigsified into agents
that learncontext-dependent policiesd those that learoontext-independent poli-
cies This section reviews approaches for context-dependditigmsuch as HAMSs,
and context-independent policies such as MAXQ. It alsoutises their strengths and
limitations, and briefly comments on recent extensions.
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A main weakness of hierarchical reinforcement learningllgms is that they
only produce sub-optimal solutions. The loss in optimatigy be due to the follow-
ing reasons: (1) in a composite action only a subset of prienéctions is allowed; (2)
a composite action depends on the execution of child betes;i¢3) unsafe state ab-
stractions; and (4) the prior knowledge included in thegyddibehaviour. The SMDP-
based hierarchical reinforcement learning algorithmsdesd in the rest of this sec-
tion may suffer from some of these sub-optimalities, and lmawclassified according
to their type of policy: context-dependent or context-ipeiedelﬁ.

e An optimal context-dependent policyachieves the highest cumulative reward
among all policies consistent with the given hierarchy. djldemporally ex-
tended behaviours execute actions that may be locally ptibral but that are
optimal for the other behaviours. The HAMs method learns kimd of policies.

e An optimalcontext-independent policyachieves the highest cumulative reward
for the given composite action, but suffers from an addalosource of sub-
optimality, locally optimal policies. Here, temporallytended behaviours ex-
ecute actions that are locally optimal but that may be subvab for the other
behaviours. The MAXQ method learns this kind of policy.

Dietterich kZQ_O_da) points out that there is a trade-off lestwboth types of policy.
On the one hand, context-independent policies facilittggesabstraction and policy
reuse, but they are only locally optimal. On the other handiext-dependent policies
allow stronger optimality, but they are weaker for stateasion and policy reuse.

3.2.1 Hierarchical abstract machines

A Hierarchical Abstract Machine (HAM) is a partial prograhmat constrains the ac-

tions that a reinforcement learning agent can take in ecate kEaLaﬂd_Rus_sell,
1997; Parr, 1998). HAMs are similar to non-deterministidéistate machines (FSMs)
whose transitions may invoke lower-level machines, eacbhma specifying a sub-

dialogue. Figuré_3]3 provides a graphical illustration &ihforcement learning with
HAMs. In contrast to standard reinforcement learning, tibesenvironment is mod-
elled by an induced SMDP, where the HAM tells the SMDP thelatsé set of actions
per state. The learning agent has to optimize decisionimgadd low and high-level
actions taking into account both the environment ssabed the machine stage

LIn machine learning jargon, optimal context-dependeritjes are known as ‘hierarchical optimal
policies’, and optimal context-independent policies asursively optimal policies’.
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AGENT

a= 7T(3, g) action

S = environment state

8 = choice state

ENVIRONMENT

choice

0t G41

&

Figure 3.3: Architecture of the agent-environment interaction for HAlstsed rein-

forcement learning, where a HAM tells the agent the avadadltions per state.

A key idea is that the system developer specifies a partiadypahd leaves the un-
specified part to the reinforcement learning agent. Sudr pxpert knowledge guides
the learning agent through a smaller search space to find@wunuch faster than us-
ing blind search, because it focuses learning on the patsuwére left unspecified. In
the flight booking dialogue strategy, one may think of acditmat are easy to specify,
such as asking for information when slot values are unknawd also think of actions
less easy to specify, such as confirming or reasking for pletgously filled.

A HAM is defined by three elements: (1) a finite set of machirsest; (2) an
initial state or a start function determining the initial chéne state; and (3) a transition
function to determine the next state using either detestimor stochastic transitions.
The types of machine state are:

e start execute the current machine (e.g. ‘root’),

action execute an action (e.g. ‘request departure city),

call: execute another machine (e.g. ‘presentFlightinfo’),

choice select the next machine state, and

stop halt execution and return control.
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HAMs are appealing for specifying the dialogue behavioucaiversational sys-
tems because they can be used for fully-deterministic betgJully-learnt behaviour,
or a combination of both. HAMs control the dialogue in a ma@dwlay, where each
machine in the hierarchy specifies a sub-dialogue. Whikstrtlot and non-terminal
machines execute actions at different levels of granyléré. they may call other ma-
chines), the terminal children machines only execute pmactions (i.e. they do not
invoke other machines). The dynamics in a HAM are as followisen a lower-level
machine is called, control is transferred to the start stbere machine states are vis-
ited until reaching a stop state, which returns control eodaller, and then determines
the next machine state, and so on until reaching the stop stéte root machine.

Figure[3.4 shows a sample HAM that partially specifies thiodize behaviour for
the flight booking system. It uses a root machine that invake=e lower-level ma-
chines: ‘getMandatorySlots’, ‘getOptionalSlot’ and ‘peatFlightinfo’. An assump-
tion in HAM-based controllers is that the stochastic bebawis not easy to specify and
hence requires optimization — so they can be seen as learalings for the stochastic
transitions and will prefer the actions with higher valuéisTHAM focuses on opti-
mizing a confirmation strategy, where stochastic actidees®n is used in the root and
the children machines. Alternatively, only determinigtation-selection may be used
in the parts that do not require to be included in the optitiora The rest of this sub-
section explains how a HAM-based reinforcement learneinopés action-selection
in choice states;.

For any MDPM and any HAMH, there exists ainduced SMDP M’ = H o M.
The solution defines an optimal policy that maximizes theeeigd total reward by a
reinforcement learning agent executidgn M. The construction o1’ is as follows:

() The state set is the cross-product of the choice statesarid the environment
states oM. Notice that not all pairs of environment-machine stats| will be
possible, and therefore the learning task becomes easmreadAoc algorithm
reducéH, M) can be used to remove inappropriate pairs and states witiyke si
action because they do not require optimization.

(i) The action set is derived from the stochastic actionslinSuch actions corre-
spond to either action states (primitive actions) or calleg (composite actions).
The induced state-action space for the flight booking dizogfrategy is shown
in Table[3.2, which involves both composite and primitivéi@ts. This table
omits deterministic actions because they have only ondsdnlaiaction per state.
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root machine presentFlightinfo machine
getMandator
Slots @

Cé

choice9 choice8

choice2

NOTATION

choice state

getOptionalSlot machine —_—

O call state
@ Q action state

Cy if all slots confirmed

C; if terminal slot confirmed

Cy if wunfilled slot in focus

Cs if none slots to confirm

Cy if single slot to confirm

Cs if multiple slots to confirm
Ce if filled slot in focus

C7 if confirmed slot in focus

Cs if mandatory slots confirmed
Cy if optional slot confirmed

Cs Co

choice? choice6

|
(=

Figure 3.4: Hierarchical Abstract Machine (HAM) for the flight bookingatbgue
system. The decision-making points are in machine choatesstvith deterministic
or stochastic choices. Abbreviations: reqg=request, acmwept w/high confidence,
mic=multiple implicit confirmation, sic=single implicitanfirmation, apo=apology,
mec=multiple explicit confirmation, sec=single explicardirmation, dbg=database
query, sta=status of dialogue, pre=present informaticin-offer choices.
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Table 3.2: Induced state-action space resulting from the cross prodiithe environ-
ment states of Figufe 3.1 and choice states of the HAM showigine[3.4. The rest
of the state-action pairs are omitted because they have vaishle action per state.

Induced State Induced Action Set

(s,s=choicel)| getMandatorySlots, getOptionalSlot, presentFlight/aftag+stal
(s,s=choice3)| sec, apo+req, acc

(s,s=choice4)| mec, apo+req, acc

(s,s=choice7)| sec, apo+req

(s,s=choice9)| sec, apo+ofr

Note: An induced state is also referred to as ‘environmeatiime state’.

(i) The state transition function corresponds to exauyiin parallel the transition
function of the MDP and the transition function of the HAM.

(iv) The reward function is defined d&([s,5[,a) = R(s,a) if a is an action state,
otherwise the reward for non-action states in the HAM is zeho addition,
for each transition from statg to states.; the learning agent computes the
cumulative discounted reward= r; 1+ Ve 2+ Vriea+ ... + Y e

In general, the cross product of HAM and MDP described abeselts in a Semi-
Markov Decision Process (SMDP) because actions take abl@raamount of time
to complete their execution. A sample dialogue using emwirent and machine states
(s,9) is shown in Table3]3, this is equivalent to the one shown bie[d.1. They differ
in the kind of actions they take: whilst a HAM-based dialoggent takes primitive
and composite actions, the former dialogue strategy okiystarimitive ones.

The HAMQ-Learning algorithm can be used to learn a HAM-baselity _Qr,

)- This algorithm uses an extended Q-t&d(s, 5], a) indexed by an environment
states, machine stats, and actiors, see algorithm 2. A sample call for our case study
corresponds ttHSMQ([0,0,0,0,0,0,0, 1],root). HAMQ-Learning converges under
similar conditions as Q-Learning ' 99R)similar algorithm
called ‘'SMDP Q-Learning’ uses only environment sta _19_d4),

and has been applied to tbptiong framework IL&ULLQDMILJQbIE?;_ELe_LMOOO).

2The Options approach changes the notion of actioagA in an MDP for option® € O, where an
option can last time steps|(Sutton et al., 1999: Precup, 2000). An optiorefindd as a 3-tuple =
<I,m B>, characterized by an initiation set of states S, a policy: Sx A— [0,1], and a termination
conditionf3 : S— [0, 1] that specifies the probability for transitioning to a teralistate.
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Table 3.3: Sample HAM-based dialogue in the flight booking domain usidgced

dialogue states (s). The induced states shown in Tabldg 3.2 have stochasticesho

(require optimization) and the remaining ones perform detgistic action-selection.

=

)

Agent | Dialogue State Action Sample Utterance
SYS | 0,0,0,0,0,0,0,1,choicelgetMandatorySlots
0,0,0,0,0,0,0,1,choicepreq Tell me your flight information.

USR A flight from Edinburgh to Paris.

SYS | 3,2,0,0,0,0,0,1,choicegacc

SYS | 3,2,0,0,0,0,2,1,choiceZmic+req OK, a flight from Edinburgh to Rome,
when do you want to travel?

USR | said ‘to Paris!

SYS | 4,3,0,0,0,0,2,1,choice@sic+req OK, aflight to Paris,
when do you want to fly?

USR December first, flying with British Airways.

SYS | 4,4,1,0,2,0,2,1,choicedapo+req I’'m sorry, when do you want to travel?

USR On the first of December.

SYS | 4,4,3,0,2,0,2,1,choicedacc

SYS | 4,4,3,0,2,0,3,1,choiceZmic+req Travelling on the first of December with
British Airways, at what time do you prefe
your flight?

USR In the morning.

SYS | 4,4,4,1,4,0,3,1,choiceBapo+req Sorry, at what time do you prefer to fly?

USR In the morning.

SYS | 4,4,4,3,4,0,3,1,choiceBsec Did you say in the morning?

USR Yes please.

SYS | 4,4,4,4,4,0,5,1,choiceldbg+sta Please wait while | retrieve information ...

USR

SYS | 4,4,4,4,4,0,5,2,choicelpresentFlightinfo

4,4,4,4,4,0,5,2,choice8pre+ofr All right, flights from Edinburgh to Paris o

the first of December...[present info.]
Which choice do you prefer?

USR The second one please.

SYS | 4,4,4,4,4,2,5,2,choice9sec Did you say choice two?

USR That's right.

SYS | 4,4,4,4,4,4,5,2,null [terminal state]
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The HAMs approach does not overcome the curse of dimengippabblem, it
is only mitigated by reducing the available actions perestétis practical application
is limited to decision-making problems with few state vhles, and it needs to be
extended with other ideas for scaling to larger problemsnetloeless, it has the ad-
vantage of merging hand-coded and learnt behaviours integéedramework.

Algorithm 2 The HAMQ-Learning algorithm
1: function HAMQ(states, states) return totalReward

2: T « state transition function of the machine correspondingatbstates (e.g. root)
3: s« start, totalReward— 0, discount— 1
4: while sis not a stop statdo
5: if Sis an action statéhen
6: Execute actiora (corresponding te)
7: Observe one-step reward
8: else ifsis a call statghen
9: r — HAMQ(s, a), total reward received whilst actian— s executed
10: else ifsis a choice statéhen
11: Choose action state— 11(s,S) according to an exploration policy
12: continue
13: else
14: Observe next machine statefrom 'F(e.g. a choice, null or stop state)
15 S—¢
16: continue
17: end if
18: totalReward— totalReward+ discountx r
19: discount« discountx y
20: Observe resulting environment state
21: Observe resulting machine state frdm
22: Q([s.§,a) — (1—a)Q([s,§,a) +a [r + discountx max([s,s],a)]
23: S« ¢
24: S—¢

25: end while
26: end function

Recent advances in HAM-based hierarchical reinforcengambing are as follows:
IAndLe_a.nd_RussslellL(ZD_bO) extended HAMs to support paramaetbésubroutines, tem-

porary interrupts, aborts, and memory varia I[(ZQ_dZ) applgafe
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state abstraction to partial hierarchical programs, amiih a language called ALisp.

Finally,IMarthi et al. |(2005) investigated agents that colndeveral effectors simulta-
neously, and suggested multithreaded partial progranmsuidr a purpose.

3.2.2 MAXQ

In the MAXQ method the system developer specifies a hieraotlsybtasks and the
reinforcement learning agent specifies their behaviouro Versions can be identi-
fied in this method. The first decomposes a given Markov DeweiSirocess (MDP)
into a hierarchy of Semi-Markov Decision Processes (SMDHR#e second version
extends the first by decomposing the value function recefs@and by ignoring parts
of the state space, resulting in faster learning. In addlitibe latter version includes
approaches for tackling the sub-optimalities caused byntipesed hierarchy.

3.2.2.1 Hierarchical problem decomposition

In contrast to the HAM-based reinforcement learning metthad learns a single pol-
icy, the MAXQ method learns multiple policies. In MAXQ, a g Markov Decision
Process (MDP) is decomposed into a hierarchy of sub-prabl@fso referred to as
ich, 2000b). In the
context of spoken dialogue systems a subtask correspordsuio-dialogue, i.e. each

hierarchy of subtaskg provided by a system developer (Diette

sub-dialogue is controlled by a separate policy. A sampeahnchy of sub-dialogues
for the flight booking dialogue strategy is shown in Figurg. 3Vhen a parent subtask
invokes a child subtask, control is transferred to the ¢hwvlaen it terminates its execu-
tion, control is returned to the parent subtask. In this meétolving the hierarchical

decision making problem means finding an optimal policy far toot subtask.

present
Flightinfo

getMandarory
Slots

getOptional
Slot

Figure 3.5: Top-down hierarchy of subtasks for the flight booking syst@nparent
subtask can invoke child subtasks, when they terminateot@returned to the caller.
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The hierarchical decomposition allows to findntext-independent policiesand
has the following advantages: (1) policies learnt in chilbtasks can be reused by
parent subtasks, (2) value functions learnt in subtaskdeashared so that learning
in other subtasks is accelerated, and (3) value functiondeaepresented in a more
compressed way by applying state-action abstraction,iwibitores irrelevant parts of
their corresponding state-action space.

In this method a given MDM is decomposed into a set of subtagkty, M1, ..., Mp}.
Each subtask; defines a Semi-Markov Decision Process (SMDP) charactebye
a set of states, a set of actions, a state transition funciioth reward function. The
action set includes either primitive actions lasting a Engne step, or composite ac-
tions corresponding to subtasks that last for multiple tite@s. For example, Talile B.4
shows the actions available per dialogue subtask in tharaiey of subtasks shown in
Figure[3.5. Note that each dialogue subtask uses its owrf aetions.

Table 3.4: Action spaces in the hierarchy of dialogue subtasks for igatfbooking
system, where the root subtask uses both composite andipeimctions and the child
subtasks use only primitive actions. See Tablke 3.1 for arigéien of primitive actions.

SubtaskID| Subtask Actions available
Mo root getMandatorySlots, getOptionalSlot,
presentFlightinfo, dbg+sta
M1 getMandatorySlots req, apo+req, sictreq, mic+req, sec, mec, acc
Mo getOptionalSlot | req, apo+req, sec
M3 presentFlightinfo | pre+ofr, apo+ofr, sec

A sample hierarchical dialogue using the subtasks aboveawrs in Table 3.b.
Although the dialogue states use the same information in salstask, they can ignore
some parts of the state space in order to find the solution oora compact search
space than the original one. This property is referred tatée abstraction’ (see sec-
tion[3.1.3). The solution for the hierarchy of SMDPs is a &iehical policy containing
one locally optimal policy per subtask in the problein= {1t,..., T;,}.
ch (2000lmpmrsed the Hierarchical
Semi-Markov Q-Learning algorithm (also referred to as HSM&arning), where the

To learn such a hierarchy of policies, Diette

optimal policy performs action-selection accordingridi,s) = argmax Q*(i,s,a).
This algorithm updates Q-values as shown in algorithm 3 e lid, where value
Q(i,s,a) denotes the cumulative reward for executing actoin states of subtask
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Table 3.5: Sample hierarchical dialogue in the flight booking domairigure [3.1
describes the dialogue state, and Tdbld 3.4 shows the acaeailable per subtask.

Agent | Subtask| Dialogue State Action Sample Utterance

SYS Mo 0,0,0,0,0,0,0,1 getMandatorySlots

SYS M1 0,0,0,0,0,0,0,1] req Tell me your flight information.

USR A flight from Edinburgh to Paris.

SYS M1 3,2,0,0,0,0,0,1 acc

SYS M1 3,2,0,0,0,0,2,1] mic+req OK, a flight from Edinburgh to Rome,
when do you want to travel?

USR | said ‘to Paris!

SYS M1 4,3,0,0,0,0,2,1 sictreq OK, aflight to Paris,
when do you want to fly?

USR December 1st, flying with British Airway

SYS M1 4,4,1,0,2,0,2,1 apo+req I’'m sorry, when do you want to travel?

USR On the first of December.

SYS M1 4,4,3,0,2,0,2,1 acc

SYS 4,4,3,0,2,0,3,1] mic+req Travelling on the first of December with
British Airways, at what time do you
prefer your flight?

USR In the morning.

SYS M1 4,4,4,1,4,0,3,1 apo+req Sorry, at what time do you prefer to fly?

USR In the morning.

SYS M1 4,4,4,3,4,0,3,1 sec Did you say in the morning?

USR Yes please.

SYS M1 4,44440,5,1 [terminal state of subtadi,]

SYS Mo 4,4,4,4,4,0,5,1 dbg+sta Please wait while | retrieve information.|.

USR

SYS M3 4,4,4,4,4,0,5,2 presentFlightinfo

M3 4,4,4,4,4,0,5,2 pre+ofr All right, flights from Edinburgh to Paris

on the first of...[present information]
Which choice do you prefer?

USR The second one please.

SYS Ms 4,4,4,4,4,2,5,2 sec Did you say choice two?

USR That's right.

SYS Ms 4,4,4,4,4,45,2 [terminal state of subtadids]

SYS Mo 4,4,4,4,4,45,2 [terminal state of root subtask]
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i (executed using a stack mechanism). The execution of aatiastingt time steps
receives the cumulative discounted rewaed ry 1+ Yri o+ y2rez+ ... Y U .
The dynamics of subtasks are as follows: when a subtaskrates, it is popped off
the stack, and control is transferred to the next availabigask in the stack, and so
on until popping off the root subtask. A subtask terminatéenvit reaches one of
its terminal states. This algorithm is executed until theaQies of the root subtask
stabilize.

Algorithm 3 The HSMQ-Learning algorithm
1: function HSMQ(states, subtask) return totalReward

2: totalReward— 0, discount— 1

3 while subtaski is not terminatedio

4 Choose actiom from sderived fromQ(i,s) (e.g.&-greedy)

5 Execute actiora

6: if ais primitive then

7 Observe one-step reward

8 else ifais compositehen

9 r — HSMQ(s, a), which invokes subtas&

and returns the total reward received wtlilexecuted

10: end if
11: totalReward— totalRewardi- discountx r
12: discount«— discountx y
13: Observe resulting stag
14: Q(i,s,a) — (1—a)Q(i,s,a) +a[r +discountx maxy Q(i,s,a)]
15: S« ¢

16: end while
17: end function

The HSMQ-Learning algorithm convergesdptimal context-independent poli-
ciesif the learning rate parameter is decayed according to equation 2.10, and if
the exploration policies satisfy the following properti€d) each action is executed
infinitely often in every state that is visited infinitely eft, and (2) in the limit, the
policy is greedy with respect to the Q-value function. Tkidue to the fact that parent
subtasks rely on the behaviour of their children to learir twen optimal behaviour.
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3.2.2.2 Decomposition of the value function

Decomposing the value function means splitting the valigaies or state-action pairs
into multiple values. A key benefit of this decompositionhiattit allows parts of the
state space to be ignored, and a more compact representétiearnt values to be
stored.

The MAXQ value function decomposition splits value funasan a recursive way
into two additive values: (1) the value for executing a clatdion, which may be a
primitive action or subtask; and (2) the value after exegusuch child action until

its parent terminates (Dietterich, 2000a). The former aferred to aprojected value

functions \(i,s) and specify the cumulative reward of executing subfaskstates.
The latter are referred to @@mpletion functions @, s,a) and specify the cumulative
reward after executing actianin states until completing subtask A sample MAXQ
decomposition for the value function in the flight bookingntkin is illustrated in
Figure[3.6. Note that the value\éfgetMandatorySlots) can be computed by adding
its projected and completion value functions and hence doesequire to be stored.
For example, a value for the root subtask in st&agecomputed as

V(root,s) =V(req,s)+C(getMandatorySlots, req) +C(root, s, getMandatorySlots

(3.1)
Flight booking V(root, s)
Get mandatory Finish
slots flight booking V (getMandatorySlots,s) C(root, s, get MandatorySiots)
Finish Tr% C(getMandatorySlots, s, req)
get mandatory
slots | " | | T2 T3 Ta ... T10 | | T1i1 T12 |

Figure 3.6: Example of MAXQ value function decomposition for the flightking
dialogue strategy, where the values of state-action pagsl@acomposed hierarchically
into two values. The left tree uses natural language and itjet one uses formal
notation. The sequence of rewargssrgiven for executing primitive actions.

In general, the MAXQ value function decomposition has threnfo

V(ag,s) =V (am,s) +C(am-1,S,am) + ... + C(a1,s,a2) + C(ap,s,21), (3.2)
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Algorithm 4 The MAXQ-0 Learning algorithm
1: function MAXQ-0(MaxNode i, States)

2 if i is a primitive actiorthen
3 Execute action, receiver, and observe next stase
4 V(i,s)=(1—a(i)V(i,s)+a(i)r
5: return 1
6 else// i is a subtask
7 let count=0
8 while subtask is not terminatedio
9 Choose actiom according to exploration policy(i, s)
10: let N=MAXQ-0(a,s) (recursive call)
11: observe next statg
12: C(i,s,a) = (1—a)C(i,s,a) +a(i)-YWV(i,s)
13: count= count+ N
14: s=¢
15: end while
16: return count
17: end if

18: end function

19: //Main program

20: initialize V (i,s) andC(i,s, j) arbitrarily
21: MAXQ-0(root node 0, starting statg)

whereag, ay, ..., am is the path of subtasks chosen by the hierarchical patigping
from the root subtaséy to the primitive actioray,.

The MAXQ-0 algorithm can be used to learn locally optimalipiels based on this
value function decomposition (see algorithm 4), where @leeN (i,s) in line 12 is
computed according to

V(i.9 :{ ma.v%(V(a,s)—i—C(i,s,a)) if | ?s co.mp.osite (3.3)
V(i,s) if iis primitive.

A similar algorithm called MAXQ-Q allows the use of arbitygpseudo-rewards
which are used to specify how desirable each terminal gtdte the given subtask. A
pseudo-reward function — specified by the system develotygieally assigns pseudo-
rewards of 0 to non-terminal states and goal terminal staed negative pseudo-

rewards to non-goal terminal states, iﬁ_e_(DLenLeL:IQh_éDﬂﬁ more details.
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In summary, the MAXQ method divides an MDP into a hierarchySéiDPs.
It learns a hierarchy of context-independent policies gigwo types of value func-
tions: non-decomposedsing the HSMQ-learning algorithm, amtcomposedsing
the MAXQ-0 or MAXQ-Q algorithms. The policies allow safe ®abstraction, but
decomposed-based ones use more compact representaticaddition, this method
executes policies in a hierarchical or non-hierarchical, e latter mitigates the sub-
optimalities derived from the imposed hierarchy. The nardrchical form of exe-
cution requires extra learning by using a mechanism sirtolgolicy iteration (Diet-
terich, 2000a).

The MAXQ method has been extended to multi-agent and comtiswime hierar-

chical reinforcement learning, and shown to be feasibleommex scheduling tasks

(Makar and Mahadevhh, 2001: Ghavamzadeh and Mahadevat), 200 addition,

@t -3) proposed a bottom-up approach for discayérerarchies of subtasks
by incrementally finding subspace regions collapsed ingirabt states, where each

subregion corresponds to a different SMDP.

3.3 Semi-Markov Decision Processes

The dynamics of hierarchical reinforcement learning méshean be represented with
the Semi-Markov Decision Process (SMDP) formalism, whitdwes us to model tem-
porally extended actions. The SMDP model was originallyrfolated as a 5-tuple
<S A T,R F> characterized as followsS3is a finite set of states in the environment,
Ais a finite set of actiond (s, a, ) is a transition function to the next stafegiven the
current states and actiora with probability P(S'|s,a), R(S|a,s) is the reward function
that specifies the reward given to the agent for choosingraativhen the environment
makes a transition frorato s, andF (t|s,a) is a function giving the transition duration
probability that actiora in stateswill terminate int time units. In SMDPs the duration
can take either real or integer values, which correspondritimuous-time SMDPs and
discrete-time SMDPs (Putterman, 1994; Mahadevan et 8. ;h&[lr 1998).
Dietterich (2000a) reduced the formulation above for tisete-time SMDP model
to a 4-tuple<S A, T,R>, which extends the transition and reward functions with the

random variabla representing the number of time steps it takes to executetaona
ain states. Following Dietterich’s formulation of an SMDP, it needslyio consider
actions with integer-value durations. In this way, the $iaan and reward functions
are extended aB(s,1|s,a) andR(s,1|s,a), respectively. The latter specifies the cu-
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mulative discounted reward while executiagn spoken dialogue, the state transitions
can be seen as executing a sub-dialogueompounded by a sequence of lower-level
actions) starting is= s and completing its execution in state-= . { (see Figure317).

rewards

actions

ay

Figure 3.7: Dynamics in a Semi-Markov decision process, where statssitians and
rewards depend on the amount of time taken by actions to etenieir execution.

The Bellman equations faf* andQ* for a discrete-time SMDP are rewritten as

V*(s) = max [; P(s,1/s,a)[R(S,1|s,a) +Y'V*(I)] |, (3.4)

and
Q(s.a) = ¥ P(s.1/s.a)[R(8,T[s.a) +y maxQ*(.a)]. (3.5)
s, T d

The solution to a Semi-Markov decision process is a patiapapping states to
actions. An optimal policy is defined similarly to the MDP nebdvherertis optimal if
and only ifVsTi(s) € argmax Q™(s,a). It can be learnt either by dynamic programming
algorithms applied to SMDP&HMMMMl%%y hierarchical
reinforcement learning methods such as those describédsithesis.

3.4 Current state of hierarchical reinforcement learning

Briefly, the current state of Hierarchical Reinforcemenaireng (HRL) is as follows:

e Partial observability Most HRL approaches assume fully observable states.
However, it is well known that many reinforcement learnirgeats have to
model hidden states due to their noisy perceptions of thédwam this context
only a few investigations have been reportleg (Thepgla@ﬁHansen and
Zhou, 2008} Theocarous et al., 2004; Pineau : ' SJ__Z—DAW),
meaning that the fully observable setting has been devéloye extensively.
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e Hierarchy discovery Some investigations have attempted to build a hierarchy
@allSand Precup,
2002; Hengst, 2003), but they have been applied only to sscale systems.

NJ

of temporally extended courses of action (McGovern,

e Dynamic abstractionMost HRL approaches use fixed state abstractions. It is
known that the relevant state variables for a given behawdepend on the ac-

tivity being executed (Jonsson and Barto, 2000). Therethneamic abstraction
in HRL approaches would be very valuable, and awaits exptora

e Knowledge representatiorMost previously proposed HRL methods employ a
vector of numeric state variables to represent the currardtson of the world,
and also employ actions without complex descriptions. ¥thihis form of
knowledge representation may be sufficient for slot fillipgleen dialogue sys-
tems, other forms of knowledge representation may be reddar more com-
plex human-machine interactions such as negotiation talwmiative dialogues.
For this reason some machine learning researchers hawdtthiair attention
to the emerging field known as ‘Relational Reinforcementrizey’ (RRL) that

combines reinforcement learning with inductive logic gngming (Dzeroski

et al.,.2001; Tadepalli et al., 2004); a related hybrid higveal approach was

proposed byl (Ryan, 2002). But hierarchical RRL approachedess mature

than those with simpler representations.

e Large-scale applicationsin tabular HRL,I_MaJsaLand_Mahadesl'éJ.n_(ZbOl) em-

ployed the MAXQ approach to a state space consisting*®fsates, applied

to automated guided vehicles scheduling. The options agpraith tile-coding
function approximation has been applied to very large siaaees in the RoboCup
Soccer domain (Stone et/ al., 2005). In addition, the HAMga@gh with state
abstraction and linear function approximation has beetiegpfo the Stratagus

computer game consisting of% states and £° actions [(Marthi, 2006). This
suggests that tabular HRL can be applied to medium or la@gelsespaces, but
that HRL with function approximation is the way to addressnarge ones.

3.5 Discussion

Potentially, any of the currently available hierarchiahforcement learning methods
can be applied to spoken dialogue systems. However, someaghies may be better
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suited than others for their development, optimization arantenance. To identify
their strengths and weaknesses the following issues aresstl: (1) learning under
uncertainty, (2) learning on large search spaces, (3)il@mmith prior expert knowl-
edge, (4) efficient learning, (5) state abstraction, ana@mality.

Firstly, an important requirement of spoken dialogue systés to learn adaptive
behaviour under noisy perceptions such as the speech igoagand understanding
modules. However, hierarchical methods that learn withiglgr-observable states
are yet not as developed as those that learn with fully-elbée ones. Furthermore,

MM&DMIM4) points out that there is less uniogrtat higher levels of

the hierarchy. An example in context is as follows: a dialgystem is more sure

of which dialogue goal it is in, rather than exactly what hasibsaid in the current
user utterance. In addition, tabular HRL under the SMDP rhibdg not been applied
before to spoken dialogue. As was noted in the previousmedtican be applied to
problems with medium or reasonably large search spacesseTdrguments make it
worth investigating the SMDP model, which learns hierazahdialogue behaviours
under certainty.

Secondly, whilst any of the SMDP-based approaches can sumy large search
spaces using function approximation, the MAXQ frameworkhis only tabular ap-
proach that can overcome the curse of dimensionality pnobléhis is possible by de-
composing the target MDP into a hierarchy of SMDPs and byyapglstate abstrac-
tion in each subtask. Therefore, from all tabular approache MAXQ framework
is the most appealing for learning spoken dialogue strasegith large state-action
spaces. The hierarchical decomposition may not only yigdtlel optimizations, but
perhaps also facilitates their maintenance and reusabilit

Thirdly, another potentially relevant requirement for gfgng the behaviour of
spoken dialogue systems is to allow some hand-crafted mmivasather than purely
learnt. From the approaches above, HAMs is the only apprt=atprovides a prin-
cipled framework to incorporate prior expert knowledgeinginforcement learning
systems. This is particularly important in order to combiaed-coded dialogue be-
haviours with optimized ones.

Fourthly, an additional requirement of spoken dialogueesys is to support very
fast learning methods in order to learn behaviours from dlsetof human-machine
conversations. All approaches above require a large nuailweteractions to find op-
timal policies. Nevertheless, the HAMs approach provithesfastest learning frame-
work because it applies learning only where necessary, @telstates in the HAM,
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supplying the SMDP with a reduced action set per state.

Fifthly, the state abstraction methods investigated sbhdae been applied to decision-
making problems with few state variables. Currently, itas clear how to perform au-
tomatic safe state abstraction for dialogue states repi@esevith several tens of state
variables resulting in (very) large state spaces. As a fiegt such state abstractions
can be provided by the system developer and tested expéaltygn comparison with
a baseline system. However, future research should takesghie into account in order
to reduce potential sub-optimalities derived from manbatiactions.

Lastly, whilst the HAMs approach aims for hierarchical omiity, the MAXQ
approach aims for locally optimal solutions. Although tlagtdr is a weaker form
of optimality, that is the price for overcoming the curse ahdnsionality. A main
assumption in this thesis is as follow$:the solution is near-optimal and generates
dialogues that make sense to humans, then such loss in diptfimay be affordable

Based on these strengths and weaknesses, the scope oéfisssmarrowed down
to hierarchical reinforcement learning under certaintgdshon the SMDP model.
Though the current state-of-the-art in HRL presents sicgnifi advances, the scope of
this research is narrowed down further to investigate tathierarchical approaches to
spoken dialogue. From the available HRL approaches, itpothesized that HAMs
and MAXQ have a high potential application for optimizingda-scale spoken dia-
logue strategies. This hypothesis is tested experimgntalthe chapters that follow.

3.6 Summary

This literature review chapter presented an introductiofully-observable hierarchi-
cal reinforcement learning approaches, and used a numbgorked examples for
such a purpose. It focused on the Semi-Markov Decision Beo¢8MDP) model,
used for sequential decision-making at temporally extdraeirses of action, which
surprisingly has not been applied to spoken dialogue befibrdescribed two of the
most influential hierarchical reinforcement learning noeth in the field: HAMs and
MAXQ, including recent advances. In addition, this chagtigihlighted the current
state-of-the-art of hierarchical reinforcement learnifgpally, the HAMs and MAXQ

methods were identified as promising for optimizing spokeodue strategies for
larger-scale systems than those so far attempted.



Chapter 4

A heuristic simulation environment for

learning dialogue strategies

This chapter describes a dialogue simulation environnfetitdoes not require train-
ing data and can be used by reinforcement learning agentstitaine or test spoken

dialogue strategies. Sectibnl4.2 overviews the simulamironment at the dialogue
act level of communication. Sectign %.3 describes each oot in the simulation

environment (user behaviour, speech recognizer, datphadencludes a baseline of
machine behaviour. Sectign #.4 describes two experimeiaigue systems in the
flight booking and travel planning domains. Secfiod 4.5 psgs metrics for evaluat-
ing user and machine behaviour, and compares to currerattlite on user simulations

Schatzmann et al., 2005a). Section 4.6 discusses thggtseand weaknesses of the

proposed environment. Finally, sectionl4.7 gives a sumrmadydraws conclusions.

4.1 Introduction

Human-machine dialogue simulation consists of artificawersations generated be-
tween a spoken dialogue manager and a simulated converaatiovironment (which
includes automated speech and language processing maahudiess simulated user). If
a dialogue manager follows a given dialogue strategy, thiéerent strategies can be
tested in the simulated conversational environment inrda&nd better ones (Eckert

etal., 1997), and the dialogue strategy can be optimizeshsatically (Levin and Pier-

accini,[1997). For such purposes, the speech and word leaelbe ignored: it can be
assumed that conversations based on dialogue acts — imatngoa noise model — are

sufficient to enable optimal dialogue strategies to be tg@oung, 2000).

<
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Previous investigations in dialogue strategy optimizatise two types of learn-
ing environments: corpus-based and simulation-basedforhmer might be preferred

because they display the actual dynamics of real convers;altWaIk r._2000; Litman
et al., ZOOO;RQ;LQ[_Ji .,.2000; Singh et al., 2002). HoweVmirtapplication has been
limited to small-scale systems due to the fact that a largebar of dialogues is re-

quired to find an optimal dialogue strategy. In contrastgaton-based environments
are more practical for generating a large amount of diffedexrilogues without the need

for real users (Eckert et 1997: Levin elmm_ﬁmuu 2000; Lin
and Lee, 2001 Pi in ZdO . Chun 054 Filisk ééé ée@ Cuaféhuitl

et al., 200 F ' 6; Pietq

Cueuaruties 3. 2008 oo . 207 Thh.Peammana e . 2aden,
IZO_OlH:ICALQp_ez;C_Qza.LetJalL_Z(l)O& The drawback of satieri-based approaches
is that they may not generate realistic dialogues. Neviskethey can help to find

errors in dialogue strategies, and initially to optimize thalogue strategy.
Currently available simulated user models are mostly dateen approaches, which

need a significant amount of annotated training dialogua ¢ [, 1997;
SchefIQLandeu[L 00; Pi : ila_ef 2006; Cuayahuitl
et aI.,ELS al., 2007, ’Iy)?a\lthough statistical

models are very appealing for dialogue simulation, theyehmnumber of drawbacks
including the requirement for costly annotated dialogue dée difficulty of acquir-

ing sufficient training data, and the fact that the resulSngpothed probability dis-
tributions may vyield incoherent user behaviour (generatedhoosing stochastically
from the whole set of user dialogue acts in each dialogue)st&urthermore, there
Is a lack of agreement about the evaluation of user simulsti®reviously proposed
evaluation metrics are based on properties for measurmgtttistical similarity be-

tween simulated and real user behavuJLur_LS_Qhalzmand MSJHI_G_eQ[gJJa_el_JaI
20054, 2006; Cuayahuitl et/al., 2005; Rieser and Lemor62Dar for evaluating user

models viewed as predictors of system performallnse_OAﬂliL&ﬁ_Olla). The following
facts suggest that richer metrics for evaluating user sitrarls are needed: (a) cur-

rent metrics only report a rough indication of dialogue isga| and (b) they cannot
distinguish if a given sequence of machine-user dialogtsiacealistic or not.

This chapter presents a simulation framework for genegatimd evaluating human-
machine conversations based on a heuristic approach. dheged environment gen-
erates coherent and distorted conversations, usefuldongeand/or learning dialogue
strategies for mixed-initiative multi-goal spoken dialegsystems.
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4.2 A heuristic dialogue simulation environment

A simulation environment of human-machine conversatiowslves modelling the
dynamics of everything that is outside the dialogue managkrs chapter proposes
an approach for information-seeking dialogue systemsdbas not require data for
training the models in the simulation environment. Thisrapph uses heuristics to
simulate the dynamics of task-oriented conversationsdbasealialogue acts, and uses
three simulation models which are shown in the bottom of F&gll. The first simula-
tion model (on the right of the figure) generates coherentnesponses, i.e. responses
that make sense to humans. Here it was assumed that reabeberse in a coherent
fashion, based on user dialogue acts that are consistenrtaung to a user Knowledge
Base (KB) that keeps the history of the conversation. Theéssgong assumption and
its validity is addressed later. The second model distmterent user dialogue acts
due to imperfect speech recognition and understandingllizithe third model mim-
ics the database queries and results. The distorted upemsss and database results
update the machine’s KB so that the dialogue strategy caosehactions accordingly.

Machine behaviour

machine
action

m
ay

machine
dialogue St
state

m _ m dialogue
4 _ﬂ-(st ) strategy

Conversational environment

m 0
S ~
t+1 Q a
Machine knowledge base User knowledge base
m database ~ user (%
St result a/%l’ d':tlggeue St a’t
Simulated ASR error |, Simulated user
database simulation U behavi
behaviour a; €haviour

user
action

¥ )

Figure 4.1: The agent-environment interaction for simulating humaachine conver-

sations, useful for learning or testing dialogue strategi@r spoken dialogue systems.
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Figure[4.1 shows the agent-environment interaction fordmsmachine dialogue
simulation (detailed in the next section). The interaci®as follows: the machine is
in a given dialogue statg", and takes dialogue aaf” by following dialogue strategy
(§"). A distorted machine dialogue a&t' {machine respon@)ais fed into the user’s
KB to observe the user dialogue state from which an actiorg' is taken (user re-
sponse). This user response is distorted with ASR erroosdihtand is fed into the
machine’s KB. The machine action may require interactioth\w@imulated database
behaviour by sending queries and retrieving databasetsakul Then the next ma-
chine states” ; is observed from the machine’s current KB. Once the maclsirire &
new state, it takes another dialogue act, and so on untiltti@tthe conversation.

4.3 Human-machine dialogue modelling

A human-machine dialogue can be modelled by the percepéindsactions of both

conversants. Figurle 4.2 shows the dynamics of communicatidhe dialogue act

level. The conversants use two sources of knowledge ateliftéevels of granularity:

knowledge-rich statesk (also referred to as “knowledge base”) to represent alliposs

ble perceptions about the conversation, kndwledge-compact states; to represent

a compact version of the current dialogue state. The lattensed for action selection.
The basic elements in a conversation are giversjpgech actswhich represent

intentions conveyed to the partner conversla.nL(ALEllajJJ%ga.ﬂe,_lQ_é%. This re-

search refers to them dglogue actsand decomposes them ird@logue act types

anddialogue acts The former represent types of intentions, e.g" = confirnt.
The latter extend dialogue act types by taking context imtmoant from conveyed
slot-value pairs, e.g.&" = confirm(date= 01de007time= morning”.

For task-oriented conversations a small set of dialogué/pets can be employed.
Tabld4.1 shows the core dialogue act types that define thavlmeit of human-machine
simulated dialogues. The user dialogue act types are atsofttbe ones proposed by

rail

..(2005b), and the set of machine dialogueypeistare an extension of
the ones employed by Walker and Passo nlga_LL\2001). In @uditisingle utterance
may convey composite dialogue acts, which are compoundedlitiyple dialogue act

types with their corresponding slot-value pairs. Becatigenumber of unique dia-
logue acts is usually large, in the proposed simulation é&ork both conversants
choose actions based on dialogue act types, given in caotéxt partner conversant.

The reason for distorting machine responses (fed to thésuéB) was to model user confusions.
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Machine

U U
(1 S

a4

Simulated
User

Figure 4.2: Dynamics of human-machine communication at the dialogukeael (this
diagram does not follow the conventions of dynamic Bayesédworks). A conversant
in a knowledge-rich state; kobserves a knowledge-compact stateasd takes dia-
logue act ain order to feed it to its knowledge-rich state and convey it$ partner,
received distortedly a&. The current knowledge kaction a and partner response
determine the next knowledge-rich stage;kand so on until the end of the dialogue.
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Table 4.1: Dialogue act types for task-oriented human-machine diadsy

Agent ID | Dialogue Act Type| Sample Utterance
pro | provide I want a flight from Edinburgh to London.
User rep | reprovide | said ‘a flight to London from Edinburgh.’
con | confirm Yes, please.
sil | silence [remain in silencg
req | request And, what is your destination city?
apo | apology | am sorry, | didn’t understand that.
sic | singlelC A flight to London.
mic | multiple_IC A flight from Edinburgh to London.
sec | singleEC | think you said London, is that correct?
mec| multiple.EC | heard from Paris to London, is that right?
acc | acceptslot [move to next ascending slot with lowest value
_ dbq | db_query [performs a database qudry
Machine _ . :
ofr | offer Which option would you like?
sta | status Please wait while | query the database.
pre | present The cost of this flight is 120 pounds.
rel | relax Try again with some different information.
ack | acknowledgement| All right, this flight has been booked.
ope | opening Welcome to the travel planning system.
clo | closing Thank you for calling, good bye.

Abbreviations: IC = Implicit Confirmation, EC = Explicit Céirmation.

4.3.1 Knowledge representation for conversational agents

The proposed dialogue simulator uses ontologies to repirése conversant’s knowl-

edge base. An ontology in its simplest form can be charaetgrs a data model with

the following tuples: instances of classes, classes in dineadh, attributes of classes,

and relationships between classes creating a hierardcticedture that specifies how

objects relate to one another, resembling the object-tmibparadigm_(ﬁ_ﬂﬂer. 1993;

hol

n

runinger, 19

nd Studer,'2004). §@bkand B.2 show the

classes to instantiate for creating the knowledge bid8esdk", where attributes have

either deterministic or stochastic values. This chapterdsithe issue of inference and

focuses on adding information with the instructigpdate(k,class.attribute, valuahd

guerying what is known with the instructiaet(k,class.attribute)
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4.3.2 Modelling conversational behaviour

The proposed dialogue simulation approach models the mivaxf both conversants.
Whilst the simulated environment can be used to learn disd@fyrategies, the machine
behaviour can be used as a baseline to compare its perfoeragamst other dialogue
strategies. Algorithm 5 specifies the high-level steps forusating a task-oriented
human-machine conversation. Briefly, the algorithm stytnitializing parameters
for the knowledge bases of both conversants. It employ® tfuections described
later: T{" is the machine dialogue strategy, is the user dialogue strategy, adds
the distorter of machine/user dialogue acts. A conversdatacts with their partner
by: (a) observing the current knowledge-compact states€bgcting an appropriate
dialogue act type, (c) generating a dialogue act with theecirdialogue act type in
context, (d) distorting the dialogue act to simulate misgggtions or misunderstand-
ings, (e) updating its knowledge-rich state with the uradistd dialogue act, and (f)
updating the knowledge-rich state of its partner with trstatted dialogue act.

Algorithm 5 Simulator of Task-Oriented Human-Machine Conversations
1: function HUMAN MACHINEDIALOGUESIMULATOR( )

2: kg' < initialize machine knowledge-rich state
3: kg < initialize user knowledge-rich state
4: t < initialize time-step to 0

5: repeat
6: §" < observe machine dialogue state fréfh
7: af" — choose machine dialogue act type followm§(s")
8: Generate machine dialogue aedialogue act typ@]" in context
o: a" — get distorted dialogue act frod{a", k")
10: Updatek™ with a" and updatdg’ with &"
11: s' < observe user dialogue state frd¢h
12: a' — choose user dialogue act type followiryfs')
13: Generate user dialogue aetdialogue act typey' in context
14: &' — get distorted dialogue act frod{af, ki')
15: Updatek' with a and updat&™ with &'
16: t—t+1

17: until one of the conversants terminates the conversation
18: end function
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The process described previously, iterates until one ottmwersants terminates

the dialogue al time-steps. Enumerating all possible machine or user gisd@cts

usually results in large sets. Therefore, the approacmtakéehis chapter assumes

that the action selection of both conversants is based dogtia act types rather than

dialogue ac% This is beneficial because dialogue act types represeivedyy small

sets. Based on this, the machine takes actions followirlgglie strategyt™, and the

user takes actions following dialogue stratetjydefined by

;

ope
req
sic+req
mic+req
apo+req
sec

mec
(g") =< acc
dbg+ sta
pre+ofr
apo+ofr
ofr

ack

rel

clo

\

first time step

unknown slot in focus

unknown slot in focus and Single Slot to Confirm (SSC)
unknown slot in focus and Multiple Slots to Confirm (MSC)
slot in focus with low confidence level

slot in focus with medium confidence level and SSC

slot in focus with medium confidence level and MSC

slot in focus with high confidence level

null database result and confirmed non-terminal slots
database result with few uninformed tuples

terminal slot with low confidence level

unconfirmed terminal slot and db tuples presented before
unacknowledged dialogue goal and confirmed terminal slot
empty database result and confirmed non-terminal slots

otherwise
(4.1)

( . . . .
pro if last machine action is a request or offer
con if last machine action is a correct explicit confirmationmcarrect

™(g') = explicit confirmation (the latter only with some probalyi)it

rep if last machine action is an apology or incorrect confirmatio
_ sil otherwise

(4.2)

Once an action has been chosen, it takes CCE‘ItBKl account so that conversa-

tions can be generated at the dialogue act level. Althouglstiategyr” may not

include all possible realistic behaviours, it yields camrbehaviour, and its evalua-

tion is addressed later. Finally, the stratetfyis the one which we hypothesise will be

outperformed by the reinforcement learning agents as ibestin the next chapters.

2Table[4.2 shows an example using dialogue acts, dialogugmes would ignore slot-value pairs.
3Context is given by the dialogue state, which specifies thigsifocus, slots to fill or confirm, etc.
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4.3.3 Speech recognition error simulation

Due to the fact that current Automatic Speech RecogniticBRAtechnology is far
from perfect, errors have to be modelled in the simulatedrenmnent. For such a
purpose, user dialogue acts were distorted according to

a without distortions if p(random < 1— p(error)

5(at,kt)={

a: with insertions/substitutions/deletions otherwise
(4.3)

where the amount of error for each conversant is retrievah their knowledge
base as probabilitp(error) = get(k;, recognitionker). As a fixed keyword error rate
was assumed due to the lack of training data, errors wereledmypth a flat distri-
bution for each slot value (keyword) in the dialogue actthat is, equal amounts of
insertions, substitutions and deletions. Once keywordsheen distorted, they were
assigned the well known three-tiered confidence levels dicate their recognition
confidence. For each keyword, a confidence level was sampeddne of the dis-
tributions shown in Figure_4.3. Confidence levels were usezhtilyze the effects of
different ASR confidence distributions. They were preférecause the true distri-
butions of confidence scores for correct and incorrect neitiog were assumed to be
unknown.

| [ JLow Confidence [ ]Medium Confidence [l High Confidence|

1

0.9

0.8

0.7

0.6
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0.4r R

0.3 b

Probability of Occurrence

0.2 4

0.1 b

0

Pessimistic Balanced Optimistic
Distributions for Sampling Confidence Levels

Figure 4.3: Discrete probability distributions for sampling threested speech recog-
nition confidence levels assigned to keywords in distorsed dialogue actsy'.
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4.3.4 Database querying simulation

Using a real database for dialogue simulation is simply anpcal due to the lengthy
time required to execute large amounts of queries. For symlr@ose, a model to
simulate database queries is much more practical for famsilations, which are due
to computations in main memory rather than in secondary mgnio this way, the
proposed simulation environment produced the databasemes according to

;

null  if slotsin the dialogue sta®" are unfilled
none if non-terminal slots ig" are confirmed ang(random < 0.1

d(g") =

few if non-terminal slots irg" are confirmed

many otherwise.
(4.4)

4.4 Experimental spoken dialogue systems

4.4.1 Case study: flight booking system

This is a 6-slot mixed-initiative spoken dialogue systerthia flight booking domain,
used as an example in the previous chapter. Its state repatisa is described in
Table[B.3, which shows the state variables that representrithichine knowledge-
compact stateq"; see Tablé BI2 for more details of the state variables. Foorac
selection, Tablé Bl4 shows the action set based on dialogiugy@es, which corre-
spond to dialogue acts when they take context into accoums. dialogue system had
281250 states and 10 actions, resulting B million state-actions (see equationl4.5).
If V is the set of state variables aAds the action set, then:

ISx Al = ( rL|vi|) x |A]. (4.5)

Using this state representation, action set, and simulabdviours described in
the previous section, simulated conversations at thegli@act level can be generated.
A sample simulated conversation is shown in Tablé 4.2, whieks an example of co-
herent simulated user behaviour. In this sample dialogue tala machine misunder-
standing of ‘destination city’ in the second system ture, shmulated user reprovides
its value despite the fact that is being requested for aréifiteslot. Between system
and user turns, dialogue acts are distorted as describedtiog4.8. Arguably, this is
the kind of behaviour that is necessary to generate reatigtlogue simulations.
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Table 4.2: Sample dialogue in the flight booking system. Although sitiwuis are only

based on dialogue acts, an equivalent wording is given fatéelb understanding. This

dialogue shows a sample speech recognition error after teeuser utterance.

Agent | Dialogue Act Wording
SYS | req(depcity) Tell me your flight information.
USR | pro(depcity=edinburgh, | I would like a flight from Edinburgh to Paris.
descity=paris)
ASR [ would like a flight from Edinburgh to Rome]
SYS | mic(depcity=edinburgh, | OK, a flight from Edinburgh to Rome,
descity=rome)+req(date)| when do you want to travel?
USR | rep(descity=paris) | said ‘to Paris!
SYS | sic(descity=paris) OK, aflight to Paris,
+req(date) when do you want to fly?
USR | pro(date=01ldec, First of December, flying with British Airways.
airline=britishairways)
SYS | apo(date)+req(date) I’'m sorry, when do you want to travel?
USR | pro(date=01dec) On the first of December.
SYS | mic(date=01dec, airline=| Travelling on the first of December with
british.airways)+req(time) British Airways, at what time do you prefer
your flight?
USR | pro(time=morning) In the morning.
SYS | apo(time)+req(time) I’'m sorry, at what time do you prefer your flight~
USR | rep(time=morning) In the morning.
SYS | sec(time=morning) Did you say in the morning?
USR | con(time=yes) Yes please.
SYS | dbg(dhquery)+sta(db) Please wait while | retrieve information ...
USR
SYS | pre(dhresult)+ofr(flight) | All right, flights from Edinburgh to Paris on
the first of December in the morning travelling
with British Airways: choicel, choice2, choice
Which choice do you prefer?
USR | pro(flight=choice?2) The second one please.
SYS | sec(flight=choice?2) Did you say choice two?
USR | con(flight=yes) That's right.

Note: more complex information presentation is considé®gbnd the scope of this work.

7
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4.4.2 Case study: travel planning system

This is a 26-slot multi-goal mixed-initiative spoken diglee system in the travel plan-
ning domain, allowing users to book single flights, returghts, hotels and cars.

This system is similar to the CMU Communicator (Rudnickylet®99), part of the

DARPA Communicator systems (Walker et al., 2001). It sufgptire following fea-

tures: hand-crafted or learnt dialogue strategies, malgjpals within a single dialogue
(see Tabl¢ BJ5), and implicit switching across flight dialegyoals. The action and
state spaces are described in Table$ B.6and B.7. This dakygtem had.8 x 1072
states and 15 actions, resulting ifY & 1073 state-actions (see equationl4.5). Such a
state-action space (decomposed as in the next chapteryiranthted behaviours of
the previous section, can be used to simulate conversatitdhe dialogue act level. A
sample simulated dialogue is shown in Taljle$ 4.3[and 4.4wdives an example of
switching across dialogue goals. The scenario is as folldkes user aims to book a
return flight, but due to finding an empty database resultuies is asked to try with
some different information (possibly switching from retutight to outbound flight
and back again), once the system returns where it was, iince@s the dialogue.

4.5 Evaluating user and machine dialogue behaviour

The evaluation metrics described in this section have twpgres: (1) to investigate
if simulated user behaviour generates user responsesg®hble human responses,
and (2) to investigate if the hand-crafted dialogue stratgscribed in this chapter
is a reasonable baseline to compare against other compukilogue strategies. This
section describes metrics for such a purpose, but due tatheéHat they require real
annotated dialogue data, their evaluation is reported apieh(T.

45.1 Evaluation metrics for user behaviour

The evaluation of real and simulated user behaviour iseduwut with three evalua-
tion metrics from two different perspectives. The first pexgive evaluatedialogue
similarity , whereprecision-recallquantifies the predicted user responses from a user

simulation model (strongly penalizes unseen resporllsﬂ}a(ﬂmnn_el_flilLZD_OJSa)),

and probabilistic dialogue similarit)complements the previous metric by comparing

probability distributions of user dialogue acts based @thlback-Leibler divergence

' ILZD_CBS). The second perspective eveddailogue coherencewhere
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Table 4.3: Sample simulated dialogue in the travel planning systenmnt (pee).

m.

Agent | Dialogue Act Wording

SYS | ope() Welcome to the travel planning dialogue syste

SYS | req(depcity) Tell me your flight information.

USR | pro(depcity=edinburgh, | would like a return flight from Edinburgh
descity=london, to London travelling with Air France.
airline=air france,
flight_type=return)

SYS | mic(depcity=edinburgh, A return flight from Edinburgh to London
descity=london,airline=lufthansa, travelling with Lufthansa.
flight_type=return)+req(deplate) | When would you like to fly?

USR | rep(airline=airfrance, | want to travel with Air France on the
depdate=eighteentimovember, | eighteenth of November in the afternoon.
deptime=afternoon)

SYS | mec(airline=airfrance Did you say on the eighteenth of November
depdate=eighteentinmovember, | in the afternoon travelling with Air France?
deptime=afternoon)

USR | con(depdate=yes) Yes

SYS | req(retdate) When do you want to return?

USR | pro(rettime=evening, In the evening of the twenty first of February.
ret date=twentyfirst_february)

SYS | mec(rettime=evening, Did you say on February twenty first
ret date=twentyfirst_february) in the evening?

USR | con(rettime=yes,retdate=yes) That'’s correct.

SYS | dbqg(db)+sta(db) Let me retrieve your information.

SYS | rel(returnflight) I’'m sorry, | didn’t find any flights from ...

Please try again with some different informatic

USR | rep(airline=britishairways) Try flying with British Airways.

SYS | sec(airline=britishairways) Did you say travelling with British Airways?

USR | con(airline=yes) Yes | did.

SYS | dbqg(db)+sta(db) Let me retrieve your information.

SYS | pre(db)+ofr(choice) | found 2 flights ... Which choice do you prefer/?

USR | pro(choice=choicgwo) Number two please

SYS | sec(choice=choicéno) Did you say choice two?

USR | con(choice=yes) That’s correct.

n.
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Table 4.4: Sample simulated dialogue in the travel planning systent (pe).

Agent | Dialogue Act Wording
SYS | ack(returnflight) OK, I've added this flight to your itinerary.
SYS | req(wanthotel) Do you want a hotel in London?
USR | pro(wanthotel=yes) Yes please.
SYS | req(location) Tell me your hotel information.
USR | pro(location=downtown, | would like a cheap room in the city
price=cheap,brand=adyrand)| centre with any hotel.
SYS | mec(location=downtown, Did you say a cheap hotel in the city centre|
price=cheap, with any hotel brand?
brand=anybrand)
USR | con(location=yes, Yes | did
price=yes,brand=yes)
SYS | dbqg(db)+sta(db) Let me retrieve your information.
SYS | pre(db)+ofr(choice) | found three cheap hotels ...
Which choice do you prefer?
USR | pro(choice=choic®ne) Choice one please
SYS | sec(choice=choicene) Did you say choice one?
USR | con(hoice=yes) That's right.
SYS | ack(hotelbooking) OK, I've added this hotel to your itinerary.
SYS | req(wantcar) Would you like a car in London?
USR | pro(wantcar=yes) Yes please.
SYS | req(cartype) What kind of car would you like?
USR | pro(cartype=compactar, | would like a compact car near the airport.
location=airport)
SYS | req(summary) Do you want a summary of your trip?
USR | pro(summary=yes) Yes please
SYS | dbg(db)+sta(db) Let me retrieve your information.
SYS | pre(db)+ofr(booktrip) All right, you have a flight leaving ...
Do you want to book this trip?
USR | pro(booktrip=yes) Yes please.
SYS | ack(summarizerip) All right, your trip has been booked.
SYS | clo() Thanks for calling the travel planning syste

m.
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coherence error ratégnores the seen or unseen user responses, instead, iietass

them into coherent or incoherent responses.

To illustrate the similarity and coherence metrics consikde sub-dialogues below

with common system responses assumed from logged reabdéteser responses may

be real (see an example in Tablel4.5) or simulated (see eranmplables 416 aiid 4.7).

The acronyms of dialogue act types are described in Table 4.1

Table 4.5: Sample sub-dialogue with user responses assumed fromdoggledata.

Agent | Dialogue Act Wording
SYS | gre(), Welcome to the travel planning system.
req(depcity) Tell me your flight information.
USR | pro(depcity=amsterdam, | would like a return flight leaving from
flight_type=return) Amsterdam.
SYS | sic(flighttype=return),req(depity) | A return flight, where are you leaving from?
USR | pro(depcity=amsterdam) Amsterdam
Table 4.6: Sample sub-dialogue with simulated coherent user resgonse
Agent | Dialogue Act Wording
SYS | gre(), Welcome to the travel planning system.
req(depcity) Tell me your flight information.
USR | pro(depcity=paris,deptime=morning,| A return flight from Paris travelling in the
airline=air france,flightype=return) | morning with Air France
SYS | sic(flight type=return),req(depity) A return flight, where are you leaving from”~
USR | pro(depcity=amsterdam) Amsterdam
Table 4.7: Sample sub-dialogue with simulated random user responses.
Agent | Dialogue Act Wording
SYS | gre(), Welcome to the travel planning system.
req(depcity) Tell me your flight information.
USR | con(desicity=yes) Yes
SYS | sic(flight type=return),req(depity) | A return flight, where are you leaving from?
USR | pro(descity=paris) To Paris

?
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45.1.1 Precision-Recall

This measure is commonly used in the information retriewddifiand was suggested

by (Schatzmann et al., 2005a) to evaluate how well a useratimn model can predict

real user dialogue behaviourrecisionspecifies the fraction of correctly predicted real
user responses from all simulated respon&exallspecifies the fraction of correctly
predicted real user responses from all real responses. arbagxpressed as

Number of correctly predicted user responses
Total number of simulated user responsés

Precision= (4.6)

and
~ Number of correctly predicted user responses

Recall= .
Total number of real user responses
These scores are interpreted as the higher the more redlistuser responses. An

4.7)

average score of recall (R) and precision (P) calHetdeasuras defined by

2PR
(P+R)’

(4.8)

If we want to compute the F-measure score in dialogue dataslti values can be
ignored to reduce data sparsity while preserving the cawéyformation. (Schatz-

mann et al., 2005a) suggested to compute precision-regalbbsidering a user di-

alogue act as a sequence of actions, e.g. the dialogue aftigmcity,flight_type)’

is equivalent to{ pro(depcity), pro(flighttype)}. Considering the given sample sub-
dialogues, the F-measure score for real vs simulated cohergponses i5 = 0.75,
and the score for real vs simulated random responges-if. Alternatively, the scores
can be computed in a more strict way by considering each esponse as a single
user action instead of multiple ones. Precision-recalllmamecomputed as follows:
the scores for real vs simulated coherent responséds ar@.5; and the score for real
vs simulated random response$-is- 0.

4.5.1.2 Probabilistic Dialogue Similarity

The purpose of this measure is to evaluate the probabiistidarity between two sets
of dialogues. The similarity between real and simulatetbdizes has been analyzed

using the Kulback-Leibler divergencJe_(Q_ua;Lé.huilLeltlaﬂQELo), and here we propose

to apply it in a simpler way. First, compute two smoothed atmlity distributions of

machine-user dialogue acts, without slot values for redwoenbinationsP for one
data set and) for the other. For exampleP represents a distribution of the set of
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real dialogues an@ a distribution of the set of simulated ones. Then compute the
symmetric distance according to

DkL(P || Q) +DkL(Q] P)

D(P.Q) = 5 , (4.9)
whereDg\ is the Kulback-Leibler divergence (distance) betwBeandQ:
Dri(P1Q) =) pilog (%» (4.10)

Tabled4.B and 419 use the sample sub-dialogues of thisctidssi order to show
the divergence between real and simulated coherent ugmnsss, and between real
and simulated random user responses. The probabilityliistns of occurrenc®
and Q were smoothed by assigning a probability mass of 0.1 to unseents, and
the method of preference can be used to address the issu¢aofmisity. It can
be observed that the symmetric divergence between realiandased random user
responses (2.536) is greater than between real and simdaterent ones (0.759).
This reflects the intuitive perception that the more realite user responses, the

shorter the divergence.

Table 4.8: Dialogue similarity results for real vs simulated cohersnb-dialogues.

Dialogue Act Pairs (SYS:USR) P | Q |DkL(P||Q) | DkL(QlIP)
gre(),req(depity):pro(depcity,flight_type) | 0.45| 0.45 0.000 0.000
sic(flight.type)+req(deprity):pro(depcity) | 0.45| 0.10 0.976 -0.217
sic(flight.type)+req(deprity):pro(depcity,

descity,deptime,airline) | 0.10| 0.45| -0.217 0.976
Divergence 0.759 0.759

Table 4.9: Dialogue similarity results for real vs simulated randonbsdialogues.

Dialogue Act Pairs (SYS:USR) P Q | DkL(P||Q) | DkL(QI|P)
gre(),req(depity):pro(depcity,flight_type) | 0.45| 0.05 1.426 -0.158
sic(flight type)+req(depity):pro(depcity) | 0.45| 0.05 1.426 -0.158
gre(),req(deprity):con(descity) 0.05| 0.45| -0.158 1.426
sic(flight.type)+req(deprity):pro(descity) | 0.05| 0.45| -0.158 1.426
Divergence 2.536 2.536
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It can be observed that this metric gives the same orderingensimulations than
the precision-recall metric. A validation of this orderitaking into account a corpus
of real human-machine dialogues is reported on chapter 7.

45.1.3 Coherence Error Rate

An evaluation metric calle€oherence Error Rate (CER3 proposed due to the fact
that most previously used metrics penalize unseen useavnmssp even when they may
be realistic. The key assumption in this metric is that giaerser knowledge-basg
and a set of dialogue coherence rules encoded into a fupetiercan evaluate — in
an approximated form — whether a user act#rs coherent or not. This metric rates
errors (in this context, incoherent dialogue acts) fromtao§@bserved events (user
dialogue acts in the data), in terms of dialogue act typesTabld 4.11):

1 u u
CER— 2noonerental i) _ 450 (4.11)
count(a}')

where the coherence of user dialogue acts is evaluateddacgdo

(0 if a; € {pro,rep}and unconfirmed slot in focus Ky

a' € {con} anda" € {secmeg
if a' € {pro,rep} anda" € {rel}
otherwise.

incoherentay, k') =

O O O
=

\

(4.12)

Equation’4.1P is suited for simple slot-filling applicatsrut for more complex
dialogues more rules have to be added. This metric takesaodount user dialogue
acts and decomposes them into dialogue acts with a sindlargdovithout slot value,
e.g. pro(descity). This procedure incorporates the conveyed informatiod, as:
sumes that the slot values are always consistent given agaaéat the beginning of
the conversation. In addition, this evaluation metric ¢ders the user dialogue act
‘silence’ as incoherent, the explanation for this consaatlen is because whatever the
user said (e.g. mumbles or out-of-vocabulary words), it matspossible to extract a
user dialogue act contributing to the conversation.

Given the sample sub-dialogues of this subsection, Tali@ghows the results of
coherence for real, simulated coherent and simulated ranger responses: 0%, 0%,
50%, respectively. Note that although simulated coherset tesponses do not match
the real ones, they are not being penalized because thegareasponses that make
sense according to the dialogue history.
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Table 4.10: Results of coherence for real and simulated user responses.

Data Set Dialogue Act Pairs (SYS:USR) incoherenta, ki)
gre(),req(depxity):pro(depcity) 0
Real gre(),req(degxity):pro(flight type) 0
sic(flight type),req(depxity):pro(depcity) 0
gre(),req(depxity):pro(depcity) 0
gre(),req(depxity):pro(deptime) 0
Simulated | gre(),req(degity):pro(airline) 0
coherent gre(),req(degxity):pro(flight type) 0
sic(flight type),req(depxity):pro(depcity) 0
, gre(),req(depxity):con(desicity) 1
Simulated o , )
random sic(flight type),req(defxity):pro(descity) 0

45.2 A reasonable choice of baseline machine behaviour

The use of speech recognition confidence scores has forokdrsdialogue strategies
to handle tradeoffs among acceptance, confirmation ancti@peeventsg, which can
be classified as corre&° = {ca,cc,cr} or incorrectE’ = {fa, fc, fr}. Table[4.1]
shows the categories of recognition events. A reasonablegdiie strategy would
choose actions maximizing correct acceptance/confirmaéection events, whilst
minimizing the incorrect ones. A simple metric to quantifiese events is referred
to as arEvent Error Rate (EVER)

count(g € ET)

EVER=
count(ej; € {EC,E'})

x 100, (4.13)

Table 4.11: Speech recognition events in spoken dialogue systems.

Recognition Event Correct| False (or incorrect
Acceptance ca fa
Confirmation cc fc

Rejection cr fr

For such a purpose, consider that speech recognition hgpeghfall within three
equally distributed regions of confidence scores (assumirtgaining data): low con-
fidence, medium confidence, and high confidence. A samplegiialannotated with
speech recognition events is shown in figure 4.12.
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Table 4.12:

Sample dialogue in the flight booking domain annotated witbesh

recognition events, showing an EVER score38f6 (including 3 incorrect events

and six correct ones). Notation: ca=correct acceptancesamgrect confirmation,

cr=correct rejection, fa=false acceptance, fc=false comfation, fr=false rejection.

Agent | Wording Speech Recognition Evel

SYS | Tell me your flight information.

USR | I would like a flight from Edinburgh to Paris.

SYS | OK, aflight from Edinburgh to Rome, ca(depcity), fa(descity)
when do you want to travel?

USR | | said ‘to Paris!

SYS | OK, aflight to Paris, ca(descity)
when do you want to fly?

USR | First of December, flying with British Airways.

SYS | I'm sorry, when do you want to travel? fr(date)

USR | On the first of December.

SYS | Travelling on the first of December with ca(date),ca(airline)
British Airways, at what time do you prefer
your flight?

USR | In the morning.

SYS | I'm sorry, at what time do you prefer your flightXr(time)

USR | In the morning.

SYS | Did you say in the morning? cc(time)

USR | Yes please.

SYS | Please wait while | retrieve information ...

USR

SYS | Allright, flights from Edinburgh to Paris on

USR

the first of December in the morning travelling
with British Airways: choicel, choice2, choice
Which choice do you prefer?

The second one please.

SYS
USR

Did you say choice two?

That's right.

cc(flight)
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In addition, consider the confirmation stratedikef Table[4,. 138 for the three confi-
dence regions. Which confirmation strategy is a better bwsef machine behaviour?
For perfect speech recognizers it has to be ‘Strategylaulmit leads to more effi-
cient conversations in terms of number of system turns; Hiati$ unrealistic. Thus,
a more reasonable choice of dialogue strategy is the onénoigahe lowest EVER
score, and can be expressed as

Baseline Strategy: arg mil_rllEvE RTT). (4.14)
e

Table 4.13: Confirmation strategies for different recognition confideiscore regions.
Notation: IC=implicit confirmations, EC=explicit confirnians, and AP=apologies.

Strategy | Low Confidence| Medium Confidence High Confidence
Strategy1l IC IC IC
Strategy?2 EC IC IC
Strategy3 AP EC IC
Strategy4 AP EC EC
Strategy5 EC EC EC

Results for this baseline strategy taking into account gu®rof real human-
machine dialogues is reported on chapter 7 (pagé 156).

4.6 Discussion

In order to learn spoken dialogue strategies in a practivdledfective way, a number
of issues must be addressed in the dialogue simulationamaent. The following
issues highlight the strengths and weaknesses of the goosulation framework:
(a) training data, (b) coherent user behaviour, (c) speeabgnition error simulation,
(d) complexity of user behaviour, and (e) evaluation of dated behaviour.

Firstly, without training data, how can a dialogue envir@mhbe simulated? In
the field of spoken dialogue systems, the chicken-and-egggm seems unavoidable:
data is required to build a system and the system is requiredltect data (Zue and

Glass| 2000). Besides, even in the presence of collectémbdiadata, it is expensive

and time-consuming to annotate for training a model thatiktes the conversational
environment. One possible solution is to use a heuristicaggh to model the dy-
namics of speech-based human-machine communication.isTthie approach that is



Chapter 4. A heuristic simulation environment for learning dialogue strategies 78

taken in this chapter, and a major criticism is that it maytnally reflect real conver-
sational behaviour. Nonetheless, its use is justified iéiph to find errors in dialogue
strategies, and/or if it helps learning agents to find diaéogtrategies that outperform
hand-crafted machine behaviour. The latter is addressex ifollowing chapters.
Secondly, do real users act with coherent dialogue behe®itfuve assume that
real users provide dialogue acts in a logically integrated @nsistent way, then the
approach of coherent behaviour is approximating real hehavwrevious studies sug-
gest that human dialogues maintain coherent behaviouef ithteract in a joint ac-
tivity (Eﬂighmah ‘JQjS;_G_LQSZ_and_SidInIQL_J.I9|8_6;_dI£.Lk_JDQBBere speech acts are
the basis for understanding dialogue cohereljpg_(élljsli&i;i&eadlel._li@). Based
on this assumption, user simulation following dialogueer@nce is a reasonable ap-

proach to follow, but it has received little attention in thi@logue simulation field.
Therefore, it remains to be investigated if user simulaipproaches taking into ac-
count coherence-based behaviour can help to optimize gatmbde policies.

Thirdly, the speech recognition error modelling in the regd conversational sim-
ulation environment may not be very realistic. This is to kpexted because the pro-
posed approach does not assume any training data. Howsgrdposed simulation
approach can be enhanced with probability distributionsradrs estimated from real

annotated data as in_Schatzmann etlal. (2007b). Noticelbkassue of real train-

ing data is crucial for the simulation of more realistic bébar. Due to the fact that
collecting training data is costly and time consuming, a&pbal future research direc-
tion is to investigate methods that generalize simulatééieurs for spoken dialogue
systems in different domains.

Fourthly, another criticism in the proposed conversatismaulation environment
is that simulated user behaviour was narrowed down to fevoglig acts (provide
information, re-provide information, confirm informatioand silence). Whilst this
represents basic behaviour for interacting with informaseeking dialogue systems,
richer dialogue behaviour must be taken into account suesldag questions.

Fifthly, how can simulated user behaviour be evaluateda8sethere is a variety
of proposals on how to evaluate user simulations, this enggrbposed two metrics to
evaluate user behaviour based on dialogue coherence aitargyrand also suggested
to validate their results with the more established meRrectision-Recall’. On the one
hand, dialogue coherence can be used to evaluate whethreaaigms are coherent
or not, based on knowledge about the conversation with agacbnversant. On the
other hand, itis complemented by dialogue similarity inesrid determine how closely
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simulated dialogues resemble real ones in terms of macelsaeepairs of dialogue acts.

Finally, what is a reasonable baseline of machine dialogimawour? If a simu-
lated environment can help conversational agents to findhaptialogue behaviours,
then they need a baseline for performance comparison. Howevaluating dialogue
behaviours is a difficult task despite the existence of wetleapted metrics such as
task completion, average system turns per dialogue, and &oor rate. Nevertheless,
the proposed simulation framework considered the follgwtimree-tiered confirma-
tion strategy as a baseline: rejection of keywords with lonflence scores, explicit
confirmation for medium confidence scores, and implicit comdtion for high confi-
dence scores. Such a strategy included in equiation 4.1,seasas a baseline of learnt
dialogue behaviours described in the following chapters.

4.7 Summary

In this chapter a simple conversational simulation envitent was proposed based on
the heuristics of the dynamics of human-machine communpitat the dialogue act
level. This simulation environment does not require tragnilata, generates coherent
and coherent-distorted user behaviour, and is straighia to implement and modify.
The simulation environment encapsulates the followingusators: user behaviour,
speech recognition error modelling and database behaviogiuded is a baseline
of machine dialogue behaviour with which to compare thegreraince of learnt di-
alogue strategies. In addition, three simulation evahmainetrics under two differ-
ent perspectives were describelialogue similarityusing ‘Precision-Recall’ and ‘the
Kulback-Leibler divergence’, andialogue coherencasing ‘Coherence Error Rate’.
These metrics require annotated real conversations atidfegde act level. Whilst
Precision-Recall is part of the state of the art in the fidie, dther two metrics were
proposed for additional assessments of dialogue realisim hypotheses of this chap-
ter are three-fold:

(1) the proposed simulation environment can help learngemts to find behaviours
with superior performance to hand-crafted ones,

(2) the proposed heuristic machine dialogue behaviouréssanable baseline, and

(3) the proposed simulation metrics can be used to evaluatmyde realism.

Experimental results on real human-machine spoken diakbtw validate these hy-
potheses are reported in chafer 7.



Chapter 5

Hierarchical dialogue optimization: a

divide-and-conguer approach

This chapter describes a novel approach for scalable amton of spoken dialogue
strategies using Semi-Markov decision processes andtinecal reinforcement learn-
ing. Sectior 5.R treats the optimization of machine diatogehaviour as a Semi-
Markov Decision Process (SMDP), and explains how to applyD®®8l to spoken
dialogue management. Sectibnl5.3 describes a learningitalgofor hierarchical
SMDPs. Sections 5.4 and 5.5 report experiments and ressilig a 6-slot mixed-
initiative flight booking dialogue system and a 26-slot mgtial mixed-initiative travel
planning dialogue system. Sectionl5.6 discusses the sfieagd weaknesses of the
proposed approach. The last section summarizes the claquteiraws conclusions.

5.1 Introduction

Previous investigations in the literature of spoken dialgystems have formulated
the task of dialogue strategy design as a Markov Decisiond®(MDP) (Levin and
Pieraccini lﬂé';l.ejdﬂ_eLaL__ZdOO) or as a Partially Obsgble MDP (POMDP) (Roy
et al./2000; Young, 20 m s, 2006), where the go#d isfer the best action for
each state or belief state. The MDP and POMDP formalism&sheommon problem

that affects their practical applicatiorikre curse of dimensionalitfConsequently, only
small-scale systems can be optimized. This research addréte problem of scalable
dialogue optimization with hierarchical structures, opting sub-dialogues instead
of full dialogues. Ahierarchical reinforcement learning ageid used to provide a
hierarchy of sub-solutions and behaves by executing coitepasd primitive actions.

80
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5.1.1 Background on dialogue strategy learning

A human-machine dialogue can be defined as a finite sequennéohation units
conveyed between conversants, where the information cateberibed at different
levels of communication such as speech signals, words, iafmbde acts. Figure 5.1
illustrates a model of human-machine communication. Asereattion between both
conversants can be briefly described as follows: the machuesves a distorted user
speech signak“from which it extracts a user dialogue agt and enters it into its
knowledge base; then the machine updates its dialoguesStatéh information ex-
tracted from its knowledge base; this dialogue state isivedeby the spoken dia-
logue manager in order to choose a machine dialoguefctvhich is received by
the response generation module to generate the corresygomdichine speech signal
conveyed to the user.

Machine
L ~u ~qy
Ly Speech a;
; | understanding ¢
U Knowledge
Lt E base
User S%n
N v
~mt Dialogue
4 ! manager

, Response |, |
- x;n generation a}%’n

I L
Speech signal and word level Dialogue act level

Figure 5.1: A pipeline model of speech-based human-machine commiamgcathere
dialogue state8 is used by the dialogue manager to choose act{BnFfor dialogue
strategy learning the speech signals and words can be amitte

A conversation follows the sequence of interactions aboweni iterative process
between both conversants until one of them terminates su#dng that the machine
receives the reward . ; for executing actiora; = a" when the conversational envi-
ronment makes a transition from stafe= g to states ;1 = '} ;, a dialogue can be
expressed as

D={s1,a1,r2,%,82,r3,...,ST-1,81-1,T7,ST }, (5.1)
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whereT is the final time step. Such sequences can be used by a renfent learning

agent to optimize the machine’s dialogue behavilour (LemohRieraccini, 1997; Levin

etal.; 1998, 2000). Although human-machine conversatian$e used for optimizing

dialogue behaviour, a more common practice is to use siron&{see chaptét 4).

A reinforcement learning dialogue agent aims to learn itsal®ur from inter-
action with an environment, where situations are mappedtiorss by maximizing a
long-term reward signal (see sectionl2.2 for an introdadidareinforcement learning).
Briefly, the standard reinforcement learning paradigm wdnkusing the formalism of
Markov Decision Processes (MDP ' talu_ié_gﬁt.@_and_&anlol__ls)jb&

[B.eﬂs&ka.s_andl&ilsﬂliM9lﬁ;_B_QulﬂiﬁLell ti” i999). MDP is characterized by

a set of state§, a set of action®\, a state transition function, and a reward or per-

formance function that rewards the agent for each selecioha Solving the MDP
means finding a mapping from states to actions corresponding

T (8) = argarpeg@*(st,ao, (5.2)

where theQ function specifies the cumulative rewards for each statierapair. An
alternative for sequential decision-making under unaasgtas the POMDP model. In
a POMDP the dialogue state is not known with certainty (asepgd to an MDP), and
solving it means finding a mapping from belief states to astio

Spoken dialogue systems that learn to optimize their belaviave largely been

investigated within the flat tabular reinforcement leagn radigmL(LeMLn_el_leLlQbO;
el 2000 vou, 208b: singhel . 2002 St lewtcuh 200 s

2006; Young et all, 2007). The scalability of this approachmited because search

spaces grow exponentially according to the number of st@atales taken into ac-
count (referred to as ‘the curse of dimensionality’). Evgatems with simple state
representations may have large search spaces with quiekigtowards intractabil-

ity. This problem has led to the use of function approxinmt{Lb_eﬂe_cLe_el_al ,2004;

Henderson et al., 2005, 2008) in order to find solutions onced state-action spaces.

Evolutionary methods have also been been used to find optifml@igue policies on

compact state-action spaces (Toney, 2007). All thesetigat®ns have been applied

to small-scale dialogue systems aiming for a single globhlt®n. However, little
attention has been paid to finding solutions with the diade-conquer approach,
where hierarchical POMDPs with a bottom-up approach haea la@plied to small
state-action spacés_(—lzmls004), and hierarchicalveatanning and learning has
been used for dialogue systems with few slots of inform : b).
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5.1.2 Related work on hierarchical reinforcement learning

Prior work in the literature of artificial intelligence hawestigated divide-and-conquer
approaches to address the problem of reinforcement lepomitarge search spaces, re-
ferred to as Hierarchical Reinforcement Learning (HFELWMM&, 1989 Singh, 1992;

Ibling, 1998! Dayan and Hinton, 1992; Bradtke and Dhmi Karlsson, 1997;
Parr,[1998; Sutton et al., 1999; Precup, 2000; Dietteri®B0z ;&La|n. 2002; Andre,
2003;/Hen 2003; Mahadevan et al., 2004 MJa thi, 200&Gva@mzadeh and Ma-
hadevan| 2 7[ Jonsson, 2008). The fundamental theorndetiRL is based on

Semi-Markov Decision Processes (SMDPRs) (Barto and MaMLjIﬂD_QB), see chap-

ter[3 for an introduction. HRL is attractive due to the foliog benefits: (a) improved

<

exploration, because exploration can take multi-timesbgpusing low-level and high-
level actions; (b) reduced computational demands, bedanesking a problem into
sub-problems helps to avoid irrelevant features of the flatrenment state; and (c)
knowledge transfer, because components of solutionstlearnprevious problems can
be reused in new problems. However, the price to pay for seclkfis is that HRL
methods may learn sub-optimal solutions. Nevertheles4, MBthods learn the best
policies according to the constraints specified in the W,Dieﬁﬂid'l‘_ZD_O_da).
Related work on SMDPs and HRL can be broadly classified intoapproaches:
those that learn on a single SMDP and those that learn onpteu8MDPs. Methods
learning on a single SMDP have focused on high-level andléws} actions to ac-

celerate learning (Bradtke and HMMMMIM9

ndre and Russ

v

[, 2000). Although this approach can nigitiee curse of dimension-

ality problem, it is limited because the environment is esgnted by flat states rather
than hierarchical states. Therefore, learning using desiBlyIDP lacks scalability and
reusability. In contrast, learning on multiple SMDPs carpéw hierarchical states,
actions and rewards. Using hierarchical SMDPs facilitatage abstraction, meaning
that smaller solutions can be found faster, with reducedptdational demands, and
with opportunities for policy reuse (Dayan and Hinton, &*&E_ner_ic_h 2000a).
This chapter investigates how to create hierarchical disocontrollers for large

MDPs. For such a purpose, it proposes to decompose a largeiM®R® hierarchy of
Semi-Markov Decision Processes (SMDPs), and to find theypfwr each SMDP with
hierarchical reinforcement learning. This approach ha$aen applied before to dia-
logue strategy learning, and it will be shown that the preplospproach is promising
for efficiently optimizing the dialogue behaviour of largate-action spaces.
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5.2 Dialogue as a Semi-Markov Decision Process

This thesis treats spoken dialogue control as a discretéBankov Decision Process
(SMDP) in order to address the problem of scalable dialogienization. A discrete-
time SMDPM = <S A T,R> is characterized by a set of staig@s set of action#; a
transition functionT that specifies the next stafegiven the current stateand actiora
with probabilityP(s, t|s,a); and a reward functioR(s, T|s, a) that specifies the reward
given to the agent for choosing actianvhen the environment makes a transition from
states to states. The random variable denotes the number of time-steps taken to
execute actiom in states. This formulation, based on (Dietterich, 2000a) diffeinfr
the original formulation of SMDPs (Howard, 1971; Putterma®94), see sectidn 3.3
for more details. The SMDP model allows temporal abstractwhere actions take
a variable amount of time to complete their execution. I timodel two types of
actions can be distinguished: (a) single-step actionshigumrresponding to dialogue
acts, and (b) multi-step actions corresponding to suladiads. Figuré 512 illustrates
a conceptual dialogue at runtime with dialogue staesctionsa; and rewardsy.
Whilst the full dialogue and child dialogue execute prirgteand composite actions,
the grandchildren dialogues execute only primitive actiddote that the execution of
primitive actions yields single rewards and the executiboomposite actions lasting
T time steps yields cumulative discounted rewards givenmagttH- T.

Full dialogue . I3 :,,,7_|_,Y,r8_|_72,r12 .
(D)@ () ()@
ay e 13
Child B - el
dialogue LT o
HOIE .- 7 =15+ 77 i3 =T9 7710

Grandchildren .-~
dialogues, -~

-

- -
- -
- -
- -
- -
- -

(D) —0"()—@"5(0) (39)—8"()—@ ()
a4 a5 a9 10
Figure 5.2: Conceptual hierarchical dialogue at runtime with statgsastions a (last-

ing T time steps) and rewardsg.r;. Actions acan be either primitive or composite, the
former yield single rewards and the latter yield cumulativgcounted rewards.
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5.2.1 Dialogue control using hierarchical SMDPs

This research treats each composite dialogue action asaease®MDP as described
in (Cuayahuitl et al., 2007). In this way an MDP can be decoseg into multiple
SMDPs hierarchically organized intdevels and\ models per level, denoted as =
{Mij}, wherej € {0,...,N—1} andi € {0,....,L —1}. Thus, any given SMDP in the
hierarchy is denoted a\ﬂ'j = <Sj,A'j,Tj', R'j>, see FiguréXs]3 for an illustration.

(

LeveIO{

Levell{

——

Level 2

t M M7 M; M3
Figure 5.3: Hierarchy of SMDPs I\'{L where i denotes a level and j the model per level.

The goal in an SMDP is to find an optimal policy, that maximizes the reward of
each visited state. The optimal value functiéi(s) specifies the expected cumulative
reward of statesunderrt’. Similarly, the optimal action-value functid@*(s,a) speci-
fies the expected cumulative reward for executing acions and then followingrt*.
The Bellman equations fof* andQ* of subtasl«i\/l‘j can be expressed as

Vj*i(s) = maaX [; P}(S/’T|Sa a)[Rij(S/7T|S7 a) +yij*i(S/>] ’ (5.3)

Qjl(sa) = ; Pi(s,ts.@)[Ri(S,1[s,a) + V' maaxQT‘(d ,a)], (5.4)

where the discount rateQ y < 1 makes future rewards less valuable than immediate
rewards as it approaches 0. Finally, the optimal policy smhesubtask is defined by

' (s) = arg;ggj@}ki (s,a). (5.5)
These policies can be found by dynamic programming or retefoent learning algo-
rithms for SMDPs, the latter are preferred (see sub-se@idR).
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5.2.2 Decomposing a spoken dialogue manager into subtasks

Due to the fact that the process of automatically breakinlylB into sub-problems
is challenging, a heuristic approach is proposed to dividekgue-based MDP into
a hierarchy of dialogue-based SMDPs, and to perform statesabion in each SMDP.
The heuristic decomposition described here aims to be atyoefor specifying the
hierarchy of subtasks in hierarchical dialogue optimati

5.2.2.1 Hierarchical subtask decomposition

A dialogue task is decomposed into a root submgland set of meta-dialogue goals
ML= {M},...,M} ,}. Each meta-dialogue goal is decomposed into a set of dialogu
goalsM? = {M3,...,MZ ,}. Then, each dialogue goal is decomposed into a set of
slot filling strategies® = {M3,...,M3_,} such as for the initial slot, mandatory slots,
optional slots, and terminal slot. Finally, the last stageamposes every slot filling
strategy into a set of initiative strategied = {M7,...,M3_,} such as system-initiative
and mixed-initiative. Therefore, each dialogue subtagkéhierarchy is represented
with an SMDP, and the hierarchy can be denotedby- {M‘j }. The global decompo-
sition can have a maximum number of subtagkg = 1+W +W X+W XY+W XY Z
Finding the best hierarchy for a given conversational agelmé¢yond the scope of this

thesis (though see (Hengst, 2003) for an approach in hleratiscovery).

5.2.2.2 State abstraction

The decomposition above only specifies a hierarchy of disdagubtasks, but it does
not specify how to represent states with a more compactseptation. This is impor-
tant because the states in each subtask may have a largemiratage variables, and
some of them may be irrelevant for decision-making (thidse aeferred to as ‘state
abstraction’). In this thesis state abstractions are fipddoy the system developer.
Previous work has proposed methods for automatic stateagbish, but it has been
investigated for tasks with few state variablles ( DiettJ:r{QD_O_Qa Andre and Russell,
2002; Uther, 2002; Jong and Stone, 2005; Marthi et al., jmdr. 2008).

A bottom-up procedure was used for state abstraction in datbgue subtask:

(1) by removing irrelevant state variables such as the bkegaonly relevant for other
subtasks; and (2) by clustering state variables from chitdasks, e.g. aset of slotsina
semantic frame can be described with a single variable ipahent subtask. Figureb.4
shows this procedure aiming to represent the dialogue istate compactly.
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(a) Flat dialogue state

| T1| 9| T3| T4| 75| Te| 27| Tg| To[Tr0| -~ R T e T e e e e

(b) Hierarchical dialogue state

Meta-dialogue goal
(root subtask)

Dialogue goals

1
M,
es

Semantic fram

(c) Hierarchical dialogue state with clustered state variables Y1 describes subtask Mg
yo describes subtask M2
y3 describes subtask M2
y4 describes subtask M2
Mg y5 describes subtask M}
ye describes subtask M}

M3

Clustered state variables:

Meta-dialogue goal
(root subtask)

Dialogue goals
Mg
Semantic frames
Mg

M3
Figure 5.4: Conceptual example of heuristic dialogue state abstractioowing: (a)

| U5 | U [Zor{Zag]T20[30)

a dialogue state with the full set of state variables, (b) erhichical dialogue state
ignoring irrelevant state variables per subtask, and (c) @@compact representation
of the hierarchical dialogue state based on clustered statgables describing the

status of child dialogue subtasks.
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It can be noted that the subtasks at the bottom of the higrarsdha smaller number
of state variables for decision-making, and parent subtasé& a larger number of state
variables because they have to take into account theirrehislknowledge to make
decisions. However, the knowledge of the child subtasksbeanrepresented more
compactly in a parent subtask, which can be considered agl&dge at higher levels
of granularity. Consequently, the subtask at the top of taehchy uses a compressed
knowledge of the world by ignoring details only relevant d@cision-making at lower
levels in the hierarchy. For example: the meta-dialogué igoigure[5.4(c) ignores
most of the information used for slot filling in the semanti@nes.

5.2.3 Execution of dialogue subtasks

So far it has been said that a spoken dialogue manager carfibeddey a hierarchy

of dialogue subtasks/ = {Mij}, and that each subtask can apply state abstraction to
compress the state space. The indexawd j only identify a subtask in a unique way
in the hierarchy, they do not specify the execution sequehsebtasks because that
is learnt by the reinforcement learning agent. The exenufalialogue subtasks uses
a stack and operates as follows: the dialogue starts witmddmesubtasld\/lg in the
stack; when a child subtasmj1 is selected, it is pushed into the stack and control is
transferred to the child subtask which is executed untihe®y a terminal state — this
may involve a recursive execution of other subtasks that reagh the bottom of the
hierarchy; then the current subtask is popped off the stadkcantrol is transferred
back to the parent subtask at the next swegj; and so on until the execution of the
root subtask is completed, which empties the stack and nertes the dialogue.

5.2.4 Termination of dialogue subtasks

Typically, dialogue subtasks terminate when a goal has bemrhed; however, they
may require @emporal termination A spoken dialogue system might allow the user
to go backwards or forwards in the conversation, i.e. moweifferent subtasks in
the hierarchy. This requires a temporal termination of tineent subtask, a move to
another one, and a return to continue. The temporal termamatay require to update
the state variables of the current subtask and the clustdege variables at upper
levels in the hierarchy, so that each subtask can choosmadaicordingly. When a
subtask terminates its execution, it is popped off the stdakialogue subtasks. To
allow a dialogue agent to abandon a sub-dialogue, the bistate variable ‘END’
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can be added in a given subtask so that it can terminate ineandgi@istic way when
END = 1. This allows early subtask termination in the requiredagdjae subtasks.

5.2.5 State transitions in SMDP-based dialogue optimizati  on

Due to the fact that dialogue coherence is crucial for realldvspoken dialogue sys-
tems, two different kinds of states were employed in the SBIOR) knowledge-rich
statesk; and (b) knowledge-compact states Whilst the former include all possible
information about the conversation, the latter includey@subset of it. Knowledge-
rich states do not enumerate the vast combinations, they sidy the current state of
the world. These states hold attribute-values representad ontology-based struc-
ture. In contrast, knowledge-compact states — used to ehactsons — enumerate a
compact number of combinations. This implies non-deteistilmstate transitions in
the SMDPs at the knowledge-rich level, which is due to stetitbaiser simulation and
ASR error modelling (see chaptdr 4 for more details aboustimelated dialogue en-
vironment). Figuré 5]5 shows the dynamics in a dialoguet&MDP. In addition,
Figure5.6 shows an illustrative example at runtime of kreslgle-rich and knowledge-
compact states for dialogue-based SMDPs.

/@ /@ i

/ y At 47 Atyr
G\ )
ky k @

) (&

Figure 5.5: An SMDP for spoken dialogue control. Notation: bottom @sctepresent

knowledge-rich states, upper circles represent knowlemgepact states, rectangles
represent actions, and diamonds represent rewards. Thardis indicate that di-
alogue states;sare observed from knowledge statesdnd actions acan be either
primitive (executed within the same SMDP) or compositeoiawa child SMDP).



(a) Representation of knowledge-rich states (b) Representation of knowledge-compact states

lastMachineDA=dialogue-act-type(slot-value pairs) deocity  desCity  dat ; . flightOffer  databaseTuples
lastUserDA=dialogue-act-type(slot-value pairs) epHity  destlly  date ime - airine slotinFocus
goallnFocus={flightBooking} | | | | | |
frameInFocus={mandatory,optional,terminal}
slotInFocus={depCity=0,desCity=1,date=2,time=3,airline=4,flightOffer=5} DIALOCUE | X7 | X2 | X3 | X4 | X5 | X6 | X7 | X3
databaseTuples={none=1,few=2,many=3}

kt = { depCity=(value,confidenceScore=[0...1],status={0,1,2,3,4},numRetries) | | | | | | | |
desCity=(value,confidenceScore=[0...1] status={0,1,2,3,4} ,numRetries) D&TGLN Dy Dy Dy Dy Dy Dy D, D,
date=(value,confidenceScore=[0...1],status={0,1,2,3,4},numRetries)
time=(value,confidenceScore=|0...1] ,status={0,1,2,3,4},numRetries)
airline=(value,confidenceScore=|0...1] ,status={0,1,2,3,4},numRetries)
flightOffer=(value,confidenceScore=[0...1] status={0,1,2,3,4} ,numRetries)

if departure city (mandatory)
if destination city (mandatory)

0
. 1
if unknown slot
. R _ ) 2 if departure date (mandatory)
if known with low confidence D; = 3 if departure time (mandatory)
4
5

'}f known w%th n}edium confidence if airline (optional)
if known with high confidence if flight offer (terminal) { 1 i none

o]

(=)

[
W= O

if confirmed slot Dy={ 2 if few

3 if many
(c) Knowledge-rich states

lastUserDA=null ( lastUserDA= lastUserDA=null lastUserDA=rep(desCity=Paris)
goallnFocus=flight Booking pro(depCity=Edinburgh,desCity=Paris) goallnFocus=flightBooking goallnFocus=flightBooking
frameInFocus=mandatory goalInFocus=flightBooking frameInFocus=mandatory frameInFocus=mandatory
slotInFocus=depCity frameInFocus=mandatory slotInFocus=depCity slotInFocus=depCity
databaseTuples=none slotInFocus=depCity databaseTuples=none databaseTuples=none
ke = depCity=(null,0,0,0) databaseTuples=none depCity=(Edinburgh,0.85,3,0) depCity=(Edinburgh,0.85,4,0)
17 desCity=(null,0,0,0) ko = ¢ depCity=(Edinburgh,0.85,3,0) ks = ¢ desCity=(Rome,0.54,2,0) ks = ¢ desCity=(Paris,0.77,3,1)
date=(null,0,0,0) desCity=(Rome,0.54,2,0) date=(null,0,0,0) date=(null,0,0,0)
time=(null,0,0,0) date=(null,0,0,0) time=(null,0,0,0) time=(null,0,0,0)
airline=(null,0,0,0) time=(null,0,0,0) airline=(null,0,0,0) airline=(null,0,0,0)
flightOffer=(null,0,0,0) airline=(null,0,0,0) flightOffer=(null,0,0,0) flightOffer=(null,0,0,0)
lastMachineDA=req(depCity) flight Offer=(null,0,0,0) lastMachineDA=mic(depCity=Edinburgh, lastMachineDA=
lastMachineDA=acc(depCity,desCity) desCity=Rome)+req(date)) sic(desCity=Paris)+req(date))
(d) Knowledge-compact
states
51:|o|o|o|o|o|o|o|1|32:|3|2|o|o|o|o|o|1| 33:|3|2|o|0|o|o|2|1| 34:|4|3|o|o|0|o|2|1|

Figure 5.6: Example in the flight booking domain of knowledge-rich st&eand knowledge-compact statedar dialogue-based SMDPs
— note that only the latter states are used for decision-n@kiWhilst (a) and (b) show the data structures for both stafe) and (d) show
those structures at runtime corresponding to the first foachine actions of the dialogue shown in page 35.
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5.3 Reinforcement learning for hierarchical SMDPs

The agent-environment interaction for dialogue contrahgdierarchical SMDPs is
illustrated in Figuré 517. Whilst the environment is moddlwith a hierarchy of dia-
logue SMDPs, the learning agent takes aca'@mij in statese Sj by using a hierarchy
of policies executed with a top-down mechanism. Note thaisiten-making on each
SMDP uses its corresponding policy, e.g. the behaviouramabt dialogue subtasmg
follows policy (s). This section describes an algorithm that simultaneowesiynis
a hierarchy of SMDP-based action-value functi@Té(s, a). The approach described
in this chapter differs from the MAXQ framework as followq:) the state abstraction
per subtask is specified by the system developer, (2) it doesse pseudo-rewards,
(3) the state transition function is based on knowledgepamhstates derived from
knowledge-rich states that store detailed informatiorhefénvironment, and (4) the
policy is executed only in a hierarchical way rather tham{raerarchical.

AGENT

a =m(s), where 7 = {r, ..., 7y}

action

ENVIRONMENT

Figure 5.7: Architecture of the agent-environment interaction for SRBased hierar-

chical reinforcement learning using a hierarchy of dialegubtasks IYI The subtasks
are executed in a top-down hierarchical way using the wedwn stack mechanism.
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Several methods have been investigated for learning arbigraf SMDPs such as
Hierarchical Semi-Markov Q-Learning (HSMQ-Learninb)_@Er_ic_h 2000b), where
the action-value functio@]—ki of equatioi 5.4 is approximated according to

Qj(sa) — (1-a)Qj(s,a) +a [r +Y maxQ) (stH,a’)] : (5.6)

The summation over atltime steps as appears in equatfion 5.4 is reflected here hy usin
cumulative rewards = r,1 + Vrei2 + Vris 3+ ... + YUl received for executing
actionsa;, and by raising/ to the powen. Algorithm 6 shows the procedural form of
HSMQ-Learning adapted for handling knowledge-rich andiedge-compact states.
Briefly, this learning algorithm receives dialogue suthi‘kand knowledge baslke
used to initialize stats, performs similarly to Q-Learning for primitive actionsiitb

for composite actions it invokes recursively with a childbg&sk. When the subtask is
completed witht time steps it returns a cumulative rewarat timet + t, and continues

its execution until finding a terminal state for the root aslhdl\/lg. This algorithm is it-
erated until convergence occurs to optimal context-inddpet policies (see pagel50).

Algorithm 6 HSMQ-Learning with knowledge-rich and knowledge-comsates

1: function HSMQ(KnowledgeBask, subtasld\/l‘j) return totalReward
2: s+« knowledge-compact state EE} initialized from knowledge-rich state

w

totalReward— 0, discount— 1

while sis not a terminal statdo

Choose actiom from s using policy derived fronQij (e.g.e-greedy)

4
5
6: Execute actiorm and update knowledge-rich stdte
7 if ais primitive then
8 Observe one-step reward
9 else ifais compositehen
10: r — HSMQ(, a), which invokes subtasi

and returns the total reward received wtilexecuted

11: end if

12: totalReward— totalRewardt- discountx r

13: discount«— discountx y

14: Observe resulting stag

15: Q\(sa) — (1—a)Qj(s,a)+a |r +discountx maxy Q| (s, &)
16: S«—§

17: end while
18: end function
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5.4 Experimental setup

The aim of the experiments in this chapter was to investitfggotential application
of the proposed approach to spoken dialogue systems wgh Eate-action spaces.
For such a purpose two rounds of experiments were performée. first round of
experiments compared flat versus hierarchical reinforcgtearning when flat tabular
learning is still feasible, and employed a 6-slot mixediative dialogue system in the
flight booking domain described in sectibn 4]4.1. The secoothd of experiments
were performed on a task where flat tabular reinforcememhileg was no longer
feasible, and employed a 26-slot mixed-initiative dialegystem in the travel planning
domain described in section 4.4.2.

5.4.1 The flight booking case study

For flat reinforcement learning the state space represemths 8 non-binary state
variables and 10 primitive actions. A description of thelatjme state variables is
shown in pagé_34, and the action set is described in pagde 1@ relvard function
focused on efficient conversations (i.e. the shorter theogiee the better), and is
defined by the following rewards given to the agent for chegsictiona when the
environment makes a transition from state states':

0 for successful (sub)dialogue
r(s,a,s) =4 -10 for presenting many/none items of information (5.7)
-1 otherwise.

The execution of primitive actions applied the followinghsaderation: illegal ac-
tions had no effect in the simulated dialogues and only wiastee, e.g. request an
already filled slot, request an already confirmed slot, etc.

For hierarchical learning, the state-action space reptasen has 4 subtasks (one
parent and three children); 11 non-binary state varialdl®sprimitive actions and 3
composite actions. The latter correspond to the child skbktaFiguré 518 illustrates
the subtask hierarchy and Tablel5.1 shows the state vasiahtbactions per subtask.
It can be noted that the child subtasks are applying statesatisn by ignoring irrel-
evant variables. The root subtask is also applying stateeaah®n by using clustered
state variables as follows: variad&AN represents the status of subtask, variable
OPT represents the status of subtaﬂﬂ(, and variableT ERrepresents the status of
subtasH\/I%. In this way, the root subtask is using a much more compastaeof the
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Description:
M) =subtask for full dialogue
M jl =subtasks for semantic frames

Flight booking

Collect

Collect
optional slots

Collect
terminal slots

Figure 5.8: A subtask hierarchy for the 6-slot flight booking spokenatjak system,
where each dialogue subtask is represented as a separatd®’SMi2 corresponding
state variables and actions for each subta§lkdﬂn be found in Table 5.1.

Table 5.1: State variables and actions of the subtask hierarchy in igatfbooking
spoken dialogue system (see Table$ B.3and B.4 for theesponding description).

# | Subtask| State Variables Actions (composite actions are ]\)fl
01| MJ | MAN,OPT,TER,DBT | M§M}iM1,dbg+sta

02 Mcl, SIF,C00,C01,C02,C0B8req,apo+req,sic+req,mic+req,sec,mec,acc
03| M} |co4 reg,apo+req,sec
04 M3 C05 pre+ofr,apo+ofr,sec

Note: the state variableSMAN, OPT, TER} represent clustered state variables from child
subtasks and their domain values are as follol@s:unfilled subtask, 1=filled subtasks, 2=con-

firmed subtask

dialogue state for decision-making. In addition, althoaghierarchical reward func-
tion can be used for hierarchical dialogue optimizatioa @ different reward function
per subtask), these experiments used the same as in flahiparsed in each subtask.

The learning setup used Q-Learning for flat reinforcemartimg (Watkins, 1989;
Sutton and Barto, 1998) and HSMQ-Learning for hierarchiealforcement learning
(described in the previous section). The learning parametged by the algorithms

were the same for both learning approaches. The learniegpaameten decays
from 1 to O according to
100
o0=——— 5.8
(100+T1)’ (5-8)
wheret represents elapsed time-steps in the current subtask.slﬁhuhsld\/lij had its

own learning rate. The discount factpe= 1 makes future rewards equally as valuable
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as immediate rewards, as in (Singh etlal., 2002). The acgtecton strategy used

e-Greedy withe = 0.01, and initial Q-values of 0. This choice of parameterssfiat
the requirements for convergence to optimal (contextpedeent) policies.

5.4.2 The travel planning case study

This case study used a 26-slot mixed-initiative spokerodia system in the travel
planning domain (see sectibn 414.1 for a detailed desonpif this system), and is

a larger-scale version of the previous case study. Howéherexperimental setup
for flat tabular reinforcement learning is absent. This ie tluthe fact that using a
single MDP for this task becomes impractical, the state esfizomes too large to
store ¢ 10%° state-action pairs) and this makes the task intractable {@dumemory
limitations). In contrast, dialogue optimization for thavel planning spoken dia-
logue system becomes tractable within a hierarchicalnggttiThis was possible by
decomposing state variables and actions into a hierarcB¥ etibtasks including four
levels of granularity. This hierarchy employed 43 non-byrstate variables, 15 prim-
itive actions and 20 composite actions. The latter corneddo the child subtasks.
Figure[5.9 illustrates the subtask hierarchy and Table Ee&qnts the state variables
and actions per dialogue subtask. The state abstractiahtugesets of clustered
state variables{INI,MAN,OPT,TER} to describe the status of semantic frames, and
{G00,G01,G02,G03,G04,GP%0 describe the status of dialogue goals. The reward
function also focused on efficient conversations (i.e. ti@ter the dialogue the bet-
ter), and is defined by the following rewards given to the age@nchoosing actiora
when the environment makes a transition from ssdtestates':

(0 for successful (sub)dialogue

-10 for an already collected subtem'ﬁ

-10 for collecting subtaskl! beforeM!
r(s,as) = g ' -1 (5.9)

-10 for presenting many/none items of information
-10 for multiple greetings or closings

\ -1 otherwise

The learning setup used the same parameters as in the pedase study.

The travel planning system allowed the user to go backwardse dialogue and
return to continue. The following is a sample scenario ofyesubtask termination.
First, assume the user has filled and confirmed slots for enréitght (visiting subtasks
M3, M3, M3), so the current focus of the dialogue is in the terminal sfoteturn



Travel o
planning Description:
MO Mg =subtask for full dialogue

° M ]1 =subtasks for meta-dialogue goals
M ]2 =subtasks for dialogue goals

M J3 =subtasks for semantic frames
Flight
booking
Ml

0
Outbound Return Hotel Car Summarize
i booki i .
flight A2 ooking o booking M2 Rental M32 Trip M2
0

1

Collect Collect Collect Collect Collect Collect
initial slot terminal initial slot optional mandatory terminal
slot 3 slots 3 slots slot
M3 My M My M M3

Collect

Collect
terminal
slot

Collect
mandatory
slots

Collect
terminal
slot

Collect
mandatory
slots

Collect

optional mandatory Collect Collect
slots_r3 slots mandatory terminal
1 Mg Mg slots slot

Figure 5.9: A subtask hierarchy for the 26-slot travel planning spoké&logiue system, where each dialogue subtask is represasted
separate SMDP. The corresponding state variables and me&fior each subtask ]\/ban be found in Table 5.2.
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Table 5.2: State variables and actions of the subtask hierarchy inridneet planning
spoken dialogue system (see Tables$[B.5, B.6_and B.7 foctreesponding descrip-
tion).

Subtask| State Variables Actions (composite actions are [\)fl

M§ | GIF,SAL,G00,G03,G04,G05M§,M3,M2,M3,gre,clo

M | GIF,G01,G02 M32,M2

MZ | DBT,END,MAN,OPT,TER | M3 M3 M3,dbg+sta,rel

M2 | DBT,END,MAN,TER M3,M3,dbg-+sta,rel

M2 | DBT,END,INI,MAN,TER | M3 M& M3, dbg+sta,rel

M2 | DBT,END,INI,MAN, M3 M3,M3 M3,

OPT,TER dbg+sta,rel
M2 | DBT,END,MAN,TER ME,M3,dbg+sta,rel
MS SIF,C00,C01,C02,C03,C04| req,apo+req,sictreq,mic+req,
C05 sec,mec,acc

M3 | C6 req,apo+req,sec

Mg ACK,END,PRE,C07 apo-+ofr,sec,pre+ofr,ofr,ack

M3 | SIF,C15,C16 reg,apo+req,sic+req,mic+req,
sec,mec,acc

Mﬁ ACK,END,PRE,C17 apo-+ofr,sec,pre+ofr,ofr,ack

MZ | C18 req,apo+req,sec

Mg | SIF,C19,C20,C21 reg,apo+req,sic+req,mic+req,
sec,mec,acc

M$’ ACK,END,PRE,C22 apo-+ofr,sec,pre+ofr,ofr,ack

M3 | C23 reg,apo+req,sec

MS SIF,C24,C25,C26,C27,C28| req,apo+req,sictreq,mic+req,
sec,mec,acc

M3 | C29 reg,apo+req,sec

Mg ACK,END,PRE,C30 apo+ofr,sec,pre+ofr,ofr,ack

ME | C31 reg,apo+req,sec

M% ACK,END,PRE,C32 apo+ofr,sec,pre+ofr,ofr,ack

Notes: (1) the sets of state variablghll, MAN, OPT, TER} and{G00, G01, G02, G03, G04,
GO5} represent clustered state variables from child subtas#steir domain values are as
follows: {O=unfilled subtask, 1=filled subtasks, 2=confirmed suBjtaéR) the domain values
of the state variabl¢END} are as follows: $0=execution on the current subtask, 1=terminate
the current subtagk
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flight (subtaskvi3), but it turns out that the agent did not find flights with theyided
information (subtask/li terminates), and then the agent invites the user to chamge so
information. Second, the user reprovides information saghirline or departure date
(goto subtasIMS’ according to the stack of subtasks). Third, the agent seaiftights
again when it returns to subtaMkf, and offers the flight information in subtaﬁk}‘f.
Notice that when the user provides or reprovides infornmattbe state variables at
different subtasks in the hierarchy may require to be upljate that each subtask can
choose actions accordingly.

5.5 Experimental results

This section reports experimental results on dialogugegjydearning for the two case
studies described in the previous section. Both case studied the simulated conver-
sational environment and baseline machine dialogue betwasiescribed in chaptel 4.

5.5.1 The flight booking dialogue system

Experimental results show that the hierarchical stateacpace obtained a dramatic
reduction of 9986% in comparison with a flat state-action space. Table o@/slhe
number of state-actions for both flat8mnillion) and hierarchical (18K) approaches.

Table 5.3: Size of state-action spaces for the flight booking dialogsées.

Approach States Actions |Sx A

Flat 281250 10 2812500
Hierarchical| 2591 | variable per subtask 17854

Figure[5.10 shows the learning curves of the dialogue mdjchveraged over 10
training runs of 18 episodes (or dialogues). The three plots illustrate difiedistri-
butions of ASR confidence levels. The first thing to noticda hierarchical learning
learnt faster than flat learning by roughly four orders of magle. The second thing
to notice is that the hand-crafted strategy performed d@®svell as the learnt poli-
cies for only one situation, but in general it was outperfednby the learnt policies.
This illustrates the benefits of using dialogue optimizatidhere more efficient con-
versations can be achieved by using (near) optimal dialstrategies. The fact that
the quality of the learnt policies are dependent on the |tran parameters suggests
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that the simulation environment must reflect as much as Iplestsie behaviour of the
real environment, otherwise the learnt dialogue polici#lsne longer be optimal. The
last thing to notice is that flat learning eventually perfedrslightly better than hier-
archical learning. An evaluation on the last'ipisodes (dialogues) reports that flat
learning achieved slightly more efficient conversationsagerage (B system turns
fewer than hierarchical learning (significantgak 0.01 for all confidence level distri-
butions derived from t-tests). This is presumably becaused hierarchical setting the
optional slot (‘airline’) cannot be confirmed together witte mandatory slots. Nev-
ertheless, for practical purposes this loss in optimaligyre well worth the gains in
terms of scalability to larger decision-making problems.

5.5.2 The travel planning dialogue system

Experimental results show that the hierarchical stateyaspace also obtained a dra-
matic reduction of more than 9% in comparison with a flat state-action space. Ta-
ble[5.2 shows the state-actions for both flaf€)@nd hierarchical (8) approaches.

Table 5.4: Size of state-action spaces for the travel planning diatogystem.

Approach States Actions Subtasks |Sx A
Flat 4.5 x 10?2 15 1 6.7 x 1073
Hierarchical| 117081 | variable per subtask 21 803627

Figure[5.11 shows the learning curves of the dialogue djcaveraged over 10
training runs of 10 episodes (or dialogues). The three plots also illustrafterdit
amounts of ASR confidence levels. In a similar way to the flighoking system, it
can be observed that the hand-crafted strategy performeelhas the learnt policies
only in the situation wher@(high) = 1/2 (top plot of Figurd 5.111), but in general it
was outperformed by the hierarchical learnt dialogue pesiclt can also be noted that
the learnt behaviour required at least four orders of magei{i.e. more than 10000
dialogues) to outperform the hand-crafted behaviour. Beedhe learning speed of
the given experimental setting is slow, other experimesg#ings or methods can be
used to accelerate learning (this is addressed later isécison and in chaptet 6).

A manual inspection of test dialogues showed that the lediatbgue strategies
generated coherent conversations. But the learnt polgoesetimes exhibited dia-
logues with infinite loops, i.e. actiomin statesyielded the next state = scyclically.
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Figure 5.10: Learning curves of dialogue policies in the 6-slot flight kimgy spoken
dialogue system. The best learnt policy outperformed tmelfwaiafted behaviour by
0.2, 1.3, and 3.7 system turns on average in all cases (frprtotbottom).
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Figure 5.11: Learning curves of dialogue policies in the 26-slot travi@lqming system
using the reward function defined by equation 5.9. In the 188tdialogues the hi-
erarchical policy averaged-0.2, 4.2, and 13.4 fewer system turns than hand-crafted
behaviour for the different distributions of confidencesle(from top to bottom).
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This was possible if the learnt policy inferred invalid acts which had no effect in
the conversation and did not change the dialogue state. Assequence, the learnt
policy executed the same action in the same state in an afir@y. For example: the
learnt policy performed apologies regardless of the contidéevel and therefore apol-
ogized infinitely often. This phenomenon was not visibleigigilearning due to the
explorative behaviour, where policies eventually act oanly and can always reach
a goal state. In contrast, testing only involves explaatand made infinite loops
visible. Our first attempt to avoid infinite dialogues coteisin extending the reward
function with an additional negative reward assigned ttestansitions with potential
infinite loops. This reward function is expressed by modifyequation 5]9 by adding
a condition which gives a reward of -10 when executing actiand remaining in the

same statd = s:

( 0 for successful (sub)dialogue

-10 for an already collected subtem'f
-10 for collecting subtaskli beforeM! ;
r(s,a,s) =14 -10 for presenting many/none items of information  (5.10)
-10 for multiple greetings or closings
-10 for executing actioa and remaining in staté = s
-1 otherwise

\

Figure[5.12 shows the learning curves of the dialogue mdicising the reward
function defined by equatidn 5110. These learning curve®aso averaged over
10 training runs of 1®episodes. It can be observed that hierarchical learntgli@o
behaviour outperformed hand-crafted behaviour for thegldifferent distributions of
confidence levels. It can also be noted that hierarchicatiealogue behaviour using
the additional negative reward outperformed hand-crafietbgue behaviour faster
than the learning curves reported in Figure 5.11: (1) foimoistic confidence levels
(top plot) the learnt policies significantly outperformeahid-crafted behaviour shortly
after about 10000 dialogues, (2) for equal distributioedéarnt policies outperformed
hand-crafted behaviour by nearly 10000 dialogues, andof3)dssimistic confidence
levels (bottom plot) the learnt policies outperformed harafted behaviour by nearly
1000 dialogues.

An evaluation of the last Todialogues reports that the hierarchical policy using
the additional negative reward helped to reduce the prolokdialogues with infi-
nite loops, but the learnt policies still exhibited infind&alogues (a sample dialogue
is shown in pagé_149). In addition, it was observed that teeanchical policy using
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Figure 5.12: Learning curves of dialogue policies in the 26-slot travi@lqming system
using the reward function defined by equation 5.10. In thé 188 dialogues the
hierarchical policy averaged.9, 9.2, and17.9 fewer system turns than hand-crafted
behaviour for the different distributions of confidencesle(from top to bottom).
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the additional negative reward generated more efficientamsations (see Tahleb.5).
This hierarchical policy outperformed the hand-crafted bg 49, 9.2, and 179 sys-
tem turns for each distribution of confidence levels, re8pely. This raises the fol-
lowing question: How well would such learnt policies perfoin a realistic spoken
dialogue environment? These results also suggest thatrethard functions or mech-
anisms should be investigated for optimizing efficient afidotive dialogue policies
for fully-learnt dialogue behaviour. The next sub-sectamscribes another alterna-
tive for avoiding dialogues with infinite loops. Nonethedeall these results suggest
that the proposed divide-and-conquer approach is a seahed} to address dialogue
optimization with large state-action spaces.

Table 5.5: Average system turns of policies in the |a8t training dialogues, where
the third column used the reward function described by équ#.9 and the fourth
column used the reward function described by equéafion 5.10.

Confidence Level Distribution Hand-crafted Learnt Learnt

(low, medium, high) Behaviour | Behaviout | Behaviouf
Distribution1(1/4,1/4,1/2) | 539409 |5414342| 490427
Distribution2(1/3,1/3,1/3) | 586+1.1 |544+330| 494+27
Distribution3(1/2,1/4,1/4) | 684+1.4 |550+349| 505+3.0

5.5.3 Analysis of learnt behaviour without infinite loops

Another way to address the problem of infinite dialogues &mploy stochastic action
selection in states with infinite loops, and deterministitan selection in states with-
2003). Bexharnt spoken dialogue
policies must exhibit coherent behaviour, this thesis sstgto back off from learnt

out infinite loops, as suggested by (Ohta et al.,

behaviour to hand-crafted behaviour when the executiorctidraa in states yields
next states' = s, defined by

|

whereTt'(s) is the learnt dialogue policy arm®Y(s) is a hand-crafted deterministic

m™(s) if s<>¢

el (5.11)

otherwise,

dialogue policy. Tablé 516 shows test results for handiedaéind learnt behaviour,
where the latter used equation 5.10 and behaved accordewuation 5.111, averaged
over 10 runs of 1000 dialogues.
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Table 5.6: Test results showing the average number of primitive astymer dialogue
for hand-crafted and learnt behaviour, the latter used aoprg5.10 and behaved ac-
cording to equatiof’5.11. The average number of actions @oglue (in bold) within

each ASR confidence level distribution were compared weghts and showed statis-

tical significance at p< 0.01.

Conf. Levels|  (1/4,1/4,1/2) (1/3,1/3,1/3) (1/2,1/4,1/4)

Action Hand-crafted Learnt| Hand-crafted Learnt| Hand-crafted Learnt
acc 3.61 5.46 2.82 5.89 2.85 5.38
ack 4.02 4.03 4.02 4.03 4.02 4.03
apo+ofr 1.18 0.04 1.80 0.06 3.47 0.10
apo-+req 4.53 1.00 7.23 1.32 14.23 1.63
clo 1.00 1.00 1.00 1.00 1.00 1.00
dbg+sta 4.47 4.43 4.47 4.44 4.46 4.43
gre 1.00 1.00 1.00 1.00 1.00 1.00
mec 5.84 1.94 6.87 2.02 7.63 2.02
mic+req 2.35 2.96 1.92 2.95 1.99 291
ofr 0.27 0.02 0.26 0.10 0.26 0.17
pre+ofr 4.02 4.25 4.02 4.19 4.02 4.10
rel 0.47 0.13 0.48 0.04 0.46 0.04
req 10.63 9.28 11.52 9.02 11.66 9.55
sec 10.09 9.00 10.55 8.68 10.46 9.30
sic+req 3.15 3.26 2.73 3.53 2.71 2.84
Sum 56.63 47.80 60.68 48.28 70.24 48.50

From the table above, it can be observed that the learntglialbehaviour out-

performed the deterministic hand-coded one by 16%, 20% afefdwer system ac-

tions for each confidence level distribution, respectiv&lyis reduction in the number

of system actions can be explained as follows: the learna\bebr differs from the

hand-crafted one in the use of more acceptances (actiol), ‘acare multiple implicit

confirmations (action ‘mic’), fewer apologies (actionsdajpeq’ and ‘apo+ofr’), and

fewer multiple explicit confirmations (action ‘mec’). Inighway, the hierarchical rein-

forcement learning dialogue agents generated more efficogversations.
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5.6 Discussion

In this chapter the following issues are addressed for opig spoken dialogue be-
haviours of real world systems: (1) importance of hierazahdialogue strategy learn-
ing, (2) uncertainty in spoken dialogue, (3) state repreegem, (4) reward function,
(5) dialogues with infinite loops, and (6) learning from $cha

First, the importance of hierarchical learning is to parfaa more scalable global
optimization for the full dialogue session. This form ofeiag is also important to
optimize decision-making at different levels of graniutignivhere the design of the sub-
task sequence might not be easy to hand-craft. For instaogsider two subtasks that
collect mandatory slots for a particular dialogue goal, sehane of them collects slots
with systeme-initiative and the other with mixed-initiagiv Which dialogue subtask
should be chosen at a given point in a conversation? Thisasoamquires learning at
low and high levels in the hierarchy to result in a unified dgale policy. For such a
purpose, a hierarchical learning agent can employ a panbitask in order to learn to
decide when to invoke one or other of the subtasks. Moretwermportance of hier-
archical learning increases according to the complexitysipe of state-action space
of a given dialogue system. Experimental results showedstage abstraction helped
to compress the size of the state space in a dramatic way. @ssipg the state-action
space per dialogue subtask produces faster learning,eddawenputational demands,
and opportunity to reuse sub-solutiHnSAII these benefits occur at the cost of sub-
optimal solutions. For example, in the optimization of thght booking system it was
shown that hierarchical learning generated slightly lor@logues than flat learning.
This is still attractive for spoken dialogue systems assgrthat exact optimality is not
absolutely essential, as long as learnt behaviours show teetter than deterministic
hand-crafted behaviours.

Second, a main criticism of this work is that the proposednoigation approach
is not focusing on uncertainty in the dialogue state. Howetes work can be en-

hanced with influence diagrams (Horvitz and Paek, 2000) befseover slot values
Bohus and Rudnick MEH. 2006). Alternatively, this kvoould be transferable to
POMDPs |(Roy et all, 2000; Pineau et al., 2001; Williams, 20@&ng et al.| 2007,
Thomson et &ll, 2008). In addition, a spoken dialogue manzagebe viewed as two

related agents: one in charge of knowledge updates, antttbein charge of choosing
actions assuming accurate knowledge updates. This tloesisdd on the latter.

LIn this work subtask reuse was not explored and is left asdutork.
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Third, related work on dialogue strategy learning emplessthat the state space
must be kept as small as possible due to the large numberlo§des required to find
optimal solutions. At the same time, the state represematiust include enough in-

formation for making good decisions (Levin et al., 2000; 2000] Litman et al.,

2000; Young, 2000). In this thesis heuristic state abstrastwere used. Therefore,
another enhancement to this work is to find the best statablas for each dialogue
subtask in.a more principled way using approaches such asdeselection (Paek and

Chickering, 2005; Frampton and Lemaon, 2006; Rieser and loe®006b) or auto-

matic state abstractioLJ_CDiﬂL_telit‘ mm&oov Uther, 2002; Jong
and Stone, 20 'L_MALLDJE )06; QZOO&.

Fourth, similar to the previous point is the issue of definiing reward function.

There are many ways to specify a reward function, measunalpgle efficiency

olfﬂ?al'k@bom, or a wedlcombination of costs

). This thesis focused on optimizing dligle efficiency, which has

, ), user satisfacti

been shown to be correlated with user satisfaction (Ch Nickerson, 2000;
Litman and Pan, 2002).
Fifth, using the proposed dialogue optimization appro@ckas found that learnt

policies on full state-action spaces may include infinitgpe. This phenomenon has
not received attention in previous investigations becdaheg mostly hand-craft the
state and action spaces in order to find solutions on smaitisepaces. Although
the problem of infinite loops can be avoided using stochastiion-selection as sug-

gested byl(Ohta et al., 2003), this issue should be takenaigctount when learning

dialogue policies using the whole action set per state. fidssarch proposed to back
off from learnt behaviour to hand-crafted behaviour in ortteguarantee coherent
action-selection (see sub-section 5.5.3).

Finally, another criticism of the proposed approach is thiavolves unnecessary
learning. If reinforcement learning agents learn from wtrathen they will explore
many invalid state-actions, resulting in slow learningewus work in dialogue op-
timization performs rule-based state-action space restubefore learning, and lacks
a principled approach for learning dialogue behaviour ovilgre necessary. The next
chapter addresses this issue.
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5.7 Conclusions

This chapter proposed learning multiple dialogue strategising hierarchical rein-
forcement learning under the formalism of Semi-Markov dieci processes, where
a hierarchy of policies is learnt instead of a single one.afiplication to simulated
spoken dialogue systems was investigated in the flight mgo&ind travel planning
domains, and the proposed approach was compared with fiddre@ment learning.
This approach has not been applied before to dialogue anes$hiés are promising.
Experimental results confirmed those reported by reseercheeinforcement learn-
ing — hierarchical learning finds cheaper and faster soistiban flat learning with
near-optimal policies. The hierarchical search spacee6tklot case study used only
0.64% of the size of the flat search space. Results showed #vairthical learning
converged four orders of magnitude faster than flat reiiorent learning with a small
loss in optimality (on average.® system turns). In addition, the hierarchical search
space of the 26-slot case study used fewer th@a% of the size of the flat search
space. Results also showed that the learnt policies ootpeefl a hand-crafted one
under three different situations of ASR confidence leveisalfy, our experiments re-
ported that the proposed approach may generate dialogiogegokith infinite loops.
To that end, this chapter proposed backing off from learhli®mur to a determinis-
tic one in dialogue states with potential infinite loops, gering finite and coherent
dialogues. All these results provide evidence to suppertthim that the proposed ap-
proach can be successfully applied to spoken dialogueragstgth large state-action
spaces.



Chapter 6

Hierarchical dialogue optimization: a

prior-knowledge approach

This chapter extends the approach in the previous chaptiecamstrained hierarchical
Semi-Markov Decision Processes (SMDPs). Sedtioh 6.2 gespthe idea of partially
specified dialogue strategies for optimizing constrainguken dialogue controllers.
Sectior[ 6.B proposes a reinforcement learning method t@ sohierarchy of SMDPs
constrained with prior expert knowledge. Secfiod 6.4 repexperimental results with
two dialogue systems in the flight booking and travel plagrdomains. Section 8.5
explains how the proposed approach differs from similareaghes in the field. Sec-
tion[6.6 discusses the strengths and weaknesses of thespbgi@mlogue optimization
approach. Finally, the last section summarizes the chaptédraws conclusions.

6.1 Introduction

The standard Reinforcement Learning (RL) framework assulaarning ab initio,
without any prior knowledge of the dialogue task, limitimgtscalability of RL agents
to complex and real-world problems. Additionally, the u$éearning agents that per-
form trial-and-error exploration without any prior knowlige could even be harmful
or inappropriate in real environments. This makes morevagietherole of prior
knowledgein reinforcement learning agents, with the central aim ofstmining the
search space. This offers the following benefits among sth@j) finding solutions
faster, (b) reducing computational demands, (c) incotpayaexpert knowledge, (d)
transfering knowledge across problems, and (e) scalingrgget problems. This is
possible by adding a mechanism for pruning away invalicesséations in the learning

109
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environment. However, its drawback is that sub-optimalisohs may be obtained.
Nonetheless, good policies can be learnt according to thetints specified.

In Reinforcement Learning (RL) for spoken dialogue systéittis attention has
been devoted to the incorporation of prior knowledge intooRfh. agents, and therefore
to proposing principled ways of reducing search spaces ttageable sizes. More-
over, the role of prior knowledge in dialogue optimizatismiot only to find cheaper
and faster solutions, but also to incorporate constraingstd system requirements

provided by system designers or customlm_s_dé_a.ekj bD.O.&MlﬂLame _20L4)8).

Previous work in the literature of RL for spoken dialoguetsyss employs ad hoc

rules to reduce the state-action spmmmme*lmb _Smgh_el_Jal
IZM;LS.QD&IZDJ&DD&IJMSM. Previously | proposed argestate-action reduc-

tion algorithm to optimize confirmation strategies with g of avoiding unnecessary
learning [(Q_ua;L'a‘huleel_iiL_ZD_dGa). However, it turnedtobe difficult to extend for
more complex and larger scale dialogue systems. This pgrelmwork suggested

that search space reduction before learning has the uablkseffect of requiring re-
learning for every minor update to the dialogue behaviotwusT finding methods that
facilitate the incorporation of prior expert knowledgeaRL dialogue agents, and that
reduce the re-learning effect, is of importance for theaigical application.

To date work in the literature of artificial intelligence am@chine learning has pro-
posed several methods for incorporating prior knowledde learning agents. Nils-

son (1994); Benson and Nilssan (1996) employ ‘teleo-reatagents with initially

designed and self-modifiable behaviour operating in dynand uncertain environ-
ments. Other prior work employs hierarchical determiniafid stochastic Finite State
Machines (FSMs) — referred to as ‘Hierarchical Abstract Maes (HAMS)' — in or-

der to incorporate prior knowledge into RL agents (Parr angse|l| 1997; Andre and

Russell; 2000). FSMs are relatively simple to design, aeda#tractive because they

match the way in which the behaviour of dialogue systemsgE&jly specified.
This chapter proposes an approach to equip RL dialogue swgétht prior expert

knowledge. For such a purpose the HAM (1#2re used to merge
hand-coded and learnt dialogue behaviours (also refeoradgartially specified di-
alogue strategies Then HAM-based reinforcement learning is combined wité t
approach described in chaplkér 5, resulting in ‘constratmedarchical Semi-Markov
Decision Processes (SMDPs)’, which employ a hierarchy oD®#l incorporating
constraints. Experimental results indicate that the psedacombined approach is a
flexible and efficient way of optimizing the behaviour of largcale dialogue systems.
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6.2 Partially specified dialogue strategies

The idea of partially specified dialogue strategies for epgational agents serves two
important purposes. Firstly, to give freedom to the systewetbper in what to specify
manually and what to optimize; and secondly, to reduce besgyaces due to the fact
that they grow exponentially using the standard RL framéw®his idea was inspired
by the Hierarchical Abstract Machines (HAMs) of (Parr ands&il 1997). Ina HAM,
whilst the obvious actions (i.e. one reasonable action fae)are specified with

deterministic transitions, the non-obvious actions (several reasonable actions per
state) are specified with stochastic transitions. Therl@tthe behaviour to be learnt
by the reinforcement learning agent. This brings the be$totfi deterministic and
purely-learnt approaches for dialogue strategy optirin'msk_u_a;(aMI ,2006b).
As discussed in chapter 5, the idea of hierarchical dial@gtienization consists of
finding a spoken dialogue controller that takes the besalsarical actions (primitive
or composite) for each different situation in the conveosat This chapter refines

that idea withconstrained hierarchical dialogue optimization where dialogue states
employ a reduced set of actions specified through HAMs. Foh supurpose, the
following methodology is proposed.

(i) Design a Markov Decision Process (MDP) by choosing an@pmate represen-
tation of states, actions and reward function.

(i) Decompose the MDP into a hierarchy of Semi-Markov detigprocesses (SMDPs).

(i) Design a partially specified dialogue strategy usingMbs, where the obvious
behaviours, if any, are specified deterministically andléss obvious ones are
specified stochastically.

(iv) Generate an induced hierarchy of SMDPs, where the r&tave given by the
HAMSs, resulting in a more compact search space.

(v) Learn a hierarchy of dialogue policies using a simulaedironment. Alterna-
tively, learning could be performed on real conversatiduagia suffices.

(vi) Finally, test the quality of the learnt dialogue stigate

The methodology described here is a variant of the one pegplog I.,

lfzﬁ)z), and the differences are twofdal:h{erarchical instead of

flat dlalogue optimization, and (b) a principled approachgecify prior knowledge in
order to optimize constrained spoken dialogue contrallers
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6.2.1 Dialogue control using constrained hierarchical SMD Ps

An important extension to the approach of the previous @raptto constrain each
hierarchical SMDP with some prior expert knowledge, aimiogcombine dialogue
behaviour specified by human designers and behaviour atitathainferred by rein-
forcement learning agents. To that end, this thesis sug@ssbciating a Hierarchical
Abstract Machine (HAM) denoted a¢} to SMDPM‘J- in order to specify some prior
expert knowledge (see section 3]2.1 for an introductioeitaforcement learning with
HAMS). In this way, dialogue control can be seen as executitgdecision-making
models in parallel: a HAM, and a hierarchy of SMDPs. Each HAdftlly specifies
the behaviour of its corresponding subtask, and therefamstcains the actions that a
reinforcement learning agent can take in each state. Hgdirshows this form of dia-
logue control in which both models share decision-makimg.dech a purpose, a cross
product of models per subtask is used, referred toacisced SMDP I(ﬂ = H]i- ) M'] see
sectior 3.2.1 for details about the cross product. Bridfig,dross product operates as
follows: (1) the induced state space uses joint stedes, wheres is anenvironment
statein SMDP M‘j andsis achoice staten HAM H}; (2) a HAM tells its correspond-
ing SMDP the available actions at stag3) the transition functions of both models
are executed in parallel; and (4) the SMDP’s reward functemards each chosen
primitive action. In this joint model the HAMs make decissoim states with a single

action, and the policies of the SMDPs make decisions instai multiple actions.
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This form of dialogue control is based on SMDP statend HAM choice state
s. Using a more compact notation for the joint dialogue state (s,S) as in (Marthi

et al.; 2006), the Bellman equation for the action-valuefiom of induced subtasM'ji
can be expressed as

Q' (wa) :v; Pl(w, T|w.) [Rij (W, tjw,a) +y' mangTi(W,a/> : (6.1)

Optimal context-independent policies for the Q-value fiorcabove can be found by
the learning algorithm described in section 6.3, and carefieet by
16! (W) = argmaxQ; (w,a). (6.2)

J aeA'j

6.2.2 Decomposing a dialogue manager into subtasks

The decomposition of an MDP-based dialogue controller isiezh out as in sec-
tion[5.2.2. In a similar way, the prior expert knowledge candecomposed into a
Hierarchical Abstract Machine (HAM) = {H|}. The cross product of HANH! and
dialogue subtasM'j yields the induced subtaN{/ji = H} o M'] But, if we want to reuse
HAMs (e.g. a HAM for filling-confirming mandatory slots may beused in all sub-
tasks that collect mandatory slots) then they would have @ rmompact hierarchical
structure that can be denotedH§, where|HF| < |Hi|. Thus, the cross product of
HAM Hf and subtask} yields the induced subtask] = HoM! (see Figuré612).

6.2.3 Execution of dialogue subtasks

An induced dialogue subtaSM’ji is executed in a similar way as described in sec-
tion[5.2.3. Briefly, when a subtask is invoked, it is pushed @ stack of subtasks,
when it terminates its execution, it is popped off the stack] the dialogue ends when
the stack is empty. In addition, the parallel execution of\tsfand SMDPs operates as
follows: when a subtask is invoked, the associated HAM takesrol of the dialogue,
control is transferred to the SMDP when the HAM is in a choieges once the SMDP
terminates the execution of the selected action it retuoméral to the HAM, and so
on until termination of the root induced subtask.

6.2.4 Termination of dialogue subtasks

An induced subtasll&/l]-i terminates its execution as follows: (a) when the SMDP
reaches a goal state, (b) when the SMDP makes an early td¢iomiisee section 5.2.4),
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(a) Hierarchy of abstract machines

!

(b) Hierarchy of subtasks

oN

(c) Hierarchy of induced subtasks Induced subtasks:
Mq = H o M§
9 _HloM0
]/ _HloM1
M? =H} oM}
9 —HOOM2
M]/ = HZo M?
? _H20M2
3 _HO M2
Mé} = H? oM4
§ _H20M2
§ _H20M2
M7 = HZ o M?

Figure 6.2: Example of induced dialogue subtaskg MH/o M!, where H is an ab-
stract machine i and I\/I'J is a subtask ims . Note that the hierarchy of abstract
machines, Figure (a), and the hierarchy of dialogue suldabligure (b), may be dif-
ferent because the abstract machines may be reused in theaddlialogue subtasks.
The hierarchy of (induced) dialogue subtasks is specifietidgystem developer.
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or (c) when the HAM reaches a stop state. This suggests thitd-should incorporate
the termination conditions of their corresponding SMDPsug, a HAM transitions to
a stop state if and only if its corresponding SMDP has reaehtedminal state.

6.2.5 State transitions in constrained hierarchical SMDPs

State transitions in constrained hierarchical SMDPs usetdifferent types of states.
Firstly, knowledge-rich states knclude all possible information about the dialogue
and do not enumerate the vast combinations, they only keepufrent state of the
world. Secondlyknowledge-compact statesisclude a subset of all information by
enumerating a compact number of combinations. Thimdgchine states, are states
from a partially specified policy (HAM). The difference beden this and the previous
chapter is the inclusion of joint states = (s, S,), which are used by the reinforcement
learning agent for decision-making. Figlrel6.3 shows theadyics of a constrained
dialogue SMDP. In addition, Figure 6.4 shows an illustgxample at runtime of this
form of dialogue control. Note that the indices of sta®sg,) are different because
knowledge-compact statgsare only observed in machine choice states.

a/@ N

At4r Ot 47/

<

kt > kt-l—’l‘ ’@ vt/

Figure 6.3: A constrained SMDP for spoken dialogue control, whereelpresent
knowledge-rich states = (s, $,) represent joint states, rectangles represent actions
(provided by a HAM), and diamonds represent rewards. Kndgdecompact states
&, extracted from states kare only observed in machine choice stadgsso that a
restricted set of actions (primitive or composite) is to baitable at dialogue statew
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Machine Knowledge-rich Knowledge-compact Joint states Actions
states states states available

lastUserDA=null

goallnFocus=flightBooking

frameInFocus=mandatory

slotInFocus=depCity

~

5, = start databaseTuples=none

o _ ) depCity=(null,0,0,0) 51=(0,0,0,0,0,0,0,1)  wy = (s1,59) {req}
fz = choice2 &, = desCity=(null0,0,0) ,0,4,4,4,4,U, ,

‘E3 =Teq date=(mull,0,0,0)

84 =null time=(null,0,0,0)

airline=(null,0,0,0)
flightOffer=(null,0,0,0)
lastMachineDA =req(depCity)

lastUserDA=
pro(depCity=Edinburgh,desCity=Paris)
goallnFocus=flightBooking
frameInFocus=mandatory
slotInFocus=depCity

85 = start databaseTuples=none

8¢ = choiced k; ={ depCity=(Edinburgh,0.85,3,0) _

5, = acc desCity=(Rome,0.54,2,0) 85=0(3,2,0,0,0,0,0,1)  wy=(s3,%) {apotreq,acc,mec}
5g = null date=(null,0,0,0)

time=(null,0,0,0)

airline=(null,0,0,0)
flightOffer=(null,0,0,0)
lastMachineDA =acc(depCity,desCity)

lastUserDA=null
goallnFocus=flight Booking
frameInFocus=mandatory
slotInFocus=depCity
databaseTuples=none

89 = start depCity=(Edinburgh,0.85,3,0) _ (a0 7 i
e 83 =(3,2,0,0,0,0,2,1 w3 = (83,8 mictreq

510 = choice2 ks ={ desCity=(Rome,0.54,2,0) 3=(32000021) 3= (s3,50) { '

811 = mic+req d.ate=(null,0,0,0)

519 = null time=(null,0,0,0)

airline=(null,0,0,0)

flightOffer=(null,0,0,0)

lastMachineDA =mic(depCity=Edinburgh,
desCity=Rome)+req(date))

lastUserDA=rep(desCity=Paris)
goallnFocus=flightBooking
frameInFocus=mandatory
slotInFocus=depCity
databaseTuples=none

813 = start depCity=(Edinburgh,0.85,4,0) i _

514 = choice2 k, ={ desCity=(Paris,0.77,3,1) s4=(4,3,0,0,0,0,2,1) ws4= (84,514) {sic+req}
815 = sict+req date=(null,0,0,0)

§16 = null time=(null,0,0,0)

airline=(null,0,0,0)

flightOffer=(null,0,0,0)

lastMachineDA=
sic(desCity=Paris)+req(date))

\

Figure 6.4: Runtime example of HAM-based dialogue control using thérattsma-
chine ‘getMandatorySlots’ from pafgel42. The first colummvaha sequence of ma-
chine states corresponding to the first four primitive act®f the dialogue shown on
pagd44. The second and third columns show knowledge-abbsst and knowledge-
compact states; ghat correspond to machine choice stags The fourth column
shows joint states yw= (&,Sn) used for decision-making. The last column shows the
actions available in state & The same example without machine states is shown in

pagd 90.
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6.3 Reinforcement learning for constrained hierarchi-

cal SMDPs

The agent-environment interaction for constrained hadniaal dialogue control is shown
in Figure[65. The environment is modelled with a hierarclfiynouced SMDPs
M = HFoMi, whereHf is an abstract machine in the hierarchy of abstract machines
H, andM'j is an SMDP in the hierarchy of dialogue subtagks The purpose of the
abstract machine is to constrain the actions available piE)FSstate. For such a pur-
pose, the HAM-based reinforcement learning agent takesreatc A/J-i in joint state
w = (s€ Mi,Se H) by using a hierarchy of policies; executed with a top-down
mechanism. Note that joint states only include machineaghstates, the remaining
states are not taken into account by the reinforcementitegamgent. For learning
the hierarchy of policies we extend the HSMQ-Learning atgar from the previous
chapter with HAMQ-Learning (described in section 3/2.1heTalgorithm described
here differs from the HAM framework by using a hierarchy of BRk instead of a sin-
gle SMDP. This algorithm simultaneously learns a hieramhgction-value functions

’j‘, where equation @1 is approximated according to

Qj(wi, &) — (1-0)Q] (e, &) +a |r+y' maxQ (wr,a) | (6.3)

In a similar way to the HSMQ-Learning algorithm describedha previous chap-
ter, the summation over atl time steps as appears in equation 6.1 is reflected here
by using cumulative rewards= r.1 + Yres2 + yri 3+ ... + Y1y, ¢ received for
executing actions;, and by raising to the powen. The proposed learning algorithm
for the hierarchy of induced SMDPs is called HAM+HSMQ-Leam The procedural
form of HAM+HSMQ-Learning is shown in algorithm 7. This réimcement learning
algorithm receives dialogue subtai&llﬁi and knowledge badeused to initialize state
w = (s,5). Then the abstract machine (corresponding to the currdstask) takes
control of the interaction except in choice states, wheedeéhrning agent receives the
control in order to choose actions; i.e. the abstract machsks the learning agent how
to act in choice states. This learning algorithm performsilarly to Q-Learning for
primitive actions, but for composite actions it invokesuesively an induced subtask;
when the induced subtask is completed withme steps it returns a cumulative reward
r at timet + 1, and so on until it finds a stop stador the root induced dialogue sub-
taskM6°. The HAM+HSMQ-Learning algorithm is iterated until congence occurs
to optimal context-independent policies (see dade 50).
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AGENT

reward 7T

‘ a = m(w), where 7 = {7?3'-, ceey Wﬁ__ll} ;
action
a

machine choice state
environment state
joint state
ENVIRONMENT

N

Figure 6.5: Architecture of the agent-environment interaction fonfercement learn-
ing using hierarchical induced SMDPs/j‘I\A: H{o M. The environment observes joint
dialogue states w= (s,s), where s is an environment state in SMDP' &hd s is a
choice state in HAM |kl The reinforcement learning agent uses a hierarchy of pegic
n‘j for decision-making, where i denotes a level and j the moeelgvel.
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Algorithm 7 The HAM+HSMQ-Learning algorithm

1: function HAM+HSMQ(KnowledgeBask, subtasld\/lf) return totalReward

2:

3
4:
5
6

7:
8:
9:
10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

S+« environment state iﬁij initialized from knowledge-rich state
s« start state of the abstract machine for subM#k

W (s)

totalReward— 0

discount— 1

while sis not a stop statdo
if Sis an action statéhen

Execute actiora (corresponding ts) and update knowledge-rich stdte

Observe one-step reward
else ifsis a call stateahen

r — HAM+HSMQ(k, a), which invokes subtasé (corresponding te)

and returns the total reward received whilsixecuted
else ifsis a choice statéhen
Chose actiora from w using policy derived fronQij (e.g.e-greedy)
S—a
continue
else
Observe next machine sta?e(e.g. a choice, null or stop state)
S—¢
continue
end if
totalReward— totalReward+ discountx r
discount« discountx y
Observe resulting joint statg — (s,
Qi(wa) — (1-0)Q,(wa)+a [r + discountx maxy Q\ (W, &)
S—¢
W—w

end while

29: end function
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6.4 Experiments and results

The experiments reported here aimed to investigate dial@ystems that learn to
behave from scratch against systems that learn to behaweporating prior expert
knowledge. As in chaptéd 5, the flight booking and travel plag systems used the
simulated environment and baseline machine behaviourideslan chapterl4.

6.4.1 Experimental setup

The experimental setup — in terms of state representatatisns, rewards and learn-
ing setup — was similar to that in sectionl5.4. The differelnere is that the dialogue
subtaskst\/lij were extended with Hierarchical Abstract Machines (HAMI#) where
their cross product yields theduced subtasks ]VI: Hji- o M'J The learnt policies used
the algorithm HAM+HSMQ-Learning described in the previeestion. The hierar-
chy of induced subtasks for the 6-slot flight booking systershiown in Figuré 616,
and used the same abstract machines described in chapye84R). The hierarchy
of induced subtasks for the 26-slot travel planning systeshown in Figuré 617, and
used the abstract machines described in Fidurés 6.8 andilée8e HAMs control the
machine’s dialogue behaviour in deterministic state itams, but in stochastic state
transitions the hierarchical reinforcement learning agjeptimized decision-making.
Note that whilst the flight booking system is not reusing edzdtmachines, the travel
planning system is reusing abstract machines in severate@aisubtasks.

Hierarchy of abstract machines Hierarchy of induced subtasks

Travel Induced subtasks:
planning MP =Ho M
Mg Mt =Hio Mg

0
M} = H} o M}
Mj! = H} o M}

Collect
terminal

slot Mél

Present Collect

Get man-
flight mandatory
info 1 slots
Hj Get H; My
optional slo
Hl

1

Collect

Figure 6.6: A hierarchy of induced subtasks for the 6-slot flight boolspgken dia-
logue system. The abstract machines are specified infpagech2ptei 3 and the state
variables for each dialogue subtasl{- ldre specified in Table 5.1.
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MZ=H2oM? MP =H} o M}
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goal

Travel

planning /o MP=H3oM}  M@3=H oM
Dialogue 0 MPE=H3oM} Mp3=H}oM}
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booking
Collect CO”‘?Ctl
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12
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Figure 6.7: A hierarchy of induced subtasks for the 26-slot travel plagrspoken dialogue system. The abstract machines (deastb|b)
are specified in Figurds 8.8 and 6.9, and the state varialdesdich dialogue subtask‘jl\me specified in Table 5.2.
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(HY) Root
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choice2

choice3

(H}) Meta-dialogue goal

choice4
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choice5

Summarize
trip
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terminal sl
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NOTATION

choice state

O call state
Q action state

all dialogue goals unfilled

Some dialogue goal in progress
all dialogue goals confirmed
unfilled/filled goal ‘flight booking’
unfilled/filled goal ‘hotel booking’
unfilled/filled goal ‘car rental’
unfilled/filled goal ‘summarize trip’
environment state is terminal
unfilled/filled goal ‘outbout flight’
unfilled/filled goal ‘return flight’
confirmed optional slots
unfilled/filled initial slot
unfilled/filled mandatory slots
unfilled/filled optional slot
unfilled/filled terminal slot
confirmed non-terminal slots and
none database tuples

Figure 6.8: Abstract machines for the travel planning spoken dialogistesn (Part 1),

where state transitions can be stochastic or based on d@testic constraints €
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(H3) collect initial slot

choice6

choice?7

unfilled slot in focus

filled slot in focus

confirmed slot in focus

_ none slots to confirm

(H}) collect mandatory slots if single slot to confirm

if multiple slots to confirm

status of information presentation is 0
status of information presentation is 1

choice8

choice9

choicel2 ichoicel3 choicel4d choicel6

1/2

Figure 6.9: Abstract machines for the travel planning spoken dialogistesn (Part 2),
where state transitions can be stochastic or based on datestic constraints €
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6.4.2 Experimental results: flight booking case study

Experimental results show that the hierarchical statexaspace with HAM obtained

a dramatic reduction of 980% in comparison with a flat state-action space. This rep-
resents an additional relative reduction of28% to the hierarchical state-action space
without HAM. Table[6.1 shows the number of state-actionsbimh flat (28 million)

and hierarchical (18K and 58K) approaches. It can be observed that the state-action
space reduction by the divide-and-conquer approach is muate significant than
the prior knowledge approach. But the additional benefiheflatter approach is to
perform learning on constrained dialogue behaviour.

Table 6.1: Size of state-action spaces for the flight booking dialogsées.

Approach States Actions Subtasky |Sx A|
Flat 281250 10 1 2812500
Hierarchical without HAM| 2591 | variable per subtask 4 17854
Hierarchical with HAM 2591 HAM-based 4 5841

Figure[6.10 shows the learning curves of the dialogue mditor different ASR
confidence distributions, averaged over 10 training rung®fdialogues. The first
thing to notice is that hierarchical learning with HAM learfaster than hierarchical
learning without HAM, roughly by four orders of magnitudehd'second thing to no-
tice is that the HAM-based poli@yequired very little learning compared with learning
from scratch. This can be explained by the fact that whikstgblicy without HAM is
exploring incoherent behaviour (by using the whole actiet), $he HAM-based policy
is exploring more coherent behaviour. This is why the leggrdurve is flattened, but
it gradually finds more efficient behaviour. The last thingtdice is that hand-crafted
machine behaviour performed almost as well as the HAM-baséidy for only one
situation of confidence levels (top plot), but in generasibutperformed.

These plots report that the learnt dialogue policies ofpered the hand-crafted
behaviour by L, 1.2, and 34 system turns for the different distributions of confidence
levels, respectively (from top to bottom). These gains alajue efficiency highlight
the importance of validating these results with real cosagons.

The HAM-based policies used the following settings onlyhe first one hundred dialogues: (1)
frozen learning, and (2) Q-values initialized to ‘1’ for &eaction pairs that matched the hand-crafted
behaviour. This setting was employed to observe the palipgiformance before learning.
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Figure 6.10: Learning curves of dialogue policies using flat and hieracahreinforce-

ment learning (with and without prior knowledge) in the flijooking system.
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6.4.3 Experimental results: travel planning case study

Experimental results show that the hierarchical statexaspace with HAM obtained

a dramatic reduction of more than.99% in comparison to a flat state-action space.
This represents an additional relative reduction 088% compared to the hierarchical
state-action space without HAM. Talhle 6.2 shows the numbstiate-actions for both
flat and hierarchical approaches. But, how can good dialpglieies be found by
throwing away more than 999% of state-actions?

Table 6.2: Size of state-action spaces for the travel planning diadogystem.

Approach States Actions Subtaskg |SxA|

Flat 4.5 x 1072 15 1 6.7 x 1073
Hierarchical without HAM| 117081 | variable per subtask 21 803627
Hierarchical with HAM 116457 | variable per subtask 21 246171

Figure[6.11 shows the learning curves of hierarchical diadopolicies for dif-
ferent amounts of ASR confidence levels, also averaged dvémiing runs of 10
dialogues. Results confirm the arguments made in the precase study. First, hier-
archical learning with HAM found faster solutions than hiehical learning without
HAM. Whilst the former form of learning required less tharO0Gdialogues to outper-
form hand-crafted behaviour, the later required at lea800@ialogues to outperform
hand-crafted behaviour. Second, HAM-based beha@im&muired very little learn-
ing compared with learning from scratch. Third, HAM-baseti&viour outperformed
hand-crafted behaviour by B 106, and 19 system turns for the different distribu-
tions of confidence levels, respectively (from top to boftofrhis result suggests that
the importance of machine dialogue optimization grows etiog to the size of the
conversational agent.

It can be noted that the HAM-based policy did better than tiky-fearnt policy.
This is presumably due to the following reasons: (1) thafuhg-learnt policy uses the
whole action set, and explores incoherent actions; anch@é)the fully-learnt policy
exhibited infinite loops during testing, meaning that dgriraining it takes longer to
reach the goal states. Test results showed that the HAMdh@deies also exhibited
dialogues with infinite loops, e.g. the policy eventuallplgized infinitely often.

2In a similar way to the flight booking system, learning wagéw in the first one hundred dialogues
and the Q-values were initialized to ‘1’ for state-actioaérp that matched the hand-crafted behaviour.
This setting was employed to observe the policy’s perforredrefore learning.



Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 127

ASR Confidence Levels: p(low)=1/4, p(medium)=1/4, p(high)=1/2

200 —— —
= Hjerarchical learning without HAM
= == = Hijerararchical learning with HAM
@ 1 == = Hand—crafted behaviour
5 1501
(S
&
2.
D)
o 100}
IS
o)
>
<
50
2 3 4 5
10 10 Dialogues 10 10
ASR Confidence Levels: p(low)=1/3, p(medium)=1/3, p(high)=1/3
200 . .
= Hierarchical learning without HAM
= == = Hjerararchical learning with HAM
g == = 1 Hand-crafted behaviour
5 150
(S
&
2.
D)
@ 100
IS
o
>
<
50
10 10 Dialogues 10 10
ASR Confidence Levels: p(low)=1/2, p(medium)=1/4, p(high)=1/4
200 - .
= Hierarchical learning without HAM
= == = Hjerararchical learning with HAM
é’ == 1 = Hand-crafted behaviour
S 150} i
IS
e
2]
>
)
e 1001 1
IS
°
E ‘-I-I-I-l-l-l-’-/-\-l
~
50 ~--------—----n--.--a-t'.-

2 3 4 5
10 10 Dialogues 10 10
Figure 6.11: Learning curves of dialogue policies in the 26-slot travimming sys-
tem using the reward function defined by equafion 5.9. Inakell0* dialogues the
HAM-based policy averagedi2, 10.6, and19.9 fewer system turns than hand-crafted
behaviour for the different distributions of confidencesle(from top to bottom).
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The issue of infinite dialogues motivated us to constraithrthe HAM-based
policy of Figure$ 6.8 and 6.9, and to use the reward functafindd by equation5.10.
On the one hand, such a reward function penalized stronglgcéion that did not
change the current dialogue state. On the other hand, th&osad constraints in
the HAM consisted in prohibiting apologies in medium andhh@pnfidence levels,
which resulted in a more compact state-action space of 1688&te-actions. This
represents a relative reduction €f80% state-actions compared to the hierarchical
state-action space without HAM. Figure 6.12 shows the legrourves for this more
compact HAM-based dialogue policy (with frozen learninghe first 100 dialogues)
for different amounts of ASR confidence levels, averaged d@draining runs of 19
dialogues.

An evaluation on the last fOdialogues reports that the HAM-based policy with
further constraints solved the the problem of dialoguek watinite loops. This result
tells us that learning with prior knowledge provides a framaek to specify constraints
on the solution. In addition, it was observed that the revimndtion defined by equa-
tion[5.10 generated more efficient dialogues in the HAM-Has#icy (on average 1.5
system turns), also referred to as ‘semi-learnt behaviee Tabl€¢ 6]3). The HAM-
based policy outperformed the hand-crafted one.by121, and 214 system turns for
each distribution of confidence levels, respectively. Bgains in dialogue efficiency
also highlight the importance of validating these resuita realistic environment. An
evaluation with real users of learnt dialogue policies\dstifrom equatiof 5.10 and
balanced ASR confidence levels is reported in chapter 7.

All these results make the combined hierarchical learnppy@ach more attractive
for application in real-world spoken dialogue systems, @nallearning efficiency of
this approach is attractive for optimizing dialogue bebavin an online setting.

Table 6.3: Average system turns of policies in the 1a8t training dialogues, where
the third column used the reward function described by équ&.9 and the fourth
column used the reward function described by equéafion 5.10.

Confidence Level Distribution Hand-crafted Semi-learnt| Semi-learnt|
(low, medium, high) Behaviour | Behaviout | Behaviouf
Distribution1(1/4,1/4,1/2) | 538+0.9 | 47.6+0.7 | 462+07
Distribution2(1/3,1/3,1/3) | 586+1.0 | 480+0.8 | 465+0.8
Distribution3(1/2,1/4,1/4) | 683+1.4 | 485+0.9 | 469+0.8
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Figure 6.12: Learning curves of dialogue policies in the 26-slot travi@lqming system
using the reward function defined by equation 5.10. In thé 188 dialogues the
HAM-based policy averaged6, 12.1, and21.4 fewer system turns than hand-crafted
behaviour for the different distributions of confidencesle(from top to bottom).
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6.4.4 Analysis of learnt behaviours with finite dialogues

This sub-section analyzes the performance of learnt gslisiithout infinite loops.

Tablel6.4 shows test results for hand-crafted and semidlbahaviour (using the more
compact HAM) also averaged over 10 test runs of 1000 diakgutecan be noted

that the semi-learnt dialogue behaviour outperformed tnedkcrafted one by 10%,
16% and 28% fewer system actions for each confidence levsghdigon, respectively.

This reduction of system actions can be briefly explainedlsws: the semi-learnt
behaviour differs from the hand-crafted one in the use ofaramceptances (action
‘acc’), more multiple implicit confirmations (action ‘mig’ fewer apologies (actions
‘apo+req’ and ‘apo+ofr’), and fewer multiple explicit comfiations (action ‘mec’).

Table 6.4: Test results showing the average number of primitive astpmer dialogue
of semi-learnt policies with different amounts of ASR cemioe levels (low, medium,
high). The number of actions per dialogue (in bold) withicle&ASR confidence level
distribution were compared with t-tests and showed sta#iksignificance at p< 0.01.

Conf. Levels (1/4,1/4,1/2) (1/3,1/3,1/3) (1/2,1/4,1/4)
Action Hand-crafted Semi- | Hand-crafted Semi- || Hand-crafted Semi-
Learnt Learnt Learnt
acc 3.61 3.93 2.82 3.81 2.85 3.30
ack 4.02 4.03 4.02 4.03 4.02 4.02
apo+ofr 1.18 0.37 1.80 0.00 3.47 0.00
apo-+req 4.53 0.59 7.23 0.67 14.23 0.94
clo 1.00 1.00 1.00 1.00 1.00 1.00
dbg+sta 4.47 4.47 4.47 4.47 4.46 4.47
gre 1.00 1.00 1.00 1.00 1.00 1.00
mec 5.84 4.32 6.87 4.32 7.63 4.13
mic+req 2.35 2.82 1.92 2.77 1.99 2.83
ofr 0.27 0.27 0.26 0.27 0.26 0.26
pre+ofr 4.02 4.03 4.02 4.03 4.02 4.02
rel 0.47 0.46 0.48 0.47 0.46 0.47
req 10.63 10.11 11.52 10.23 11.66 10.68
sec 10.09 10.24 10.55 10.37 10.46 11.00
sict+req 3.15 3.07 2.73 2.99 2.71 2.36
Sum 56.63 50.69 60.68 50.42 70.24 50.50
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Note that the previous differences in dialogue efficieneysanaller than those re-
ported by fully-learnt behaviour without infinite loops @la[5.6). This motivated us
to test again the same semi-learnt behaviour, but actingradicg to eq[5.11. It was
found that doing this helped to generate more efficient ceat®ns: the semi-learnt
behaviour outperformed the hand-crafted one by 16%, 22932a%gfewer system ac-
tions for each confidence level distribution, respectiy@bble[6.5). These differences
in dialogue efficiency are more comparable to those obtaigddlily-learnt behaviour
(see sectioh 5.5.3). These results suggest that fully- and-kearnt behaviours can
perform comparably on finite dialogues, and that a comlonatif hand-crafted and
(semi) learnt policies may result in better performance tising them separately.

Table 6.5: Test results showing the average number of primitive astper dialogue of
semi-learnt policies (acting according to €g. 5.11) witffetient amounts of ASR confi-
dence levels. The number of actions (in bold) within eacliidence level distribution
were compared with t-tests and showed statistical sigmitieaat p< 0.01.

Conf. Levels|  (1/4,1/4,1/2) (1/3,1/3,1/3) (1/2,1/4,1/4)
Action Hand-crafted Semi- | Hand-crafted Semi- || Hand-crafted Semi-
Learnt Learnt Learnt
acc 3.61 3.97 2.82 3.89 2.85 3.79
ack 4.02 4.02 4.02 4.02 4.02 4.03
apo+ofr 1.18 0.30 1.80 0.06 3.47 0.10
apo+req 4.53 0.51 7.23 0.57 14.23 0.90
clo 1.00 1.00 1.00 1.00 1.00 1.00
dbg+sta 4.47 4.47 4.47 4.48 4.46 4.48
gre 1.00 1.00 1.00 1.00 1.00 1.00
mec 5.84 2.16 6.87 2.21 7.63 2.13
mic+req 2.35 2.82 1.92 2.80 1.99 2.88
ofr 0.27 0.25 0.26 0.25 0.26 0.25
pre+ofr 4.02 4.02 4.02 4.02 4.02 4.03
rel 0.47 0.44 0.48 0.45 0.46 0.45
req 10.63 9.73 11.52 9.82 11.66 9.93
sec 10.09 9.62 10.55 9.74 10.46 9.90
sic+req 3.15 3.03 2.73 2.96 2.71 2.77
Sum 56.63 47.36 60.68 47.27 70.24 47.63
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6.5 Related work

Our approach for incorporating prior expert knowledge irgmforcement learning

agents is based on the Hierarchical Abstract Machines (HA Il,

1997). In this approach the system designer specifies apprégram (HAM) and
leaves the unspecified part to the hierarchical reinforcghearning agent.

Litman et al. (2000);_Singh et al. (2002) incorporated pkaowledge into an

MDP-based dialogue system (NJFun) by means of hand-craited used to com-
press the state-action space. This approach allowed theyartorm very efficient
learning. Our approach differs from Litman and co-workeygproach in two respects:
(1) NJFun does not provide a formal framework to incorpopater knowledge, our
approach is based on deterministic-stochastic finite statshines; (2) NJFun applies
flat dialogue optimization, while our approach applies &iehical optimization.

Heeman(2007) proposed combining the information-statatgapproach with

reinforcement learning dialogue systems. In this apprdélaehnformation-state (dia-
logue state) is hand-crafted by update rules based on pigms and effects. In this
combined approach a subset of preconditions that are eapgtify are hand-crafted,
and those less easy to specify are left to the reinforceraanting agent. Our approach
differs from the Heeman’s approach as follows: (1) priorwlemige is specified with
deterministic-stochastic finite state machines insteaadfofmation-state update rules,
and (2) we optimize hierarchical dialogue strategies adtef flat dialogue strategies.
Williams .ZDLBLDJ) proposed executing a Partially ObdaleviDP (POMDP) and
a Hand-Crafted (HC) dialogue controller in parallel. Atledne step, the HC con-

troller is in states (e.g. semantic frame) and the POMDP is in belief dbgfgrobability
distribution over POMDP states), the HC controller nomésat subset of actions, and
the POMDP updates a value function only for that particuldosgt of actions. Thus,
a POMDP solution is found on a more compact space of poli€as.approach and
Williams’s approach share the idea of executing a partieg@m in parallel with an
optimized decision-making model, but they differ as foltoWl) our HAM-based form
of prior knowledge does not consider belief states: neetts, HAMs can be used for
decision-making at higher levels where dialogue state®eadentified with certainty;
(2) whilst the HC controller of Williams’s approach is an irdry computer program,
our approach is based on deterministic-stochastic firgtie shachines and provides a
formal reinforcement learning method; and (3) our appragmimizes a hierarchy of
partial programs, which is more scalable and suitable fasability.
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6.6 Discussion

This chapter addresses further issues in dialogue optiioiztor real world systems:
(a) the role of prior, or expert knowledge, (b) sub-optin@lsons, (c) search space
reduction before learning, (d) reusable solutions, anpdefally specified behaviour.
Firstly, the approach of learning dialogue policies withpuor knowledge simply
exacerbates the problem. The role of prior knowledge is mapbfor at least two rea-
sons: (1) to reduce the search space in order to find fastaicstd and with reduced
computational demands, and (2) to allow the opportunityntmiporate ad hoc con-
straints due to system requirements. In addition, the pa@tion of prior knowledge
in reinforcement learning for spoken dialogue systems magegl to be very useful

in order to optimize behaviour from real conversation 2000; Litman et a

2000; Singh et all, 2002). Otherwise, a large number of disds is required for such

a purpose, and this is only possible with simulations (witiah be unrealistic).

Secondly, one of the dangers of using prior knowledge infoetement learning
agents is that sub-optimal solutions may be obtained. Torverethe quality of the
learnt policies using the approach proposed in this thesisde and conquer plus
prior knowledge) will depend on two aspects: the hieram@hstate representation, and
the HAM-based partially specified dialogue strategy. N#hedess, the learning agents
will find optimal context-independent policies accordinghe specified constraints.

Thirdly, a typical approach to incorporate prior knowledge reinforcement learn-
ing agents is to reduce state-action pairs before leardihis represents a problem if
spoken dialogue behaviours are frequently updated (efdgstricting it or extending
it), where a new learnt policy has to be found. This is a strogason for prefer-
ring hand-crafted instead of learnt dialogue behavioue pitoposed partial programs
can avoid re-learning when additional deterministic béhavis incorporated into the
HAMs. But the policies must be re-learnt when additionatkastic behaviour is in-
corporated into the HAMSs. In general, partial programs rgrn parallel with learnt
behaviour may help to reduce re-learning of policies widgfrent updates.

Fourthly, a desirable property in approaches for buildipgken dialogue systems
is that of reusable components. The topic of reusable lehahbgue behaviours is
important for at least two reasons. First, it aims to relisystem developers of the
effort of doing many expert tasks. Second, it aims to speethapdevelopment-
deployment process for conversational agents. In thiseorthe application of hierar-
chical SMDPs to dialogue systems may become relevant fdotlogving reasons: (1)
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by reusing learnt dialogue behaviours like those geneffabed chaptef b, and (2) by

reusing modularized prior expert knowledge as proposelischapter. Lemon et al.

20064a) reuse a single policy (exactly the same) in diffedgsdogue contexts. How-
ever, there is much more to do — such as reusing similar betwavi- for facilitating
the rapid development of conversational agents with oggchbehaviours.

Fifthly, the idea of partially specified dialogue strategierelevant to the field be-
cause it is useful to balance the strengths of purely leahawiour and purely hand-

crafted behaviour. The approachl_oj_LeMm_and_Ei_eLaJcl:iﬂQéléLﬂdn_el_aJ. [(ZD_dO)

Is to design automatically the behaviour of dialogue systeirhis thesis argues that

semi-learnt behaviour is more attractive for the follownegsons: (a) it is more co-
herent than purely learnt behaviour, (b) it plays a morevaatole in the system’s
development life cycle, and (c) it is more suitable for oallearning.

Finally, two approaches have been proposed in this thelsiSNIDP-based hierar-
chical dialogue optimization, and (2) SMDP-based hiernaadldialogue optimization
constrained with HAMs. These approaches complement edughr ot order to pro-
vide a more scalable and flexible composite approach fomopitig spoken dialogue
agents. The next chapter describes an experimental eiaiweth real users.

6.7 Conclusions

This chapter proposed learning partially specified diadogfuategies using constrained
Semi-Markov decision processes and hierarchical reiefoent learning. These par-
tial strategies are specified through hierarchical abistnachines, where obvious be-
haviour is specified with deterministic choices and nontolbs behaviour with stochas-
tic choices. The latter is the behaviour to be learnt by tiidoecement learning agent.
It was applied experimentally to simulated dialogue systanthe flight booking and
travel planning domains, and the proposed approach wasarechpith reinforcement
learning ab initio. Experimental results show that the tlighoking system used only
0.20% of the flat state-action space, and the travel plannistesyless than.01%

of the flat state-action space. Hence learning is much fastérwith less computa-
tional demands than learning without prior knowledge. Ewgthh such reductions,
the learnt dialogue policies outperformed hand-craftduheur. In addition, it was
found that a combination of hand-crafted and (semi) leaotitigs may result in bet-
ter performance than using them separately. All thesetsesugjgest that the proposed
approach can be applied to large-scale and real-world spdiéogue systems.



Chapter 7

A spoken dialogue system using

hierarchical reinforcement learning

This chapter aims to validate the hypotheses and prelimc@rclusions derived from
the previous chapters. Sectibnl7.1 explains the need foe mmphisticated spoken
dialogue systems. Sectign 7.2 describes the architecfuadravel planning spoken
dialogue system with three different dialogue behaviodeterministic, fully-learnt,
and semi-learnt. The first is used as a baseline for the tattethat employ spoken di-
alogue strategies generated by hierarchical reinforceleaming. Sectioh 713 reports
on a quantitative and qualitative evaluation in a labosasatting with real users. Sec-
tion[Z.4 discusses the strengths and weaknesses of thenspiakegue system under
evaluation. Finally, sectidn_4.5 provides a summary of figdi

7.1 Introduction

The behaviour of spoken dialogue systems is typically heoakd by designers and
developers. This approach has several limitations: ittg@to errors, time-consuming,
ad hoc, non-optimized, and non-adaptive, among others. téngial solution is sys-

tems that learn their dialogue behavidul’_(Lﬂm_a.nd_Eiﬂniu:tQ_ﬁ) through the use of
some sort of intelligent agent that behaves rationallyrduthe dialogue by choosing
the best actions according to some performance measursdlRasd Norvig, 2003).

Zue (2007) proposed a long-term vision of dialogue systératsdan learn, grow, and

reconfigure themselves. See chapter 2 for a brief literagwiew on spoken dialogue
systems that learn their dialogue behaviour using reiefoent learning.
Briefly, previous research in dialogue strategy designguia reinforcement learn-

135
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ing paradigm has been carried out through two types of ceatienal environment:
real and simulated. Performing experiments on real enments requires large amounts
of time, effort and resources. This explains the relatiek laf investigations in the
field, where two approaches have been employed: first, legtiavbour from real di-

alogues and then test it on a real environmEnt (Walker, EB_MQh_el_ai. 2002); and

second, learn behaviour on a simulated environment and tdstrit on a real one

WMMMMMOW) Thenés may be referred

to as ‘real learnt behaviour’, the latter as ‘simulated m¢doehaviour’. On the one

hand, real learnt behaviour is more attractive because# el data, but it is not very
practical due to the large number of dialogues required pointal learning. On the
other hand, simulated learnt behaviour is more practicathmiright things may not
be learnt due to the use of a simulated environment, whichingVitably be simpler
than the real environment. This suggests that both behavitave to be backed up
with testing on real environments to guarantee their perémce.

The problem addressed here is the evaluation of learnt bmirafor large-scale
spoken dialogue systems. Most previous investigationgafled spoken dialogue
behaviours have been concerned with evaluating smaksgatems, typically using a
single dialogue goal with few slots of information. This itation was the motivation
to propose and evaluate a more scalable dialogue optimiz&amework. The idea
of evaluating learnt dialogue behaviours with real userpagicularly relevant for
showing the effectiveness of the proposed dialogue simonl&nvironment, and the
hierarchical reinforcement learning framework descrilvechapters b and 6. For this
purpose a heuristic-based simulation framework was usgdrterate human-machine
conversations, producing coherent and distorted conensa(see chaptéd 4). Once
the learning agents designed the dialogue behaviours,wieey put into operation
in a realistic environment, in the domain of travel planninghe resulting spoken
dialogue system allowed users to book flights, hotels ansl. c&his system shares
similarities with the DARPA Communicator dialogue syste&]z\saiker_el_aj._ZD_dZ),
but used dialogue behaviours designed by hierarchicdiore@ment learning agents,

using the Semi-Markov decision processes formalism.

The objectives in this chapter were to show that the propdsddgue simulator
can help learning agents to find dialogue strategies thaeolorm hand-coded, deter-
ministic behaviour, and that hierarchical dialogue bebwars learnt in the presence of
constraints derived from prior knowledgeefni-learnt behaviourg are more suited to
deployment than fully deterministic or fully-learnt diglee behaviours.
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7.2 System architecture

The CSTR travel planning spoken dialogue system supporeztrdinistic or learnt
dialogue behaviour. The latter uses dialogue strategigigied by hierarchical rein-
forcement learning agents on a simulated environment (sggers 4-6). This system
is based on the Open Agent Architecture (OAA) (Cheyer andtiba?001). Fig-
ure[Z.1 shows a high-level architecture using eight OAAedasgents in order to sup-
port speech-based task-oriented human-machine comntionicihe communication
flows between facilitator (parent) and the other agentsdam). Briefly, the user gives
speech signalg' corresponding to wordst', concepts or slotsy, and dialogue acts
a'. However, the machine understands them with distortie#is", &'), and answers
back to the user with speech signglscorresponding to worda{", slotsc{", and di-
alogue acts{". The user may also misunderstand the machine, and so oronatdf
the conversants terminates the conversatioh sygstem turns. The rest of this section
describes each agent based on dialogue fragments shoyiung end outcomes.

~ U
X ;n T Ly Speech
— b User -~ »  Recognizer
(HTK) TU
" W
Speech Semantic
Synthesizer Parser
(HTS+Festival) \ / (Phoenix)
’wln’ Facilitator ~U
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Language / Dialogue Act
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(Rule-based)
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Dialogue
Manager
(HRL+SMDPs)
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(a

Database
System
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Figure 7.1: Architecture of the CSTR travel planning spoken dialogs¢esy support-
ing deterministic or learnt dialogue behaviour. Human-miae communication is
carried out with speech signals,xvords w, concepts or slots;cand dialogue acts;a
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7.2.1 Facilitator agent

OAA is an agent-based framework to build autonomous, flexifdult-tolerant, dis-

tributed and reusable software systems (Cheyer and bnmi). OAA agents can

be written in multiple programming languages and run on apdsr network with
different operating systems. They have a parent agentdcit@litator, coordinat-
ing the communication of child agents by keeping a knowldalgge of their services.
Child agents are service providers and service requeditkeesiormer let the facilitator
know of their own capabilities, and the latter request cdjpigs from other agents.
They communicate by passing string messages between geifdsaand facilitator.

7.2.2 Speech recognition agent

The task of this agent was to receive user speech signafseaith machine prompt
w{" and to generate a word sequence including confidence leyelgefived from
the recognition hypothesis incorporating confidence scofe This agent used the
multithreaded ATK API, which is a layer on top of the HTK spkeecognition li-
braries (io_uﬂg 2007, 2006). This agent used the acoustdehdtrained with data
from British speakers) generated from the TALK prdﬂemd customized-based lan-

guage models with a lexicon of 263 words. The confidence $ewere assigned by
dividing the confidence score ranf§e..1] into three equal areas, equivalent telow,
m =medium, anch =high confidence. The following table illustrates this pregxe

ID | Event Outcome

w" | Machine prompt Welcome to the CSTR travel planning system.
Tell me your flight information.

User response | | would like a single flight from Edinburgh to Pari
ASR hypothesis| how(0.27) about(0.31) a(0.15) single(0.60)

with confidence | flight(0.56) with(0.32) h.m._i.(0.47) from(0.70)
scores edinburgh(0.59) to(0.40) paris(0.56)

W' | ASR hypothesis| how(l) about(l) a(l) single(m) flight(m) with(l)
w/conf. levels | b..m..i.(m) from(h) edinburgh(m) to(m) paris(m)

U7

W'
W

w"

1 | Machine prompt A single flight from Edinburgh to Paris. travelling

with BMI. When do you want to travel? ...

W', | User response | | would like to travel with Air France.

10ur ASR and TTS agents used wrappers generated from the TAbj&qt (Lemon et &ll, 2005).
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7.2.3 Semantic parsing agent

This agent generated concept or keyword sequenydesrii a (distortedly) recognised
word sequencey’. This agent used the Phoenix spontaneous speech parserapst
a word string into a semantic frame. A semantic frame is afsglbts of information,

each slot with an associated context-free grammar. Suchrgaas are compiled into
recursive transition networks, which are matched with tivergword sequence by a

top-down chart parsing algorithm (Ward, 1994). This ageeti8 frames (correspond-

ing to flights, hotels and cars) including 18 semantic nekaoBee the table below for
a sample parsed word sequence.

ID | Event Outcome

w" | Machine prompt Welcome to the CSTR travel planning system.
Tell me your flight information.

w{' | Userresponse | | would like a single flight from Edinburgh to Paris.
W' | ASR hypothesis how about a single flight with tm._i. from

wo/conf. scores| edinburgh to paris
&' | Semantic parse| Flight:[FlightType].SINGLE

Flight:[DepCity].[City]. EDINBURGH
Flight:[DesCity].[City].PARIS

Flight:[Airline].BMI

&' | User dialogue | pro(FlightType=single.m,DepCity=edinburgh.m,

act DesCity=paris.m,Airline=bmi.m)

w" ; | Machine prompt A single flight from Edinburgh to Paris travelling
with BMI. When do you want to travel? ...

W' ; | Userresponse | | would like to travel with Air France.

+
[EEY

7.2.4 Dialogue act recognition agent

This agent generated user dialogue a'tsising a two-stage approach. First, a user
dialogue act type was selected taking into account the mucancept sequenaog and
last machine dialogue act corresponding to the machineprefit Once a dialogue
act type had been selected, it took context into accountc¢orbe a user dialogue act
&'. Although it is possible to generate more than one dialogt@er user utterance,
this agent generated a single user dialogue act (see tleediatwe for an example).
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7.2.5 Database system agent

This agent returned database tuples based on SQL quemesHfeodialogue manager.
It used a web scraper to populate a local database, regi¢nael data from a com-
mercial web siteMww. opodo. co. uk). This strategy was selected in order to avoid
long time responses from direct queries to the web site. Etabase stored infor-
mation from dialogue scenarios such as the shown in TableTh agent returned
an empty data set when it experienced unknown slot-valukat Situation occurred

if some slots were filled incorrectly due to mis-recognispwhich forced the user to
reprovide the wrong information in order to obtain a non-gngata set (see example
below). That situation also served to test the early sulirskination (section 5.2.4).

SYS: Welcone to the CSTR travel planning system
Tell nme your flight information.

USR | would like a single flight from Edinburgh to Paris.

SYS: A single flight fromEdinburgh to Paris travelling with BM.
Wien do you want to travel ?

USR | would like to travel with Air France

SYS: Aflight travelling with Air France. Wen do you want to travel?

USR [cut off] the sixth

SYS: A flight leaving on May sixth,
At what time do you prefer to travel?

USR Ehh | would like to travel on December the sixth in the norning

SYS: At what time do you prefer to travel ? For exanple you can say:
A flight in the afternoon.

USR: A flight in the norning

SYS: Did you say a flight in the norning?

USR: Yes

SYS: Please wait while | retrieve information. | amsorry | didn't
find any flights from Edinburgh to Paris on may sixth travelling
with Air France. Try again with sone different information.

USR Decenber the sixth

SYS: Did you say a single flight |eaving on Decenmber sixth

USR Yes

SYS: Please wait while | retrieve information. | found 2 flights from
Edi nburgh to Paris with Air France...


www.opodo.co.uk
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7.2.6 Dialogue management agent

This agent generated machine dialogue agtsom the hierarchy of policieﬂ?j based
on three different types of dialogue behaviours: deterstimi fully-learnt and semi-
learnt. Thedeterministicstrategy is based on a mapping from states to actioas)
using the baseline machine dialogue behaviour describseliori 4,3 .P:

mi(s) = f(s a), (7.1)

wheresis a state irSj anda is an action irA‘j. The two learnt behaviours were opti-
mized for efficient dialogues. THelly-learnt behaviour used a hierarchical dialogue
agent (based on €g, 5110) that could use the full action ®=tdh state (see chapiér 5):
10 (s) = argmaxQ!' (s, a). (7.2)
aeA']-

In contrast, thesemi-learnbehaviour (also based on €g.8.10) used “partially specified
dialogue strategies” for constraining the actions in eaafit jstatew = (s,s), wheres

is an environment state asds a choice state in the partial policy (see chabpter 6):

n’j” (w) =arg JQE?)Q? (w,a). (7.3)

Table[7.1 shows an example of the form of dialogue controhe@@€STR travel
planning system given by a hierarchical reinforcementiiegr agent with fully-learnt
behaviour. The agent uses a hierarchy of learnt dialoguieipsqu”, where each
policy chooses the action with the highest cumulative revfar each state. Notice
that machine decisions can be primitive actions sucfirag=request’, ‘mic=multiple
implicit confirmation’}, or composite actions (also referred to as ‘subtasks’) sisch
{ M(";:sub-dialogue for outbound fIight’Mg’:sub-diangue for collecting mandatory
slots in the outbound fligh}. A dialogue subtask uses a separate learnt policy to actin
the sub-dialogue. When a subtask is invoked, it obtaingitsi dialogue state from
the machine’s knowledge base that is updated from obsengin the environment.
A subtask returns to its parent subtask when it reaches anairstate.

The specifications of these spoken dialogue controllere e&pressed in XML
files encapsulating information about hierarchical dialgtructures, learning envi-
ronment, knowledge bases of simulated user and machineleaming setup (see
chapter$ 419,16, and appendikx B for more information). Sthese spoken dialogue
behaviours only differ in their action-selection mechamisind the rest of the OAA-
based agents (see figlrel7.1) did not change regardlesstudliagiour of choice, it is
fair to say that these behaviours were evaluated underasigohditions.



Table 7.1: Fragment of a real dialogue in the CSTR travel planning systising policiesTj”, the state representation is shown in Tdblg 5.2.

Agent | Policy | State Action | Dialogue Act Utterance
SYS rqgo 0,0,0,0,0,0 | gre gre() Welcome to the CSTR travel planning system.
0,1,0,0,0,0 | M}
gl | 1,0,0 M3
w2 | 0,0,000 | M3
1%3 0,0,0,0,0,0,0 req req(DepCity) Tell me your flight information.
USR pro(FlightType=single,DepCity=edinburgh, would like a single flight from
DesCity=paris) Edinburgh to Paris.
SYS g | 0,2,2,0,0,2,2 acc
Tr53 2,2,2,0,0,2,2 mic mic(FlightType=single,DepCity=edinburghA single flight from Edinburgh to Paris
DesCity=paris,Airline=bmi)+req(DepDate)) travelling with BMI. When do you want to travel?
USR pro(Airline=air france) | would like to travel with Air France.
SYS Tr53 2,4,4,0,0,2,4 sic sic(Airline=air france)+req(DepDate) A flight travelling with air france.
When do you want to travel?
USR pro(DepDate=december sixth) December the sixth
SYsS | m® |24,4,2,044 acc
SYS Tr53 3,4,4,2,0,4,4 sic sic(DepDate=may sixth)+req(DepTime) | A flight leaving on May sixth.
At what time do you prefer to travel?
USR rep(DepDate=december sixth, ehh i would like to travel on December the sixth
DepTime=morning) in the morning.
SYS | m® |3,44,4,4,44 [terminal state]
Tq*)z 0,0,2,2,0 dbg+stal dbq(db)+sta(db) Please wait while | retrieve information...

Buiules| Juswaalojulal [eslyaselaly Buisn waisAs anbojelp uayods v 2 Jardey)d

A4
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7.2.7 Language generation agent

The task of this agent was to generate a machine pregfijit natural language based
on a template-based approach. A prompt template has a wquetisee embedding
variables, and was selected given the current machinegtialactaf", dialogue state
g" or joint statew", and a simple help mechani@mOnce a prompt template had
been selected, it took context into account by replacingalsées with values in the
machine’s knowledge base in order to generate the word segug’} ;. This agent
included 463 prompt templates. The table below (with ordittalogue states) shows
a sample prompt templatgg' and its corresponding machine promyt .

ID | Event Outcome

w" | Machine prompt Welcome to the CSTR travel planning system.
Tell me your flight information.

&' | User dialogue pro(FlightType=single.m,DepCity=edinburgh.m,
act DesCity=paris.m,Airline=bmi.m)

a" | Machine mic(FlightType=single,DepCity=edinburgh,
Dialogue act DesCity=paris,Airline=bmi)+req(DepDate)

¢ | Prompt for action ‘mic’| A $FlightType flight from $DepCity to $DesCity
travelling with $Airline.
Prompt for action ‘req’| When do you want to travel?

w" ; | Machine prompt A single flight from Edinburgh to Paris travelling
with BMI. When do you want to travel? ...
W', ; | User response | would like to travel with Air France.

7.2.8 Speech synthesis agent

This agent generated speech signdlsrom a given word sequenad”. This agent is
based on the Festival text-to-speech systesth an HTS voice generated from eight

hours of recorded speech (Yamagishi et al., 2007). The bp@goals were generated

online, using a pre-processing stage to split word seqseatqeunctuation symbols in
order to avoid long silences in the machine’s utterance.

2Simple automatic help: a)islot collection=no help, b)"® collection=help prompt suggesting to
fill multiple slots, c) 3% collection: help prompt suggesting a shorter sentence@datlection=help
prompt suggesting to fill a single slot, e) others=help prosaggesting to rephrase the sentence.
3http://www. cstr.ed.ac. uk/projects/testival
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7.3 System evaluation

These experiments aimed to investigate whether hieraithitearnt dialogue be-
haviour can outperform deterministic behaviour in a réiglesnvironment, and to eval-
uate the heuristic simulation environment with real data.dtich a purpose the system
described in the previous section was implemented and geglo a population of real
users for its corresponding evaluation. See appdndix C $angle dialogue.

7.3.1 Evaluation methodology

The CSTR travel planning spoken dialogue system was ewsuaing a number of
metrics, mostly derived from the PARADISE framewolrk (Walke al., 2000), which
has been widely accepted for evaluating the performanceaien dialogue systems.

(i) Dialogue Efficiency This group of quantitative metrics includegstem turns
user turns andelapsed timdin seconds). All of them report averages per di-
alogue goal (flight, hotel, car). Elapsed time includes theetused by both
conversants.

(i) Dialogue Quality: This group of metrics includea/ord Error Rat WER), Key-
word Error Rate(KER), andEvent Error Ratd EVER). The latter is decomposed
into the following metrics reported as percentagesrect acceptangecorrect
confirmation correct rejection false acceptangealse confirmatiorand false
rejection Other commonly reported metrics include percentages wincands
and barge-ins, but this dialogue system did not support them

(i) Task SuccessThis group of quantitative metrics includesk succesanddia-
logue reward Task success uses a binary approach, where each dialefjus ta
classified as successful if the user achieved the goal (egkimg a flight, ho-

tel or car) as inL(B_Qhus_and_RudniJ:IL;LiQBSb). Dialogue reveammbines task

success and dialogue length in terms of system t ):

100 -|SystemTurns for successful dialogue

DialogueReward= { (7.4)

0 - |SystemTurns for failed dialogue

(iv) User Satisfaction These qualitative metrics incluégasy to understandystem
understoogtask easyinteraction pacewhat to saysystem responsexpected
behaviour andfuture use Their sum represents the overall user satisfaction
score.
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7.3.2 Experimental setup

The experiments of this research were restricted to a ugrrigion of native speak-
ers of English and evaluated the three machine dialoguevimhra described in the
previous three chapters: deterministic (‘D’), fully-lea(‘F’), and semi-learnt ('S’).
In these experiments each user was presented with six deltagks (travel book-
ings), with the system using each of the three behaviourseiwso that each user
experienced all behaviours. The first three dialogues cordesingle bookings and
the last three dialogues concerned composite bookingse [fab shows examples of
single and composite travel booking tasks. The six dialsgiex user were collected
using one of the following two sequences: DSFFSD and SDFR@S;half of the
users interacted first with a deterministic behaviour, dddther half interacted first
with a learnt behaviour. Whilst deterministic and semmrtdehaviours started the
dialogues interchangeably, fully-learnt behaviour algvatarted the composite travel
bookings. This sequence of dialogues was used becausealtir@rative sequences
such a§ DSFFSD, DFSSFD, SDFFDS, SFDFDS, FSDDSF, FDSSEguire larger
data collections (the more data the more expensive anddonsuming).

Table 7.2: Sample tasks in the CSTR travel planning spoken dialoguersysn the
experiments reported here, each user participated in 3lsiagd 3 composite tasks.

Booking | Task

Try to book asingleflight from London to Paris leaving on
Single December 6thin theafternoon, and travelling withany airline.
What is the cost of the most expensive flight?

a) Try to book aeturn flight from Edinburgh to Amsterdam
leaving onJanuary 22ndin themorning, and returning on
the 1st of February in theevening

What is the cost of the cheapest flight wghitish Airways ?

Composite| P) Try to book acheaphotel indowntown with any hotel brand.
What is the cost of the cheapest hotel in downtown?

c) Try to rent acompact carnear theairport for three dayson
January 22nd with pick-up time at7/PM. You don’t have

any preference regarding rental company.

What is the rental cost of the most expensive car?
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Each dialogue was logged using an extended version of theeidlogue anno-

tation scheme (Walker and Passonneau, 2001). These logvélesused to compute

quantitative results. In addition, at the end of each diaéggparticipants were asked
to fill in a questionnaire (Table“4.3) in order to compute gatVe results, evaluated
with a 5-point Likert scale, where 5 represents the highastes

A population of 32 users voluntarily agreed to participaténe experimental eval-
uation. They had an average age of 36 with a gender disibwati 69% (22) male
versus 31% (10) female. The participants’ country of origiere as follows: 53%
(17) from the UK, 38% (12) from USA, and 9% (3) from Canada.ritthis user pop-
ulation, 28% (9) had no experience with spoken dialogueesyst 56% (18) had some
experience interacting with a spoken dialogue system at teace, and 16% (5) were
expert users. The latter were researchers in spoken delogeessing.

Table 7.3: Subjective dialogue measures for qualitative evaluation.

Measure Question

Easy to Understand Was the system easy to understand?

System Understood Did the system understand what you said?

Task Easy Was it easy to find the flight/hotel/car you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
What to Say Did you know what you could say at each point?
System Response | Was the system fast and quick to reply to you?
Expected Behaviour Did the system work the way you expected it to?

Future Use Do you think you would use the system in the future?

7.3.3 Experimental results

This subsection describes an analysis of results comprasddutomatic and manual
transcriptions at the syntactic and semantic level. Tablesfiows a summary of re-
sults comparing semi-learnt dialogue behaviour againstraenistic and fully-learnt
dialogue behaviour; including statistical significancer such a purpose data vectors
(averaged per speaker) were verified through Lillieforsstadich indicated that they
do not come from normal distributions. This suggests thatparametric tests should
be used. Thus, siinificance tests are reported with the Ydltsigned-rank test as

suggested b 06).
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Table 7.4: Results of the CSTR travel planning spoken dialogue sysbemparing

three different dialogue behaviours, organized accordimghe following groups of

metrics: dialogue efficiency, dialogue quality, task sgscend user satisfaction.

Measure Deterministic| Fully-Learnt| Semi-Learnt p-values
Behaviouf!) | Behaviouf? | Behaviouf® | (12 (13 (23

Avg. System Turns 16.63 12.24 15.09 <0.05| <0.05| <0.05

Avg. User Turns 14.38 9.69 12.63 <0.05| <0.05| <0.05

Avg. Time (secs) 177.23 139.59 165.11 <0.05

Word Error Rate 0.429 0.410 0.428

Keyword Error Rate 0.300 0.278 0.301

Event Error Rate 0.409 0.351 0.372

Correct Acceptance 551 26.34 20.95 <0.05| <0.05

Correct Confirmation 48.51 36.17 39.86 <0.05| <005| <0.05

Correct Rejection 5.18 2.37 1.92 <0.05| <0.05

False Acceptance 3.25 12.27 9.30 <0.05| <£0.05| <£0.05

False Confirmation 32.64 20.11 26.60 <0.05| <005| <01

False Rejection 4.91 2.55 1.36 <0.05| <0.05

Avg. Task Success 0.94 0.62 0.95 < 0.05 < 0.05

Avg. Dialogue Reward 79.46 54.68 82.56 <0.05| <005| <0.05

Easy to Understand 4.34 4.31 4.44

System Understood 3.09 2.72 3.28 < 0.05 < 0.05

Task Easy 3.50 3.00 3.45 <0.1 < 0.05

Interaction Pace 3.52 3.55 3.50

What to Say 3.45 3.47 3.58

System Response 3.67 3.64 3.63

Expected Behaviour 3.42 3.08 3.52 < 0.05 < 0.05

Future Use 3.14 2.83 3.28 <0.05 <0.05

User Satisfaction 28.14 26.59 28.67 <0.1 <0.05

(1) Note on statisfical significance: typically, p-valyges 0.05 are considered to be statistically

significant, and p-valuep < 0.1 are indicative of a statistical trend.

(2) Note on task success: the drop of performance in fublyrdebehaviour was mainly caused

by infinite loops, where the execution of actiain states did not change the stage=s.
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7.3.3.1 Analysis of quantitative and qualitative results

Dialogue efficiencyfully-learnt behaviour seems to outperform significarnltlg other
behaviours by obtaining fewer system turns, fewer userstamd less time. This is
not surprising because it was known in advance that thioglis policy included
infinite loops in some dialogue states. In the experimemsdlkind of dialogues were
manually stopped after three repetitive actions, consti@s evidence of an infinite
loop, TableLZ.b shows an example. The purpose of testingdthiegue policy was
three-fold: (1) to evaluate how users perceive a dialoglieypwith infinite loops; (2)
to raise the issue of (in)coherent behaviour inferred byfoecement learning agents,
which has been ignored in previous related work; and (3) topare its performance
against a similar dialogue policy, but constrained witlopaxpert knowledge.

This phenomenon did not happen with deterministic or semirt behaviours be-
cause their prior knowledge constrained more tightly thailallle actions per dia-
logue state. From these two dialogue strategies, it can beredéd that semi-learnt
behaviour outperformed deterministic, with significarffetiences in system and user
turns. These results suggest that although learnt belraweere optimized for dia-
logue efficiency, they cannot be evaluated in the same wagreftre, a wider reper-
toire of evaluation metrics is preferable for a deeper aislgf dialogue behaviours.

Dialogue quality Fully-learnt behaviour obtained the lowest word and kenghay-
ror rates. These results are not statistically significahtch suggests that behaviours
were compared under similar recognition error rates. [Datestic and semi-learnt
behaviours exhibited similar word and keyword error rateg, different event error
rates. Typically, spoken dialogue strategies have to leaindtle-offs between accep-
tance, confirmation and rejection of recognition hypoteeséich can be classified
as correct or incorrect. ldeally, dialogue behaviours ghohoose actions maximiz-
ing correct acceptance/confirmation/rejection eventslstviminimizing the incorrect
ones. From these results it can be inferred that semi-lémimaviour handled such
trade-offs better than deterministic behaviour by issuimagge acceptances and fewer
confirmations. This implies the use of more implicit confitroas and fewer explicit
confirmations, which helps to explain why semi-learnt bétavwas more efficient
than the deterministic one. Although dialogue policiesevent optimized for ‘event
error rate’ (see equatidn 4113 p| 75), these results sugfgEsnptimizing for dialogue
efficiency produced an indirect optimization for such tradks. In addition, it can be
observed that deterministic and semi-learnt behavio@rsignificantly different in all
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Table 7.5: Real dialogue with infinite loop in the CSTR travel planningiague sys-

tem, where the fully-learnt policy did not learn the actioel=constraint relaxation’

for the (mis-)recognized slot values, and kept trying th@acdbg=database query’.

Agent | Subtask| State Action | Utterance
SYS M8 0,0,0,0,0 gre | Welcome to the CSTR travel planning syste
My |0,1,000,0 | M}
M3 | 1,00 M3
M2 | 0,0,0,0,0 M3
Mg’ 0,0,0,0,0,0, req | Tell me your flight information.
USR | would like to fly from Edinburgh to London
SYs| M3 /02200040 acc
Mg’ 2,2,2,0,0,0, mic+ | Aflight from Edinburgh to London.
req | When do you want to travel?
USR On the 6" of December in the evening.
SYS | M3 24432040 acc
Mg’ 4,4,4320,0 mict | A flighton December® in the evening.
req | Whatis your preferred airline?
USR -tish Airways
SYS | M3 |4,4,424,00 sic+ |Aflightleavingon May &
Mg’ req | Whatis your preferred airline?
USR British Airways
SYS | M3 |4444420 acc
Mg’ 54,4,4,4,2,Q sic+t | Aflighttravelling with British Airways.
req | What kind of flight do you want?
Single or return.
USR Single
SYS Mg’ 54,4,4,4,4,3 sec | Didyou say a single flight?
USR Yes
SYS M | 54,4,4,4,44 [terminal state]
MZ | 0,02,2,0 dbg+sta| Please wait while | retrieve information.
SYS M3 1,0,2,2,0 dbg+sta] Please wait while | retrieve information.
SYS M3 1,0,2,2,0 dbg+sta] Please wait while | retrieve information.

[manually stopped]

Note: (1) dialogues with 3 repetitive actions were congdeas evidence of an infinite loop,

and were manually stopped, (2) the state representatices@itied in Table 5l 2.

m.
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recognition events (correct/false acceptance/confionagjection). In contrast, both
learnt behaviours are significantly different in only hditloe recognition events, sug-
gesting that learnt behaviours act in a more similar way theterministic behaviour.

Task succesgully-learnt behaviour was significantly outperformedtheg other
behaviours that generated more successful conversatidns.is where fully-learnt
behaviour paid the price for generating some infinite diaésthat had to be artificially
terminated before successful completion. In addition,|stldeterministic and semi-
learnt behaviours were very similar in terms of task sugcesmi-learnt behaviour
significantly outperformed its deterministic counterpgarterms of dialogue reward.
This suggests that the dialogue reward metric is reflectialy the combined results
from dialogue efficiency and dialogue accuracy.

User satisfactionUsers evaluated the semi-learnt behaviour as the bes$iudh,
semi-learnt behaviour was significantly different to fuljarnt behaviour, it was not
significantly different to its deterministic counterpahtsimilar user satisfaction result
was found by Singh et al. (2002) ahd_Lemomt al. (2006a). Emmpnance of opti-
mized confirmation strategies may be obscured by high rettogrrror rates. Future

experiments could investigate optimized confirmationtsgyi@s under lower recogni-
tion error rates. In addition, the differences betweemiglaehaviours were statistically
significant in the following qualitative metricsystem understoothsk easyexpected
behaviour andfuture use Similar differences were observed when comparing statist
cal significance between deterministic and fully learnteaébur. These results suggest
that those are the metrics with more impact on perceive@sygerformance in the
presence of unexpected dialogue behaviour such as infiaps|

The results above can be summarized as follows (see alsdatsxop Figurd 7.P).
First, dialogues by deterministic and semi-learnt behavioueweore successful than
dialogues by fully-learnt behaviour. These unsuccessalbdues were reflected in
the efficiency metrics, where fully-learnt behaviour ffsseems to be most efficient.
Seconddeterministic and semi-learnt behaviours are equallgesgful but the latter
iIs more efficient. Third, real users perceived fully-learnt behaviour as the waursd,
the other behaviours with equivalent mediaf@ally, the problem of infinite loops
could have been avoided (as in equafion 5.11); however, ibaen dialogue policy
uses fully-learnt behaviour without a good reward functwrwithout constraints to
generate dialogues that make sense to humans, then it méganosuccessful and
coherent behaviours According to the quantitative and qualitative results\adyat
can be concluded that semi-learnt behaviour was betterttigaother behaviours.
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7.3.3.2 Analysis of results based on users with only success

ful dialogues

152

A further (and possibly more fair) comparison of behaviounas based on users with

only successful dialogtﬁs shown in Tablé7l6. It shows a summary of results com-

paring deterministic and fully-learnt behaviour agairesnglearnt behaviour; includ-

ing statistical significance. Firstly, it can be observeat tioth learnt behaviours were

more efficient than their deterministic counterpart (integguser turns, gb < 0.05),

and the differences between learnt behaviours were noifisemt. Secondly, no sig-

nificant differences were observed in dialogue quality. sy, the statistical trend

in event error rate suggests that the semi-learnt behakiematled the trade-offs of ac-

ceptance /confirmation/rejection events more effectivéhirdly, it can be noted that

both learnt behaviours obtained more reward than theirhtéstic counterpart, and

that therefore this metric is reflecting the significant eliéinces observed from effi-

ciency metrics. Last, similar to the results for all dialeguthe semi-learnt behaviour

obtained the highest score in user satisfaction, but tiierdrices were not significant.

These results confirm that semi-learnt dialogue behav®ur Ibetter alternative

than deterministic, and indicate that its performance mmarable to that of fully-

learnt behaviour when they are evaluated on only succedisiioigues.

Table 7.6: Results of the CSTR travel planning spoken dialogue sysigm data from

users — with only successful dialogues. They are organizéuki following groups of

metrics: dialogue efficiency, dialogue quality, task sgscend user satisfaction.

Measure Deterministic| Fully-Learnt| Semi-Learnt p-values
Behaviouf!) | Behaviouf? | Behaviouf® | (2 13 | (23

Avg. System Turns 14.58 11.94 12.58 <0.05| <0.05

Avg. User Turns 12.50 9.75 10.23 <0.05| <0.05

Avg. Time (secs) 159.74 142.69 132.48 <0.05

Word Error Rate 0.343 0.265 0.276

Keyword Error Rate 0.209 0.137 0.167 <01

Event Error Rate 0.365 0.233 0.175 <01 | <01

Avg. Task Success 1.00 1.00 1.00

Avg. Dialogue Reward 85.42 88.06 87.42 <0.05| <0.05

User Satisfaction 31.28 31.78 32.39

4Users with only successful dialogues: 9 users out of 32, evbach user did six dialogue tasks.




Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 153

7.3.4 Evaluation of simulated behaviours

This section describes a quantitative analysis of simdiael real dialogue behaviours.
For such a purpose, the performances of speech recognisenpehaviour, and ma-
chine behaviour were compared using the evaluation metfissctior{ 4.4.

7.3.4.1 Real versus simulated speech recognition

The real conversational environment used the ATK/HTK speecognizer, and the
simulated one used a simulated speech recognition erroels®k sectidn 4.3). Recog-
nition results in terms of Keyword Error Rate (KER) for botfvgonments were as
follows: 20% in the simulated environment and 29% in the oeed. For confidence
scoring, the real environment showed confidence scoresl loastine probability den-
sity functions shown in Figufe 1.3 (estimated from real detsed on a normal density
function), and the simulated environment generated umifipdistributed random con-
fidence scores resulting in equal numbers of confidencedeltalan be observed that
simulation used a more conservative KER and different idigtions of confidence
levels. This is because no training data was assumed, wihenealistic probability
distributions for recognition errors and confidence sapvirere unknown.

3.5

Good Recognition i
= = = Bad Recognition

25 1

Probability Density

1 Il Il i i i i i ~ i
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0

Figure 7.3: Probability density functions estimated from observedspaecognition
confidence scores of keywords in data collected by the C&UBI planning system.

Previous work in Automatic Speech Recognition (ASR) sirtiatahas assumed
that exponential probability distributions can model tlebéviour of ASR confidence
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scorers 1P_iejguJir. 2004, WiIIiaJns. 2006). This researamibthat this assumption
does not hold for the ASR system used here. Insteadgdnema probability dis-
tributions are suggested to simulate ASR confidence scores, which aeeftexible

and include the exponential distribution. Thus, learntatjee policies in a second
stage can be retrained with more realistic ASR behaviourderto generate poten-
tially even better policies. Nevertheless, it was found #van conservative ASR error
modelling was sufficient to find better dialogue policiesthigterministic behaviour.

7.3.4.2 Real versus simulated user behaviour

Simulated user behaviour was compared against real usavibeh and against ran-
dom user behaviour (séeR.4 for a review on dialogue sinmatiFor such a purpose
three evaluation metrics were used: Precision-Recallbas¢he F-Measure score, di-
alogue similarity based on the Kulback-Leibler (KL) divenge, and Coherence Error
Rate (CER). They were applied following the descriptionsedtiol 4.5. The objec-
tives of this evaluation were: (a) to observe if the simudaiser model used to learn
the dialogue strategies was a reasonable thing to use, atw\(alidate that dialogue
realism could be distinguished by the proposed metrics diKfergence and CER).

This evaluation used three sets of user responses: (1)seatesponses were ex-
tracted from annotated data from the realistic environprantsisting in 192 dialogues
including 4623 user utterances; (2) simulated coherepbreses used algorithm 5 de-
scribed in section 4.3.1; and (3) simulated random resamsed the same algorithm,
but user dialogue acts were chosen randomly (at line 12) ahdewandom sequence
of slots. It must be noted that all user responses (real,latedicoherent or simulated
random) were derived from machine dialogue acts in the oceajdd data, which al-
lows a more fair comparison. In addition, all user respoms=e not distorted because
they were compared before speech recognition occurred.

Table[7.Y shows results of simulated user behaviour for tvauation metrics:
Precision-Recall and KL-divergence. It can be seen thdt bwgtrics agreed in the
ranking of dialogue realism, including the proposed KLedgence metric.

These results show that simulated coherent behaviour is sionilar to real user
behaviour than simulated random behaviour. It can be obdeivat the Precision-
Recall of simulated coherent behaviour obtained higherescivan those reported be-
fore (Schatzmann et al., 2005b; Georgila etlal., 2006), aguiing the upper-bound
scores from real user behaviour. To further analyze patigecall results, the average

of the more strict precision-recall ‘F-Measure’ was congalincrementally according
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Table 7.7: Evaluation of real and simulated user behaviour with PrexisRecall in
terms of F-Measure (the higher the better) and KL-divergeftise lower the better).

] F-Measure )
Compared Dialogues _ _ | KL-divergence
less strict| more strict
Reall vs Real2 0.915 0.749 1.386
Real vs Simulated Coherent 0.708 0.612 4,281
Real vs Simulated Random 0.633 0.360 5.025
Simulated Coherent vs Simulated Randpom0.417 0.247 6.532

Notes: (1) The less strict F-Measure score considers a espomse as a sequence of actions,
and the more strict score considers a user response as @ aoigin, (2) the real dialogues
were divided into two subsets ('Reall’ and 'Real2’) to pd®ian upper-bound score, (3) KL-
divergence used Witten-Bell discounting to smooth the abdlty distributions.

to the size of the dialogue data. This is shown in Figure 7 dan be observed that the
more real dialogue data the higher the precision-recalk iEtbecause precision-recall
is strictly penalizing unseen behaviour, and as more rdalidabserved, more varied
user responses per machine action are possible to matclatchtesponses.
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Figure 7.4: F-measures of real vs. simulated user responses in funofidhe data
size, showing that the more real dialogue data is used, thledrnithe precision-recall.

In addition, the results in terms of Coherence Error RateR)f@r real, simulated
and random responses were 8.23%, 2.99%, 30.10%, respeclie user responses
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with silences or incomplete dialogue acts were consideseth@herences because
whatever the user said (e.g. partial words, out-of-voaatyulvords, mumbles, etc.),
no dialogue act could be extracted from the given utteratticean be observed that
simulated coherent behaviour behaved very optimisticiigt is not very different
from real user behaviour, and it is significantly differemtrh the coherence of random
behaviour. This metric is interesting because it evaluatedferent perspective from
the existing metrics, it may be used as a complementary a&tvaty and future work
may apply it to different data sets and domains to evaluat&gnificance.

7.3.4.3 Evaluating the baseline of machine dialogue behavi  our

To evaluate the deterministic (hand-crafted) machineodia¢ behaviour of the CSTR
travel planning spoken dialogue system, the evaluatiomiolled ‘Event Error Rate
(EVER)’ was used, defined by equation 4.13. For such a puypliféerent confirma-
tion strategies were proposed in Table 4.13, aiming to findamanable baseline of
machine dialogue behaviour. The assumption here was thatthfirmation strategy
with the lowest EVER would be the best baseline. Real dat&dglvords with their
corresponding confidence scores) collected from the CSAWRItplanning system was
used to compute EVER for such confirmation strategies, sele[¥a8. It can be seen
that the deterministic behaviour of choice in this rese#8thategy3) indeed obtained
the lowest EVER, together with ‘Strategy4’. Although thdytained the same result,
the former is more attractive, due to its use of implicit confitions because it leads
towards more efficient conversations. Therefore, it cand®laded that the learnt
dialogue strategies used in the CSTR travel planning dis@®ystem were compared
against a reasonable baseline of deterministic machiteggia behaviour.

Table 7.8: Event Error Rate (EVER) results of real dialogues for condition strate-
gies of Tablé 4.13. Abbreviations: ca=correct acceptaromecorrect confirmation,
cr=correct rejection, fa=false acceptance, fc=false comfation, fr=false rejection.

Strategy | ca(%) | cc(%) | cr(%) | fa(%) | fc(%) | fr(%) | EVER(%)
Strategyl/ 73.6 0 0 26.3 0 0 26.3
Strategy?2| 71.9 2.2 0 17.0| 9.3 0 26.3
Strategy3| 26.7 | 44.6 | 9.3 2.5 144 | 2.2 19.2
Strategy4| O 714 | 9.3 0 17.0 | 2.2 19.2
Strategy5| O 73.6 0 0 26.3 0 26.3
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7.3.5 Do people want to talk to spoken dialogue systems?

During the experiments with the CSTR travel planning spoti@hogue system — at
the end of each participant session, participants weredatsiee following question:
‘Would you use spoken dialogue systems for other tasks basdtis experience?’
Participants ranked their preference using a 5-point LLigeale, where the higher the
score, the better the satisfaction. Figure 7.5 shows thitsesom this question, which
is a combination of dialogue reward and preference for &utwge. It was noted that
only 12%4) percent of participants were pessimistic in their future, &6%418) of
participants preferred to stay neutral, and 319 were optimistic in its future use.
The scores in preference of future use per user type wérBnovice users,.28 for
experienced users, and2¥or expert users (seelp._146 for proportions of user types).
To further analyze this, consider splitting the group otiggrants: the first group with
dialogue reward smaller than 80 and the rest in the secongbgfidhere was a.8 score
in preference of future use for the first group of particigaagainst a 3 score for the
second group. Based on this result (significari at0.006) it can be inferred thahe
higher the dialogue reward the higher the preference fanfeitise of dialogue systems
This result can be related to the fact that dialogue strasagged high overall dialogue
rewards to gain wider acceptance by real users. This shootiare the speech and
language processing community to build more sophisticsppeten dialogue systems.
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Figure 7.5: Scatter plot showing participants’ preference given tHofing question:
‘Would you use spoken dialogue systems for other tasks loastuls experience?’.
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7.4 Discussion and future directions

This section discusses the following issues derived froenettperimental results de-
scribed above: (1) coherent learnt dialogue behaviouyriggalistic error simulation,
and (3) robust semantic knowledge updates.

Firstly, a danger of learnt dialogue strategies is that thay yield incoherent be-
haviour, such as the fully-learnt behaviour reported is thesis. This situation may
happen if the reward function does not penalize bad actioosegply. The importance
of this issue increases as the dialogue system becomes laitiemore complex be-
haviours, where the avoidance of incoherent actions itydetrnt behaviours is not
guaranteed. Therefore, this research suggestsplo&en dialogue strategies should
not only be optimal according to some performance measure,ub also coherent
in their actions. The semi-learnt behaviour evaluated in this chapterredstoherent
behaviour through the use of partially specified dialogussgies.

Secondly, the simulated conversational environment tlzet wsed did not model
errors as in a real environment, which was to be expectedaltrestlack of training
data. Nonetheless, the experimental results providecepu& to conclude that this
heuristic-based dialogue simulation approach was usefuearning dialogue strate-
gies with superior performance compared with a reasonaselime of deterministic
behaviour. This result is relevant for spoken dialogueesystin new domains, where
annotated dialogue data is not available. The simulateida@ment could be enhanced
with probability distributions estimated from real anrtethdata as in Schatzmann

et al. (2007b). However, due to the fact that collectingiirag data is costly and time

consuming, a potential for further research is to investigaethods for generalizing
simulated behaviours for spoken dialogue systems acrtissatit domains.

Thirdly, one of the most important limitations of this worlas/the lack of a robust
approach for updating slot values. Due to the fact that $peszognition hypotheses
may include errors, it was difficult to know when to update gect the recognised
slot values. The effect of non-robust keyword updating & the system eventually
gives the impression of forgetting what has been said befbinés highlights the im-
portance of effective and efficient mechanisms for dialoliséory tracking. Future
research can incorporate beliefs into the knowledge-tiates of the proposed frame-

work with ideas from approaches such as regression metlﬂnﬂmﬁ@nﬂ.liudni&y,
1), POMDPs (R%Laud Wi I'Jr@b%), or Bagesnodels (Horvitz and
Paek| 1999, 2000; Paek and Horvitz, 2000; Willi DO_Znth[sgn_el_a{ILZDJJS).
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7.5 Conclusions

A spoken dialogue system was presented using hierarctegc#gbrcement learning
under the formalism of Semi-Markov decision processes, ingerformance was
investigated for three different types of machine dialoge&aviour: deterministic,
fully-learnt and semi-learnt.

Semi-learnt behaviour was quantitatively better than theradialogue behaviours.
It achieved similar task success to deterministic beha(io185%) and more efficient
conversations by using 9% fewer system turns, 12% fewertuses, and 7% less time.
It also outperformed fully-learnt behaviour by 35% in terofshigher task success.
However, although fully-learnt behaviour resulted in nde overall performance, it
cannot be discarded as a better alternative than hanedraéhaviour. But it is less
flexible and less coherent than semi-learnt behaviour Isecduwdoes not include a
mechanism to guarantee coherent actions, which is eskseEmtsaiccessful dialogues.
On the other hand, whilst users did perceive significantitaisde differences between
fully-learnt behaviour and the other behaviours, they ditlabserve significant differ-
ences between deterministic and semi-learnt behaviours.

The key findings in this chapter can be summarized as follows:

(1) hierarchical semi-learnt dialogue agents are a betternative (with higher
overall performance) than deterministic or fully-learetiaviour;

(2) highly-coherent user behaviour and conservative neitiog error rates (key-
word error rate of 20%) were sufficient for learning dialogadicies with supe-
rior performance to a reasonable hand-crafted behaviour;

(3) learnt dialogue agents should include a mechanism toagtee coherent be-
haviour,;

(4) hierarchical reinforcement learning dialogue agenesfeasible and promising
for the (semi-) automatic design of optimized behavioursiger-scale spoken
dialogue systems.



Chapter 8
Conclusions and future work

This thesis investigated how to optimize the behaviour édrimation-seeking spo-
ken dialogue systems in a scalable and efficient way undeethtorcement learning
paradigm. It proposed two approaches for learning hiereatllialogue strategies
based on the Semi-Markov Decision Process (SMDP) modelfifidte@pproach used
a hierarchy of SMDPs that ignore irrelevant state varialled actions, where the
root SMDP represents the entire dialogue session and it 8MDPs represent sub-
dialogues, and each child can have more descendants and ®oroimg a hierarchy
of SMDPs. The second approach extends the previous onelioging partially spec-
ified dialogue strategies to learn only where necessaryjging the actions available
per state for the current SMDP at runtime. It includes the HANSMQ-Learning al-
gorithm to find a hierarchy of optimal context-independeuligies. In addition, this
thesis proposed a heuristic dialogue simulation framevgorkhat the reinforcement
learning agents could acquire their behaviour automdgicéh contrast to other di-
alogue strategy learning approaches, this research feddearning a hierarchy of
dialogue policies instead of a single one, simultaneoughgrating hand-coded and
learnt behaviours into a single framework. Experimentsiitts in simulated and real
environments provided evidence to conclude that both sgies scale well, and that
hierarchical reinforcement learning agents are feasitdggaomising for the (semi) au-
tomatic design of adaptive behaviours in larger-scaleodia¢ systems. However, the
second approach is more appealing with respect to dialogutecaitperforms hand-
coded behaviour, and is more suitable for online learninmgah environments.

The main contributions made by this thesis are: (1) the Sdarkov Decision Pro-
cess (SMDP) model for spoken dialogue; (2) the concept dighrspecified dialogue
strategies; and (3) the evaluation of learnt dialogue biebas with real users.

160
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8.1 Future work

This research suggests the following promising researehwas for endowing spoken
dialogue systems with optimized, adaptive, robust ancabtabehaviours.

8.1.1 Hierarchical dialogue action under uncertainty

The spoken dialogue system investigated here used théddsstrecognition and un-
derstanding hypotheses. It is well known that such hypethase prone to errors. An
important enhancement consists of keeping track of unoeetzents such as recog-
nised words, current dialogue goal, and type of user. Thggesis that system beliefs
need to be modelled at different levels of granularity. Ehese at least two approaches
that can be investigated for such a purpose. First, POMDBieebdialogue approaches

Williams, |12006; Young et all, 2007; Henderson and Lemo®&@&an be extended
with a hierarchical setting (Theocarous, OQLT_heQ_QaMLO_QLl Pineau, 2004).

Second, the approaches proposed in this thesis can be edtenth an additional

probabilistic knowledge base (e.g. belief network) to neimdialogue information
under uncertainty. This would help to balance the issueslmistness and scalability
into an integrated framework.

8.1.2 Learning more complex dialogue strategies

This thesis focused on optimizing confirmation strategidseep their assessment sim-
ple rather than evaluating multiple dimensions. Nones®léhere is a wide range of
optimized dialogue behaviours that can be incorporatemtins kind of system. For

example: learning initiative strate?iés_LLilman_ét[a.LQddMlalkeJr,_ZQ_dO), learning to

give help 06), learning to grodmﬂLdBth\,I_ZD_OJ7), learn-
ing to present information (Rieser 007), lemno clarify (Rieser and
Lemon, 2006a), learning to negotiate (Engli alﬂm;)Zlearning to recover

from errors [LB_QhLHLZDJ) L_Skadtke_lbo_L_ELamen_and_Lle[ﬁImé) learning multi-
modal strategle%_LRJﬂSﬂr_and_LﬂLﬂ[Qu_iOO8) and learningli@borate. The thorough

integration of all these behaviours into a single framewerkains to be investigated.

This would require the support of learning on large sear@tep — hence the impor-
tance of this topic. The underpinning ideas of the propoggudaaches are appealing
for such a purpose. In general, the long-term goal is to spluken dialogue systems
with behaviours that approximate better to more naturalesations.
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8.1.3 Learning reusable dialogue strategies

The proposed reinforcement learning algorithm and mangralgorithms in the liter-
ature update values for each individual state-action fiaiould be useful if they could
apply such updates in more than one situation. The hiek@bkhature of the proposed
approaches allows the reuse of complete dialogue polibigsthe reuse of similar
behaviours remains to be investigated. Several appro&evesbeen proposed by ma-
chine learning researchers and they could be applied toespdialogue (Konidaris
and Barto, 2007; Asadi and Huber, 2007; Wilson et al., 20@yldr and Stone, 2007).
This is also known in the literature of reinforcement leaghas ‘knowledge trans-

fer’. Methods with such capacity would increase the leagrdpeed, and facilitate the
deployment of spoken dialogue systems with reusable dialdghaviours.

8.1.4 Hierarchical dialogue control using function approx imation

The proposed approaches include support for tabular klaca reinforcement learn-
ing. However, if a given subtask is intractable (i.e. theées&ction space becomes too
large and indecomposable) then alternative methods stheuddiopted to make such
subtasks feasible. One of the most promising approachesteelin the literature of
reinforcement learning is that of function approximatiorhe approaches proposed
in this thesis could be combined with function approximatauch as neural networks

or linear function approximatiovl]_ﬂzlﬂndﬂsgn_ét alJOG%Drthermore, this research

avenue opens the possibility of learning spoken dialog@wieurs combining (sub)

solutions derived from different reinforcement learnimgpeaches.

8.1.5 Safe dialogue state abstraction

In the proposed approaches the system designer has maualhgove irrelevant state
variables and actions for each subtask. This was esseotidrdmatically reducing
the state-action space. Although this is useful becaudlevwtsthe system designer to
specify what to remove, it may become problematic if rel¢uaiormation is removed,
leading to unsafe state abstraction. Therefore, it wouldideful to have a method
for performing state abstraction of dialogue informatianai safer Waymm
1999; Andre and Russell, 2002; Jong and Stone,|2005). Iriaddprevious work on
dialogue-based feature selection can be extended withrartigcal setting.
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8.1.6 Hierarchy discovery of dialogue subtasks

In the proposed approaches the system designer has toyspiexifierarchy of sub-
tasks manually. Although specifying hierarchies may beiiive — such as writing the
structure of an object oriented program, it would be usdfthe dialogue hierarchy
could be inferred from data or interactions with an envirenin Such methods might
allow the finding of better hierarchies than the manuallyglesd ones, although so far

they have been investigated only in small-scale navigatmnains/(McGovern, 2002;

Hengst, 2003). The previous topic would offer useful restdt such a purpose.

8.1.7 Hierarchical dialogue reward functions

The current practice of reinforcement learning for spokietogue uses a single reward
function. Although the proposed approaches in this théksed the use of a differ-
ent reward function per subtask, the experimental settsagl the same performance
function across the entire hierarchy. Intuitively, hietdcal dialogue optimizations
such as those described in subsediion 8.1.2 may requiegatifftypes of reward func-
tion at different levels of granularity. Moreover, as thaldgue complexity increases,
it becomes more difficult to specify such performance fuordi It remains to be in-
vestigated how to specify or infer such hierarchical rewfartctions once dialogue
data has been collected and annotated. The PARADISE enaldegmework may be
explored for this purposmmooy

8.1.8 Online dialogue strategy learning from real users

Currently available approaches for dialogue strategylagr— including the proposed
ones — learn behaviour in an offline fashion. This means #daaht behaviours are de-
rived either from simulated conversational environmemtSam collected dialogues.
An alternative approach is to (re) learn online from real aBurmachine interactions.
This research direction applied to large-scale systemddmaquire very efficient
learning methods: the issue of coherent dialogue behabEzomes crucial, moreover
several of the previously proposed research avenues negfhfdr such a purpose.

8.1.9 Task-independent dialogue simulation

The proposed approaches used a heuristic model for simglatiman-machine di-
alogues. Alternative approaches train probabilistic $aton models from dialogue
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data. However, every time a new spoken dialogue systemlisduiew dialogue simu-
lator is required. A more practical approach would be to feageneric dialogue simu-
lator that can be used in systems for different domains. &unats of simulator should
understand a wide range of behaviours with a common notatiosss dialogue sys-
tems. Even if the previous research avenue becomes feasiigle simulators would
be useful for deploying behaviours with an initial optintioa.

8.1.10 Richer knowledge representations

The knowledge representation in the proposed approachgdiisentary and so limits
the expressive description of complex situations and astiand may be more appro-
priate for other types of interaction such as negotiationatlaborative dialogues in
human-robotinteraction. The emerging field of relatioeatforcement learning (Dze-
roski et al.| 2001; Tadepalli etlal., 2004) and hybrid apphes LR;AF 2002) might be
investigated. Alternatively, the knowledge base of thepps®d approaches could be

augmented not only with belief networks but also with hiehacal relational struc-
tures. This work could be based on an integrated knowledge floa robust and adap-
tive dialogue strategy learning of more complex conveosati In general, dialogue
knowledge representation is an important research topieridowing reinforcement
learning spoken dialogue agents with robust and desceigtiowledge.

8.1.11 A benchmark framework for spoken dialogue strategie S

It is well known that the progress of spoken dialogue stiategs difficult to assess.
The lack of standards makes the comparison of new spokergdi@lstrategies against
state-of-the-art ones difficult. Several computer scietm@munities evaluate their
methods or agents on standardized software frameworkssourees. For instance,
the reinforcement learning community organizes the ‘Retément Learning Com-
petitiond to compare the performance of their methods. The robotisswanity or-
ganizes the ‘RoboCup Soccer Competitfot@ compare their methods embedded into
robots. The speech synthesis community organizes thaﬁitﬂzChalleng@to com-
pare their techniques. Such kinds of initiative would beywealuable in assessing
progress for spoken dialogue research.

Yhttp:/7rT-conpetition.org/
2http: /7 ww. r obocup. or g/
3http://festvox. org/blizzard/
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8.2

Findings

The following findings were derived from this research:

(i)

(ii)

(iii)

(iv)

(v)

Hierarchical task decomposition with state-action abstration reduces search
spaces dramaticallyAlthough this is not new, it confirms the claim that top-
down hierarchical control reduces the complexity of decishakers from expo-
nential to linear in the size of the problem. Experimentaliits in flight-booking
and travel planning systems report state-action spacectieds of more than
99%. This highlights the importance of this approach fogdascale systems.

Hierarchical reinforcement learners find solutions fasterthan flat learners
This is derived from learning dialogue behaviours on redgtate-action spaces
rather than full ones. Experiments on a simulated spokdoglia system in
the flight-booking domain reported that hierarchical reirnément learning con-
verged roughly four orders of magnitude faster than flatfoeaement learning.

Hierarchical reinforcement learning agents find near-optmal solutionsThis
is not new either, but confirms the claim by machine learnesgarchers that hi-
erarchical reinforcement learners may find solutions wighssub-optimalities.
Experiments on a flight-booking system report a small losspitimality of 0.3
more system turns than flat learning, resulting in slighdlyger dialogues.

Hierarchical learnt dialogue strategies can outperform reasonable hand-
coded baselineExperimental results report that hierarchical learntaljak
strategies are better than a reasonable hand-coded behéwis baseline out-
performed other hand-coded dialogue behaviours on rea).dahis was found
in both simulated and real conversational environmentsvéver, the benefits in
the real environment were smaller than its counterpartaltietuse of a simpler
simulated dialogue model for dialogue strategy learning.

Semi-learnt dialogue policies are a good alternative to fily-learnt or de-
terministic behaviour Experimental results report the propensity of fully-ldarn
behaviours to learn incoherent actions, possibly due téeitte¢hat reward func-
tions do not penalize bad actions correctly. This problemediced in semi-
learnt behaviours because by learning only where necessay if they do not
explore the search space completely they will take cohex@iins. Semi-learnt
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(vi)

(vii)

(viii)

(ix)

behaviours are also appealing because they can find thedbestsa(according
to reward functions) that might not be easy to specify forgtey designer.

Real users act with highly coherent behaviour at the dialoga act levelThe

experiments reported in this thesis reveal that real usetask-oriented con-
versations behaved coherently 92% of the time. This reatdtrthe incoherent
user dialogue acts against all user dialogue acts, and ctakée into account

in simulating user behaviour.

Fully-coherent user behaviour and conservative recognitin error rates are
sufficient for learning better policies than hand-coded behviour The simu-
lated conversational environment employed in this reseased fully-coherent
user behaviour and distorted user dialogue acts with 20%agnition error
rates with a flat distribution. This setup was sufficient t&rfea spoken dialogue
behaviour that was more efficient than a deterministic one.

Learnt dialogue policies should include a mechanism to guantee coherent
behaviour Experimental results report that fully-learnt behaviowynmot learn
the best actions per state, and possibly behave incohgmghttn testing the
learnt policy. This may be due to the following situation&) simple reward
functions; (2) insufficient exploration during learningyda(3) incorrect state
transitions. Experimental results confirm that the firsiaion (and potentially
the second as well) can be avoided by constraining the acaeailable to only
situation-action pairs that make sense to humans.

The proposed approaches can be applied to larger-scale dajue systems
This research implemented a real spoken dialogue systeme imavel planning
domain with five dialogue goals and 26 slots of informatiohisTis the largest
scale spoken dialogue system so far (in terms of dialoguls goa slots) tested
using the reinforcement learning paradigm. Although itused on optimizing
confirmation strategies, the proposed framework suppartei-scale systems
with a wider range of optimized behaviours, which is essénti build more
sophisticated conversational agents.



Appendix A

Notation

Table A.1: Notation for human-machine dialogue modelling.

Symbol Description
k" Machine’s knowledge base at tirhe
k' Simulated user’s knowledge base at time
" Machine’s dialogue strategy
™ Simulated user’s dialogue strategy
" Machine dialogue state at tinhe
w" Joint machine dialogue state at titne
s User dialogue state at tinte
a" Machine dialogue act at tinte
a’ User dialogue act at tinte
AM

Distorted machine dialogue act at tirhe

R
c

Distorted user dialogue act at tirhe

X" Machine speech signals at time
X! User speech signals at time
w" Machine words at time
W' User words at time
" Machine keywords at time
ct User keywords at time
(" a" o', a') | User-machine interaction at the dialogue act level
(s".Dj) Sub-dialogue of user-machine interactions in st
D Dialogue of user-machine interactions
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Table A.2: Notation for flat and hierarchical reinforcement learning.

Symbol Description
t Discrete time step
T Final time step
S State at time:
& Action at timet
re Reward at time:
T Policy
T(S) Action taken in stats
S Set of environment states
A(s) Set of all possible actions in stade
P(s|s,a) Probability of transition frons to s under actiora
R(S|s a) Expected reward for taking acti@nin stransitioning tcs
VT(s) Value of states under policyrm
V*(s) Value of states under optimal policyt
Q'(s,a) Value of taking actiora in states under policyrt
Q*(s,a) Value of taking actiora in states under optimal policyt
Yy Discount rate parameter
a Step size parameter
T Discrete multiple time-step
Sh Abstract machine state at tinme
M ={MY, ..., Mij} Hierarchy of Semi-Markov Decision Processes (mqgda leveli)

H ={HQ,...H}}

o' = {MP,...M/'}
M =< S| AT T R >
J (R R R

= {7g,..., 7}
de_
TlTI
3
A'j
P (¢,1]s,a)
RS (s,1]s,a)
Vj*i (S)
Qj(s.a)
yT

Hierarchy of abstract machines (HAMat leveli)

Hierarchy of induced Semi-Markov Decision Processes (S§)DP
Induced Semi-Markov Decision Processes (mdgdslleveli)
Hierarchical policy

Policy for SMDP| at leveli

Optimal policy for SMDPj at leveli

Set of environment states for SMDFP'J-

Set of actions for SMDH?/I'J-

Probability of transition fronsto s undera lastingt time steps
Expected cumulative reward for taking acti@aim s transitioning tos
Value of states under optimal policy'rjki

Value of taking actiora in states under optimal policy'rj*'

Discount rate for executing acti@lastingt time steps




Appendix B
Dialogue data structures

The dialogue data structures described in this appendix theevpurpose of represent-
ing knowledge about the conversation for the simulated asdrmachine. They are

referred to the human-machine dialogue simulation frammk\aescribed in chaptér 4.

The data structures are briefly described as follows.

e Table[B.1 shows the classes used to build the knowledge lidbe simulated
user. They are instantiated or re-initialized for each $ataa conversation, and
were implemented with hash tables for fast informationieesl. These classes
are only used during simulation; on real conversations #reyignored. Sec-
tion[4.3.1 explains how to use them.

e Table[B.2 shows the classes used to build the machine’s lenlgslbase. They
are instantiated or re-initialized for each real or simedatonversation, and
were also implemented with hash tables. See also sdctiah #:3how to use
them. These classes only included the first hypothesesagn&eon and parsing
events; however, they can be updated from an additionabpibstic knowledge
base to mitigate uncertainty in the conversation.

e Table§B.B and Bl4 are used to generate the state-actioa spte flight book-
ing dialogue system. This state representation only iredigtate variables for
flat dialogue optimization. Table 5.1 extends this set dfestariables for hier-
archical dialogue optimization.

e Tables B.b[ BB, and Bl.7 are used to generate the stateragtaxe of the travel
planning dialogue system. This state representation atdodes state variables
for flat dialogue optimization. Table 5.2 extends this sestate variables for
dialogue optimization with a hierarchical setting.
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Table B.1: Description of dialogue-based classes to represent usawlauge.

Class Attribute Values
) lastUserDA last user dialogue act
DialogueFocus , ) ] ,
lastMachineDA last received machine dialogue act
goallnFocus current dialogue goa; € G

framelnFocus
slotinFocus

current semantic framg € F9
current information slog, € C?

dialogueAct

dialogue act type with slot-value pairs

|®N

DialogueAct dialogueActType [dialogue act types from table 4.1
slotValues a set of slot-value pairs
goallD g € G={go, -, 9g|-1}

DialogueGoal | goalStatus {O=unfilled, 1=filled, 2=acknowledged, 3=relaje
frames a set of instances of the claSemanticFrame
framelD fie F={fo,..., fr—1}

SemanticFrame

frameStatus
frameType
acknowledged

{O=unfilled, 1=filled, 2=confirmed, 3=relaxéd
{non-terminal,termingl
{0=no, 1=ye$

slots a set of instances of the claSkot
slotID ¢ € C={co,..-,Cc|-1}
Slot slotValue keyword of the users’s goal (e.g., flight/hotel/car
slotStatus {O=unprovided, 1=provided, 2=reprovided
3=confirmed, 4=relaxdd
retries {0,1,2,3
explicitConfirmations| {0, 1,..}
implicitConfirmations| {0, 1,..}
ker keyword error rate, defaut 0.1
. obedience probability of providing slot in focus, defau0.8
Recognition . . . o
multiSlotFilling probability of providing other slots, defait0.4

negativeConfirmation

probability of saying “no” in explicit confirm-
mations, without reproviding slots, defatlD.2
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Table B.2: Description of dialogue-based classes to represent madkmowledge.

Class

Attribute

Values

DialogueStatus

salutation
completion
topicShift
infoPresentation

{0=null, 1=greeted, 2=closéd
{0=non-started, 1=in-progress, 2=complédted
{0=none,1=pending

{O=unprovided, 1=provided

DialogueFocus

lastMachineDA
lastUserDA
goallnFocus
framelnFocus
slotinFocus

grammarinFocus

last machine dialogue act

last received user dialogue act
current dialogue goaji € G
current semantic framg € F9
current information sloty € C?]?

current grammae { flights, hotels cars yesng

dialogueAct dialogue act type with slot-value pairs
DialogueAct dialogueActType [dialogue act types from table 4.1

slotValues a set of slot-value pairs
DialogueGoal [similarly as in tabld B.JL

framelD fie F={fo,..., fr—1}

frameStatus {O=unfilled, 1=filled, 2=confirmed, 3=relaxgd

SemanticFrame

U

frameType {initial,mandatory,optional,terminfl
acknowledged {0=no, 1=ye$

slots a set of instances of the claStot
slotID ¢ € C= {0, ...,C‘CH}

Slot slotValue keyword in the recognition dictionary
confScore speech recognition confidence sc{@g.., 1]
slotStatus {O=unfilled, 1=low confidence (conf.),

2=medium conf., 3=high conf., 4=confirmed
retries {0,1,2,3
explicitConfirmations| {0, 1,..}
implicitConfirmations| {0, 1,..}
ker keyword error rate, defaut 0.2
N lowConfidence proportion of low confidence values, defaull/3

Recognition . ) )
medConfidence proportion of medium conf. values, defauli/3
highConfidence proportion of high conf. values, defauitl/3
dbQuery SQL statement

Databaselnfo | dbResult {0=null, 1=none, 2=few, 3=many

dbTuples

retrieved database tuples
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Table B.3: State variables for the 6-slot flight booking spoken diatogystem.

Variable

Values Description

DBT

C00 |{0,1,2,3,4} | Status of mandatory slot ‘departure city
C01 |{0,1,2,3,4} | Status of mandatory slot ‘destination city
C02 |{0,1,2,3,4} | Status of mandatory slot ‘date’
C03 |{0,1,2,3,4} | Status of mandatory slot ‘time’
C04 | {0,1,2,3,4} | Status of optional slot ‘airline’
C05 | {0,1,2,3,4} | Status of termianl slot ‘flight offer’
SIF {0,...,5} | Slotinfocus

{1,2,3} Size of database tuples

Notes on domain values of state variables: G@2unfilled, 1=low confidence, 2=medium

confidence, 3=high confidence, 4=confirmpdIF={0=departure city, 1=destination city,
2=date, 3=time, 4=airline, 5=flight offer DBT={1=none, 2=few, 3=marjy

Table B.4: Action space for the 6-slot flight booking spoken dialogstesy.

]

fatus

# | Action | Description

01 req Request slot in focus

02 | apo+req| Apology for mis-recognition + request slot in focus

03| sic+req | Single implicit confirmation + request slot in focus

04 | mic+req| Multiple implicit confirmation + request slot in focus

05 sec | Single explicit confirmation of the slot in focus

06| mec | Multiple explicit confirmation of filled slots

07 acc | Move to the next ascending slot with lower-value
(see example in the dialogue shown in page 35)

08 | dbg+sta| Perform a database query + inform the database s

09| pre+ofr | Information presentation + offer options

10 | apo+ofr | Apology for mis-recognition + offer options
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Table B.5: Dialogue goals in the 26-slot travel planning spoken dialegystem.

Goal ID | Description

GO0 | Metagoal for flight booking (outbound and return flights)

GO01 | Requests, offers, and acknowledges information for a autddlight

G02 | Requests, offers, and acknowledges information for ametight

GO03 | Requests, offers, and acknowledges information for a moteh

G04 | Requests, offers, and acknowledges information for a car

GO05 | Summarizes, offers and acknowledges information of fligihd$el and car

Table B.6: Action space for the 26-slot travel planning spoken diatogystem.

# | Action | Description

01 req Request slot in focus

02 | apo+req| Apology for mis-recognition + request slot in focus
03| sic+req | Single implicit confirmation + request slot in focus
04 | mic+req| Multiple implicit confirmation + request slot in focus
05 sec | Single explicit confirmation of the slot in focus
06| mec | Multiple explicit confirmation of filled slots

07 acc Move to the next ascending slot with lower-value
08 | dbg+tsta| Perform a database query + inform the database status
09 | pre+ofr | Information presentation + offer options

10 | apo+ofr | Apology for mis-recognition + offer options
11 ofr Offer database options

12 rel Relax slots of dialogue goal in focus

13 ack | Acknowledgement of dialogue goal in focus
14 gre Greeting

15 clo Good bye
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Table B.7: State variables for the 26-slot travel planning spokenatjale system.

Variable Values Description
SAL {0,1,2} Status of salutation: null, greeting, closing
GIF {0,1,2,3,4,5} Dialogue goal in focus
SGF {0,1,2,3} Status of goal in focus
CO00 {0,1,2,3,4} Status of mandatory slot ‘departure city’ of goal GO
Cco1 {0,1,2,3,4} Status of mandatory slot ‘destination city’ of goal G
C02 {0,1,2,3,4} Status of mandatory slot ‘departure date’ of goal G
Co03 {0,1,2,3,4} Status of mandatory slot ‘departure time’ of goal G(
Co4 {0,1,2,3,4} Status of mandatory slot ‘airline’ of goal GO1
C05 {0,1,2,3,4} Status of mandatory slot ‘flight type’ of goal GO1
C06 {0,1,2,3,4} Status of optional slot ‘airport’ of goal GO1
Cco7 {0,1,2,3,4} Status of terminal slot ‘choice’ of goal GO1
Ci15 {0,1,2,3,4} Status of mandatory slot ‘return date’ of goal G02
Clé6 {0,1,2,3,4} Status of mandatory slot ‘return time’ of goal G02
C17 {0,1,2,3,4} Status of terminal slot ‘choice’ of goal G02
C18 {0,1,2,3,4} Status of initial slot ‘want hotel’ of goal G0O3
C19 {0,1,2,3,4} Status of mandatory slot ‘location’ of goal GO3
Cc20 {0,1,2,3,4} Status of mandatory slot ‘price’ of goal GO3
Cc21 {0,1,2,3,4} Status of mandatory slot ‘brand’ of goal G0O3
C22 {0,1,2,3,4} Status of terminal slot ‘choice’ of goal GO3
Cc23 {0,1,2,3,4} Status of initial slot ‘want car’ of goal G04
C24 {0,1,2,3,4} Status of mandatory slot ‘cat type’ of goal G04
C25 {0,1,2,3,4} Status of mandatory slot ‘location’ of goal G04
C26 {0,1,2,3,4} Status of mandatory slot ‘pickup date’ of goal G04
c27 {0,1,2,3,4} Status of mandatory slot ‘pickup time’ of goal G04
Cc28 {0,1,2,3,4} Status of mandatory slot ‘rental days’ of goal G04
C29 {0,1,2,3,4} Status of optional slot ‘rental company’ of goal G04
C30 {0,1,2,3,4} Status of terminal slot ‘choice’ of goal G04
C31 {0,1,2,3,4} Status of mandatory slot ‘want summary’ of goal G(
C32 {0,1,2,3,4} Status of terminal slot ‘book trip’ of goal GO5
SIF {0,...,7,16,...,32} | Slotin focus
DBT {0,1,2,3} Number of database tuples of current goal
PRE {0,1} Status of information presentation in goal
ACK {0,1} Status of acknowledgement for current goal

Notes on domain values of state variables:

GIe=flight booking, 1=outbound flight,

2=return flight, 3=hotel booking, 4=car rental, 5=summatiip}; SGF=0=unfilled, 1=filled,

2=confirmed, 3=relaxgd the domain values of variables for slots are the same asbldBa3.



Appendix C
Sample hierarchical dialogue

This appendix describes a real dialogue between a user an@3AR travel plan-
ning spoken dialogue system using a semi-learnt hieratcheénforcement learning
dialogue agent. This dialogue agent — optimized for efficoemversations — chooses
hierarchical actions with a divide and conquer approaatpraling to knowledge in the
hierarchical stat&s The interested reader is referred to chapter 6 for mord!slatzout
semi-learnt hierarchical dialogue control, to chapterdifiéormation about dialogue
acts, and to chaptgt 7 for information about the CSTR traleglrpng system.

Briefly, the hierarchical dialogue can be traced as follaWws:machine is in the root
subtaskl\/lé)O and stat#),0,0,0,0,0and selects the primitive actigme corresponding to
a greeting. Then in the same subtask the machine is in anegpdtdte0,1,0,0,0,0
where it selects the composite actilmg1 (in charge of booking flights), by invoking
this subtask the new dialogue statel|j§,0 Then it selects another composite action
M62 (in charge of booking a single flight), and its initial stag00,0,0,0 In this
subtask it selects the composite actMﬁ’ (in charge of collecting mandatory slots)
and its initial state i9,0,0,0,0,0,0here the strategy selects actions for collecting slots
until finding the terminal statd,4,4,4,4,4,4 Once the subtask has been completed,
control returns to its parent subtaiszlg2 with an updated stat2,0,2,2,2 Here the state
was updated to ignore collecting optional slots and terhsld. Then returns to its
parent subtasMg with an updated stat#,2,0 from which it calls the subtaski?
(in charge of booking the return flight). The strategy is nawhe initial stated,0,0,0
and selects actioldlg3 (in charge of collecting mandatory slots), once completirag
subtask it returns control to its parent in order to seledbad\/lf’, which completes
the return flight booking; and so on until the end of the cosaBon.

IThe choice states constrain the actions to be availableipriironment states.
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Table C.1: Real conversation in the CSTR travel planning spoken disd®ystem using semi-learnt hierarchical dialogue cor(fPdRT 1).

anBojelp [eaiyoelaly sidwes O xipuaddy
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Agent| Subtaskl Env. State | Choice State Action | Dialogue Act Utterance
SYS M6° 0,0,0,0,0,0 | choicel gre gre() Welcome to the CSTR travel planning systel
MY | 0,1,0,0,0,0 | choice2 Mg
Mg | 1,0,0 choice4 M2
MgZ |0,0,0,0,0 | choice5 Mg
M63 0,0,0,0,0,0,0 choice8 req req(C00) Tell me your flight information.
USR pro(C05=return,CO0=edinburgh,/ | would like a return flight from Edinburgh
COl=amsterdam,C02=january 22to Amsterdam on january twenty second.
C03=morning)
ASR I would like a return flight from rome
go to Amsterdam on january twenty second.
SYS M63 0,1,1,2,0,0,2 choicelO apo+req| apo()+req(C00) Try again. Tell me your flight information.
For example you can say: a return flight fron
Edinburgh to london leaving on the eighteen
of november in the afternoon travelling with
British Airways.
USR pro(C05=return,C00=edinburgh, | a return flight from Edinburgh to Ams-
COl=amsterdam,C02=january 22terdam leaving on january twenty second
ASR | a return flight from Edinburgh to Amsterdan
leaving on january twenty second
SYS M63 0,2,2,2,0,0,1 choicelO mec | mec(CO05=return,C00=edinburgh,Did you say a return flight from Edinburgh to
COl=amsterdam,C02=january 22Amsterdam leaving on january twenty secor
USR con(C05=yes,C00=yes, Yes

C01=yes,C02=yes)

4




Table C.2: Real conversation in the CSTR travel planning spoken disd®ystem using semi-learnt hierarchical dialogue cor(fPART 2).

Agent | Subtask| Env. State | Choice State Action | Dialogue Act Utterance

ASR Yes

SYS M63 3,4,4,4,0,0,4 choice8 req | req(Co03) At what time do you prefer to travel?
USR pro(C03=morning) In the morning

ASR In the morning

SYS M63 3,4,4,4,2,0,4 choice9 sec | sec(C03=morning) Did you say a flight in the morning?
USR con(C03=yes) Yes

ASR Yes

SYS M63 4,4,4,4,4,0,4 choice8 req | req(Co04) What is your preferred airline?

USR pro(C04=british airways) British Airways

ASR British Airways

SYS M63 4,4,4,4,4,2,4 choice9 sec | sec(C04=british airways) Did you say a flight travelling with British

Airways?

USR con(C04=yes) Yes

ASR Yes

SYS | M | 44,44444 [terminal state]

SYS | MZ |20,22.2 [terminal state]

SYS | M§ |1,20 choice4 M#2

SYs | M? |0,0,00 choice5 MZ

SYS M’33 15,0,0 choice8 req | req(C15) When do you want to return?

USR pro(C1l5=february 01) | January no february first

ASR January third in the morning Air France

anBojelp [eaiyoielaly sidwes O xipuaddy
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Table C.3: Real conversation in the CSTR travel planning spoken disd®ystem using semi-learnt hierarchical dialogue cor(fPdRT 3).

Agent | Subtaskl Env. Statel Choice State Action | Dialogue Act Utterance
SYS M’33 15,2,1 choicel0 mec | mec(Cl5=january 03, | Did you say a flight returning on january third
C16=morning) In the morning?
USR rep(Cl5=february 01) | No a flight on february first
ASR No i flying on february first
SYS M’33 15,2,1 choicel0 mec | mec(Cl5=february 01,| Did you say a flight returning on february
Cl16=morning) first in the morning?
USR pro(C1l6=evening) In the evening
ASR In the evening
SYS M’33 15,2,2 choicel0 mec | mec(Cl5=february 01,| Did you say a flight returning on february
Cl16=morning) first in the evening?
USR con(Cl5=yes,C16=yes) Yes
ASR Yes
SYS | MP |154,4 [terminal state]
SYS M2 |0,0,2,0 | choice5 dbg+sta Please wait while | retrieve information.
SYS | M? 20,20 | choice5 M3
SYS Mf’ 0,0,0,0 choicel4d pre+ofr | pre(db tuples)+ofr(C17) | found 2 return flights from Edinburgh to
Amsterdam with British Airways. Choice 1.:
departing at six fourty five a.m. and arriving
at eleven twenty a.m. The return flight
departs at four fourty five p.m. and arrives
at seven fifty p.m. The price is 147 pounds
and 60 pence. Choice 2: departing at ten ajm.

anBojelp [eaiyoielaly sidwes O xipuaddy
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Table C.4: Real conversation in the CSTR travel planning spoken disd®ystem using semi-learnt hierarchical dialogue cor(fPdRT 4).

Agent | Subtask| Env. State| Choice State Action | Dialogue Act | Utterance
and arriving at three five p.m. The return
flight departs at four fourty five p.m. and
arrives at seven fifty p.m. The price is 152
pounds and 60 pence. Which choice do you
prefer?

USR pro(C17=one) Choice one

ASR Choice one

SYS Mf 0,0,1,2 choicel5 sec | sec(C17=one) Did you say choice one?

USR con(C17=yes) Yes

ASR Yes

SYS Mf’ 0,0,1,4 choicel6 ack | ack(G02) | have added this flight to your itinerary.

SYs| M7 |1014 [terminal state]

SYsS | MPZ 20,222 choice5 [terminal state]

SYS | M{ | 222 choice4 [terminal state]

SYs | MP® |3,1,2,0,0,0 choice2 M2

SYs | M2 10,0000 |choice5 ME

SYS M’53 0 choice6 req | req(C18) Do you want a hotel in Amsterdam?

USR con(C18=yes) Yes

ASR Yes

SYs| M2 |4 [terminal state]

SYs | M2 100,200 |choice5 Mg

anBojelp [eaiyoielaly sidwes O xipuaddy
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Table C.5: Real conversation in the CSTR travel planning spoken disd@®ystem using semi-learnt hierarchical dialogue cor(fPdRT 5).

Agent | Subtask| Env. State] Choice State Action | Dialogue Act Utterance

SYS Mg3 19,0,0,0 | choice8 req req(C19) Tell me your hotel information.

USR pro(C20=cheap,C19=downtown) | would like a cheap hotel in downtown
ASR Yes

SYS Mg3 19,2,3,0 | choicelO mec | mec(C20=cheap,C19=downtownpid you say a cheap hotel in downtown?
USR con(C20=yes,C19=yes) Yes

ASR Yes

SYS Mg3 21,4,4,0 | choice8 req req(C21) What is your preferred hotel chain?
USR pro(C21=any hotel) Any hotel

ASR Any_hotel

SYS Mg3 21,4,4,2 | choice9 sec | sec(C21=any hotel) Did you say any hotel brand?

USR con(C21=yes) Yes

ASR Yes

SYS | MZ | 194,44 [terminal state]

SYS M2 |0,0,2,2,0 | choice5 dbg+sta Please wait while | retrieve information.
SYS | M2 |20,2,22,0 | choice5 MZ3

SYS M’73 0,0,0,0 choicel4d pre+ofr | pre(db tuples)+ofr(C22) | found 2 hotels in Amsterdam downtown.

Choice 1: Die Port Van Cleve, itis a 4 stars
hotel 0.1 kilometers from downtown. the pri
per adult per night is 90 pounds and 78 pen
Choice 2: Swissotel Amsterdam, itis a

4 stars hotel 0.2 kilometers from downtown.
the price per adult per night is 99 pounds an

e

d
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Table C.6: Real conversation in the CSTR travel planning spoken disd®ystem using semi-learnt hierarchical dialogue cor(fPdRT 6).

Agent | Subtask| Env. State | Choice Statg Action | Dialogue Act Utterance
43 pence. Which choice do you prefer?
USR pro(C22=0ne) Choice one
ASR Choice one
SYS M’73 0,0,1,2 choicel5 sec | sec(C22=one) Did you say choice one?
USR con(C22=yes) Yes
ASR Yes
SYS M’73 0,0,1,4 choicel6 ack | ack(G03) | have added this hotel to your itinerary.
SYs | MP? 1014 [terminal state]
SYS | MZ |20,22.2 [terminal state]
SYS | MP 412200 MZ2
SYS M%Z | 0,0,0,0,0,0 Mg
SYS Mg3 0 choice6 req | req(C23) Do you want a car in Amsterdam?
USR con(C23=yes) Yes
ASR Yes
SYS| M7 |4 [terminal state]
SYs | M£Z |0,0,3,0,0,0 | choice5 Mg
SYS M§3 24,0,0,0,0,0 choice8 req | req(C24) Tell me your car information.
USR pro(C24=compact,C25=airport) | would like a compact car near the airport
ASR | would like a compact car near the airport
SYS M§3 24,2,2,0,0,0 choicelO mec | mec(C24=compact,C25=airportDid you say a compact car near the airport]
USR con(C24=yes,C25=yes) Yes
ASR Yes hertz

~NJ
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Table C.7: Real conversation in the CSTR travel planning spoken disd®ystem using semi-learnt hierarchical dialogue cor(fPART 7).

G

Agent | Subtask| Env. State | Choice Statg Action | Dialogue Act Utterance

SYS M§3 24,2,2,0,0,0 choicelO mec | mec(C24=compact,C25=airport)| Did you say a compact car near the airport?
USR con(C24=yes,C25=yes) Yes

ASR Yes

SYS M§3 26,4,4,0,0,0 choice8 req | req(C26) When do you want to pick it up?

USR pro(C26=january 22,C27=07 pm)) On january twenty second at seven p.m.
ASR | january twenty second at seven p.m.
SYS M§3 26,4,4,2,3,0 choicelO mec | mec(C26=january 22,C27=07 pmpPid you say a car on january twenty second

seven pm?

USR con(C26=yes,C27=yes) Yes

ASR Yes

SYS M§3 28,4,4,4,4,0 choice8 req | req(C28) How many days do you want to rent it?
USR pro(C28=three) Three days

ASR Yes please

SYS M§3 28,4,4,4,4,0 choice8 req | req(C28) How many days do you want to rent it? For

rep(C28=three) example you can say: a car for two days.

USR Three days

ASR Three days anyental. company

SYS M§3 28,4,4,4,4,2 choice9 sec | sec(C28=three) Did you say a car for three days?

USR con(C28=yes) Yes

ASR Yes

)
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Table C.8: Real conversation in the CSTR travel planning spoken disd®ystem using semi-learnt hierarchical dialogue cor(fPdRT 8).

Agent | Subtask Env. State | Choice State Action | Dialogue Act Utterance

SYS | M§ |24,4,4,4,44 [terminal state]

SYsS | M£ |0,0,22,0,0 | choice5 M2

SYS M’A3 2 choicel2 sec | sec(C29=anyxompany)| Did you say a car rented from any rental
company?

USR con(C29=yes) Yes

ASR Yes

SYs| M2 |4 [terminal state]

SYS MZ |0,0,2,2,2,0 | choice5 dbg+sta Please wait while | retrieve information.

SYS | MZ |20,2,2,22,0 | choice5 Mg

SYS M§’ 0,0,0,0 choicel4d pre+ofr | pre(db tuples)+ofr(C30) | found 2 compact cars in Amsterdam airport
rented from auto Europe. Choice 1: the price
per day is 60 pounds and 8 pence. Choice 2:
the price per day is 81 pounds and 13 pence.
Which choice do you prefer?

USR pro(C30=two) Choice two

ASR Choice two

SYS M§’ 0,0,1,2 choicel5 sec | sec(C30=two) Did you say choice two?

USR con(C30=yes) Yes

ASR Yes

SYS Mg’ 0,0,1,4 choicel6 ack | ack(G04) | have added this car to your itinerary.

SYS| Mg |1014 [terminal state]

SYS | MZ 20,2222 [terminal state]
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Table C.9: Real conversation in the CSTR travel planning spoken disd@®ystem using semi-learnt hierarchical dialogue cor(fPART 9).

Agent | Subtaskl Env. State| Choice State Action | Dialogue Act Utterance

SYS | MP® |51,2,2,2,0 choice2 M2

SYs | M2 10,000 | choice5 ME

SYS M(’f’ 0 choice8 req req(C31) Do you want a summary of your trip?

USR con(C31=yes) Yes

ASR Yes

SYs| M2 |4 [terminal state]

SYS Mf 0,0,2,0 choice5 dbg+sta Let me retrieve your information.

SYS | MZ 2020 |choice5 M

SYS M’S’ 0,0,0,0 choicel4d pre+ofr | pre(db tuples)+ofr(C32) All right. You have a flight from Edinburgh tg

Amsterdam with British Airways on january
twenty second departing at six fourty five
a.m. and arriving at eleven twenty a.m. It
returns on february first departing at four
forty five p.m. and arriving at seven fifty
p.m. It costs 147 pounds and 60 pence. In
Amsterdam you have a single bedroom in tk
Die Port Van Cleve downtown hotel. It costs
90 pounds and 78 pence per night. Also yo

ne

—

have a compact car in Amsterdam airport with

auto Europe for three days. It costs 81 pour
and 13 pence per day. The total cost of you
travel is 1 thousand 208 pounds and 1 peng

nds

-

e.
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Table C.10: Real conversation in the CSTR travel planning dialogueesysising semi-learnt hierarchical dialogue control (PARJ).1

Agent | Subtask| Env. State| Choice State Action | Dialogue Act | Utterance
Do you want to book this trip?

USR con(C32=yes) Yes

ASR Yes

SYS M§’ 0,0,1,4 choicel6 ack | ack(GO05) All right, your trip has been booked.

SyYs| Mg 1014 [terminal state]

SYS | MZ 20,22 [terminal state]

SYS M60 51,2,2,2,2 choice3 clo | clo() Thanks for calling the CSTR travel planning
system. Good bye!

SYs | MP 5222722 [terminal state]

Abbreviations:

SYS=CSTR travel planning spoken dialogue system
CSTR=Centre for speech technology research
USR=Participant in the evaluation of the dialogue system
ASR=Automatic speech recognition hypothesis
M{=Induced dialogue subtask

Env. State=Environment state in SM[D,PJ-

Choice State=Choice state in HAM for the current subtask
SMDP=Semi-Markov decision process

HAM=Hierarchical abstract machine
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