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Acoustic-Articulatory Modelling with
the Trajectory HMM

Le Zhang, Steve Renal®ember, IEEE,

Abstract—In this letter, we introduce an HMM-based inversion Our system, based on the trajectory HMM, differs from oth-
system to recovery articulatory movements from speech acstics. ers in the sense that both recognition (acoustic) and syisthe

Trajectory HMMs are used as generative models for modelling (5 ticylatory) models are constructed in the same framiewor
articulatory data. Experiments on the MOCHA-TIMIT corpus . . ’
indicate that the jointly trained acoustic-articulatory m odels are and are jointly modelled using a two-stream HMM.

more accurate (lower RMS error) than the separately trained ~ The trajectory HMM extends the conventional HMM frame-

ones, and that trajectory HMM training results in greater work, and many established HMM building techniques can
accuracy compared with conventional maximum likelihood HMM e reused. Moreover. in the inversion stage only the HMM
training. Moreover, the system has the ability to synthesis : ' oo : :
articulatory movements directly from a textual representaion. stgte sequence is needed, so it is possible to .Synth_eSISe

articulator movement from a textual representation with-
out the speech signal. We have evaluated the framework
on a speaker-dependent articulatory-speech parallelusprp
MOCHA-TIMIT.

Index Terms—Trajectory HMM, Articulatory Inversion,
MOCHA-TIMIT

I. INTRODUCTION

IDDEN Markov models (HMMs) are the standard ap-
proach to speech recognition, where the underlying taskTemporal derivative features, or delta features, are well
is to maximise the discrimination between similar phondsiown to improve the accuracy of HMM-based speech recog-
or words. Speech synthesis models, on the other hand, ng®n systems [14]. However, the simple incorporation efta
different techniques such as unit selection (e.g., [1]) ken features in an HMM leads to an inconsistent generative model
the synthesised speech sound as natural as possible. THi§. These inconsistencies may be resolved by performing
suggests that different modelling approaches may be medjuia per-utterance normalisation, leading to the trajectaMH
for recognition and synthesis; however Tokuda et al [2] hay#6].
shown that the trajectory HMM formulation may be success- Let ¢ denote the static observation vector sequence, and
fully applied to speech synthesis [3]. let o denote the sequence of observation vectors augmented
The task in which we are particularly interested is theith delta features. Then the likelihood of observing tratist
recovery of articulatory information (the movement of humaobservation vector sequence given the HMM state sequence
articulators) from speech acoustics, sometimes callécutat g and the model parameters is obtained by normalising
tory inversion. The inversion of articulatory data invadveoth the likelihood of obtaining the augmented observation aect
synthesis and recognition: we start with the acoustic $igrsequence:
and pose the recovery of the missing articulatory infororati 1
as a synthesis problem. Conversely, the recovered attiicyla plcla,A) = —plofq,) (1)
information can have a complementary role in the modelling !
of pronunciation and acoustic variability in speech redbgn.  where Z, is a normalisation term that depends on the state
Previous attempts to recover articulatory movement fraen tisequence:
speech signal involved building a mapping from the acoustic
domain to the articulatory domain, either manually or con- Zg = /P(O | q,A)de. (2)
structed automatically from parallel data [4], [5], [6]]]78],
[9], [10], [11], [12]. Variations of neural networks [5], 81, The model parameters include the Gaussian mean and variance
[6], [11] have become popular in the latter category. Oftecomponents and can be updated using gradient-based methods
the inversion system is built separately from the recogniti  Unlike the step-wise mean output of a conventional HMM,
framework, particularly because the slowly varying natafe the mean output from(c | q, \) is a smoothed trajectory, and
articulation may be best modelled in a different way to sheeean be used as a proper generative model, as in parametric
acoustics which change more rapidly, and are noisier. speech synthesis. It is possible to train the trajectory HMM
maximise the generative model likelihop¢c | g, A). This has
The authors are with the The Centre for Speech TechnologedRes, congsiderably higher complexity than conventional maximum
School of Informatics, University of Edinburgh, 2 Bucclau®lace, Edin- ., . i .
burgh, EH8 9LW, UK.{zhang.le,s.renaj@ed.ac.uk . likelihood training for HMMs, and is rarely done for HMM-
Manuscript received October 17, 2007; revised DecembeQ97. based speech synthesis systems [3].
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II1. ACOUSTIG-ARTICULATORY MODELLING FOR \ Parallel Articulatory-Speech Data ‘

ARTICULATORY INVERSION Two-Stream HMM Building with mix up
/\ A.1mix + S.8mix /\Q
Combined 2-stream HMM A
UANN

Our system starts with parallel articulatory-speech data Tri. update A Stream S.8mix

where the movement of articulators has been recorded us- A .

ing an electromagnetic articulography (EMA) machine. The

challenge of the task is that different articulator confagioms Combined 2-stream T&INND.  Traning Part
(Vocal—tract ShapeS) can produce the same sound, whichsmean T o P
the mapping from speech to articulatory domain is not unique \ Unseen Speech \ \ Phone Label \
[4], [17], and that the acoustic signal is less smooth angsar S.8mix align model State duration model
faster, compared with articulator movements. oo

Instead of seeking a direct mapping between the acoustic ®‘%‘g‘%‘g*@ HMM State Alignment
and articulatory signals, our methodology centres aroined t 4 TiAdmix syn, model
idea of jointly optimising a single model for acoustic and W Inverted Articulatory Trajectory

articulatory information. The model has two parts, botmgsi
the same multi-state phone-level HMMs: an articulatory-syigig. 1. Overview of the articulatory-acoustic modelling systensing two-
thesis model which (given an HMM state sequence) generaggam combined training results in greater accuracy coregawith the
a smoothed mean trajectory (1); and an alignment mod&Parately trained ones.
which derives the state sequence for synthesis from an nnsee
utterance. We carried out training on the parallel data by
creating a two-stream HMM where one stream is modelled IV. EXPERIMENTS
by an articulatory HMM with single Gaussian output densitie  The MOCHA-TIMIT corpus is a speaker-dependent
and the other is the standard Gaussian mixture acoustic HMMcording of TIMIT sentences with articulatory informatio
After that, the parameters of the articulatory stream are UPaptured using EMA, along with the acoustic signal. It in-
dated USing trajectory HMM maximum I|kel|h00d estimatiorajudes ohe male Speaker (msako) and one fema'e Speaker
[16]. In this paper we choose to update Gaussian megBew0), each uttering 460 TIMIT sentences. Electromagnet
components only, as updating Gaussian variances was foyggeiver coils are attached to 7 articulators in both x and y-
to be both time-consuming and less effective. coordinates during recording, providing a total 14 chasioél

For inversion we first derive a representative HMM statarticulatory information sampled at 500 Hz. The female data
alignment from the acoustic channel. Then the parame{ésewO) is used in this paper.
generation algorithm [2] is executed to produce the smabthe In preparing the experiment, we down-sampled the EMA
mean trajectory from (1) in the articulatory domain. One-fealata to 100 Hz to match the 10 ms frame-rate of the acoustic
ture of the system is the flexibility in obtaining the HMM stat features, which are the usual 12th-order MFCCs with log-
alignment at the inversion stage. Depending on the availalginergy plus their delta and delta-deltas. All delta feaue
resources, it can be the state sequence returned by an HMdMputed using the three-framd&3window unless mentioned
decoder, the forced alignment derived from phone labels, @therwise. A mean-filtering normalisation is performed to
the synthesised state sequence from a textual representattompensate some EMA measure errors introduced in the
using a suitable duration model. An overview of the acousticecording stage [18]. We set aside the utterances whosedreco
articulatory model is illustrated in figure 1. ing number ends with 2 for validation (46 utterances), those

Delta features, which play a central role in trajectory HMngNding with 6 for test (46 utterances) and the remaining 368
systems, are obtained from the regression coefficients th#€rances for training. The phone set consists of 45 phones
represent the temporal slope of each feature [14]. In the HTReluding silence. The inversion performance will be repdr
systent, delta coefficients are computed from the previous a@$ average RMS (root mean square) error compared with the
next two frames. The delta-delta coefficients are computed'gcorded articulatory data.
the same way using the previous and next two deltas, meaning@imilar to building an HMM-based speech recognition
that the whole window covers nine frames. In the HTS HMMSYStem, we refined our inversion models incrementally. Both
based speech synthesis systemsimpler three frame window the (articulatory) synthesis model and the (acousticyafignt
is employed, using a quadratic regression for delta-deltes model started from a single component Gaussian, three;stat
experimented with both kinds of windows, and found thdeft-to-right monophone model trained using HTK. Depergdin
choice of window has an impact on the articulatory inversid?? the training scheme used, three synthesis models wéte bui
task. We will refer to the three-frame dynamic window (as « hmm.A: baseline HMM trained on the articulatory data
used in HTS) asiw3 and the nine-frame window (as used in  only, using HTK.

HTK) one asdw9. « trj.A: trajectory HMM, built from the baseline HMM,
with the Gaussian mean components updated using the
forced alignment provided by hmm.A.

http://htk.eng.cam.ac.uk/
2http://hts.sp.nitech.ac.jp/ Shttp://www.cstr.ed.ac.uk/research/projects/artiatheohtml
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. .. . . . TABLE |
« trj.C: jointly trained two-stream trajectory HMM, with RMS ERROR(MM) OF ARTICULATORY INVERSION ON TEST DATA

updated Gaussian mean components for the articulatm%Odel

. . i S-Decode S-Align A-Align
stream. A default stream weight of 1.0 is used for both Tmix | 4mix | 8mix | Imix T dmix | 8mix | Imix
streams. hmm.A | 1.936 | 1.901 | 1.876 | 1.842 | 1.814 | 1.804 | 1.679

LA 1.923% | 1.811| 1.756 | 1.715| 1.656 | 1.624 | 1.386
tr].C 1.887 | 1.756 | 1.705| 1.630 | 1.633% | 1.580 | 1.477

Since a trajectory HMM equivalent of the Baum-Welcl

algorithm has not been discovered, it is prohibitively exgiee [ —jqur 5339
to estimate trajectory HMMs with multi-component GaussignMLP 1.62
mixture densities. Thus our articulatory synthesis congmon [_TDN 1.40

is limited to single component Gaussian densities (1mix). |
deriving the alignment for training, however, there is nafrsu
restriction. We can therefore get more accurate alignmgnt model.
using more mixture components. In our experiments, Ganssia Comparing the different alignment methods, it can be seen
mixture densities with four (4mix) and eight (8mix) compothat the method based on forced alignment with phone labels
nents were used to derive the HMM alignment. (S-Align) results in significantly{ < 0.05) lower errors than
To carry out the inversion, again an HMM alignment ishe alignment obtained from direct decoding (S-Decodeg Th
required for each testing utterance. Different strateg@sbe final column of Table | gives an upper bound on performance
employed to maximise resource usage. For utterances wiing a single Gaussian monophone model aligning to the
only acoustic data, we choose to use the alignment returrredorded articulatory data (A-Align). The fact that trj.@rp
by decoding speech directly using a phoneloop grammar @fms worse than trj.A in this condition is because when the
Decode). If we have access to phone labels then a betetual articulatory data is provided, the addition of aticus
alignment can be obtained by running the decoder in forcédormation lowers the alignment accuracy.
alignment mode (S-Align). In addition, we give the result The recovered trajectory for the movement of upper lip in
based on the forced alignment of the recorded articulataty dthe x direction for the first utterance in the test set is displayed
(A-Align). Although this information will not be availablen in Figure 2, where the trained trajectory HMM (trj.dw3) is
real inversion tasks, it nevertheless gives us an indicatio observed to give a better fit to the data than the baseline HMM
the “topline” performance using single Gaussian densities (hmm.dw3).
the articulatory synthesis model. We also investigated the effect of the delta coefficient
A unique feature of the inversion system is the ability toegression window for this task. Using tlasv3 window for
perform synthesis with only phone label information. The ralelta coefficient estimation, the best inversion resulhiR¥S
quired HMM state alignment for synthesis can be constructedror of 1.876 mm for the baseline HMM, and 1.580/1.705 mm
from a state duration model. Using the HTS system, we buifir a trained trajectory HMM using an alignment derived from
a monophone duration model from the training data. A statiee S-Align/S-Decode conditions respectively, both emioig
sequence was then synthesised using the duration model and-component mixture model for alignment. Although not
the provided test labels and the mean trajectory was thgmown here, thelw9 window results in slightly lower RMS
generated. errors thandw3 Among 21 results in the first three rows of
The inversion results on test data in terms of average RM&ble |, we find only 8 cases where the difference between
error (mm) over the 14 channels are presented in Table I. T3 anddw9 s statistically significant at the 0.025 level of a
RMS error obtained when synthesising from the phone labdigo-tail paired¢-test. And in only 2 instances doesv9 have
is shown in Table | as trj.dur. We also list results obtaineal lower RMS error thardw3 Figure 2 shows the recovered
using the same data set employing a multi-layer perceptrvajectories using the two windows, and it is clear thatdins
(MLP) [11] and a trajectory mixture-density network (TMDN)window results in a smoother estimated trajectory, congpare
[19]. We conducted paired one-taitests between the resultsto dw9.
obtained using the same number of mixture componentsThe lowest inversion error from the the speech signal alone
and decoding/alignment approach (i.e. within each columnis 1.705 mm, which compares well with an error of 1.62 mm
Table 1). The differences between the obtained results lare @btained when using an MLP for direct acoustic-articukator
significant at then < 0.05 level, except where marked with mapping [11], especially since in this approach the aritarly
Compared to the result from baseline model hmm.A, theajectory is generated using single Gaussian densitiese M
two trajectory models (trj.A and trj.C), achieve a signifidg recently, the TMDN approach [19] has resulted in a decreased
lower RMS error in the different inversion configuration&i§ RMS error of 1.40 mm on this data set.
demonstrates the effectiveness of trajectory trainingrddeer,
in table | we find that the jointly trained model (trj.C) retsul V. DisCcussION
in significantly lower RMS errors than trj.A, in which the Recentinterestin the use of HMM-based systems for speech
articulatory stream and speech stream are trained selyaratynthesis, and the development of the trajectory HMM, has
Hence training a model jointly on the acoustic and articuesulted in a resurgence of interest in the development of
latory streams results in a reduced RMS error. Furthermotmified models for speech recognition and synthesis with a
increasing the number of mixture components in the acousgidncipled statistical basis. In this work we use a commamge
alignment model consistently reduces the RMS error, despérative model for acoustic-articulatory data that—uwithpiep
the fact that the final synthesis stage uses a single Gausgigate marginalisation—can be used for both recognitioth an
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File:fsew0_006 Channel:ul_x Txt:"Bright sunshine shimmers on the ocean."

1.5

—— data
1.0F -—=- hmm.dw3
0.5k trj.dw9

sil b r ai t S uh n sh ai n

i ! I - I I
i o n dh @ou sh n sil

Fig. 2. Recovered trajectory for the movement of Upper Lip in x coatg (ul x) of test utterance fsew006. The trained trajectory HMMt{ j . dw3)
shows a closer fit to the data than the baseline HMii dw3), with state alignment derived from a 8-mixture jointlyitrad 2-stream HMM. The light
gray trajectory of {rj . dwd) shows the noisy effect of using 9-frame dynamic window.

synthesis of acoustic and articulatory signals. Our expents
in this paper confirm that training such a model jointly @)j.
results in more accurate generation of articulatory ttajées,
compared with separately trained models (trj.A).

Despite its theoretical attractions, the trajectory HMMs ha
a major limitation at the current time. In the absence of a

“trajectory HMM Baum-Welch” algorithm, training models
with multiple component mixtures is prohibitively experesi

Thus, in this work, the articulatory synthesis model was

limited to trajectory HMMs with single Gaussian densitibs.
the HTS speech synthesis system, this limitation is imgbjici

addressed through the use of detailed context. In this werk w
have used monophone models, and it is clear that the use [6f

context-dependent models is worth investigating.

Although there are significant technical challenges rélatejg
to trajectory HMM training, there are several advantages to

pursuing the trajectory HMM as a unified model for synthes
and recognition. The fact that existing software framewdok

tion, and a principled, efficient way to initialise modelsifig
conventional HMM parameter estimation). In the articutgto
acoustic modelling case, the use of duration modelling ap- vol. 17, pp. 153-172, 2003.

proaches developed in HMM-based speech synthesis enabl
articulatory movement to be generated without the need for
acoustics, and it is also possible to apply speaker adaptatji3]

approaches used successfully in recognition and synthesis
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