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Abstract
When comparing the prosodic realization of different English
speakers reading the same text, a significant disagreement is
usually found amongst the pitch accent patterns of the speakers.
Assuming that such disagreement is due to a partial optional-
ity of pitch accent placement, it has been recently proposed to
evaluate pitch accent predictors by comparing them with multi-
speaker reference data. In this paper we face the issue of pitch
accent optionality at different levels. At first we propose a sim-
ple mathematical definition of intra-speaker optionality which
allows us to introduce a function for evaluating pitch accent
predictors which we show being more accurate and robust than
those used in previous works. Subsequently we compare a pitch
accent predictor trained on single speaker data with a predictor
trained on multi-speaker data in order to point out the large over-
lapping between intra-speaker and inter-speaker optionality. Fi-
nally, we show our successful results in predicting intra-speaker
optionality and we suggest how this achievement could be ex-
ploited to improve the performances of a unit selection text-to
speech synthesis (TTS) system.

1. Introduction
In this paper we propose a new evaluation function for evalu-
ating pitch accent predictors and a novel approach that exploits
the variability of pitch accent patterns in order to improve the
prosodic realization of a unit selection TTS system. In natu-
ral speech, alternative prosodic realizations of a given utterance
can be equally acceptable. Even when a speaker is required to
utter a sentence in a specific standard speech style (that of ra-
dio news speakers, for example) she/he will be free to choose
amongst different prosodic patterns without altering the mean-
ing of the sentence [1]. This freedom of choice affects different
aspects of prosody, ranging from prosodic phrasing to the into-
nation contour. This prosodic variability offers a further degree
of freedom to the developers of speech synthesis systems (or
at least to those using the unit selection technique) who want
to create systems able to go beyond a neutral prosodic realiza-
tion making them able to convey additional meaning through
prosody. In unit selection, a predefined prosodic target is usu-
ally expressed by a sequence of symbolic values describing F0
and segmental duration. These prosodic values are included into
the specifications of the target utterance. The target is matched
by selecting the appropriate acoustic units and, in some cases,
by applying signal processing techniques. In such a context, im-
posing one single predefined prosodic target can involve a large
amount of speech processing and a drastic reduction of the unit
search space, thus resulting in a poor quality speech produc-
tion, usually less acceptable than that of a system not supported
by any prosodic model. As a consequence, and taking into ac-
count the prosodic variability of natural speech, new “softer”

approaches have been recently proposed, for example, in [2]
alternative prosodic patterns are implemented into a weighted-
finite-state-transducer (WFST), which is then composed with
the WFST describing the segmental information of the acous-
tic database. The unit sequence with the best combined cost is
chosen. Prosodic constraints can be further relaxed by dropping
the idea of explicitly defining the allowed prosodic patterns and
selecting an implicit prosodic model by relying on the inherent
prosodic structure of the speech database [3]. In our work we
focused on the variability of prosodic patterns looking at a sin-
gle type of prosodic event: pitch accent. We first analyzed the
section of the Boston University Radio News corpus [4] where
speech data have been collected by recording different speak-
ers reading the same sentences. We show, for any combination
of speakers, the intra-speaker disagreement in placing pitch ac-
cents. Then, starting from previous work, we faced the prob-
lem of evaluating pitch accent predictors on multi-speaker data,
assuming that the intra-speaker disagreement is mainly due to
a high degree of optionality in placing pitch accents. Our so-
lution implies a simple mathematical definition of optionality
which led us to the formulation of a new evaluation function.
Subsequently, we tested our main work hypothesis, that is the
assumption that the optionality observed when comparing the
prosodic realization of different speakers (intra-speaker option-
ality) largely overlaps with inter-speaker optionality, that is the
optionality that would be found if a speaker repeatedly read the
same text without changing is speaking style. We compared a
pitch accent predictor trained on single speaker data with a pre-
dictor trained on multi-speaker data. From the high similarity of
performances of both predictors we inferred the validity of our
hypothesis. Finally, we found out that our definition of option-
ality was determinant in our successful attempt of predicting
optionality and, supported by the high similarity of intra and in-
ter speaker optionality, we devised a simple method to exploit
this achievement in order to improve the prosodic realization of
a unit selection TTS system that uses pitch accent prediction to
model prosody.

2. Disagreement Among Speakers
A section of the Boston University Radio News (BURN) cor-
pus contains the speech of six different speakers (3females: f1a,
f2b, f3a, and 3 males: m1b, m2b, m3b) reading the same text.
All data have been prosodically labeled using the ToBI annota-
tion conventions. We used this annotation only to see if a pitch
accent occurred or not (see Figure1).This part of the BURN cor-
pus was already analyzed in [5] to investigate the intra-speaker
disagreement in pitch accent placement. However, here, we pro-
vide some further data, useful for our purposes. Figure 2 shows
the percentages of intra-speaker agreement for each combina-
tion of speakers and the agreement mean, with respect to the
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f1a f2b f3a m1b m2b m3b
may N A A A A A
be N N N N N N
the N N N N N N
most N A N A N A

Figure 1: An example extracted from the BURN corpus. A and
N stand for accent and no-accent respectively

number of speakers involved, on a text of 1662 words. The
vertical segments range from the lowest to the highest agree-
ment percentage, given a certain number of speakers. For ex-
ample, given a number of two speakers, there are 15 possible
combinations of speakers. Among them the pair with the low-
est agreement (79.19%) is f1a-m2b, whereas the highest agree-
ment (85.86%) occurs in m1b-m3b. These two percentages may
suggest a correlation between degree of agreement and speaker
genre, but if we look at all the 20 possible triplets of the six
speakers we see that the combination with the highest agree-
ment (77.61%) is f2b-m1b-m3b, which consists of one female
and two males. We did not carry out any study to investigate
which are the factors that correlate to intra-speaker agreement
and to what extent, but from an informal analysis it seems that
speaker profession (is she/he a professional speaker?) is at least
as significant as speaker genre.When comparing the agreement
among speakers in pitch accent placement we can compute the
proportion of agreement that is not due to chance by using the
Kappa statistics:

κ =
P (A)− P (E)

1− P (E)

where P(A) is the proportion of times speakers agree and
P(E) the proportion we would expect them to agree by chance.
In our case, assuming that accent and non-accent are equi-
probable (the percentage of accented words for this speech style
ranges from 45% to 55%) the κ value for the six speakers is
0.57.
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Figure 2: Speakers agreement in pitch accent placement. The
mean line represents the mean disagreement value. The rse-
quence line shows the disagreement resulting when adding a
speaker in the order: f1a, f2b,f3a,m1b,m2b,m3b.

3. Optionality and Pitch Accent Predictor
Evaluation

3.1. Previous Works

If we make the assumption that when two or more speakers dis-
agree in placing, or not, a pitch accent on a syllable, that pitch
accent can be considered an optional accent, then we can recon-
sider the usual evaluation practice in which a pitch accent pre-
dictor is compared with only a single speaker. [5] and [6] used
an evaluation function that considers a predicted event (accent
or no-accent) wrong if it is not yielded by any of the speak-
ers/annotators. Although the two works differ for the language
(English vs Dutch) and the type of data test used (prosodically
annotated speech vs prosodic labels directly derived from text)
their conclusions are very similar: when optionality is taken
into account in evaluating their automatic pitch accent predic-
tors the performances of their predictors are very close to those
of humans. This conclusion assumes that the optionality occur-
ring when comparing speakers (intra-speaker optionality), is the
same optionality that can occurs within a single speaker (inter-
speaker optionality). As a consequence the accent pattern cho-
sen by a speaker is made up of a compulsory part and an op-
tional part, which can be exchanged with the optional part of
(an)other speaker(s) without altering the coherence and natural-
ness of the whole accent pattern. There are however possible
side-effects in this assumption. First, even if a pitch event is op-
tional all the speakers can choose the same value. Second, the
optional part of the pitch accent pattern of a single speaker can
be related to the speaking style of the speaker herself/himself
and, moreover, can be influenced by other factors that determine
her/his speaking style, for example her/his speaking speed. As
a consequence, mixing a speaker optional part with that of other
speakers may result in an unnatural and “distorted” pattern. Fi-
nally, the evaluation function used in both works ignores a pos-
sible sintagmatic behavior of pitch accents: the placement of
an accent can influence the placement of the following ones.
In spite of that, in our work we kept the idea of evaluating ac-
cent predictors comparing them with multi-speaker data, sup-
ported by the fact that, as we will show later, fortunately, part of
these side-effects is probably not so significant as it may seem
at a first glance and can be reduced using a different evaluation
function. Nevertheless, even assuming that these side-effects
do not occur, the evaluation functions proposed in the previ-
ous works have still significant drawbacks. Figure 2 shows how
the speaker agreement quickly decreases when the number of
speakers increases. As a consequence it is easy to see how the
evaluation function of [5] and [6] is strongly dependent on the
number of speakers involved.

Figure 3 shows this fact by comparing three predictors (one
of those is actually a speaker) varying the number of speak-
ers involved in the test. The more the speakers in the test data
are, the lower the intra-speaker agreement is and consequently
the better the predictor results are. Consider the predictor A,
which assigns a pitch accent to each words. If it is evaluated
on six speakers, its accuracy rate is 73%, that means that we
could build a predictor that accents the 73% of overall words,
and performs a 100% of correct predictions. But, since the per-
centage of pitch accent in read speech ranges from 45% to 55%
such a predictor is not appropriate to model pitch patterns of real
speech. When looking at the speaker disagreement we should
take into account that the steep decrease is partially due to the
simple fact of adding new speakers even if the disagreement in
each pair of speakers is low. In order to better illustrate that
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Figure 3: Three predictors tested over different numbers of
speakers. The sequence of speakers combination is f1a, f1a-
f2b, f1a-f2b-f3a, f1a-f2b-f3a-m1b, f1a-f2b-f3a-m1b-m2b, f1a-
f2b-f3a-m1b-m2b-m3b. Predictor A is an all-accented predic-
tor. Predictor B is described in section 5. Predictor C is the
speaker m3b.

we could suppose that each word token in the test text has a
non-zero probability of being optional, that is of being assigned
both accent values (accented/non-accented) and that each pitch
accent is independent from the others. If we assume p being the
average probability of the most probable event for each word
token, the agreement percentage can be modeled as:

(m1) A(n) = 100[pn + (1− p)n]

where n is the number of speakers involved. In Figure 2
we plotted A(n) (model) setting p to 0.9157. This value was
obtained by imposing p6 (the term (1− p)6 was ignored) equal
to the real agreement of six speakers (58.96%).
Even if our model is certainly approximate it clearly shows how
even for high values of p the agreement percentage rapidly de-
creases by adding new speakers and gives a clue of what hap-
pens if more than six speakers are compared. Moreover this
model allows us to see the intra-speaker optionality value not as
a simple binary value but as a gradient one, which is a function
of the probability of each word token of being assigned both
pitch events. This concept is the base of our work.

The number of speakers is not the only parameter that can
influence the predictors evaluation: the evaluation function of
Figure 3 considers correct a pitch event if it is realized by at
least one speaker, but we could be more strict and choose an
evaluation function that marks as correct a predicted pitch event
only if it is realized by more than one of the speakers involved.
Considering n the number of speakers involved in the test and
m (with m < n) the acceptable (for the evaluation function)
number of speakers that realize the same pitch event of the pre-
dictor, we can write the evaluation function for each word token
i:

OE(wi) =





1 if at least m speakers realized
the predicted event

0 otherwise
(1)

m = 1 m = 2 m = 3
Predictor A 73.17 65.04 60.16
Predictor B 97.56 94.06 88.89

Table 1: Accuracy rates of two predictors for different values of
m (n = 6).
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Figure 4: Speakers agreement for different values of m (n=6)

Table 1 shows the evaluation of two predictors already used
in figure 3, this time always compared with all the six speakers
(n = 6) but varying m. The high dependency of the evaluation
function on m is again explained by the speaker disagreement:
when m increases the number of cases in which the pretiction
is considered correct independently on its value decreases. For
example if m = 1 the prediction is always correct in all the
cases where at least one speaker disagrees whereas it can be
wrong or correct only when all the speakers agree. In figure
4 we plotted the percentage of pitch events that are consistent
among all the six speakers (bottom right), at least five of the
six speakers and so on. We also plotted an agreement function
based on the same hypotheses made for (m1). Since the number
of combinations of k speakers taken from a set of n speakers is

given by
(

n
k

)
, in this case the agreement function is:

(m2) A(n, m) = 100
∑n

k=n−m−1

(
n
k

)
[(1− p)n−kpk

+(1− p)kpn−k]

where 0 ≤ m ≤ 4, and the p value is set to the same value used
for figure 2. Note that p was not set to find the best model of
rsequence (in terms of Root Mean Square, for example).

3.2. An alternative evaluation function

Starting from the considerations made above we wanted to for-
mulate an evaluation function that awarded those predictors able
to match the average accent pattern of human speakers and that
was less sensible to n and m.
To satisfy these specifications we associated an emission source
to each word token. Each source can emit two symbols, one
when the token is accented and one when it is not. The number
of emissions is equal to the number of speakers and each emis-
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f1a f1a-f2b-f3a-m1b-m2b-m3b ∆(diff. between the first 2 colums) ∆Baseline/∆Predictor B
Baseline, OE(m=1) 46.88 73.17 26.29 -

Baseline, EE 48.88 69.54 20.66 -
Predictor B, OE(m=1) 75.34 97.56 22.22 1.18

Predictor B, EE 75.34 95.00 19.66 1.05

Table 2: Comparison between OE and EE on predictor B and A (baseline).
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Figure 5: Accuracy rates of Predictor B using OE and EE.

sion is independent form the others.
From Information Theory ([7]) we know that the entropy of
such a source is:

H = − log(P (A))P (A)− log(P (N))P (N) (2)

where P (A) is the probability that the source emits an ac-
cent and P (N) that it does not. The entropy says how much
information we need (or more informally, how many questions
we have to ask) to correctly predict the next symbol that will
be emitted by the source. If the source has always emitted the
same symbol than its entropy will be 0, whereas if the number
of emissions of both symbols is equal then the entropy value
will be 1. In all the other cases (and if the number of emissions
is higher than 2) the entropy value will be less than 1 and more
than 0. If we associate the optionality of a word token with its
entropy, and search for an evaluation function that is dependent
on optionality, we can write the evaluation function for a single
token as follows:

EE(wi) = 1− [(1− Pt(pei))(1−Ht(wi))] (3)

where Pt(pei) is the probability that the predicted event pei

is emitted by the test source and Ht(wi) is the entropy of the
source. The overall EE is the sum of each EE(wi) divided by
the total number of words.
The main novelty of EE is that intra-speaker optionality is no
more simply considered as a binary quantity but as a gradient
one.
Concerning the dependency on n and m, one of the practical
advantages of EE is that we do not have to decide which the
most appropriate value of m is, while regarding n we can see

how EE is more stable than OE to n increase, if we suppose of
having an infinite number of speakers. In that case, it is accept-
able to assume a non-zero probability for each token of being
assigned both pitch events, especially if we think that an error
can be made by the speakers themselves or by the prosodic an-
notators. Both an all-accented and an all-non-accented predic-
tors would score OE(wi) = 1 per each token though neither
of them would match the speakers average pitch pattern. Us-
ing EE both predictors would never reach the maximum score.
This is an interesting characteristic of EE since usually a pre-
dictor performance is evaluated relatively to an all-accented or
an all-non-accented baseline.
In order to provide some empirical evidence of the higher sta-
bility of EE we compared the two functions using different
predictors. In figure 5 a predictor is evaluated on different val-
ues of n: for n > 3 the EE values are more stable than the OE
values which keep on rising. Figure 5 shows the result for only
one predictor evaluated over one out of 720 possible sequences
of speakers. We carried out the same type of comparison us-
ing different predictors and different speaker sequences finding
always the same kind of result. Table 2 reports the results of
another type of comparison between EE and OE (with OE
having m = 1). For both functions we computed the difference
between the value obtained with n = 1 (first column) and that
one with n = 6 (second column).
The table shows (third column) that for both measures the dif-
ference (∆) between n = 1 and n = 6 obtained on the all-
accented predictor is higher than our predictor, that means that
the baseline increases more quickly than our predictor. Never-
theless, using EE, the increase of the baseline with respect to
our predictor is slightly smaller: the fourth column of table 2
shows that when using EE the ratio between the ∆’s of base-
line and predictor (fourth row) is lower than that obtained using
OE (third row). The choice of the speaker when n = 1 is
not determinant since when a predictor is compared to a single
speaker EE and OE assign the same score.

4. Intra-Speaker and Inter-Speaker
Optionality

Until now we have seen how intra-speaker optionality can be
taken into account when evaluating a pitch accent predictor as-
suming that the optionality occurring among speakers is the
same optionality occurring within a single speaker (and con-
sequently within a good predictor).

In order to explore to which extent this assumption is true,
we compared two different predictors: a predictor trained on
single speaker data (henceforth SSP) and a predictor trained on
multi-speaker data (henceforth MSP) . Both training data con-
sists of 8954 words. SSP was trained using a subset of the f2b
section of the BURN corpus, whereas the MSP training set was
built by grouping all the six speakers data of section p, r and t
of the multi-speaker data, so the text read by the speakers (1293
words) and the values of the training features are repeated six
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f1a f2b f3a m1b m2b m3b All
SSP 76.15 83.2 82.93 87.26 82.93 84.01 93.87
MSP 75.34 82.93 83.74 89.16 82.66 84.82 95.00

Table 3: Comparison between a predictor trained on single speaker data (SSP) and one trained on multi-speaker data (MSP).

times (one for each speakers); as a consequence only the pitch
accent values vary. The section j (369 words) was held out
for testing both predictors. Both predictors were trained using
the Classification and Regression Tree (CART [8]) available in
the Edinburgh Speech Tools Library (Wagon CART [9]). We
used training features that have been proven strictly correlated
to prosodic prominence: part of speech (the MXPOST tagger
[10] was used), logarithm of unigram and bigram of the word.
Each example consisted of the feature values of a word and of
the two words preceding and following it. Unigrams and bi-
grams were computed on a corpus of 17 million words (Herald
news from 1998 to 2002) using the CMU toolkit for language
modeling ([11]). Because of the smaller lexical variability of
the multi-speaker data set we did not use lexical training fea-
tures, like the accent ratio feature ([12]), that would have largely
favored SSP. Both SSP and MSP were tested comparing their
predictions with each one of the six speakers, and with all the
six speakers at the same time using the EE evaluation function.
Looking at table 3, the most evident fact, when comparing the
two predictors, is that their performances are very close. Sur-
prisingly SSP performs slightly better than MSP when tested
on three of the six speakers, whereas it is worse than MSP in
the all-six-speaker evaluation. There results can be interpreted
looking at a CART as a list of prediction rules: we can say, with
a certain degree of approximation, that during the MSP training
those rules that were sensitive to speakers, that is, appropriate
for describing the pitch patterns of some speakers but not for
those of the others speakers, were filtered out, so only the rules
that assign the non-optional pitch events were successful. If
the SSP performances are very close to the MSP ones we can
conclude that, at least in our prediction model, the SSP has the
same ability of the MSP to distinguish between intra-speaker
optional and compulsory pitch events, but this is possible if the
variability (with respect to training features strictly correlated
to pitch accents) “seen” by the SSP during its training phase is
very similar to the intra-speaker optionality seen by the MSP.
The Wagon CART provides, along with the predicted value, the
probability of all the possible values (two, in our case) of the
predicted variable. In the next section we compute the entropy
of each prediction from the probabilities provided by Wagon
and use this entropy as a training feature (henceforth called “un-
certainty”) to predict pitch accent optionality.

5. Predicting Intra-Speaker Optionality
Once we have formally defined intra-speaker optionality and
shown the large overlap between intra and inter speaker option-
ality in our prediction model, we can try to predict optionality
in order to improve the prosodic realization of unit selection
TTS. In [13] it has been shown that including the pitch accent
feature in the target cost function improves the quality of the
unit selection speech synthesis. If we were able to associate to
each predicted event its degree of optionality we would be able
to tune the target cost associated with the pitch accent feature
in accordance to the importance (optionality) of the pitch event.
Informally, the less optional the pitch event is the more selec-

tive the unit selection module should be. This approach only
considers the phonological aspect of a pitch event, that is its
binary value accent/no-accent; optionality could be also corre-
lated to the phonetic realization of pitch accents and this corre-
lation could be used to improve prosodic modeling. However in
this work we do not advance this possibility.
A predictor combining the prediction of the pitch event with the
prediction of its correlated optionality could be evaluated using
the following formula:

EV A(wi) = 1−
λ[(1− Pt(pei))(1−Ht(wi))(1−Hp(wi))]

−(1− λ)[Ht(wi)−Hp(wi)]
2

(4)

whith 0 ≤ λ ≤ 1.
Ht and Hp are the actual and the predicted optionality respec-
tively.
The first term of the sum in the squared parentheses evaluates
the prediction of the pitch event taking into account how this
event is considered optional by the predictor and how it actu-
ally is. The product of the predicted and the actual optionality
guarantees a null error when at least one of the two optionalities
is 1. The second term evaluates the optionality prediction. The
two evaluation are weighted by the constant λ.
We tried to predict intra-speaker optionality training and test-
ing the Wagon CART using again the multi-speaker section of
the BURN corpus: 1293 words were used for training and 369
words hold out for testing.

A B C D
Otpionality 0 0.6500... 0.9182... 1

Table 4: Entropy values given 6 speakers. Optionality values
are associated to letters. A occurs when all the speakers agree,
B when only one speaker disagrees, and so on.

Unfortunately the data available were very small, so we
have to consider the results we achieved still preliminary. The
training features were the same used for training the pitch accent
predictors (contextual features included) plus lexical form (only
if the word occurred at least five times in the training set), dis-
tance (in number of words) from the closest punctuation mark
form left and from right, and the “uncertainity” of the multi-
speaker pitch-accent predictor. We thought that this last feature
was not only an indicator of the approximation of the multi-
speaker pitch accent predictor but also a quantity correlated to
the intra-speaker optionality.

Given six speakers, there are only four possible values of
optionality (table 4) for each word token. We found out that, in
order to improve the learning phase, considering optionality as
a categorical feature and associating to each optionality value a
symbol, allowed us to achieve better results. The performances
of our predictor were compared with an all-non-optional base-
line, which assigns a zero-value to each token (this was also the
most frequent optionality value). In table 5 we show the results
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ABCD ABD AD
Baseline 0.3066 0.3066 0.3066
Predictor 0.2718 0.2837 0.3066

Table 5: Error rate in predicting optionality.

when all the four optionality values were considered (ABCD)
and when the number of values were reduced. For example, ob-
serving that the C and D values are very close we grouped them
together (ABD). It is interesting to note that when we consid-
ered optionality as a binary feature by grouping all the non-zero
values in a single symbol (D), we were not able to improve over
the baseline.
In the training phase we used the Wagon “stepwise” option that
only selects those training features that give a significant con-
tribute in the learning phase. The “uncertainty” feature turned
out to be the best one. Even using it as the only feature we
achieved an improvement over the baseline. We also found out
that if we substituted the uncertainty of the MSP with that of the
SSP, the uncertainty feature was still the best one and we were
still able to improve over the baseline.

6. Conclusion and Future Works
Our work has addressed some questions concerning intra-
speaker disagreement and optionality in pitch accent placement:
how “diffuse” is intra-speaker disagreement? How can we eval-
uate a pitch accent predictor on a multi-speaker testing data set?
Is intra-speaker optionality predictable? Are intra-speaker and
inter-speaker optionality the same thing with respect to our pre-
diction model? How can we exploit optionality to improve unit
selection text-to-speech synthesis?
We have shown the degree of intra-speaker optionality in read
speech by analyzing six speakers and then we have proposed
a new definition of intra-speaker optionality associating the
concept of optionality to that of entropy. This mathematical
definition allowed us to formulate a new evaluation function
for evaluating pitch accent predictors which we proved to be
more appropriate than the evaluation functions adopted in pre-
vious works. We then compared a predictor trained on a single
speaker data with a predictor trained on multi-speaker data and
from the high similarity of their predictions we inferred that a
large overlap between inter and intra-speaker optionality exists.
Supported by this result we suggested a simple strategy to im-
prove the performances of a unit selection speech synthesis sys-
tem that includes the pitch accent feature into its target cost fea-
tures. Since this approach requires optionality be predictable,
we tried to predict it and we achieved successful results. How-
ever we believe there is still room to improve our results and
in the future we will try to improve them using larger data sets.
Moreover in our experiment we only used training features that
convey general properties of words. We believe that, since pitch
accents have been proven to be prosodic correlates of the infor-
mativeness and significance of words (see [13], for example),
the degree of optionality of a pitch accent is strongly correlated
to the informative and significance status of the word the pitch
accent is assigned to. Using POS, unigrams and bigrams we
access only a part of that status, since we do not take into ac-
count the context in which words are and how their information
status relates with it. In future work, we will consider linguistic
features describing information structure (the contrast feature,
for example) that have been proven being useful in detecting

“meaningful” pitch accents [15] and evaluate our approach as
part of a speech synthesis system.
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