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Abstract

In this paper we present a novel approach to generate a
sequence of head motion units given some speech. The
modelling approach is based on the notion that head motion
can be divided into a number of short homogeneous units that
can be modelled individually. The system is based on Hidden
Markov Models (HMM), which are trained on motion units
and act as a sequence generator. They can be evaluated by
an accuracy measure. A database of motion capture data was
collected and manually annotated for head motion and is used
to train the models. It was found that the model is good at
distinguishing high activity regions from regions with less
activity with accuracies around 75 percent. Furthermore the
model is able to distinguish different head motion patterns
based on speech features somewhat reliably, with accuracies
reaching almost 70 percent.

Index Terms: audio-visual speech, multimodal, talking head

1. Introduction

The prevalence of computer animation in games and movies
has prompted an interest in generating human-like behaviour in
animated characters that is synchronised with speech. The con-
ventional approach requires the collection of large motion cap-
ture databases where an actor performs all the different actions
that are required for the animated character. Collecting such
databases is expensive and they can only be employed in the
exact scenarios they were collected for. To overcome the short-
comings of motion capture databases, methods to automatically
generate human like behaviour have to be developed. In partic-
ular when animating faces speech needs to be used to drive the
animation to ensure proper synchronisation between the facial
movements and the audio.

So far speech has only been used extensively to drive
lip animation, where phoneme sequences extracted from the
speech signal are mapped to a viseme (visual counterparts of
phonemes) sequence[1]. Speech has also been used to drive
general facial animation [2]. Very few attempts exist to drive
head motion from speech. Munhall et al.[3] suggested that head
motion is important in speech perception and therefore could
enhance our perception of animated characters. Notably Busso
et al.[4] reported one of the first systems that used speech for
head motion synthesis. The system of Busso et al. was based
on a framewise relationship between speech and head motion
which makes the modelling more straightforward but might fail
to capture more long range relationships between speech and
motion.

There have been several studies by Hadar et al.[5] investi-
gating the relationship of head motion in the speech production
process. It was found that the head moves almost constantly

during speech and motoric functions are attributed to that move-
ment. Although the researchers are mostly concerned with mo-
toric functions of movements, it is realised that head motion is
fundamentally influenced by two processes: Functional move-
ment during conversations like nodding for agreement and mo-
toric movement that is tied to the speech production. Following
Hadar and colleagues this paper is only concerned with the latter
and although it is not clear how to separate the two processes,
it is hoped that by using statistics over enough data the former
influence can be randomised as it bears no direct relationship
with speech.

The link of head motion to the speech production process
suggests that in order to drive head motion with speech data the
temporal relationship between the two streams has to be taken
into account. Since frame wise analysis of the data streams is
not sufficient to model temporal relationships, the data has to be
segmented into longer parts. In this paper, head motion is mod-
elled by introducing a conceptual unit of motion that is based
on manual labels that spawn over several frames. Since the
link between the two streams of speech and head motion is not
straightforward a modelling layer is introduced where speech
and motion features are used together to train models that rep-
resent units of motion. It is hoped that the temporal relationship
and the long range dependencies between the two streams can
be better captured by this approach. Our approach is based on
HMM'’s that act as a sequence generator and can be evaluated by
an accuracy measure similar to word error rate used in speech
recognition.

2. Data
2.1. Data collection and processing

An audiovisual database was recorded for this project from one
actor with 7 markers on his face and body. He was asked to
tell several fairy tales. A Qualisys Moiton Capture System was
employed to capture the head and body motion of the actor at
a sampling frequency of 500 Hz. His voice was recorded using
a close talking microphone at a sampling frequency of 44 kHz.
The motion capture and audio recording was synchronised au-
tomatically by the system. In total 25min of pure speech were
recorded.

To calculate the head motion, the marker positions were
used to estimate 2 rigid bodies, the head and the upper body.
For each frame the rotation in Euler angles of the local coordi-
nate system of each rigid body was calculated. The Euler angles
of the upper body were subtracted from the Euler angles of the
head to calculate the pure head motion angles. The minimum
and maximum Euler angles for each dimension can be seen in
Table 1. The acoustic signals were processed using the ESPS
algorithms provided by the Snack toolkit that yield pitch and
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Figure 1: Example of two shakes as indicated by the marked
regions

RMS energy. The mean pitch for each utterance was subtracted
from the voiced regions to normalise the pitch prediction. Fur-
thermore the HTK toolkit was used to calculate the MFCC coef-
ficients for the audio signal. The final speech feature vector had
42 dimensions and the motion feature vector had 9 dimensions.

Table 1: Minimum and maximum Euler angles in the data.

pitch | yaw | roll

maximum 31 23 46
minimum -21 -22 | -29
SD. 871 | 771 | 94

2.2. Data labelling

To be able to better model the relationship between speech and
head motion, the data was manually labelled to describe seg-
ments of distinct motion. The Euler angles were graphed and
inspected visually. Four labels were applied:

e postural shift: the head shifts axis of movement

e shake and nod: lateral movement around one axis

e pause: no movement / rest position

e default: non-distinctive movement / slow movement

Labelling head motions is not straightforward as for exam-
ple gait, where motions can be labelled as running, walking,
dancing, etc. Head motion does not yield any clear distinctions
between different movements, therefore we decided to use the
most basic motions that can be seen in the data.

Figure 1 and Figure 2 show typical shake and shift motions
in Euler angle representation. If the movement was not distinct
a default label was applied. Table 2 shows the distribution of
labels in the data and their average length.

Table 2: Distribution of labels and their average length

shift | shake | pause | default
number 209 107 47 209
length(sec) | 0.4 0.8 0.8 2.5

3. Correlation Analysis

Various researchers have suggested a close relationship between
speech and motion, even frame-wise correlations were sug-
gested [6]. Yehia et al. found correlations between FO and
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Figure 2: Example of a shift as indicated the marked region

Head motion within utterances but could not find any globally.
We calculated frame wise correlations between our feature vec-
tor for all utterances and could not find any substantial correla-
tions within utterances or globally. Figure 3 shows a matrix plot
of the correlations between FO, RMS energy, and Euler angles,
with their respective derivatives. The plot shows very clearly
that there is no strong correlation among the different features
contrary to some other findings.

To further investigate the absence of correlations, we used a
more sophisticated technique to calculate correlations. Canon-
ical Correlation Analysis (CCA) makes it possible to calcu-
late correlations between vectors of different dimensions. We
spilt the features into speech and motion features, resulting in
a speech vector consisting of the first 12 MFCC coefficients,
pitch, energy, and their respective first and second derivatives.
To compare our analysis with the the analysis done by Busso
et al.[4] we also performed CCA between the Euler angles (3D
vector) and energy, pitch and their first and second derivatives
(6D vector). The correlations found by our analysis were much
lower than the correlations reported by Busso et al. Table 3
shows the correlation results between the features.

Table 3: Frame-wise Canonical Correlation Analysis between
Speech and Motion Features

MFCC.E, FO | E, FO
0.08 0.07

The correlation analysis results indicate that it is not
straightforward to model the relationship between speech and
head motion as no apparent correlations between the 2 feature
spaces exists. To model the speech and head motion the tempo-
ral properties of the two signals will have be taken into account.

4. Modelling Head Motion

The modelling approach is based the notion that head motion
can be divided into a number of short homogeneous units that
can each be modelled individually. For example all the data
labelled as shift is modelled by one model and the data labelled
as shake is modelled by another model. To model each of the
units Hidden Markov Models (HMMs) are employed because
they can model sequential data. When sequences are generated,
the speech data is used to predict the motion label. For each
input sequence of speech frames, a sequence of motion labels is
produced that are chosen by the most likely sequence of models.

To model the relationship between speech and head mo-
tion our specific model consists of two streams. Stream 1 was
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Figure 3: Correlations between Euler Angles and prosodic fea-
tures. Feature 1-9 is the Euler Angels and its derivatives. Fea-
ture 10-12 is RMS energy and its first and second derivative.
Feature 13-15 is the pitch and its derivatives.

— Speech — Featul_'e —»[ Recognition M»
Extraction
T
1
I o
| Model
1
1 f
1
: Feature - Training
—— Motion —»| 4 - - -
Extraction

Figure 4: The models are trained on motion and speech features.
Only speech features are used during recognition.

trained on the speech features and stream 2 was trained on the
motion features. The transition probabilities for both models
were shared and trained on the combined data. Figure 4 shows
the training process and the recognition process. The standard
left-to-right HMM used in speech recognition was chosen and
one HMM is trained for each label from the labelled training
data.

During recognition only the speech features were used to
determine the sequence of motion labels. The motion stream
was turned off and only the speech stream was used to recognise
the most likely sequence of head motion labels. It is important
to state that the transition probabilities were still the same and
only the motion features were ignored. A pilot experiment com-
pared the recognition accuracies of a model trained on both mo-
tion and speech and a model trained on speech. It was found that
the model trained on both streams performed better (Acc=75)
than the model trained only on speech (Acc=65). By training on
both streams the transition probabilities can take both streams
implicitly into account during recognition. This allowed us to
produce a sequence of motions given some speech. Employing
a framework that is similar to speech recognition allowed us to
evaluate different aspects of the modelling process in a more
principled way. A measure similar to word error rate was used
to evaluate the models.
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Figure 5: Results for different number of states per model. The
number of mixtures in all models was 4.
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Figure 6: Results for different number of mixtures for the de-
fault model. The number of states in all models was 16.

5. Evaluation of Modelling

A number of experiments were conducted to determine the op-
timal modelling parameters. The accuracy was calculated like
word error rate:

__ _Correct—Insertions
Ace = Total number of labels % 100

5.1. Manual labels
5.1.1. Model parameters

We conducted experiments with the models based on the man-
ual labels to find the optimal model parameters. Since the mo-
tion and speech operate at different frame rates it was not clear
what the optimal number of states should be. The actual test
results were obtained by 7 fold cross validation. The results
shown are the average results of this cross validation.

To determine the optimal model length the number of states
was gradually increased. In the following experiments a re-
duced feature set without FO and the motion delta features was
used. From the results shown in Figure 5 it seems clear that
around 16 states per model are required for adequate recogni-
tion performance. Furthermore the models had to be tuned to
take the default class into account. We increased the discrimi-
natory power by increasing the number of mixtures per state in
the default model. The results shown in Figure 6 suggest that
significantly more mixtures are needed for the default model
than for the other models.

5.1.2. Features

The final model topology had 18 states per model and 4 mix-
tures per state in all models except the default model which had
8 mixtures. In addition the influence of FO on the model was
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Figure 7: Predicted and actual labels for a short segment of
speech. The upper labels are the predicted ones.

tested as FO was attributed a great significance in the relation-
ship between head motion and speech. Table 4 shows a compar-
ison between the best models with FO and without FO. Finally a
model that just used FO, energy and their first and second deriva-
tive was constructed as well. The results are also shown in Table
4.

Table 4: Results for models trained on different speech feature
sets on 2 classes and 4 classes. The first and second derivative
of each feature was also used.

MFCC+E | MFCC+E+F0 | E+FO
4 class | Acc 68% 69% 50%
SD. 2.97 6.32 11.88
Max. 71% 75% 70%
Min. 64% 61% 39%
2 class | Acc 74% 76% 73%
SD. 2.71 4.34 3.24

The discriminatory power of the model between regions
of high activity (shake and shift) and low activity (default and
pause) was tested as well, termed 2 class. The results are shown
in table 4 and suggest that the model can distinguish reasonably
well between default/pause segments and other regions. Figure
7 shows a predicted label sequence in comparison to the actual
labels. It shows quite well that the boundaries detected by the
model are accurate most of the time.

5.2. LBG cluster labels

To build a baseline model LBG clustering was used to divide
the 3D space of Euler angles into K clusters. This was done
framewise at a framerate of 500Hz. To compare the results with
the manual labels K=4 clusters were used. If the LBG algorithm
clustered more than 5 consecutive frames with the same cluster
index, these frames were treated as a sequence. The minimum
length of a sequence was therefore 10ms. Each sequence was
labelled with its corresponding the cluster index. The clusters
indices were treated like labels and the training data, consisting
of speech and motion was marked accordingly. One HMM was
trained per cluster index on the marked sequences and recogni-
tion experiments were performed.

The model configuration for each label was 18 states with
4 mixtures per state. This configuration was determined exper-
imentally. Table 5 shows how model a model trained on LBG
labels compares to a model trained on the manual labels using
the same feature set.

Table 5: Comparison of recognition accuracy between a model
trained on LBG labels and a model trained on manual labels.

LBG | Manual
Accuracy | 52% 69%

6. Conclusion

A novel approach for predicting motion labels from speech data
using long range dependencies modeled by Hidden Markov
Models has been described in this paper. Long range depen-
dencies are used because it has been show that frame wise cor-
relations between speech and motion features are very difficult
to find. Although previous work has shown these kind of cor-
relations, the results could not be replicated in this paper. Of
course we calculated the correlations on our own data, which
is very different from the data used in other studies. The ac-
tor we recorded was speaking relatively freely and did not read
predefined sentences which could account for the vastly differ-
ent correlation results found. Our models were trained on data
manually annotated for head motion and they were able to pre-
dict motion labels with accuracies reaching 70%. It was found
that FO helps in distinguishing different types of motion. When
the model was tested for how well it could distinguish regions
of high activity and regions of low activity, a model trained only
on FO and energy was able to perform almost on par with mod-
els trained on the full feature set. Furthermore it has been shown
that our system outperformed a baseline based on LBG cluster-
ing labels.

To improve the model, longer range features need to be in-
cluded in the future. Since the rate of change of speech and mo-
tion are very different, it will be challenging to come up with
compelling features that improve the accuracy. Finally the la-
bels will be used to synthesise head motion trajectories used in
a talking head.
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