
www.elsevier.com/locate/specom

Speech Communication 49 (2007) 317–330
Multisyn: Open-domain unit selection for the
Festival speech synthesis system

Robert A.J. Clark *, Korin Richmond, Simon King

CSTR, The University of Edinburgh, 2 Buccleuch Place, Edinburgh EH8 9LW, UK

Received 12 June 2006; received in revised form 25 January 2007; accepted 25 January 2007
Abstract

We present the implementation and evaluation of an open-domain unit selection speech synthesis engine designed to be flexible
enough to encourage further unit selection research and allow rapid voice development by users with minimal speech synthesis knowl-
edge and experience. We address the issues of automatically processing speech data into a usable voice using automatic segmentation
techniques and how the knowledge obtained at labelling time can be exploited at synthesis time. We describe target cost and join cost
implementation for such a system and describe the outcome of building voices with a number of different sized datasets. We show that, in
a competitive evaluation, voices built using this technology compare favourably to other systems.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Speech synthesis; Unit selection
1. Introduction

Over the last decade, the Festival speech synthesis sys-
tem (Taylor et al., 1998) has become the de facto standard
free toolkit for speech synthesis research. It has also
formed the starting point for at least three leading commer-
cial systems.1

Until recently, Festival offered two distinct methods for
concatenative synthesis: a conventional single-instance
diphone-based method using an inventory containing one
recording of each diphone type, and the ‘‘clunits’’ method
(Black and Taylor, 1997) which uses an inventory of units
recorded in natural sentences and performs a restricted
form of unit selection.

In this paper, we introduce a third method: a general-
purpose unit selection algorithm, along with the tools for
0167-6393/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.specom.2007.01.014

* Corresponding author. Tel.: +44 131 6511767.
E-mail addresses: robert@cstr.ed.ac.uk, Rob.Clark@ed.ac.uk (R.A.J.

Clark), korin@cstr.ed.ac.uk (K. Richmond), Simon.King@ed.ac.uk
(S. King).

1 From Rhetorical Systems (now Nuance), AT&T and Cepstral.
building voices. The method is general-purpose because it
is capable of realising open-domain voices (‘‘clunits’’ per-
forms best in limited domains, where the recordings in
the inventory are from the same domain – e.g. use the same
limited vocabulary and constrained syntax – as the utter-
ances to be synthesised). We call this method ‘‘Multisyn’’
and it can be downloaded as part of Festival 1.95 and
above from https://www.cstr.ed.ac.uk.

Unit selection speech synthesis (Black and Campbell,
1995; Hunt and Black, 1996) was proposed as a way to
solve some of the problems of unnaturalness introduced
by the signal processing techniques needed to produce
convincing synthetic speech from a database consisting
of a single example of each diphones that occurs in a lan-
guage. Instead of having one example of each diphone, a
number of examples in different contexts are included,
and the synthesis process is formulated as a search
problem. A search is performed to find the best sequence
of diphones (or potentially other sized units). The goal of
unit selection speech synthesis is to select a sequence of
diphones which requires much less signal processing than
standard diphone synthesis, or ideally no signal process-
ing at all.

http://https://www.cstr.ed.ac.uk
mailto:robert@cstr.ed.ac.uk
mailto:Rob.Clark@ed.ac.uk
mailto:korin@cstr.ed.ac.uk
mailto:Simon.King@ed.ac.uk


318 R.A.J. Clark et al. / Speech Communication 49 (2007) 317–330
There are a number of important issues to be addressed
in a robust and efficient implementation of unit selection,
and recent advances have lead to an improved understand-
ing of the process. The first of these involves designing the
recording script. Much of this work discusses the use of
greedy algorithms to optimally select a script from a very
large text corpus, examples include the work by van Santen
and Buchsbaum (1997), Bozkurt et al. (2003) and Kominek
and Black (2004), whilst other work discusses the theoreti-
cal and practical problems of recording the ideal dataset
(Möbius, 2001).

Once a dataset has been recorded, it needs to be
searched efficiently. The general search method (Hunt
and Black, 1996) has been refined (e.g. Conkie, 1999; Tay-
lor, 2000; Bulyko and Ostendorf, 2001) and complemented
by other procedures for specific tasks such as limited
domain speech synthesis (Black and Lenzo, 2000).

The primary goal of our Multisyn engine is to provide
state-of-the-art unit selection speech synthesis within a
framework that makes it easy to (semi-automatically)
develop new voices, with only limited speech synthesis
knowledge.

1.1. Unit selection speech synthesis

A full tutorial on unit selection speech synthesis is
beyond the scope of this paper; we refer the reader to
(Hunt and Black (1996)). However, we will define the ter-
minology to be used in the rest of this paper.

Unit selection speech synthesis uses a recorded database
(sometimes called the inventory) of speech. This usually
consists of recordings of isolated, naturally occurring sen-
tences (e.g. from newspaper text). The inventory along
with its associated linguistic annotation is called the voice.
Units are extracted from this database and concatenated
to synthesise novel utterances. The unit type may be the
same throughout the database (e.g. diphones), or variable
(e.g. a mixture of phones, diphones, syllables, etc.). The
database should contain multiple examples of each unit
type.

To synthesise a novel utterance, a target utterance is
constructed, which consists of the desired linguistic specifi-
cation of the utterance: the words, the phone sequence, the
syllable boundaries, placement of accents, optionally a
pitch contour and segment durations, and so on. The target
is constructed from the input text by the language process-
ing front end, which is usually using some combination of
rules and statistical models.

A sequence of units taken from different places in the
database is then found which best matches this target. This
task is performed by the unit selection engine. ‘‘Best match-
ing’’ is measured by two costs, summed over the unit
sequence. The chosen unit for a given position in the target
utterance is selected from a set of available candidate units
which may be all matching diphones (regardless of context)
in the inventory, or may be a subset of those (after some
pre-selection has been applied – Section 3.6).
The join cost estimates how well two consecutive units
will join together in the large number of cases where they
were not contiguous in the database and is commonly
computed using only acoustic features. The target cost

measures how well a unit matches part of the target speci-
fication, for example in terms of the constituent phones,
within-syllable or within-phrase position, and is commonly
computed using linguistic features. Since the join and tar-
get costs are locally computed, a Viterbi search can be used
to efficiently search for the unit sequence that minimises the
total cost. The details of how the join and target costs are
computed vary from system to system.

1.2. Structure of this paper

Since Festival is primarily a research toolkit, this paper
concentrates on explaining how Multisyn satisfies two
design goals. The first goal is to provide a stable general-
purpose unit selection implementation that is suitable for
carrying out further research into unit selection and related
techniques. The second goal is to provide the end user with
a simple, mostly automatic mechanism to build their own
voice for the system, requiring only limited specialist
knowledge. As we shall see, this second goal means that
there are times when we have employed a simple but robust
technique instead of a potentially better, but more complex,
technique. Particular attention is given to the design deci-
sions and procedures required to build new voices.

In Section 2 we describe the design and implementation
of the Multisyn unit-selection engine. The front end pro-
cesses used with this engine are simply a subset of those
used in the standard diphone system so are not described
in this paper. We also compare and contrast the Multisyn
approach to other approaches. Sections 3 and 4 discuss
the requirements for the database and the process of build-
ing a voice from it respectively. In Section 5, we address the
issue of automatic segmentation to phonetically label
recorded speech databases. In Section 6 we discuss speech
synthesis evaluation techniques and recent evaluation in
which the Multisyn engine has been involved.

2. Multisyn design and implementation

The Multisyn unit selection algorithm implemented in
Festival is conventional and reasonably straightforward,
and follows the description in Section 1.1.

2.1. Festival’s architecture

Festival is modular and uses a simple framework, com-
monly known as a ‘‘blackboard architecture’’. The system
is centred on a common data structure, called the Utter-
ance, which is passed from module to module within the
system. Modules either modify existing parts – called Rela-
tions – of this Utterance structure, or add new Relations.
This architecture allows users to control easily both the
sequence of processes in the pipeline of modules (perhaps



R.A.J. Clark et al. / Speech Communication 49 (2007) 317–330 319
adding new processes) and the processing modules them-
selves. Multisyn is implemented as a module for Festival,
and replaces a number of the modules from the pipeline
for the standard diphone method, as Fig. 1 shows.

2.2. Choice of unit type

The choice of sub-word unit is influenced by a number
of factors. First and foremost, the unit boundaries must
be suitable concatenation points. A secondary important
consideration is that it should be possible to (semi-)auto-
matically segment the speech using standard automatic
speech recognition (ASR) forced alignment techniques.

Of all the possible unit types, including phones, half
phones, diphones, syllables or larger units [e.g., units
matching prosodic structures in (Taylor, 2000)], we opted
to use diphones. These satisfy both requirements above:
diphone boundaries can be easily derived from phone
alignments. Implementation of the Viterbi search using
fixed-size units is also considerably simpler than for vari-
able-sized units (see Section 3.6). Although using smaller
units such as half phones implicitly helps alleviate some
problems of data sparsity, it also makes the Viterbi search
for units far more computationally expensive. We have
opted for the advantage of the more efficient search possi-
ble with the diphone base type, and have instead chosen to
implement certain strategies for dealing with special cases
of missing units; for example, backing-off to a different unit
type, or the possibility of extending the margins of the units
text: "Say this!"

utterance obj

Unit Selection
MultiSyn

Wave_Synth

Token

POS

Phrasify

Word

Text

Intonation

Duration

Int_Targets

Wave_Synth

Fig. 1. The relationship of Multisyn (right-hand branch) to standard
single-instance diphone synthesis (left-hand branch) within Festival’s
blackboard system architecture. MultiSyn is implemented as a module
within the Festival speech synthesis system pipeline, as an alternative to
the standard prosody prediction and diphone concatenative synthesis
modules, while still making use of the other front-end linguistic processing
modules. The Text, Token, POS, Phrasify and Word modules normalise
the text and produce a linguistically annotated segment sequence, the
resulting output is then passed to the waveform synthesis modules.
either side of the missing unit and making a join at a phone
boundary. These methods are described in more detail in
Section 3.7.

We decided not to use explicitly variable sized units and
believe that the selection of such units should result from
the search (i.e. through selection of contiguous sequences
of diphones from the inventory), rather than be pre-
defined.

Multisyn is implemented in such a way that using units
other than diphones would only require a small amount of
programming effort. We are currently considering imple-
menting other unit types as a partial solution to the prob-
lem of cross-language diphone coverage (Black and Lenzo,
2004).

2.3. Comparison with other methods

A comparison between the Multisyn engine and two of
the first unit selection implementations – CHATR (Hunt
and Black, 1996) and Festival’s ‘‘clunits’’ method (Black
and Taylor, 1997) – is useful to clarify how Multisyn differs
from other techniques.

The two major differences between clunits and Multisyn
are the unit type that is used and the nature of the target
cost employed to determine how good a given candidate
unit is.

Multisyn by default exclusively uses diphone sized units,
whereas clunits exclusively uses phone sized units. There
are advantages and disadvantages of each approach. The
major advantage of using phone units is that each unit
can be fully described in terms of the features representing
a single phone, whereas diphones require twice as many
features to describe them, and questions like ‘‘is this
diphone stressed?’’ has answers ‘yes’, ‘no’ and ‘partially’
rather than just ‘yes’ and ‘no’ which answer the same ques-
tion regarding a phone. Additionally, the resulting number
of units in the inventory squares. The clear disadvantage of
using phone units is the loss of context and although clun-
its employs a number of techniques to take context into
consideration, clunits combines acoustic information from
the neighbouring segments in the acoustic representation of
the unit, and additionally uses optimal coupling to find the
best possible join between any two units (see Black and
Taylor (1997) for more details) bad joins arise, particularly
as the size of the unit inventory increases and the variation
in the context of available units increases.

The second major difference between clunits and Multi-
syn is the target cost implementation. Multisyn implements
a direct feature-based target cost, where clunits uses feature
information to predict acoustic parameters which are used
as the basis for the target cost. The Multisyn approach
scores units based upon matches in their linguistic context,
whereas the clunits approach uses the linguistic features to
predict a unit’s gross acoustic properties and then performs
the scoring in acoustic space. This is the main problem of
the clunits approach: it uses just a single vector of values
to describe the complex acoustic properties of a unit.



320 R.A.J. Clark et al. / Speech Communication 49 (2007) 317–330
CHATR (Hunt and Black, 1996) differs from Multisyn
in two quite specific ways which we believe make Multisyn
both more powerful and more efficient. Firstly, again,
CHATR’s default unit type is the phone which brings with
it some of same problems that clunits suffers. The second
difference is that the Multisyn specification of a target unit
does not attempt to include information about the pre-
dicted acoustic properties of the target. Instead, the predic-
tion of acoustic properties from linguistic features is
implicit in the unit selection procedure itself.

3. Database

3.1. Coverage

Obtaining the necessary coverage for a diphone inven-
tory is hard because context must be taken into account
(van Santen, 1997; van Santen and Buchsbaum, 1997; Beu-
tnagel and Conkie, 1999; Black and Lenzo, 2001; Möbius,
2001). Coverage of as many diphone-in-context types as
possible is desirable but very difficult to achieve.

The number of possible contexts will be very large,
because the context is usually specified in terms of several
linguistic features, such as position-in-syllable, -word and
-phrase, stress, part-of-speech, and left and right phonetic
context. Each of these can take multiple values (e.g. lexical
stress can take the values unstressed, primary, secondary
and perhaps even tertiary stress), which means the number
of context dependent unit types rapidly becomes very large
when even just a few features are used to define unit
context.

It is impossible, in practice, to include examples of all
desired diphones-in-context in the inventory and a compro-
mise must be made. In Section 4.1 we discuss how the sen-
tences to be recorded for the inventory are selected in order
to make a reasonable compromise. In Section 3.7, we
describe two techniques to address the problem of missing
units (which occurs in even the most carefully designed
inventory).

3.2. Automatic segmentation

The context-sensitive nature of diphones, and the conse-
quentially large number of unit types requiring coverage,
mean that a large inventory of speech is required. However,
this is outweighed by the possibility of completely auto-
matic segmentation using standard Hidden Markov Mod-
els-of-phones ASR techniques. It is easier to collect a large
data set than it is to hand-label a small dataset; indeed,
automatic labelling accuracy should improve as more data
is available to train the HMMs. The automatic segmenta-
tion process is discussed in detail in Section 5.

3.3. Target utterance specification

A target utterance structure is constructed from text (or
marked-up text) input. In single-instance diphone-based
systems, extensive use is made of rules and models such
as CARTs to predict information about segment duration,
f0 and so on. Substantial linguistic resources (e.g. hand-
labelled speech data) are required to train these models.

One of the advantages of unit selection synthesis is that
much of this information is not necessarily required. If
available, it can certainly be incorporated into the unit
selection procedure, but if it is not available then unit selec-
tion can proceed without it. This is because unit selection is
guided by the target cost and the join cost, and these costs
can be formulated in any way one desires, using whatever
information is available in the input or is marked up in
the voice (the annotated inventory).

In Multisyn, the default join cost uses solely acoustic
properties of the candidate units (e.g. spectral information
at concatenation points). Meanwhile, the default target
cost, discussed in more detail in Section 3.8, combines the
scores of a number of comparisons of predominantly lin-
guistic features (e.g. the labels on the annotated inventory
and the features derived from the input text). The cost
components based on linguistic features are comparator
functions which compare linguistic attributes of the target
unit with each candidate. There are, however, additional
non-comparator target cost components which make use
of information derived from the acoustic signal: duration
and f0. These additional components are special cases
which complement the way in which the other target cost
components are used. They are designed to lessen the
impact of faulty automatic labelling in the voice inventory.
The duration component penalises candidate units on the
basis of comparison with the distribution of durations for
a given unit type at voice building time. The f0 component
heuristically penalises candidate units which appear to be
either wrongly voiced or unvoiced based on their identity
and phonetic context.

Note that this use of f0 and duration in the default Mul-
tisyn target cost differs significantly from their more usual
use in unit selection target costs generally. In many systems,
a prosody module in the speech synthesiser will estimate
duration and f0 values on the basis of the linguistic front-
end processing, and these are then used as explicit target
values in the unit selection process. However, in the default
Multisyn implementation, we have taken the approach that
many properties of the target speech, including segment
durations and prosody, do not need to be explicitly pre-
dicted; instead, the natural properties of the units in the
database are used. In effect, the target cost (Section 3.8),
by requiring that certain contextual features of the selected
units match, has replaced the explicit predictive models of
duration and intonation with an implicit model based on
the natural characteristics of the context features used.
Given a good target cost and a large inventory, this method
has the potential to outperform explicit models, and has the
added advantages that the selected units will have appropri-
ate values for other acoustic properties (e.g. amplitude and
spectral quality) and will require little or no modification by
signal processing. This is the strategy used in Multisyn;



R.A.J. Clark et al. / Speech Communication 49 (2007) 317–330 321
duration and intonation models are not currently used
because none of our available models perform as well as
using the natural prosody of the selected units.

To ensure that the prosody of selected units is appropri-
ate, the contextual factors used in the target cost must
include those that influence duration and intonation. In
English at least, lexical stress is probably the most impor-
tant factor, although other prosodic distinctions like
phrase position are important too.

3.4. Expressive speech

There are situations where a default, neutral intonation
is not appropriate: for example, in dialogue contexts where
a contrastive tune is needed with specific words accented or
de-accented to convey a particular meaning. Here, prosodic
mark-up present in the input text can be used by the target
cost to influence the choice of units, preferring those which
carry appropriate prosody. However, this requires corre-
sponding information to be present in the database. Auto-
matic prosodic annotation of the database is difficult and
not necessarily reliable, although it can work reasonably
well in limited domains where a portion of the database
which is in domain can be hand annotated quite easily.
Alternatively, it may be possible to automatically generate
annotation if the text is the output of a natural language
generation system.

3.5. Modest requirements for linguistic resources

The only models that are needed are a simple phrasing
model (e.g. trivial rules which use the punctuation in the
input text) and a pronunciation lexicon or other graph-
eme-to-phoneme conversion method. Neither of these nec-
essarily require large amounts of hand-labelled data during
development.

This is particularly advantageous when developing
voices in a new language, because the only new compo-
nents required are a pronunciation lexicon and/or letter
to sound rules. A simple part of speech tagger that can
make a content/function word distinction is also useful as
this can help contribute to selecting units with the correct
stress, but this is not essential as part of the first attempt
at a new language. This is not to say that developing a
voice in a new language is necessarily easy: creating the
pronunciation lexicon for a language with few existing
resources is not trivial.

In order to construct the voice, a large set of sentences is
required, from which a subset is selected that provides the
best possible diphone-in-context coverage. We discuss this
in Section 4.1.

3.6. Candidate pre-selection and beam pruning

during search

The output of the front end is a target phone sequence
with an appropriate linguistic structure attached. In Festi-
val, this structure is stored as a number of parallel streams,
represented as heterogeneous relation graphs (Taylor et al.,
1998). The structure includes annotation of syllabic struc-
ture, phrasing and part of speech tagging.

The target phone sequence is first converted to a
sequence of diphone units; a list of candidates for each tar-
get unit is retrieved from the inventory and the unit selec-
tion engine then proceeds to search for the candidate unit
sequence with the lowest cost.

An optional pre-selection step can be used immediately
after retrieving the candidates from the inventory, to
restrict the number of candidates per target diphone. Meth-
ods of pre-selection vary from the complex, such as phono-
logical structure matching (Taylor, 2000), to the simple,
such as only including units which are appropriately
stressed/unstressed. Pre-selection can speed up the search
substantially by restricting the search space and by reduc-
ing the number of join cost calculations that need to be per-
formed (which can otherwise be very large).

However, for a research system such as Festival, the use
of pre-selection is less attractive than for a commercial sys-
tem. Pre-selection is an attempt to simulate (in a computa-
tionally cheap way) the complex interaction between target
and join costs during the search procedure. Using pre-selec-
tion further complicates these interactions. In the same way
that debugging the implementation of an ASR system is
made much harder when there are pruning errors, candi-
date pre-selection can make analysis of target or join cost
behaviour very difficult.

If speed of synthesis is important, this can be achieved
using beam pruning during the search. For example, if
stress is deemed to be sufficiently important that units car-
rying the wrong level of stress should not be used, then a
suitably large weight on the stress component of the target
cost in conjunction with beam pruning can ensure that if
one suitably stressed candidate is available then all unsuit-
ably stressed candidates are not considered. The advantage
of this is clearly that if there are no stressed candidates
available then unstressed ones will automatically be
considered.

3.7. Missing units

We have so far assumed that the candidate list for each
target diphone contains at least one suitable candidate. For
this to be true, at least one token of each diphone type
needs to be present in the inventory. Unfortunately, how-
ever, this may not be the case.

Even though great care may be taken at the stage of
designing a voice database, it is nevertheless rather difficult
to ensure that there are absolutely no missing diphones.
Problems arise, for example, when the lexicon used to
design the database (Section 4.2.2) is not precisely the same
as the one used within the synthesiser, or when the lexicon
or post-lexical rules have been modified after the data was
recorded, to match idiosyncrasies of the speaker, or when
the speaker has not uttered certain recording script



k ae st

st

found in unit database
Target diphone not

candidate source units

target diphones

target phone sequence

Join at 
phone boundary

ae

k

k

t s s

s

k ae

k

tae

Fig. 2. An illustration of using phone boundary joins to deal with isolated
instances in the target diphone sequence which are missing in the voice
database. In this example, the [æ]-[t] diphone required to synthesise the
word ‘‘cats’’ is missing. In order to compensate for this, the margins of the
directly neighbouring diphone source units can be extended as shown. This
results in the inclusion of whole [æ] and [t] phones from the voice database,
with the join at the phone boundary between them instead of the usual
diphone boundary.

322 R.A.J. Clark et al. / Speech Communication 49 (2007) 317–330
prompts entirely as predicted during the text selection pro-
cess. In other cases, the voice builder may have little or no
control over the speech data used to build the voice, for
example where a voice is built from spontaneous speech
or data recorded by someone else.

Therefore, it is important to have a strategy for dealing
with the problem of unit types required at synthesis time
which are not present in the voice database inventory.
We have implemented two alternatives for dealing with this
situation: back-off and phone boundary joins.

3.7.1. Backing-off

One way of dealing with cases where an exact match of
unit is not found in the unit inventory is to identify alterna-
tive suitable candidates. Multisyn does this by backing-off

the target specification. If a diphone cannot be found, an
ordered list of possible substitution rules is consulted in
an attempt to find an appropriate alternative diphone. This
list is generally associated with a particular lexicon, and so
becomes language or dialect specific.

In initial experiments, we used a back-off procedure
which altered the target phone sequence to find not just a
replacement for the missing diphone, but then to substitute
adjacent diphones to preserve consistency of the overall
phone sequence. For example, to synthesise part of the
word ‘‘team’’ the diphone sequence [t]-[i] [i]-[m] is required.
If the diphone [t]-[i] is missing and consequently substituted
by the diphone [t]-[E], an attempt would then be made to
substitute the target diphone [i]-[m] with [E]-[m] to keep
the phone sequence consistent.

It quickly became apparent that this was a difficult
search problem and that, unless the substitution rules were
written very carefully, it was difficult to obtain a suitable
substitute phone sequence. The procedure was therefore
simplified and the current back-off procedure does not cor-
rect adjoining diphones. Any substitution that occurs
means that there will be an inconsistency in the diphone
sequence. The join cost is then relied upon to find smoothly
joining units.

Obvious substitution rules to use include: use reduced
vowels instead of full vowels (in which case there are prob-
ably instances of the full vowels and reduced vowels which
are spectrally close enough to join reasonably well, since
vowel reduction is a continuum); substitution of [n] to
replace [En], where there will be little difference at the join
point.

3.7.2. Phone joins

A second method implemented in Multisyn for dealing
with cases of missing diphones works by extending the
margins of the units either side of the missing unit to make
a join at a phone boundary. This method obviously is only
suitable in cases where there are candidates present in the
inventory for the immediate right- and left-neighbouring
diphones in the target specification. Fig. 2 illustrates how
this method works in the case of a missing [æ]-[t] diphone
when synthesising the word ‘‘cats’’.
An initial check of the target sequence is made for
diphone units not available in the voice database. For iso-
lated missing units, the concatenation point of all candi-
date source units is taken to be at the following phone
boundary for left neighbours and at the preceding phone
boundary for right neighbours. The Viterbi search is then
run in the usual way, such that join costs are calculated
at all potential concatenation points, including any at
phone boundaries. The target cost is not calculated for
the missing target diphone unit. This technique is only
employed for isolated missing diphones.

While phone boundaries do not always have the same
attractive properties in terms of concatenation as the cen-
tres of phones used in diphone joins, this method does have
certain advantages. For example, it is suitable for a voice
which can switch between languages mid-sentence.
Diphones consisting of phonemes from different languages
will probably not be available in the database; phone
boundary joins are a simple and effective solution (Kurtić,
2004).
3.8. Target cost

To facilitate ongoing research on target costs (e.g. Hofer
et al., 2005) and join costs (e.g. Vepa and King, 2004), the
implementation of these costs in Multisyn is designed to
allow flexibility. Hence, new cost functions can easily be
added by the user.

The target cost is configured at the voice level, allowing
different voices to use different target costs. Individual
target cost implementations are derived from a base C++
class which provides an API, a core set of comparator func-
tions (which compare features of the target to those of a
candidate) and a mechanism for weighting these functions
(the target cost is thus a weighted sum of comparator func-
tions). Additional comparator functions can easily be
added to a target cost derived by the user from the base
cost class or the derived target cost can completely bypass



R.A.J. Clark et al. / Speech Communication 49 (2007) 317–330 323
the mechanisms in the base class. The system provides a
number of default target costs which can be used at run-
time by any voice. These also provide reference implemen-
tations for users wishing to implement their own target
cost. A derived class is also supplied which allows the tar-
get cost to be implemented in Scheme rather than C++.
This facilitates rapid prototyping of novel target cost func-
tions, without the need to recompile.

Designing a target cost involves deciding which charac-
teristics of the target should be considered (the choice is of
course restricted to those characteristics which are known
for both target and candidates), how each characteristic
is to be compared (i.e. how the difference between target
and candidate should be converted into a scalar) and
how these costs should be weighted relative to one another.
The default target cost has been constructed by hand,
based on developer intuition. Stress and phrase position
are generally regarded as the most important characteris-
tics; components are also included which penalise candi-
dates that have been labelled as durational outliers or as
badly pitch-marked.

Other systems (e.g. Hunt and Black, 1996; Syrdal et al.,
2000) have described methods for automatically training
the weights on the individual components of the target
cost. These methods are not implemented in Multisyn
because it appears that the gains that can be achieved over
heuristic methods are currently only slight; even with no
target cost specified, an intelligible voice can be produced
from a well-designed and accurately labelled database. Pre-
liminary results from our continuing research into human
perception of speech synthesis experiments suggest that
keeping the number of audible joins to a minimum and
ensuring a low overall target cost is far more important
than having a target cost with carefully weighted sub-com-
ponents which can subtly discern between different levels of
‘badness’ between units. The current default target cost is
structured as shown in Table 1. Target cost sub-compo-
nents are generally discrete and take values of 0 or 1. In
some cases, values of 0, 0.5 or 1 are used: 0.5 is applied
Table 1
Component cost functions for diphones, used in the current default target
specification

Feature Weight Description

Phrase 15 Position in phrase is correct (categories: initial medial
or final)

Stress 10 Stress is correct
POS 6 Part of speech is correct (categories: POS uses only

five tags, nouns, verbs, modifiers, function words and
other)

Syllable 5 Position in syllable is correct (categories: initial,
medial, final and between words)

Word 5 Position in word is correct (categories: initial, medial,
final, between words)

Left 4 Left phonetic context matches
Right 3 Right phonetic context matches

Overall target cost is the weighted sum of the above components nor-
malised to be in the range [0, 1].
for each of the two half phones constituting the target
diphone.

The use of only linguistic based features taking discreet
values in this way generally works well, although a few
problems remain. We have been unable to develop a sub-
component to deal with prosody and accent, that performs
well in situations where prosody other than neutral declar-
ative sentences are required. This is primarily because of
the difficulty of constructing an accurate accent predictor
for the recorded database and for use during unit selection.
Another issue is that it appears to be more important to get
certain units ‘‘right’’ than others. For example, if the last
diphone in a phrase is not taken from phrase-final position,
the resulting speech usually sounds very unnatural. Simply
imposing a high penalty cost on such units does not work
well: if the offending unit is at the end of a long contiguous
sequence of units selected from the database, the zero total
join cost of this sequence can offset the penalty cost.

3.9. Join cost

Like the target cost, the join cost is implemented as a
C++ class. The default join cost employs three equally
weighted sub-components for f0, log energy and spectral
mismatches. Spectral discontinuity is estimated by calculat-
ing the Euclidean distance between two vectors of 12
MFCCs from either side of a potential join point, as the
MFCCs are usually mean/variance normalised first, this
is effectively a Mahalanobis distance with diagonal covari-
ance. For energy, the magnitude of the difference across the
join point is used. For f0, joins between voiced segments
use the magnitude of the difference across the join point;
joins between unvoiced segments incur zero cost; joins
between a voiced segment and an unvoiced segment incur
a large penalty, equivalent to a mismatch between voiced
segments of four standard deviations of the speaker’s pitch
range. Delta and delta–delta derived features are not cur-
rently used in the default join cost. These three components
are normalised (using means and variances calculated
across the entire voice database) to lie within the range
[0, 1] during voice building.

The weightings for the current target and join costs have
been set heuristically to provide a baseline acceptable per-
formance, but these can easily be changed to values based
on statistical training or perceptual evaluation, should data
be available.

4. Voice building

At the core of any good unit selection speech synthesiser
is the voice: a database of speech from a single speaker,
annotated with time-aligned phonetic labels and additional
linguistic information. In designing a voice, there are two
intertwined questions that must be addressed: How big
should it be? What sort of data should it contain? While
there are no simple answers to these questions, there are
constraints which, in practice, will guide the design of a



Table 2
Comparison of voice size and computational load

Voice Phones Relative run time

nina 175000 9
jon 60000 3
awb (ARCTIC) 36000 2
fsew0 (MOCHA) 14000 1

324 R.A.J. Clark et al. / Speech Communication 49 (2007) 317–330
particular dataset. We address this issue here by discussing
existing data sets that we have recorded and comparing
them with those recorded by others. To provide general
guidance for database design, we will cover some of the cri-
teria that we feel are most important to keep in mind when
designing a new voice.

4.1. Voice database design

There are two conflicting factors which govern voice
database design: extensive diphone coverage demands a
large database, yet there are practical difficulties in obtain-
ing consistent recordings from the speaker over multiple
sessions. We consider the common requirements for the
material in the database to include the following:

(1) wide and well-balanced phonetic coverage of context-
dependent diphones;

(2) phrase-final (and other intonational) coverage;
(3) common structures and idioms, such as lists, dates,

etc.;
(4) names and other material common to the target

domain.

As noted, the most important issue is general coverage of
context-dependent diphones, where the context is loosely
related to the different criteria that make up the target cost.
The ARCTIC (Kominek and Black, 2004) voice size of
around 36,000 phones seems suitable for a basic voice.
However, we believe that for a good voice these 36,000
phones should form the base to which additional material
need to be added to fulfil specific requirements.

The second requirement, although part of the context
described above, is sufficiently important that it is men-
tioned separately. Using non-phrase final diphones in
phrase final position can make an otherwise good utterance
sound completely unnatural. With this in mind it is good
practice to ensure that there is a plentiful supply of individ-
ual diphones in phrase final (and probably also ‘‘close to
phrase final’’) position. For English voices, special atten-
tion should be paid to ensuring there is sufficient coverage
of question intonation, where a pitch rise occurs at the end
of the utterance. Other languages may have other intona-
tion patterns that need to be included.

List structures, times and dates, Zip/Post codes, tele-
phone numbers etc. all have special structures and synthes-
ised examples of them tend to sound unnatural when there
are not sufficient examples of these types of structures in
the database from which to select units. It is prudent to
incorporate a large block of such data if the resulting voice
is required to synthesise this kind of material.

Finally, since the construction of the script is a greedy
process, the order in which material is added must be con-
sidered. It is wise to address the first of the issues (phonetic
coverage) last. The database design process should begin
with the inclusion of domain-specific material, dates, cur-
rencies, names and so on. Once the phonetic content of this
initial, mandatory material is measured, it can form the
starting point of an automatic process for selecting supple-
mentary material to ensure full phonetic coverage.
4.1.1. Requirements for the database and text selection

Units are required in many different contexts. The distri-
bution of diphone occurrence with respect to context
means that a large number of diphone-in-context types
occur very infrequently, making it difficult to design a com-
pact inventory, while any given sentence to be synthesised
has a reasonably high probability of containing at least
one rare diphone (Möbius, 2001). This highlights the need
for a mechanism, at synthesis time, to choose a suitable
diphone where the ideal diphone is unavailable. The lin-
guistic features used to represent context during script
design should match those used by the target cost and
those that have high weights in the target cost should be
considered more important by the text selection process.
4.1.2. Post-recording considerations

Diphones supposedly covered by the script can be found
to be missing after the recording has taken place for a num-
ber of reasons. The speaker may have spoken a word with a
different pronunciation (assuming the labelling for this
word has been adjusted to match what the speaker actually
said), or may have left a pause between words in an unpre-
dicted place. In situations where an existing dataset has
been used to build a voice, the planned coverage cannot
be controlled at all (examples of using existing data are
described in Section 4.2).
4.2. Analysis of existing voices

Table 2 lists four Multisyn voices built from various
data sets. Run times are relative to the fsew0 voice and
indicate the complexity of the search required for each
voice. All of these voices were built using the Multisyn
voice building tools, distributed with Festival 2.
4.2.1. ‘‘fsew0’’: small database, not synthesis-specific,

open domain

The ‘‘fsew0’’ voice was built from the MOCHA data set
of the same name (Wrench, 2001). It comprises readings of
450 TIMIT sentences (Garofolo, 1988) plus an additional
10 sentences covering British English phonetic combina-
tions and was not designed specifically for speech synthe-
sis (although the TIMIT sentences were designed for



R.A.J. Clark et al. / Speech Communication 49 (2007) 317–330 325
maximum phonetic richness). The data were recorded in a
Carstens AG100 EMA machine.

The voice built from this data contains about 14,000
phones (approximately 30 min of speech including some
silence) and was built primarily to evaluate the usefulness
of articulatory information as a contribution to the join
cost. The obstructions of the instrumentation in the mouth
make the segmental quality of the original speech and of
speech synthesised with this voice somewhat unnatural.
Along with its small size, this contributes to the voice’s
low perceived quality. We consider that the amount of data
in this voice is simply insufficient to achieve an acceptable
level of naturalness. The high proportion of missing
diphones drastically lowers the voice’s intelligibility.

4.2.2. ‘‘awb’’: medium-sized database, synthesis-specific,

open domain

The ‘‘awb’’ voice was built from the ARCTIC (Kominek
and Black, 2004) database of the same name, which was
specifically designed for speech synthesis using text selected
from out-of-copyright books. This voice contains around
36,000 phones (1.4 h of speech). Its performance is some-
what varied, being mostly of reasonable quality, but often
suffering from intelligibility problems. Some of these prob-
lems may be related to our segmentation of the data (using
the forced alignment procedure of the Multisyn voice
building tools) and others may be due to missing diphones
in some contexts. This latter point results from the fact that
the criteria used by the database designers to ensure
diphone coverage may not match the criteria that we
assume at synthesis time (i.e. those used in our target cost).
We believe that the database used in this voice is of the
minimum possible size for reasonable performance.

Using a Scottish pronunciation lexicon (the speaker
‘‘awb’’ is Scottish) rather than an American one (for which
the diphone coverage was designed) yielded slight improve-
ments, both in automatic segmentation and resulting syn-
thesis, but the differences are not conclusive due to the
coverage issues arising from the small database size. This
text that this database is built from is the same as used
for the Blizzard Challenge (Black and Tokuda, 2005) dis-
cussed in Section 6.1.

4.2.3. ‘‘jon’’: large database, synthesis-specific,

limited domain

The ‘‘jon’’ voice was designed by us as a limited domain
voice for the COMIC project (Foster et al., 2005). The
dataset contains two parts: a base set of around 650 sen-
tences designed to provide a basic level of diphone cover-
age and 300 domain-specific sentences that deal with the
subject of bathroom design. The base set speech is of a sim-
ilar size to the awb set and the domain-specific set is similar
in size to the fsew0 set.

The performance of this voice is generally excellent when
generating in-domain sentences, but (as expected) quality is
dramatically lower (worse than ‘‘awb’’) on out-of-domain
sentences. The primary reason for this is thought to be
speech rate problems. The speaker used for the ‘‘jon’’ voice
spoke at a faster rate than the other voices described here.
This means that there are many very short, elided or deleted
segments. This caused problems with the automatic label-
ling. A large number of very short segment labels result
from a combination of actual short segments and incor-
rectly placed labels (e.g. labels for segments that are actually
missing). If two consecutive segments are sufficiently short
then no pitch marks are present in the corresponding
diphone. It is then not possible to use this diphone because
the pitch-synchronous waveform resynthesis uses windows
centred on pitch marks and extend (asymmetrically) in time
from the preceding pitch mark to the following one (i.e. they
have a duration of 2 pitch periods).

4.2.4. ‘‘nina’’: large database, synthesis-specific,

open domain

The ‘‘nina’’ voice is approximately three times the size of
‘‘jon’’ and five times the size of ‘‘awb’’. This results in a
quite noticeable improvement in the quality of the output.
This voice is, however, far from perfect. The text selection
procedure used by us to design the recorded prompts only
used sentences from newspaper texts. While this achieves a
good level of general diphone coverage (and the voice per-
forms well on text that is similar to this domain) the voice
often performs badly when specific grammatical structures,
not commonly found in newspaper text, are encountered,
such as lists, times and dates. In these cases, even when
the segmental quality is good, inappropriate prosody
reduces the perceived overall quality. More importantly,
this voice synthesises question intonation very badly
because there were very few questions (with rising utter-
ance-final pitch) in the recorded speech.

4.3. Analysis of the approach in general

The approach seems ideal for the rapid development of
new voices, and also a useful teaching tool, the system is
currently used by one of the authors for an postgraduate
course in speech synthesis where students with little previ-
ous experience record themselves and create their own
voice. While the approach in some circumstances produces
results that may not sound as natural as other more com-
plex systems, the overall simplicity of Multisyn and its min-
imal requirements for making a good quality intelligible
voice more than make up for this. Our experience also sug-
gests that the difference between a good voice and an excel-
lent one is more often than not related to the number of
hours spent manually cleaning up the data where the auto-
matic techniques (segmentation, pitch marking, etc.) have
not produced perfect results.

5. Automatic segmentation techniques

The main issue in obtaining a phonetic labelling for
the recorded speech data is not necessarily pin-point preci-
sion of the phone boundary times but a combination of



326 R.A.J. Clark et al. / Speech Communication 49 (2007) 317–330
reasonably accurate boundary times, the correct choice of
the segment labels themselves and a knowledge of where
labels that are suspected to be inaccurate are in the data-
base. Assuming that the synthesis unit is the diphone, the
labels do not need to be placed precisely at phone bound-
aries, since these labels are only used to derive the diphone
boundaries, which are placed midway between phone
boundaries for most segment types (except diphthongs,
whose cut points are at 25%, and stops and affricates,
whose cut points are at the end of the closure portion –
see Section 5.6). Joins are made at diphone boundaries
because the spectrum is expected to be locally static com-
pared with phone boundaries. Small inaccuracies in the
phone boundary positions will still result in diphone
boundaries that fall within these static regions most of
the time. With this in mind, it seems that there is little value
in developing methods for high precision placement of
phone boundaries. Techniques such as optimal coupling
(Conkie and Isard, 1996) can adjust the actual cut points
at synthesis time (typically by minimising the local join
cost, after the unit sequence has been selected), compensat-
ing for some inaccuracy in label placement.

Determining an appropriate phonetic label sequence for
each utterance in the database is a major challenge and
there are two aspects to this problem. First, the general
problem already faced in text-to-speech synthesis of con-
verting a word string into a phoneme sequence, accounting
for effects of connected speech, the speaker’s accent and so
on. The second problem is that the recorded speaker may
not have produced speech which precisely matches this pre-
dicted phoneme sequence.

5.1. Converting text to phonemes

To address the issue of pronunciation variation arising
from a speaker’s specific accent, we use an accent-indepen-
dent keyword lexicon (Wells, 1982). From the underlying
Unisyn lexicon (Fitt and Isard, 1999) a surface-form
accent-specific lexicon is generated for a particular speaker.
This can be tailored to the individual speaker (using rules)
if necessary.

The resulting surface-form lexicon will contain multiple
pronunciations for some words, for example stressed and
reduced forms of function words. Festival is currently
forced to choose one pronunciation at synthesis time,
rather than deciding which pronunciation to use on the
basis of the units available.

Once an accent-specific lexicon is generated for a partic-
ular voice, an initial label sequence for the forced alignment
is produced using the linguistic analysis phase of the text-
to-speech synthesis process – i.e. lexical lookup, letter-to-
sound, and post-lexical rules. A few modifications are then
made to this sequence to facilitate more accurate forced
alignment. Stop and affricate labels are split into two parts
(closure and release). This will later allow diphone cut
points to be placed at the end of the closure portion. Sen-
tence-initial and -final silences and optional short pauses
between words are added. Such optional inter-word short
pauses are common practice in ASR and will be skipped
during alignment if no silence is present.

5.2. Pronunciation variation in the recorded speech

Variations in the pronunciation of words in the recorded
database fall into two categories: expected pronunciation
variation and unexpected pronunciation variation. Expected

variation is described in the lexicon, such as vowel reduction
or deletion, or alternate pronunciations (e.g. ‘either’ [iðE/
[aIðE] and ‘against’ [Egenst]/[EgeInst]. Unexpected variation
occurs where the speaker pronounces a word in an unex-
pected and often unpredictable way. They may misread
the script or they may pronounce an uncommon word incor-
rectly, which most often occurs with names. We currently
deal with unexpected pronunciation variation by altering
the script (after recording but before phonetic labelling) to
match what the speaker actually said. Where a word has
been misread, we update the script, but where a word is sys-
tematically pronounced in an idiosyncratic way, we alter the
lexicon used for phonetic labelling.

5.3. Handling conflict between the predicted labels

and what the speaker said

Typically, a synthesiser front end predicts a single pho-
netic sequence for a given utterance. If this sequence is used
to label a recorded utterance there is a potential mismatch
between the predicted labels and what the speaker actually
said. Even if the synthesiser attempts to predict expected
pronunciation variation (e.g. which vowels will be reduced)
it is unlikely to be an exact match to what the speaker said.

There are two extremes when labelling the database:
matching precisely what the speaker actually said, or
matching precisely what the synthesiser predicted. Neither
is entirely satisfactory.

Labelling the database with phonetic sequences that
match what the synthesiser would predict at synthesis time
is certainly the easiest option and requires little work. This
guarantees that any word sequence present in the database
can be synthesised very well, and it does not matter that the
phonetic labels on the database do not accurately reflect
the actual speech signal. However, problems arise below
the word level, when sub-word units are concatenated.
Wrongly labelled units will result in synthetic speech which
has the wrong phonetic content and will probably have
more bad joins (because mismatching diphones are being
concatenated).

Labelling the database with a phonetic sequence which
matches what the speaker said, will eliminate that problem,
but not only is this a much harder task, the segment
sequence predicted for a word at synthesis time may no
longer match the labelling of tokens of that word in the
database. This will result in it being synthesised from
non-sequential units rather than the sequential ones, which
is likely to sound worse.



R.A.J. Clark et al. / Speech Communication 49 (2007) 317–330 327
The current approach in the Multisyn voice building
tools is to find a compromise between these two extremes.
We now describe the basic process of forced alignment, for
the case where a single phonetic label sequence – predicted
by the synthesiser without reference to the speech signal –
has been determined for each recorded sentence. We then
describe how some decisions on the label sequence can be
deferred until during the alignment procedure: this allows
labels to more closely match what was actually said with-
out drifting too far from the predicted sequence.

We are currently still investigating how best to reconcile
the differences between changed database pronunciations
and runtime pronunciations. The current implementation
allow a parameter to be set which decides whether reduced
vowels or full vowels should be specified, this affects the
utterance as a whole rather than allowing differences within
an utterance as the techniques proposed by Bennett and
Black (2005) and Hamza et al. (2004) would.

5.4. Aligning the phonetic labels with the speech

Given a single phonetic label sequence, there are well-
established methods to find an alignment with the corre-
sponding speech signal using standard automatic speech
recognition techniques.

Since there are guaranteed, by design, to be many exam-
ples of all phones in the speech data, it is straightforward to
train a set of speaker-specific hidden Markov models
(HMMs). The HTK toolkit is used (Young et al., 2002)
and we begin by taking three-state monophone models
with a left-to-right topology, observations are modelled
by mixture-of-Gaussians state output PDFs (trained ini-
tially with only a single component).

The speech is parameterised as 12 Mel-scale cepstral
coefficients plus energy, deltas and delta deltas (a total of
39 features). A relatively short window size of 10 ms is used
with a short 2 ms shift. Initial results suggested that this
generated more accurate and consistent boundary posi-
tions and fewer gross labelling errors than using standard
values of around 25 ms and 10 ms, respectively.

We do not use triphone models because the performance
of monophone models is deemed good enough not to war-
rant the significant additional complexity of building tri-
phone models. The models are only required to produce a
consistent alignment (i.e. the positions of the label bound-
aries are relatively the same across the database, even if they
do not necessarily match what are traditionally considered
phone boundaries) rather than perform speech recognition.

Forced alignment using these models with a single,
known label sequence is trivial and computationally very
fast. Note that the training and ‘‘testing’’ data are one
and the same thing: the complete set of voice data.

5.5. Making label decisions during forced alignment

If one were to attempt a ‘‘pure’’ phonetic labelling of the
speech, without reference to the known word string, this
would be achieved using a phone recogniser constructed
from the same HMMs as for the forced alignment along
with a ‘‘phone loop’’ grammar. However, the expected
accuracy of such a procedure is unlikely to be high enough
for our purposes. Therefore, a precise phonetic labelling
based only on the speech waveform is not possible.

To achieve the desired compromise between predicted
and actual phone labels, for each sentence in the data a
phone lattice is constructed which includes any plausible
pronunciation variation. Currently, the only pronunciation
variations allowed are vowel reductions. This procedure is
similar to the procedure described by Bennett and Black
(2005), although whereas they discuss only function words,
we allow reduction to potentially occur for any phonolog-
ically reducible vowels in both function words or in the
unstressed syllables of contend words. The design of the
lattice is currently being extended to include other types
of variation. Indeed, if a lexicon listing possible pronunci-
ation variants for all words was available, these could eas-
ily be incorporated. This lattice is much more constrained
than the ‘‘phone loop’’ grammar and therefore we can
expect alignment high accuracy.

The lattice is initially aligned with the speech using a set
of HMMs that have been trained on the single transcrip-
tions. The result is an intermediate transcription (the most
likely path through the lattice). The models are then
retrained using this transcription. During this second phase
of training, the number of components in the state output
densities is gradually incremented up to eight components
(a number determined empirically) using HTK’s standard
‘‘mixing up’’ procedure (Young et al., 2002). A forced
alignment using the final models then produces the label-
ling for the voice database.

5.6. Post-alignment processing

Once the alignment is done, the label times are recon-
ciled with the linguistic structure generated by the synthes-
iser. This process deals with any inter-word short pauses
detected during the alignment, substitutions (i.e. vowel
reductions), and the merger of the closure and release por-
tions of stops and affricates back into a single label. Substi-
tutions are marked in the linguistic structure (for possible
later use in unit selection) and the end of the closure por-
tion of stops and affricates is noted for later use as the
diphone join point for these segments.

Other information is associated with individual phones
in the linguistic structure to enable the target cost to incor-
porate a component which deals with suspected bad label-
ling. This information includes a normalised version of the
HMM log likelihood score for each segment and a flag
which marks segments which are too short to have mean-
ingful pitch-marking.

The distributions of the duration of each phone type are
also analysed and any outliers are marked as such. This
information is made available at synthesis time to guide
the unit selection search.



RB D E B C F A
1

1.5

2

2.5

3

3.5

4

4.5

5

A
ve

ra
ge

 s
co

re
 o

n 
M

O
S

 te
st

Team (ranked by Undergrad results)

Team results by average scores on MOS test

Synth experts (49)
Undergrads (70)
Others (21/15)

RB D B E A C F
0

5

10

15

20

25

30

35

40

45

W
E

R
 o

n 
ty

pe
–i

n 
ta

sk

Team (ranked by undergrad results)

Team results by WER for type–in test

Synth experts (49)
Undergrads (70)
Others (21/15)

Fig. 3. Team results for the first Blizzard Synthesis Challenge competition.
The top graph shows results for the Mean Opinion Score test, on a scale of
1–5, while the bottom plot shows results in terms of Word Error Rate in
the type-in comprehension test. The Blizzard Challenge was made
anonymous to encourage entries from the commercial sector, hence teams
are identified by letter only. The Multisyn entry is team B. ‘‘RB’’ is real
human speech.

328 R.A.J. Clark et al. / Speech Communication 49 (2007) 317–330
The result of the alignment procedure is a segmental
labelling that is consistent and sufficiently accurate (in
time) for deriving diphone cut points. A formal evaluation
of the accuracy of the segmental labelling is costly since
manually verified reference labels have to be created. It
may also be unnecessary, because consistency and the abil-
ity to know which label times may be inaccurate are more
important than label times accurate to the nearest millisec-
ond. Makashay et al. (2000) show that automatic segmen-
tation is potentially better than manual segmentation for
speech synthesis, which suggests that the inconsistency in
hand-labelled data makes it an inappropriate baseline.

However, hand correction of the automatically aligned
labels may still be desirable. Our experience is that the
alignment is always poor for some fraction of the sen-
tences. Much of the time this means labels with durations
that are clearly outliers for that segment class; these can
be easily spotted and then either removed or flagged as
bad units. It is an open research question whether such
bad units can still be used for synthesis (provided their left
and right neighbours are also used).

A sizable proportion of gross errors that occur are
caused by the speaker saying a word sequence that does
not match that predicted by the synthesiser, particularly
for expansions of acronyms and numerals. Fully normalis-
ing the script, including expanding all abbreviations, dates,
etc. into unambiguous word sequences is the most reliable
solution to this problem.

6. Evaluation

Evaluation of a speech synthesis implementation is
rather difficult to perform, especially since the most obvi-
ous comparison is with various other speech synthesiser
implementations rather than between other techniques
within the same system. For this reason, we are fortunate
to benefit from the recent inception of the Blizzard Speech
Synthesis Challenge, an initiative for the competitive eval-
uation of speech synthesis systems.

6.1. The Blizzard Challenge

The first Blizzard Challenge (Black and Tokuda, 2005)
was held in 2005, and reported in a special session of the
Interspeech conference in Lisbon, Portugal. For this com-
petition, a total of four pre-recorded speech databases were
released. Each entrant was asked to build four voices for
their speech synthesis system. An unseen test set of sen-
tences was then released, and entrants were required to
use the voices they had built to synthesise the test sentences
and send the waveforms to the organisers for perceptual
testing. Two of the four datasets were released at short
notice before the release of the test set, thus minimising
the possibility for hand tuning and forcing entrants to rely
upon automated voice building techniques.

Listening tests were carried out with three groups of
subjects: web-based listening tests were undertaken both
by 50 researchers in the speech technology field and by
60 non-speech technology-related people, while a set of
58 undergraduate students were employed in listening tests
under more rigorous laboratory conditions (Bennett,
2005). The listening tests were composed of two parts. In
the first part, subjects were asked to rate how good each
stimulus they heard was on a scale from 1 to 5 (worst to
best). For the second part, subjects were required to listen
to a set of stimuli and then type-in the sentence they heard.

Fig. 3 summarises the results of the first Blizzard Chal-
lenge evaluation. It was decided that the Blizzard Chal-
lenge organisers would not disclose the identities of the
entrants, in order to encourage entries from the commercial



R.A.J. Clark et al. / Speech Communication 49 (2007) 317–330 329
sector, so the competing systems are known only by a let-
ter. The team labelled ‘‘RB’’ in this figure in fact gives
the results for real human speech. Meanwhile, team ‘‘D’’
has willingly identified itself as the Trajectory HMM entry
from the Nagoya Institute of Technology, Japan. This was
the only non-concatenative system in the competition, and
is widely regarded as having benefited from the rather
restricted size of the speech datasets used for this first Bliz-

zard Challenge.
Out of the five concatenative systems in the challenge,

Fig. 3 shows that the Multisyn entry, team B, came first
in terms of WER and second in terms of MOS, as mea-
sured by taking the overall averages of these scores and
normalising by the number of subjects in each group. This
is a satisfactory result, especially since all four of the voices
submitted were the product of purely automatic processing
with no manual intervention or fixing of errors.

7. Summary and conclusions

The Multisyn engine works well and easily achieves its
main goal of providing a good unit selection speech synthe-
sis engine and the necessary tools to build new voices with
limited speech synthesis knowledge and minimal effort.
Experience with the system suggests that a corpus of
around 36,000 phones provides an intelligible voice, but
the system performs much better with much bigger cor-
pora, the quality of the resulting voice being highly depen-
dent on the quality of the database.

There is room for improvement in a few areas. The sys-
tem as described here contains no real control over pros-
ody, so intonation and duration of segments is not
modelled explicitly; instead the context from which units
are selected provides an implicit model of prosody. This
works well most of the time, but there are occasions where
the resulting speech has primary phrasal stress placed inap-
propriately. Ways of modelling prosody in the system are
currently under investigation. One potential solution is to
model primary phrasal stress alone (rather than full pro-
sodic modelling). Along with a suitable accent prediction
utility, this would still to allow the rapid, automatic build-
ing of voices.

Pronunciation variation is still a problematic area, and a
way of addressing the issue throughout the system in a con-
sistent manner – both during voice building and at synthe-
sis time – is needed.

Overall, the simplicity of the Multisyn approach pro-
vides a robust and easy to use unit selection engine which
is flexible and configurable, yet requires only a little exper-
tise from the person building the voice.

Acknowledgements

This work was funded in part by EPSRC grant GR/
R94688/01. King is supported by an EPSRC Advanced Re-
search Fellowship.
References

Bennett, C.L., 2005. Large scale evaluation of corpus-based synthesizers:
results and lessons from the Blizzard challenge 2005. In: Proceedings of
the Interspeech 2005, Lisbon, pp. 105–108.

Bennett, C.L., Black, A.W., 2005. Prediction of pronunciation variations
for speech synthesis: a data-driven approach. In: ICASSP 2005,
Philadelphia, USA, Vol. I, pp. 297–300.

Beutnagel, M., Conkie, A., 1999. Interaction of units in a unit selection
database. In: European Conf. on Speech Communication and Tech-
nology, Vol. 3. pp. 1063–1066.

Black, A., Lenzo, K., 2000. Limited domain synthesis. In: Proceedings of
the ICSLP2000, Beijing, China.

Black, A., Lenzo, K., 2004. Multilingual text-to-speech synthesis. In:
Proceedings of the ICASSP 2004, Montreal, Canada.

Black, A., Taylor, P., 1997. Automatically clustering similar units for unit
selection in speech synthesis. In: Eurospeech’97, Vol. 2, pp. 601–
604.

Black, A.W., Campbell, N., 1995. Optimising selection of units from
speech databases for concatenative synthesis. In: Proceedings of the
Eurospeech’95, Madrid, Spain, pp. 581–584.

Black, A.W., Lenzo, K.A., 2001. Optimal data selection for unit selection
synthesis. In: 4th ISCA Workshop on Speech Synthesis, pp. 63–67.

Black, A.W., Tokuda, K., 2005. Evaluating corpus-based speech synthesis
on common datasets. In: Proceedings of the Interspeech 2005, Lisbon,
pp. 77–80.

Bozkurt, B., Ozturk, O., Dutoit, T., 2003. Text design for TTS speech
corpus building using a modified greedy algorithm. In: Proceedings of
the Eurospeech’03, Geneva, Switzerland, pp. 277–280.

Bulyko, I., Ostendorf, M., 2001. Joint prosody prediction and unit
selection for concatenative speech synthesis.

Conkie, A., 1999. A robust unit selection system for speech synthesis.
Conkie, A., Isard, S.D., 1996. Optimal coupling of diphones. In: Santen,

J.P.H., Sproat, R.W., Olive, J.P., Hirschberg, J. (Eds.), Progress in
Speech Synthesis. Springer, Berlin.

Fitt, S., Isard, S., 1999. Synthesis of regional English using a keyword
lexicon. In: Proceedings of the Eurospeech’99, Budapest, Vol. 2, pp.
823–826.

Foster, M.E., White, M., Setzer, A., Catizone, R., 2005. Multimodal
generation in the COMIC dialogue system. In: Proceedings of the ACL
2005 Demo Session.

Garofolo, J.S., 1988. Getting started with the DARPA TIMIT CD-ROM:
an acoustic phonetic continuous speech database. National Institute of
Standards and Technology (NIST), Gaithersburgh, MD.

Hamza, W., Bakis, R., Eide, E., 2004. Reconciling pronunciation
differences between the front-end and back-end in the IBM speech
synthesis system. In: ICSLP 2004, Jeju Island, South Korea.

Hofer, G., Richmond, K., Clark, R., 2005. Informed blending of
databases for emotional speech synthesis. In: Proceedings of the
Interspeech, September 2005.

Hunt, A., Black, A., 1996. Unit selection in a concatenative speech
synthesis system using a large speech database. In: Proceedings of the
ICASSP 1996, Atlanta, USA, Vol. 1, pp. 373–376.

Kominek, J., Black, A., 2004. The CMU ARCTIC speech databases. In:
5th ISCA Speech Synthesis Workshop, Pittsburgh, PA, pp. 223–224.

Kurtić, E., 2004. Polyglot voice design for unit selection speech synthesis.
Master’s thesis, University of Edinburgh.

Makashay, M., Wightman, C., Syrdal, A., Conkie, A., 2000. Perceptual
evaluation of automatic segmentation in text-to-speech synthesis. In:
Proceedings of the ICSLP 2000, Beijing, China.

Möbius, B., 2001. Rare events and closed domains: two delicate concepts
in speech synthesis. In: 4th ISCA Workshop on Speech Synthesis, pp.
41–46.

Syrdal, A.K., Wightman, C., Conkie, A., Stylianous, Y., Beutnagel, M.,
Schroeter, J., Strom, V., Lee, K.S., Makashay, M.J., 2000. Corpus-
based techniques in the AT&T NextGen synthesis system. In:
Proceedings of the ICSLP 2000, Vol. 3, pp. 410–415.



330 R.A.J. Clark et al. / Speech Communication 49 (2007) 317–330
Taylor, P., 2000. Concept-to-speech by phonological structure matching.
Philosophical Transactions of the Royal Society Series A.

Taylor, P., Black, A., Caley, R., 1998. The architecture of the Festival
speech synthesis system. In: Proceedings of the The Third ESCA
Workshop in Speech Synthesis, pp. 147–151.

van Santen, J., Buchsbaum, A., 1997. Methods for optimal text selection.
In: Eurospeech97, Vol. 2, pp. 553–556.

van Santen, J.P.H., September 1997. Combinatorial issues in text-to-
speech synthesis. In: Proceedings of the Eurospeech, Rhodes, Greece,
Vol. 5, pp. 2511–2514.

Vepa, J., King, S., 2004. Join cost for unit selection speech synthesis. In:
Alwan, A., Narayanan, S. (Eds.), Speech Synthesis. Prentice-Hall,
Englewood Cliffs, NJ.
Wells, J.C., 1982. Accents of English. Cambridge University Press,
Cambridge, UK.

Wrench, A.A., 2001. A new resource for production modelling in speech
technology. In: Proceedings of the Workshop on Innovations in
Speech Processing.

Young, S., Evermann, G., Kershaw, D., Moore, G., Odell, J., Ollason, D.,
Povey, D., Valtchev, V., Woodland, P., 2002. The HTK Book (for
HTK version 3.2). Cambridge University Engineering Department.


	Multisyn: Open-domain unit selection for the Festival speech synthesis system
	Introduction
	Unit selection speech synthesis
	Structure of this paper

	Multisyn design and implementation
	Festival ' s architecture
	Choice of unit type
	Comparison with other methods

	Database
	Coverage
	Automatic segmentation
	Target utterance specification
	Expressive speech
	Modest requirements for linguistic resources
	Candidate pre-selection and beam pruning during search
	Missing units
	Backing-off
	Phone joins

	Target cost
	Join cost

	Voice building
	Voice database design
	Requirements for the database and text selection
	Post-recording considerations

	Analysis of existing voices
	 " fsew0 " : small database, not synthesis-specific,open domain
	 " awb " : medium-sized database, synthesis-specific, open domain
	 " jon " : large database, synthesis-specific,limited domain
	 " nina " : large database, synthesis-specific,open domain

	Analysis of the approach in general

	Automatic segmentation techniques
	Converting text to phonemes
	Pronunciation variation in the recorded speech
	Handling conflict between the predicted labels and what the speaker said
	Aligning the phonetic labels with the speech
	Making label decisions during forced alignment
	Post-alignment processing

	Evaluation
	The Blizzard Challenge

	Summary and conclusions
	Acknowledgements
	References


