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Speech Recognition using Linear Dynamic Models

Joe FrankelMember, IEEEand Simon KingMember, IEEE

Abstract— The majority of automatic speech recognition (ASR) modelling and form of noise covariance on phone-class dis-
systems rely on hidden Markov models, in which Gaussian crimination.

e e i S, W s, sl s, EVAIUAUN of el acoustc model or ASR frequenty rles
feature vectors (augmented to include derivative information) on rescoring of hidden Markov model (HMM) lattices. Whilst

as statistically independent. Furthermore, spatial correlations COnvenient, rescoring experiments are prone tQ errors intr_o—
present in speech parameters are frequently ignored through duced by the models used to generate the lattice. Decoding
the use of diagonal covariance matrices. This paper continues with segment models can be computationally expensive: unlike
the work of Digalakis and others who proposed instead a first- f3me-level models, it is not always possible to share likeli-

order linear state-space model which has the capacity to model hood calculations for the observations of proposed segments
underlying dynamics, and furthermore give a model of spatial prop g

correlations. This paper examines the assumptions made in With differir_lg start and end times. We suggest that .a-stack
applying such a model and shows that the addition of a hidden decoder withA* search offers an efficient means of jointly

dynamic state leads to increases in accuracy over otherwise searching for the most likely model sequence and segmentation
equivalent static models. We also propose a time-asynchronous,yithout resorting to rescoring.

decoding strategy suited to recognition with segment models. We
describe implementation of decoding for linear dynamic models II. LINEAR DYNAMIC MODELS
and present TIMIT phone recognition results.

. The LDM (or Kalman filter model) is a generative model
Index Terms—LDM, ASR, Stack decoding

with a time-varying multivariate unimodal Gaussian output
distribution. The LDM is from the family of linear Gaussian
models [3], [4], and is specified by the following pair of
equations:

HE work described in this paper is motivated by the fol- _

lowing belief: a model which reflects the characteristics ye = Hxite e~ N(v,C) (1)
of speech production will ultimately lead to improvements in x¢ = Fxig1+m ne ~ N(w, D) @

automatic speech recognition. The articulators move slowind an initial state distributiox; ~ N(m, A). We usey,
and continuously along highly constrained trajectories, eagidx, to denotep- and ¢-dimensional observation and state
one capable of a limited set of gestures which are organiz@sttors respectively. The state is described by a multivariate
in an overlapping, asynchronous fashion. Feature extractigaussian distribution, and propagation is governed by a first-
on the resulting acoustic signal produces a piecewise smoafder autoregressive process wijh< ¢ evolution matrix F
spatially correlated set of parameters in which neighbourighd the addition of Gaussian noige ~ N(w, D). A linear
feature vectors are highly correlated, and dependencies gadjection viap x ¢ dimensionalH links the observation and
spread over many frames. An acoustic model should refleghte processes, along with the addition of more Gaussian noise
these properties. A number of authors have proposed that this~. N (v, ), which is assumed uncorrelated to the state
may be approached by modelling speech at the segment rafi§iser), . By setting the state to have lower dimensionality than
than frame level, where segment refers to a sub-word unit sug@ observationsH is used to encode linear dimensionality
as a phone or syllable. A review is given in [1]. reduction. In this way, a distinction is made between the pa-

This work investigates acoustic modelling using a form aimeterization and the number of degrees of freedom required
linear state-space model, aiming to enhance speech recognit®describe the underlying spatial and temporal characteristics.
through the addition of a hidden dynamic representation. Statedescription of the properties and types of trajectories which
space models make a distinction between the underlying prele LDM generates can be found in [1].
erties of the system and the parameterization. Allowing the The remainder of this section is arranged as follows: we
hidden state to be continuous across model boundaries offersline inference, parameter estimation and likelihood calcu-
the potential to model longer range dependencies, loosenjagon in Section 1I-A, then discuss constraints which affect
the assumption of inter-segmental independence. modelling in Section I1-B, efficient computation in Section II-

Digalakis’ original application of linear dynamic modelsC, and consider the internal structure of the model in II-D.
(LDM) to ASR [2] used a smoothed Gauss-Markov formSections II-E and II-F look at how LDMs may be applied to
though linear dimensionality reduction can form an integrapeech data, and the assumptions which are made in doing so.
part of these models. We investigate the effect of subspace

A. Inference, parameter estimation and evaluation
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set of model parametef3. Filtering provides an estimate ofone with a fully specified noise covariance matrix, though
the state distribution at timeé given all the observations uprepresents a loss in generality.
to and including that timep(x;|y%, ©), and smoothing gives Setting H to be the identity matrix removes subspace
a corresponding complete-data estimate, |y}, ©). We use modelling, and gives the smoothed Gauss-Markov form used
X+ andx,y to denote the filtered and smoothed state meaims[2]. A state of dimension zero, or equatidf) = 0, gives a
respectively, with¥,, and ¥, denoting the correspondingGaussian classifier, as all modelling is through the observation
covariances. noise,e; ~ N(v,C). Alternatively, a factor analyzer model
Kalman filtering is a recursive process which alternatg8], [4] sets F' = 0, the observation nois€' to be diagonal,
between making predictions of the state mean and covarianard gives an LDM without state dynamics in which subspace
Xy—1 and ¥;;_;, given a set of model parameters andhodelling is used to give a reduced-parameter approximation
the filtered statistics from the previous timg_;;_; and to a full-covariance Gaussian.
¥i_1+—1, and then updating these to arrivesaf, and %, One constraint is always enforced during training: is
given newly observed,. The update is made in such a wayet to be a decaying mapping, i.g| < 1. If |F| > 1
as to minimize the filtered state covariankg,. Applying were allowed, the state evolution could give a model of
the RTS smoother yields estimates which are the optimatponential growth. Such behaviour may not be apparent over
linear combination of one forward and one backward filtesmall numbers of frames, whilst still introducing an element
S0 as to minimize:, ;. The Kalman filter and RTS smootherof numerical instability. To constraifi’| < 1, the singular
equations are given in the Appendix. value decomposition (SVD) is employed immediately after
Parameter estimation uses the expectation maximizatidre the re-estimation step as given in [1, Equation 4.27]. The
(EM) algorithm [7], which iterates toward a generalized maxSVD provides a pair of orthonormal basEsand V, and a
imum likelihood solution by alternately computing completediagonal matrix of singular valueS such thatF = USVT.
data state expectations using the current parameter set, @&igen thatU and V' are orthonormal|U| = |V| = 1, and
then updating parameters based on these estimates. Takinhence|F| = |S|. Letting s;; denote element, i of S, we set
LDM and multiplying one dimension of the state by some;, = min(s;,1—x) fori = {1,...,¢}. In this work we used
factor whilst dividing the corresponding column & by &k = 0.005, with the result thaqS'\ < 1. By re-computing
the same gives distributions over the observations identidal= US V7, the bases of" are preserved whilst forcing the
to those of the original. Despite the lack of unique parameteansform along them to be decaying.
estimates and the inherent degeneracy [3], EM training for
LDMs is stable in practice and converges quickly,
sensitive to initial parameter estimates [1].
Classification and recognition require calculation of the An examination of the relevant filter and smoother recur-
likelihood of a given model generating a section of speeatons reveals that the none of the computations for2tfe
data. The Kalman filter recursions as given in the AppendiXder statistics at time involve the newly observed valug,.
include calculation of the prediction erre; and associated During the forward pass, the predictéd,_, and posterior

though it i L .
ougn Ié Efficient implementation

covariancey,, : ¥+ state covariance along with the cross-covariaige
) Kalman gain K, and error covariance., will then be
e = yt— Hxy1—-v (3) identical for any pair of observation sequenéss,...,yn, }

Yo, = HYy HT +C (4 and{y’,,...,y'n,} for t < Ny, No.

. The situation is slightly different for the smoothing pass,
where x,,_, and X,,_; are the predicted state mean an gnty gp

i X . ugh the above also applies #, the backward analogue
covariance respectively. With errors assumed uncorrelated e 9 pplies 1o 9

G ian. the loa-likelihood of ak-f b d he Kalman gain, which is calculated using the filtered
]eus.smn, eLDOE/;I eﬂ: 00d 0 ¢ -ragpo sler\llet Zequ_enceparameters&,1|t,1 and X, ,_;. However, the smoothed
yi givenan with parameter s& 1S caiculated as. state covariances are dependent Bn and so;_;y and

1 N ¥;—1n are identical for any pair of observation sequences
log p(ym(a)=—§Z{log\2et|+efzgfet}—/c ®) {yi,...,y~m} and {y’;,...,y'y,} for which Ny = No.
t=1 These observations lead to implementational strategies in

The normalization ternic = 22 log(2r) can be omitted when which state covariances and the correction facfﬁggand A
comparing multiple models on a single given section of dat52" P€ calculated, cached, and reused. The matrix operations
which are used to compute these quantities form the bulk of
] the computation of implementing LDMs and so considerable
B. Constraints speed-ups can be found by employing such a strategy.
Constraints on the LDM parameters can be used to alterTable | shows estimation and classification speeds for a set
the properties of the model. The state noise covariance a#r61l LDMs with observations of2 MFCCs and energy, and
be set to the identity or a diagonal matrix with no loss inun on a3.0GHz Pentium P4 processor. Caching computations
generality [3]. With a diagonal observation noise covariandeads to6 and15-fold speed increases on training and classifi-
C, the output distribution is approximated by a projectionation respectively. For comparison, speeds are also given for
of a lower dimensioned state via the observation makfix estimation and classification using full covariance Gaussian
This gives a model with significantly fewer parameters thamodels.
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| Gmode.l tasI: _ [ ngggoi real ime) | Note that the model of equations 10 and 11 can be found by
aussian estimation . . .

LDM 1 iteration EM, no caching| 0.0006 settingd = p, By = 14 and B; = Od fo_r t= {_2’ e 7_T}' ]
LDM 1 iteration EM, caching 0.0001 The matricesB; can be used to provide linear dimensionality
Gaussian  classification 0.06 reduction, and so allow the autoregressive model just as many
LDM  classification, no caching | 2 degrees of freedom as required to model any underlying

LDM classification, caching 0.01

dynamics. Specifying3; but setting the remainin@;s to be
zero matrices ensures thgt has a dependence only an.
In this case, the observations are modelled as a corrupted-by-
noise version of a lower-dimensional orderautoregressive
process. Further specifying; for i = {2,...,r} givesy; a
dependence also on_;.

In practice, estimation for LDMs is largely unconstrained.

D. A non-traditional view of LDM modelling The state vector is not explicitly divided into separate compo-
t

An rth-order vector autoregressive (AR) model describingents: as-d-dimensionalZ; ., , is replaced by,-dimensional

an N-length sequence gfdimensional random variableg =  Xt- Neither the state evolution or observation matrices are
{z zy} can be written as: forced to place zeros as shown in Equations 10 and 11.
e :

However, writing the model in this fashion serves to show the
structure which may be contained by the LDM. The addition
of observation noise sets the LDM apart from an AR model by
making the autoregressive component a hidden process. When
combined with dimensionality reduction via the observation
process, the effect is to obscure the order of the modelling in

TABLE T
ESTIMATION AND CLASSIFICATION SPEEDS FORLDM S AND FULL
COVARIANCE GAUSSIANS WITH 13-DIMENSIONAL
OBSERVATIONS

Zy = Z Aizyi +my

i=1

(6)

where theA;s arep x p matrices andy, is additive Gaussian
noise given byn, ~ N(w, D). We introduce the notation:

T the state.
Zifrjtl = [Z?a Zzll’ <o ’Zz:rJrl] (7)
1;11 ‘32 ‘37' E. The LDM as a model for speech recognition
T 02 I;) ! ®) A simple manner in which to use LDMs for ASR is to train
" . . ) a single model for each phone class in the inventory of a given
: o corpus. This approach is taken in the majority of experiments
0p 0p Ip Op presented in this paper. This will be referred to as LtEbé-
n' = [ntTJ)g’ . .705]T (9) of-phoneformulation, and makes the following assumptions:

« the correlation between consecutive frames within seg-
ments is constant.

« segments are not duration-normalized. Therefore, a short
instance of a phone is assumed to posses the dynamic
characteristics of a portion of a longer example.

« speech parameters can be modelled by a multivariate uni-
modal Gaussian distribution subject to systematic mean
and covariance modification throughout a given segment.

The LDM incorporates the idea of speech being modelled in
Note that 11 is the autoregressive process of Equation 6. Bylomain other than the observations, which are seen as noisy
setting the covarianc€ of ¢; to be zero, the model remainstransforms of an underlying process. The internal variables of
a vector autoregressive process withsimply a displaced the hidden state reflect some of the known properties of speech
version of Z. However, the addition of observation noisgroduction, where articulators move relatively slowly along
throughe; rendersZ a hidden variable, and makes the modeaionstrained trajectories. Depending on the implementation, the
described by Equations 10 and 11 a constrained form of LDMtate may be reset at the start of each phone or each sentence.
The evolution matrix in Equation 11 holds the origimabrder A degree of coarticulation modelling is implicit during regions
autoregressive process and acts as a shift operator for eabiere the state is continuous, as the distribution of the state
component of the stacked state vec®jr , .. Writing the at time¢ affects its distribution at time + 7.
LDM in this form shows how the state can ‘remember’ past A linear mapping between state and observation processes
values, here noisy versions of the observations. dictates that points close in state space are also close in
With Z of equal dimension to the observatiopis the state observation space. Therefore, trajectories which are continuous
is of dimensionrp. Letting Z be ad-dimensional vector, and in state space are also continuous in observation space. If
with the B;s representing x d matrices, Equations 10 andthe hidden state is seen as having articulator-like charac-
11 can be written as: teristics, such a constraint is not universally appropriate as
small changes in articulatory configuration can sometimes
lead to radical changes in the acoustics. Experiments reported
in [1] and [2] suggest that whilst linear models give poor

wherel, represents a x p identity matrix,0, a p x p matrix
of zeros, and),, a vector of zeros length. Then lettingy =
{y1,...,yn} be a set ofp-dimensional observations which
we wish to model with the relationship, = z; + €;, where
€ ~ N(v,C), we can write:

[ Ip Op
= APZ 4}

0p |2, +e (10)
(11)

Yt

t
Zt—r+1

[ B1 B
AZi ) +

By |Zi_ iy +e (12)
(13)

Yt

t
Zt7r+1
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descriptions of the dependencibgtweenphone segments,
behaviourwithin phones can be accounted for by a linear
predictor. This is reflected in the LDM-of-phone formulation:
within phone models, the output distribution evolves in a
linear, continuous fashion. Discontinuities and non-linearities

can be incorporated at phone boundaries where resetting the
state and switching the observation process paraméfers = i
and C results in a sudden shift in acoustic space. By passing ~-# e S UREEERE R I (€]
state statistics across model boundaries (as discussed below

in Section 1I-F.1), the state process can remain continuous
through such shifts.

In our work, the state has the function of giving a compact
and dynamic representation of the observed parameters. A
number of studies, such as [8]-[12], have attempted to in-
corporate the relationship between articulation and acoustics
through the use of state-space models with non-linear state-
observation mappings. In [11], [12], the state is set to model
the pole locations of the vocal tract by initializing training
using vocal-tract-resonances (VTR), though learning accurate
non-linear projections from VTR to acoustic domains proved
problematic. In [13], [14], a mixture of linear models is
proposed with which to approximate a non-linear relationship
whilst retaining many of the useful properties of linear models.

F. Extensions to LDM-of-phone modelling ‘m' —n Eﬁ (c)

‘ ";LE: sl (b)

,1), State-passedA state process which is Comml_mus bo“?—'ig. 1. Spectrograms generated from observed MFCCs, also from state-reset
within and between phone segments, as found in [9]-[1%}d state-passed LDM predictions for the utterance ‘Do atypical farmers grow
represents a step toward the goal of an acoustic modeals?
which reflects the properties of speech production. Passing
state information across model boundaries offers a degree of
contextual modelling, and furthermore gives the possibility of

modelling longer range dependencies than contained within del boundari he fi in the f
phone segments. across model boundaries. The first spectrogram in the figure

We use the terms state-passed and state-reset to diﬁerenﬁ%ws the original MFCCs corr'espondlng to the utterance
Dg; atypical farmers grow oats?’. A Mel-warped frequency

implementations where state statistics are passed across ) : ; ;

reset at model boundaries. At the start of each new segm ,Ie IS useq, with regions of h'gh and '°.W energy shown

the prediction of the state distributios,,_,, is required to y areas of I'gh.t and dark sha}dlng respectively. The second

initialize filtering as described in the Appendix. In the states—hOWS th? pr_edlcted state.meagtl_l calculated dur[ng the
f%ward filtering pass, projected into the observation space

reset case, the LDM's learned initial parameters are used, . ; ; .
that x,,_; ~ N(m,A). In the state-passed case, predictiondd Equation 2. The time-aligned phone labels determine the

are calculated using the posterior state distribution at t grameters used during filtering within each segment. The

preceding time and the current model parameters, so t fd sp_ectrqgram is derived in t_he_ same way as the second,
Xijt_1 ~ N(F%,_1jp_1 +w, FY_y, FT 4 D) though in this case the state statistics have been passed across
tlt—1 ™~ t—1[t— ) t—1[t— .

Training with a fully continuous state and known segmerp-hone boundaries during filtering.
tation requires a simple modification of the state-reset caseComparing Figures 1(a) and 1(b), it is apparent that the
as above. However, exact state-passed classification wostge-reset LDMs follow many of spectral characteristics of
lead to an exponential increase in computation. TherefotRe acoustic signal. However, spectral transitions are subject to
an approximation is made by introducing pruning at phongrong boundary effects as each new model takes a few frames
boundaries which, whilst not strictly admissible, is believed @) find an appropriate location in state-space. The spectrogram
be a reasonable approximation and substantially improves &fj- Figure 1(c) demonstrates how a fully continuous state
ciency. An alternative approach is to reset the state covariang&iuces these effects. For example, the discontinuities in the
but not mean, at boundaries. Some information will still bgansition of the first formant through the phones [q ey ]
carried from one phone to the next, but efficient computatiasarly in the utterance (Figure 1(b)) are removed when the state
can be maintained by pre-computing or cachingtéorder g passed across segment boundaries.
filter statistics as discussed in Section II-C.

The spectrograms in Figures 1(a), 1(b) and 1(c) give visual2) Multiple regime models:The multiple regime (MR)
evidence of the potential benefits of a state which is continuoissmulation splits each phone into a number of regions, each
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of which is modelled by a separate LDM. Following 12}
deterministic mapping dependent on segment duration dictates
the sequence of sub-models which are used to generate each
phone. The assumptions described in Section II-E then apply
within sub-phone regions. The state can be passed or reset
between regions as described above.

An MR approach was not taken initially in this work
as using deterministic, hand-chosen mappings to partition
segments is suboptimal. If such an internal structure is to
be used, it should be described by some discrete, hidden
random variable, and the transition network learned prob-
abilistically. Furthermore, subdividing segments risks losing
their ‘segmental’ nature. The intention is to model longer
sections of speech in which linguistic events occur. Partitioning —— state covariance not included
phone-length segments will produce regions consisting of only ™| o seeemeE e
a few frames. Modelling may then tend toward the HMM
where models describe short, stationary regions of the speech
parameters within which there is little requirement for a model
of dynamics. Lastly, there are a number of design choices
in the LDM-of-phone which warrant investigation prior to ’
modification in this way. However, these models do provide 200}
an interesting extension to the LDM-of-phone formulation and '
warrant investigation as precursors to switching models [16].

1000

6001

400

correctly classified tokens

0
0

. . . .
5 10 15 20 25 30
segment length (10ms frames)

[1l. CLASSIFICATION EXPERIMENTS
A. Data and method Fig. 2. Phone classification by segment length #80 TIMIT
. sentences. The dashed line shows accuracy using the correct form of
All experimental work uses the TIMIT corpus [17] andikelihood calculation, and the solid line accuracy where likelihoods
follows the standard train/test division, omitting tha sen- are computed replacinge, = C + HY, ;1 H" with X[, = C.
tences which are the same for each speaker. Validation data
comprising480 sentences was set aside from the train set as

in [1]. Both MFCC and PLP features were derived from thg,spected that the resulting fluctuations in the likelihoods
acoustic signal, calculated withiZ?bms windows at a frame computed during segment-initial frames would have most
rate of10ms. All experiments use context-independent modelsgact on the overall likelihood of shorter phone segments.
For classification, a number of EM iterations are pen‘orme;qgure 2 shows the number of correctly classified tokens
to estimate parameters using the training data minus th&h 5 feature set of MECCs and energy frot80 TIMIT
validation set, and the models stored. Classification accuragyigation sentences, broken down by segment length. The
on the validation set is used to determine how many iteratiogshed line shows classification accuracy wittnormalized
the models should be trained for, and to choose a bigra .,, and the solid line shows the results of the same
language model scaling factor. Models are then retrainggky whereX,, = C + HY,,_,H” has been replaced with
using the combined training and validation data, and the fingL = C. For segments ovetl frames, the correct form
classifi_catior_l accuracy ?s for the full test set. The allowabig tlikelihood calculation gives a slightly higher accuracy.
confusions introduced in [18] are used to collapse @e However, for shorter segments, a modifisg gives markedly
phones down t@9 for final evaluation. higher classification accuracy. These results are forGthe
.\.Nhere _results are repqrted as representing statistically Sﬂﬂ’fone TIMIT set, prior to the addition of language model, and
nificant differences, a pairetitest has been used. Th844  ¢orrespond to overall accuracies 46.1% and 46.7% using
TIMIT test utterances are split int@4 subsets, accuracythe correct and modified likelihood calculations respectively.
computed yv|th|_n each and a palredest performed on Fhe Figure 3 shows framewise log-likelihoods across the utter-
results. A significance level gf < 0.001 is used to determine ance ‘Now forget all this other’ computed using both forms,

i dlffereljces are consistent across t_he test set. ._with the time-aligned phone labels used to determine which
Recalling that model likelihood is calculated accordin

and converges during the first few filter recursions. It Wat§|gure 3. A single standard deviation either side of the mean

1This was originally referred to as correlation invariance (Cl), renamed he!r% also Q'Ve”- We see from this plot that the average likelihood
to avoid confusion with the term ‘context-independent’. is consistently higher, and has lower spread, where the correct
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— rationale for choosing such a baseline is to isolate the contribu-
I ’ tion of the dynamic state. Section IV-C below compares LDM
performance with classical HMM baselines in a recognition

[M\/\/Wﬁmﬁ MW f 7 setting. Table IIl shows that for each feature set, LDMs give
i / gV f w | higher accuracy than the static model. These differences are
! 80

| |
@ n
=] =]

|
IS
S

framewise log-likelihood

statistically significant, which shows that the dynamic state
yields a modest yet consistent performance improvement.

|
o
S

. . . . .
0 20 40 60 100 120 140 160

frame number in utterance "Now forget all this other"
[ model | PLP, energy | +6 [ +6+86 ]
Fig. 3. Framewise likelihood computed using both correct and [—ggic 66.3% 70.1% “1.3%
modified form for the utterance ‘Now forget all this other’. LDM 67.8% (10) 71.0% (9) 72.2% (13)
[ model | MFCC, energy | +0 [ +6+65 |

‘ T static 66.4% 70.2% 71.3%

: E ﬁﬂ # E LoM_| 674%(12) | 713%(a2) | 723%()
w M %ﬁﬂ i i

|
@
&

I
IS
o

1 CLASSIFICATION ACCURACIES FORLDM AND STATIC MODELS.

| STATE DIMENSIONS ARE GIVEN IN PARENTHESES
O correct
o modified ||

L TR
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

token number in utterance "Now forget all this other" Section 1I-B above gave a number of variants on a fully
Fig. 4. Mean and single standard deviations of likelihood under aﬁpecm_eq .ITDM' The LDM Inc_ludes three Gauss_lan CO.Va”'
61 models for each of thes tokens in the utterance ‘Now forget all 21CeS: initial state\, state noiseD, and observation noise
this other’, computed using both modified and correct form. C. Given the similar performances found using MFCC and
PLP features, we choose to explore a number of modelling
possibilities using only MFCCs. Table IV gives classification

average log-likelihood
3 @
T

|

N

o
T

form has been used. accuracies where some or all of these are constrained to
be diagonal rather than full, for botH estimated from the
likelihood likelihood form data and set to the identity matrix. These results show that
computed over correct modified . . .
the state covariance®, A can be set to be diagonal with
true model only -345 -34.1 inimal i h h full ob . .
all models 463 482 minimal impact on accuracy, though full observation noise
TABLE Tl covarianceC is required for best performance. In all cases

COMPARISON OF AVERAGE FRAMEWISE LIKELIHOOD COMPUTED but one (base features, diagonal D), including subspace
USING CORRECT AND MODIFIED FORM$COMPUTED FOR TRUE ~ modelling throughH leads to accuracy increases over the
MODEL ONLY OR AVERAGED OVER ALL MODELS. smoothed Gauss-Markov realization as used in [2].

[ MFCC classification accuracy |

Table Il compares true-model and average likelihoods over 9i2gonal H =1, [MFCC energy  +6 [ +0+95 |
. . 0, 0, 0,
the full 480 validation utterances. Where the true model| & D4 v 63.7% 67.2% 67.3%
. L o : C, D, A X 64.4% 68.6% 68.8%
according to the labelling is used, the modified form gives c ~ 535% 5% 5 0%
a slightly higher framewise likelihood;-34.1 compared with c % 64.9% 68.4% 69.0%
—34.5. However, when averaged over all models, the correct—p_ A v 67.1% 70.5% 71.7%
form yields higher likelihood—46.3 compared to—-48.2. D, A X 67.0% 71.0% 72.0%
In summary, the modified form yields lower average like- - v 67.2% 70.6% 71.7%
- X 67.4% 71.3% 72.3%

lihood with greater spread when all models are considered, TABLE IV
though yields higher likelihood when computed according 10 ¢, AssiFICATION ACCURACIES WITH STATE OBSERVATION OR
the true model parameters. The modified form, which was, | covaRIANCES CONSTRAINED TO BE DIAGONAL WITH H
shown above to give improved phone-class discrimination, SPECIFIED OR SET TO THE IDENTITY MATRIX

will be used for the experiments reported in this paper unless

otherwise stated.

B. LDM-of-phone results C. Multiple regime models

Table Il shows the classification accuracy for LDM-of- Models of fricatives, silence and oral stop closures are mod-
phone and static models. The LDM state dimension (shownetled with a single region as the speech signal is considered to
parentheses) is chosen based on exhaustive search accotgingpproximately stationary during these sounds. Two regimes
to classification accuracy on the validation set. A full set aforresponding to ‘coming in’ and ‘going out’ are used for nasal
validation results are given in [1]. The static model is a fubtops, semivowels and glides, and for affricates which consist
covariance Gaussian, which gives a single-state monophafi¢he combination of a stop and a fricative. Vowels, which are
HMM with a unimodal full covariance output distribution. Thesubject to strong contextual variation, are split iBteegimes
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. - ' ‘ ) ; impl ' lassfficati
modelling ‘onset’, ‘steady state’ and ‘offset’. [19] describes trainin'gmp ementa:fsr;ing CZisc'u'f:Ct;fm (x fepaelet?me)
oral stop releases as consistingdafistinct regions: a transient, [ state reset ste reset | 67.4% | 05 l
frication at the point of articulation and finally aspiration. Oral [~z passed State reset 56.0% 05

stop releases are accordingly split iBteegimes. All segments state passed state passed|  67.0% 75
are split equally into their chosen number of regions except state passed,

. . . state passed el 66.7% 75
vowels which are apportioned in the rata:3. P correct likelihood °
TABLE VI
l PLP classification accuracy l STATE-PASSEDMFCC AND ENERGY CLASSIFICATION
model PLP, energy +94 +3 + 00 ACCURACIES.
LDM-of-phone 67.8% 71.0% 72.2%
MR static 68.6% 73.2% 74.2%
state-reset MR LDM 68.9% 73.5% 74.4% 20
state-passed MR LDM 70.2% 73.6% 74.5%
[ MFCC classification accuracy | 3
model MFCC, energy] +0 +5+60 37
LDM-of-phone 67.4% 71.3% 72.3% &
MR static 68.6% 73.3% 74.3% o
state-reset MR LDM 67.9% 73.3% 74.3% g%
state-passed MR LDM 69.5% 73.7% 74.5% ®
TABLE
—_45 L L L L L L
TIMIT CLASSIFICATION USINGMR STATIC AND LDM MODELS ! 2 8 * eration” 6 7 8
WITH RESULTS GIVEN FOR BOTH STATERESET AND
STATE-PASSEDMR LDMS. Fig. 5. Framewise likelihood during state-passed and -reset training.

Table V shows the classification results for MR static anf €ach new segment in both training and testing. State-passed
LDM models with both PLP and MFCC features. An MRraining followed by state-reset testing results in an accuracy of
static model corresponds to a particular form of HMM i6-0%, though using these same models and passing the state
which the state transitions are deterministic given segme?ftween segments during testing gives the improved result of
tal duration, and the output distribution is a unimodal fuf7-0%. The latter is close to the baseline, and suggests that a
covariance Gaussian. These are included to determine if tRismatch between training and testing causes a reduction in
dynamic portion of the model still contributes under thi§erformance.
implementation. The MR static models outperform LDM-of- The state-passed formulation yields higher likelihoods dur-
phone models, though the (dynamic) state-passed MR LDV training than state-reset models, as shown in Figure 5.
give the highest accuracies for all feature sets. However,Stmilarly, the model fit on unseen data is improved, with
is only where nos or &8s are included that the MR LDMs average framewise validation likelihoods -e82.6 and —34.1
give a statistically significant increase in accuracy over tf{gr the state-passed and state-reset respectively. This behaviour

static models, suggesting that the benefit of a dynamic stiteShown pictorially in Figure 6, which presents state-passed
is reduced when segments are divided in this way. and state-reset framewise likelihoods through the utterance

‘Now forget all this other’. The sudden decreases in the

state-reset likelihood correspond to segment boundaries. The
D. State-passed

state-passed
state-reset |+

The classification results of this section are for the TIMIT
core (rather than full) test set with an MFCC parameterization,
and the language models are the backed-off bigrams as use
in the recognition experiments of Section IV. Otherwise, the
classification procedure remains as described above. Standar
state-reset classification with these different language modelsé
and test set using MFCCs and energy gives an accuracy of -s
67.4%, identical to the result presented in Table Ill, and h = - - - TR
provides a baseline for the following experiments. The LDMs frame numberin utterance "Now forget ll his other”
were initialized identically to those used in producing theig 6. Framewise state-passed and state-reset likelihood for the
baseline result and trained from scratch with both state meangrance ‘Now forget all this other'.
and covariances passed over segment boundaries.

The state-passed results of Table VI were found with bothsults of Table VI show that in this case, improving the
the state mean and covariance passed across phone boundgeegrative model and increasing model likelihood does not
which results in decoding at aroufid times slower than real- lead to improved discrimination.
time on a2.4GHz Pentium P4 processor, which compares to Section IlI-A above showed that a modified likelihood
4 times faster than real time for the state-reset models.  calculation gave higher classification accuracies for shorter

These results show that the highest accuracg™i% is phones. With the state continuous across entire utterances,
given by the baseline result where the state is reset at the sthere may be an advantage by re-including the contribution

likShood
o
;

-30 b

Ve log

—40 4

L
140 160
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of state covariance in normalizing the prediction errors. The The efficiency or otherwise of am* search is largely

last result of Table VI shows that in fact this causes @determined byy;. Whilst the estimate of the remaining like-

slight reduction in performance, giving an accuracy0f7%. lihood must be optimistic, over-estimates can lead to a vastly

We find similar behaviour to that described in Section lll-Ancreased search space. Exact computation of the remaining

above, with the modified form giving higher likelihood whercost (which would involve summation over all possible word

evaluated using the true model32.6 compared to—33.4. sequences) is usually considered impractical and approxima-
tions are made using heuristic approaches [23], [24].

IV. CONTINUOUS SPEECH RECOGNITION

Letting Y = y = {y1,....yx} denote anN-length ob- B. Decoding for linear dynamic models

servation sequence, al? = wi™ = {ws,...,w;,} denote Pre-compiling a transition network according to the lan-
a corresponding word sequence, decoding can be definecd48ge, lexical and acoustic models [21] is a natural approach
finding the maximum a posteriori (MAP) probability of worddfor decoding with HMMs since the models are discrete and

W given observationd: finite-state right down to state level. By contrast, LDMs give
models of variable-length segments, and the continuous-valued
W* = argmaxP’(W|)) (14) state means that the Viterbi criterion, integral to efficient
%

time-synchronous search, is never admissible on a frame-
Bayes rule is used to decompose Equation 14 in terms ofvise basis (though dependent on implementation, may be at
sequence of sub-word models accounting for the full obsehe ends of phones or words). LDMs also require increased
vation sequenceM = mi~ = {my,...,my, }, and then the computation over frame-based models: vvji(yﬁ*ﬂmﬁf**)
Viterbi approximation [20] is applied to give: already calculated, extending acoustic matching by a single

. frame is straightforward. Since
W~ argmax{P(W) max p(y|M)P(M\W)} (15)

t+74+1, Kerrr1y ktyr
w t |mk,, )

p(y —p(et+f+1Imk+r+1)p(y§“\mkt )
By searching forV* whilst taking the maximum likelihood (18)
model sequence rather than summing over all possibilitigh that is required is a further forward Kalman recursion.
gives a significant increase in computational efficiency. ~ However, p(yijfﬂmzztﬁ) cannot be calculated in such an
Decoding for ASR can be defined in terms of the seardéificient manner. The state’s initial value influences the subse-
ordering, with a common strategy being time-synchrono@gient forward filtered state statistics, and hence any likelihood
forward dynamic programming (Viterbi decoding [21]), wher€omputation. Therefore, a separate Kalman filter must be run
all hypotheses at a given time are evaluated before the sedfchompute the model likelihoods for each candidate start time.
proceeds to the next time. An alternative approach, time-In [11], a time-synchronous strategy was proposed for

asynchronousi search, is considered in this work. decoding a non-linear state-space model, in which a stack
structure maintains a set of candidate paths for each phone

. node at each time. When inserting a hypothesis onto a stack,
A. A* search the Viterbi approximation is made on paths which are close
During best-first search, such a&* stack decoding, the together in state space. Another approach to decoding with
search order is determined by an evaluation function,At a non-linear state-space model is given by [15], in which
each cycle, the current most promising partial hypothesistlse continuous hidden space is discretized to validate a time-
chosen for extension. For aN-length observation sequencesynchronous search.
y2V, we define the evaluation functidrf for a hypothesis with  In the current study, we propose that a time-asynchronous
a path ending at timé < N as being composed of two partsstrategy is well suited to decoding with continuous state
. . models: with no requirement that the Viterbi criterion be
hi = fi+gi (16) applied at a frame level, the decoder is flexible to the choice of
The first is the detailed matcfi, and contains the likelihood @coustic model, and dependent on the accuracy of lookahead,
of observationsy’ under the acoustic, language and lexicduch search can be efficient in only exploring likely paths.

models: This approach also has the advantage that, unlike Viterbi
£ = p(y“m/lct) P(mlft |w{'t) P(w{'t) (17) decodmg., the Ianguage model is not used to generate each new

4 hypothesis. Decoupling the language model and hypothesis
where w)' = {wy,...,w;} and m¥ = {my,...,ms,} generation in this way means that the decoder can be designed

represent the hypothesized sequence of words and sub-wiard modular fashion, with the only restriction on the language
models respectively. The second is the lookahead fungtion model being that it must be able to assign probabilities to
which holds an estimated likelihood cost to account for thaitial portions of sentences consisting of whole words.
remainder of the observations), ;. Using an evaluation func- 1) Implementation of the core acoustic matchirig: prac-

tion composed of detailed match and lookahead functiontise, the detailed match of Equation 17 is computed as a
key to time-asynchronous search, as it allows the compariseaighted sum of log probabilities with the addition of a
of hypotheses of differing lengths. Such a search strategywsrd insertion penalty, as in [21], and a log-Gaussian phone
admissible as long ag' gives anupper boundn the acoustic duration distribution estimated on the training set [1]. For each
likelihood [22]. hypothesis which is popped, decoding involves a depth-first
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walk over a tree-shaped lexicon as described in [25]. Acoustic
matching takes place in a grid structure with time increasing
down they-axis and a column for each phone model to be
added. Hypotheses are extended by whole words, one phone
at a time, with an optional silence added at the start of each
new word. Phones are added as follows: for each candidate
start time, a Kalman filter is run to compute the acoustic
likelihoods for a range of end times. These are combined with
the other elements of the detailed match and the previous
path likelihood, then entered in the appropriate rows of the

following column. If the state is reset between phone models, 2500 ‘ ‘
the Viterbi approximation is applied where multiple paths ; ~ 7 Inital stack A = 1000
meet. zooof 1

2) Computing the lookahead functiggf: The decoding
experiments presented below consist of phone recognition
of isolated sentences. For every utterance to be decoded,
a Kalman filter is run across the full observation sequence
for each of the61 TIMIT phone models. The frame-wise
likelihoods under each model are ranked, then an average taken
across the tom. These averages are then summed so as to
produce a reverse accumulation of framewise likelihood. The
experiments reported in this work use= 1 which provides
a practical upper bound on the remaining likelihood, thougtg. 7. The adaptive pruning adjusts the stack beam wiltff*°* at

ignoring |anguage model and durational constraints means tﬁa@h i_teration to mainta_in a roughly constant number of stack items.
the lookahead is over-estimated This figure shows the firsi00 cycles of the decoder for large and

TAiti (stack) :
3) Pruning: Beam pruning, which is dependent on calcyS™a! initial & and a target stack size 800.

lated likelihood f; rather than lookaheadl, is implemented
both in the grid and on the stack, with(@"id) and A(stack)
denoting the grid and stack beam widths respectively. As e

word is addqui?d)the mgst .recently popped. hypoth.e5|s, &fich pruning has the effect of removing unlikely hypotheses
upper bound?; IS ma'”ta'?egd)on the likelihoods in the e first possible opportunity. In phone recognition experi-
grid. Any paths for whichf, < ;""" — Al are discarded. ments, pruning in the grid is found to make little difference to
Similarly a stack upper bounﬂﬁ“‘wk) is maintained and paths decoding speed, however the local beam widt"i may
for which f, > w{*“*) — Alsteck) are removed. have a more significant effect on the decoder speed for word
In practice, finding suitable values ah(***e*) proved recognition in which multiple phone models are evaluated in
problematic: tight thresholds could result in pruning away afhe grid.
hypotheses, whilst larger values af**e°*) resulted in a stack  4) Efficient implementation: Pre-computation of state
which grew to a size which significantly increased decodingatistics was discussed in Section II-C, and can be used during
time. An adaptive pruning scheme was developed in whichr@cognition with correspondingly significant savings. Since the
target stack size is chosen and at each iteration, the stack begsfe is reset between phones, computation can be further
width is updated dependent on the current stack size. Relatigduced by caching acoustic likelihoods.
19 gives the factor by which the stack beam widthste<)
is adjusted:

15001

stack size

1000+

500

0 100 200 300 400 500
decoder iteration

bECadvantageous to recognition performance, as the highest
uracies do not correspond to the largest grid beam widths.

C. Experimental results

Alstack)r _ (1 —alog stack3|ze'> Alstack) (19 The LDM-of-phone recognition experiments use the model
target stack siz sets which produced the classification results of Table IlI. The

The tuning parameter dictates how rapidly the beam widthvarious scaling factors and word insertion penalty were chosen
can change. A value oft = 0.1 was found to be suitable. on the validation set. A number of HMM baseline results have
Figure 7 illustrates the adaptive pruning scheme maintainibgen prepared using HTK [21], with models trained, validated
a stack of300 partial hypotheses during decoding. Throughnd tested on identical data and language model to that used
1000 decoder cycles, the stack size increases initially, butiis the LDM experiments. The HMMs were initialized with
soon capped and then remains fairly constant. uniform segmentation and Viterbi training, then Baum-Welch

We make the following observations of the effect of pruningp convergence with fixed segment label times followed by full
on the experiments reported below: the number of partiembedded training.
hypotheses kept on the stack has a significant effect on thell results are given on the NIST core test set, and use the
speed at which the decoder runs. The local beam wid#i’®)  same levels of pruning as applied during validation. Decoding
affects accuracy but has little effect on time to decode eauakes a set of1 models, though in reporting results the phone
utterance. For smaller stack sizes, pruning in the grid cast is collapsed down t89.
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[__phone | PLP, energy | +o [ +0+03 ] speech parameters. This was the finding of [16], though this
% correct 58.7% 62.9% 62.0% - e . .
% accuracy 55.2% 58 5% 58 5% study did not make additions which were found to be benefi-
[ phone | MFCC, energy | — [ 15108 | cial, sut_:h as full noise covariances and_ a modified likelihood
% correct 54.0% 60.0% 63.9% calculation. Alternatively, the true benefits of the state process
% accuracy 51.1% 57.2% 60.3% might be found with an alternative implementation.
TABLE VI Given that the state is used to model underlying dynamics

TIMIT NIST CORE TESTSETLDM RECOGNITION ACCURACIES  from segments which are subject to variation both between
and within speakers, the state-observation mapping should
be tuned to minimize these effects and produce consistent

LDM recognition results are given in Table VIl and ShoWunderlylng behaviour. One possibility is to employ a non-linear

that MECCs with energyss anddos appended give overall mapping between state and observations. The linear Gaussian

highest accuracy df0.3%. The majority of the confusions areassumptlons made by the Kalman filter do not h.OId in this
. . o case, and so [11], [12] apply an extended Kalman filter (EKF),
between vowels, with phones commonly misclassified»ag [ .

[ax] or [a0]. Also, errors appear in making voicing decision |'n which the non-linearity is approximateq by copstructing

with [b, d ] being frequently recognized as their voiseleqpeally linear state and observation equations. This assumes

counterpartsg, t J. tshat Fhe errors on Fruncatmg a Taylor series t(_) first order will be
' negligible, which in practice may not be valid. The problems

AN speed inherent in the EKF may also be associated with the practical
states mixtures  covariancg 8CCUTACY  Params (. eqitime) | difficulty in training a non-linear state-observation model as
1 1 diagonal | 51.4% 4.8K 0.045 discussed in [13], and an alternative filtering approach, such
3 1 diagonal 58.9% 14.5K 0.041 d by 126 di
1 1 full 58.1%  50.0K 0.064 as proposed by [26], may prove rewarding. _
3 1 full 65.6%  150.1K 0.14 Alternatively, [13], [14] propose a switching observation
1 20 diagonal | 64.2%  96.4K 0.14 process designed to approximate a non-linear mapping, whilst
3 20 diagonal 69.4% 289.1K 0.36 taini f th ful i fali G .
1 5 P 60.3%  100.0K 011 retaining many of the useful properties of a linear Gaussian
speed models. The maximum number of mixture components used
LDM accuracy — params (. (e time) | in the observation processes whswhich is small compared
- LEGS/-I?I% 82.8K 26 to the number of components which may be employed in an

HMM-based system. Increasing the number of components
may be beneficial. Another possible approach for reducing
the effects of inter-speaker variability is through adaptation of
the observation process using a form of maximum likelihood
linear regression (MLLR) [27], which could be implemented

As previously, we take a full covariance Gaussian as tf¢hilst retaining the linear-Gaussian properties of the LDM.
static model baseline, which equates to a single state monoJ "€ use of context-dependent models has become standard

phone HMM with unimodal full covariance Gaussian outpdf! 1MM systems, and may also be applied to LDMs. As with
distribution. The recognition accuracy 68.1% is given in MMs, parameter tying will be required to alleviate problems

row 3 of Table VIII, and represents a statistically significarf§ dat@ sparsity, though the LDM offers a multitude of ways in
reduction on the LDM accuracy @0.3%. A number of other Which this may be implemented as models may share some or
HMM results are given in Table VIII, along with numbers oftll parameters. For example, models within the same triphone

free parameters and decoding speeds. The classical TIMITC4!Ster might share observation but not state parameters, or
state HMM baseline gives an accuracy68f4%, substantially in the case of a switching observation process as discussed

higher than found for LDMs, and uses ovietimes more free above, models might share noise models and differ in their
parameters. ’ observation matricesl.

Results in Section IlI-B showed that a full covariance
observation noise model gave an accuracy increase over diag-
onal models. The increase in computation is marginal, as the

LDMs have been proposed for ASR under a variety d€alman filter recursions yield full prediction error covariance
implementations [2], [13], [14], [16]. This work has examinednatrices, though the number of free parameters is increased by
the core assumptions made in using such a model, along \N%ﬂﬂ(p—l) per Gaussian, whengis the observation dimension.
the associated implementational issues, and demonstrated khadelling the precision (inverse covariance) matrix as in [28],
the addition of a hidden dynamic state leads to improvddads to a factorization which separates a full covariance
accuracy. Relative error reductions 5% and 5.5% were matrix into rotation and magnitude components. This approach
found using LDMs compared to otherwise equivalent statfacilitates learning of covariance matrices which are between
models on TIMIT phone classification and recognition taskdiagonal and full, and also offers flexible parameter tying
However, in light of the extra computation, these gains do nsthemes where a covariance matrices share a common rotation
make a strong case for adoption of these models. component, but have uniqgue magnitudes. Both of these may

One possible conclusion which may be drawn is that a firgtove useful in ensuring robust estimation whilst increasing
order linear state process is inappropriate for modelling tfe number of models, whether through the introduction of

TIMIT NIST CORE TESFSETLDM AND HMM RECOGNITION
ACCURACIES FORMFCCs WITH ENERGY, §S AND §9S. NUMBERS
OF FREE PARAMETERS AND DECODING SPEEDS ARE ALSO GIVEN

V. DISCUSSION
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context-dependent or mixture models. [4]
The findings of Section 1lI-D were that passing state statis-

tics across segment boundaries led to decreases in class[gL—

cation accuracy. However, the success of such an approac
might depend on occasional resetting of the state as thel@
is a great deal of variation in the nature of the transition%]
between segments. In some cases, these will be highly non-
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of plosives. At other times, the segmental boundaries ang,
less well-defined, such as in the transition between a vowel
and a nasal stop. It may be that resetting the state for the
first of these examples would act as a regularizer for thﬁ]
state covariances, but allowing passing of the state in the
second would enhance modelling. Building an understanding
of the manner in which this choice interacts with the ability

to discriminate phone classes would be non-trivial, thougiy,
desirable given the intuitive appeal of such a model for ASR.
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APPENDIX

INFERENCE (14]

The Kalman filter equations are as below, and initialized b¥
settingx, |, and ¥, to the initial state mean and covariance™®

Xejp = X1 + Kiey
-1 = FXeqpa+w [16]
e = yi—Yt = yi—Vv—Hxy
Ky = Dy H'E] [17)
Yo, = Hzt\t—lHT +C
o = -1 — KX, K] [18]
Sieere = (= K H)FY 14
Yip—1 = th_”t_lFT—i—D [19]

A backward pass with the RTS smoother gives complet@p]
data estimates:

. A . . [21]
XN = Xpoip—1 + A(Re N — Xejp—1)
Sy = B AN — Zt|t—1)A;gT
Ay = S FTE =
Siiminy = Zep—pe + (SN — Zt\t)zatlzt,tflﬁ (23]
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