
A Trajectory Mixture Density Network for the Acoustic-Articulatory
Inversion Mapping

Korin Richmond

Centre for Speech Technology Research
University of Edinburgh, Edinburgh, United Kingdom

korin@cstr.ed.ac.uk

Abstract
This paper proposes a trajectory model which is based on a mix-
ture density network trained with target features augmented with
dynamic features together with an algorithm for estimating max-
imum likelihood trajectories which respects constraints between
the static and derived dynamic features. This model was evaluated
on an inversion mapping task. We found the introduction of the
trajectory model successfully reduced root mean square error by
up to7.5%, as well as increasing correlation scores.
Index Terms: acoustic-articulatory inversion, conditional trajec-
tory model, mixture density network.

1. Introduction
The acoustic-articulatory inversion mapping involves inverting the
forward process of speech production. In other words, for a given
acoustic speech signal we aim to estimate the underlying sequence
of articulatory configurations which produced it. Doing this well
could prove useful for many applications; for example low bit-rate
speech coding [1], speech analysis and synthesis [2], automatic
speech recognition [3], animating talking heads and so on.

Researchers have been investigating the inversion mapping for
several decades. Much work has focused on analysis of acoustic
signals based on mathematical models of speech production [4].
Articulatory synthesis models have also been used extensively, ei-
ther as part of a mimic, analysis-by-synthesis algorithm [5], or
to generate acoustic-articulatory databases which may be used as
part of a code-book approach [6] or to train other models [7].
More recently, the availability of larger quantities of human artic-
ulography data, for example from electromagnetic articulography
(EMA), has prompted much work on applying machine learning
models to human articulatory data, including artificial neural net-
works (ANNs) [8], codebook methods [9] and GMMs [10].

It is widely regarded that the difficulty in the acoustic-
articulatory mapping lies in its ill-posed nature. There is signif-
icant evidence to indicate that multiple articulatory configurations
can result in the same or very similar acoustic effect. In light of
this instantaneous “non-uniqueness”, how is a system intended to
perform the inversion mapping to choose been the alternatives?

In previous work [8], we have successfully used the mixture
density network (MDN) [11] to address this problem, as it gives
a full probability density function (pdf) over the target articula-
tory domain conditioned on the acoustic input. Other researchers
have used dynamic constraints to disambiguate instantaneous non-
uniqueness, for example [9, 7, 10]. Of these, the last is particularly
interesting. [10] used a GMM to perform the inversion mapping,
but formulated it as a statistical trajectory model by augmenting
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Figure 1:The mixture density network is the combination of a mix-
ture model and a neural network.

observations with delta and deltadelta features and then using the
maximum likelihood parameter estimation (MLPG) algorithm de-
scribed by [12] to give the maximum likelihood estimation of ar-
ticulatory trajectories which respects constraints between the static
and derived dynamic features. This same technique has also been
applied within an HMM-based speech production model for the
inversion mapping [13].

Due to the similarity in form of these models, it is natural to
ask whether MLPG can be usefully applied in the case of the MDN
too. The purpose of this paper is to evaluate this augmentation of
the MDN with a trajectory model on an inversion mapping task.

2. An MDN-based trajectory model
Since it is not widely known in the speech community, we give
here a very brief introduction to the MDN, before describing how
it may be extended with the MLPG algorithm to give a trajectory
model. For full details, the reader is referred to [11] and [12].

2.1. Mixture density networks

The MDN can be viewed as the amalgamation of a mixture model
and an ANN. In theory, any ANN with universal approximation
capabilities can be used and the mixture model can contain any
of a number of different kernel functions. Here, we will consider
only a multilayer perceptron and Gaussian mixture components
(priors α, meansµ and variancesσ2). In the trained MDN, the
ANN part is responsible for mapping from the input vectorx to
the control parameters of the mixture model, which in turn gives
a full pdf over the target domain, conditioned on the input vector



p(t|x). The toy-example MDN in Figure 1 takes an input vector
x of dimensionality 5 and gives the conditional probability density
of a vectort of dimensionality 1 in the target domain. This pdf
takes the form of a GMM with 3 components, so it is given as:

p(t|x) =

MX
j=1

αj(x)φj(t|x) (1)

whereM is the number of mixture components (in this example,
3), φj(t|x) is the conditional probability density given by thejth
kernel, andαj(x) is the mixing coefficient for thejth kernel.

In order to constrain the mixing coefficients to lie within the
range0 ≤ αj(x) ≤ 1 and to sum to unity, thesoftmaxfunction
is used to relate the output of the corresponding units in the neural
network to the mixing coefficients

αj =
exp(zα

j )PM
l=1 exp(zα

l )
(2)

wherezα
j is the output of the neural network corresponding to the

mixture coefficient for thejth mixture component. The variance
parameters are similarly related to the outputs of the ANN as

σj = exp(zσ
j ) (3)

wherezσ
j is the output of the neural network corresponding to the

variance for thejth mixture component, which avoids the variance
becoming less than or equal to zero. Finally, the means are repre-
sented directly by the corresponding outputs of the ANN:

µjk = zµ
jk (4)

wherezµ
jk is the value of the output unit corresponding to thekth

dimension of the mean vector for thejth mixture component.
The objective of training the MDN is to minimise the negative

log likelihood of the observed target data points

E = −
X

n

ln

(
MX

j=1

αj(x
n)φj(t

n|xn)

)
(5)

given the mixture model parameters. Since the ANN part of the
MDN provides the parameters for the mixture model, this error
function must be minimised with respect to the network weights.
Therefore, the derivatives of the error at the network output units
corresponding separately to the priors, means and variances of the
mixture model are calculated (see [11]) and then propagated back
through the network to find the derivatives of the error with respect
to the network weights. Thus, training the MDN is a problem to
which standard non-linear optimisation algorithms can be applied.

2.2. Maximum likelihood parameter generation

The first step to an MDN-based trajectory model is to train an
MDN with target feature vectors augmented with dynamic fea-
tures, standardly derived from linear combinations of a window of
static features. For the sake of simplicity, we will consider MDNs
with a single Gaussian distribution and a single target static fea-
turect at each time step. Next, given the output of this MDN in re-
sponse to a sequence of input vectors, in order to generate the max-
imum likelihood trajectory, we aim to maximizeP (O|Q) with re-
spect toO, whereO = [oT

1 ,oT
2 , ...,oT

T ]T , ot = [ct, ∆ct, ∆∆ct]
andQ is the sequence of Gaussians output by our MDN. The re-
lationship between the static features and those augmented with
derived dynamic features can be arranged in matrix form,
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Figure 2: Placement of EMA receiver coils in the MOCHA
database. See Table 1 for the key to abbreviations In this paper,
we used the 6 EMA channels for the tongue (x- and y-coords for
three positions).

label articulator label articulator

UL Upper lip TT Tongue tip
LL Lower lip TB Tongue body
LI Lower incisor TD Tongue Dorsum

Table 1:Key for placement of coils in the MOCHA dataset.

O = WC (6)

whereC is a sequence of static features andW is a transforma-
tion matrix composed of the coefficients of the delta and deltadelta
calculation window and0. Under the condition expressed in Eq.
6, maximisingP (O|Q) is equivalent to maximisingP (WC|Q)
with respect toC. By setting

∂ log P (WC|Q)

∂C
= 0 (7)

a set of linear equations is obtained (see [12])

WT U−1WC = WT U−1MT (8)

where MT = [µq1 , µq2 , ..., µqT ] and U−1 =
diag[U−1

q1 ,U−1
q2 , ...,U−1

qT
] (µqT and U−1

qt
are the 3 × 1

mean vector and3× 3 (diagonal) covariance matrix respectively).
Solving Eq. 8 forC yields the maximum likelihood trajectory.

3. Inversion experiment
To test whether the MLPG technique can be successfully com-
bined in practice with the MDN to form a trajectory model, we
carried out an inversion mapping experiment. We shall first de-
scribe the data used and then the experiment itself.

3.1. MOCHA articulatory data

The multichannel articulatory (MOCHA) data set [14] contains
four data streams recorded concurrently: the acoustic waveform
together with laryngograph, electropalatograph and electromag-
netic articulograph (2D EMA) data. Each of the sensors shown
in Figure 2 provide x- and y-coordinates in the midsagittal plane
sampled at 500Hz. Multiple speakers were recorded reading a set
of 460 short, phonetically-balanced British-TIMIT sentences.

The EMA data and speech waveforms for female British En-
glish speakerfsew0 were chosen from MOCHA for the experi-
ments in this paper. This is exactly the same data set as used in



[8], and so enables comparison with those and other similar results
reported in the literature (e.g. [10]).

3.1.1. Data processing

The acoustic data in the MOCHA dataset was subjected to filter-
bank analysis, using a Hamming window of 20ms with a shift of
10ms, resulting in an acoustic vector of 20 melscale filterbank co-
efficients for each time frame. These were z-score normalised and
scaled to lie within the range [0.0,1.0]. Meanwhile, the corre-
sponding EMA trajectories were downsampled to match the 10ms
shift rate of the acoustic features, then z-score normalised and
scaled to lie within the range [0.1,0.9]. The EMA processing
steps also incorporated the normalisation technique described in
[15], which aims to reduce the effect of EMA measurement er-
ror. Care was taken to discard feature vectors corresponding to
the silence at the beginning and end of each file, using the HMM
force-alignment labelling provided with the MOCHA dataset.

The partitioning of the data set into training, validation and test
sets is also the same as that in [8]. Of the 460 utterances contained
in the dataset for speakerfsew0 , 368 were included in the training
set, and the validation and testing sets contained 46 files each. A
context window of input acoustic frames was used of length 20
consecutive frames, which increased the order of the input acoustic
vector paired with each articulatory vector to 400.

3.2. Method

A straightforward way to implement and evaluate a Trajectory
MDN is to train separate MDNs for each of the static and derived
dynamic features, the output of which may then be used to perform
the MLPG algorithm to yield the maximum likelihood trajectory.
Thus, we chose to train 3 MDNs for each of the 6 channels of
EMA data for the tongue: one for the standard EMA features, one
for the delta features and one for the deltadelta features, making a
total of 18 MDNs trained. All networks contained a single hidden
layer of 60 units, which had been identified as a suitable number
in previous experiments. For these initial experiments, we decided
to use a single Gaussian for each of the MDNs as a simplification
and to provide a baseline for future experiments.

Training of the networks was canonical; the scaled conjugate
gradients non-linear optimisation algorithm was run for a maxi-
mum of 2000 epochs, and the separate validation set of 46 utter-
ances was used to identify the point at which an optimum appeared
to have been reached.

Generating output trajectories simply involves running the in-
put data for an utterance through the three MDNs for the static,
delta and deltadelta features for each articulatory channel, and then
running the MLPG algorithm on the resulting sequences of pdfs.

In order to demonstrate the effect of using the dynamic fea-
tures and the MLPG algorithm together to form the Trajectory
MDN, we can compare the resulting trajectories with those com-
prising just the mean of the MDNs trained on the static data. Tak-
ing the output corresponding to the mean of the MDN output pdf
is equivalent to using an MLP (with linear output activation func-
tion) trained with a standard least-squares error function. In this
way, therefore, we can directly observe the effect of using the aug-
mented dynamic features without regard to any confounding effect
of two systems having been trained differently.

correlation RMSE(mm) % RMSE
channel static +∆, ∆∆ static +∆, ∆∆ reduction

tt x 0.82 0.84 2.30 2.22 3.6
tt y 0.87 0.89 2.31 2.22 3.9
tb x 0.82 0.84 2.13 2.04 4.1
tb y 0.86 0.88 1.93 1.81 6.4
td x 0.81 0.82 1.98 1.91 3.8
td y 0.78 0.81 2.07 1.92 7.5

Table 2: Comparison of results for the inversion mapping esti-
mated by MLP-equivalent (only static features) and the full Tra-
jectory MDN (using dynamic features and the MLPG algorithm).

correlation RMSE(mm) % RMSE
channel prev +∆, ∆∆ prev +∆, ∆∆ reduction

tt x 0.79 0.84 2.43 2.22 8.7
tt y 0.84 0.89 2.56 2.22 13.4
tb x 0.81 0.84 2.19 2.04 6.7
tb y 0.83 0.88 2.14 1.81 15.4
td x 0.79 0.82 2.04 1.91 6.6
td y 0.71 0.81 2.31 1.92 17.0

Table 3: Comparison of results observed in this experiment with
those previously reported in [15](“prev”).

4. Results
Figure 3 gives an example utterance to compare the two estimated
trajectories with the true one. Meanwhile, Table 2 gives the results
comparing the performance of the standard MLP equivalent (static
features only) with the proposed Trajectory MDN (+∆, ∆∆).
Two measures have been used: correlation and root mean square
error (RMSE) expressed in millimetres. The use of dynamic fea-
tures and the MLPG algorithm within the Trajectory MDN has im-
proved results in terms of a reduction of RMS error and an increase
in correlation for all channels tested.

Table 3 compares the performance of the Trajectory MDN pre-
sented here with the corresponding results previously reported for
the same dataset in [8]. The improvement using the Trajectory
MDN proposed here over the MLP results in [8] is substantial,
ranging between6.6% and17.0% in RMS error reduction.

It is also worth noting the results for the Trajectory MDN are
in line with those reported in [10]. The average RMSE for the ar-
ticulators reported here is2.02mm, while the average RMSE of the
best results reported in [10] for the same articulators is1.98mm.

5. Discussion
The experiment described has aimed simply to establish that the
technique works and to provide a baseline. Subsequent work will
increase complexity, including inversion for the full set of artic-
ulators, and developing an MDN implementation with diagonal
covariance, so the augmented feature vectors may be trained in a
single MDN instead of three separate ones. In addition, we intend
to evaluate using multiple mixtures in the MDN output pdf, which
will require a decoding step for the sequence of mixture compo-
nents, as described in [12]. Results from [8] indicate that using
multiple mixtures does give a more accurate representation of the
target articulatory domain than a single Gaussian, therefore we ex-
pect this will improve results further. Finally, so far, we have only
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Figure 3:Comparing the MLP-equivalent (only static features) and the full Trajectory MDN (dynamic features and the MLPG algorithm)
for the utterance “The speech symposium might begin on Monday.” The trajectory MDN output is smoother and closer in nature to the real
trajectory, and more accurate (e.g. around0.5 and1.5s).

applied the MLPG algorithm for trajectory estimation. In future
work, we intend to look at whether respecting the same constraints
between static and dynamic features can be applied to MDN train-
ing too.

6. Conclusions
We have demonstrated that the MDN may successfully be ex-
tended to provide a statistical conditional trajectory model by aug-
menting the static target features with derived dynamic features
and using the maximum likelihood parameter generation algo-
rithm. This method provides a useful way to use the output of
the mixture density network where a single trajectory is required
rather than a probability density function. Using this method, we
have substantially improved upon the performance of our previ-
ous neural network inversion mapping. Finally, the success of the
method in this case shows promise that the trajectory MDN may
prove useful in modelling conditional trajectories in other prob-
lems.
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