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ABSTRACT

In this paper we propose partially specified dialogue strategies for
dialogue strategy optimization, where part of the strategyis spec-
ified deterministically and the rest optimized with Reinforcement
Learning (RL). To do this we apply RL with Hierarchical Abstract
Machines (HAMs). We also propose to build simulated users us-
ing HAMs, incorporating a combination of hierarchical determinis-
tic and probabilistic behaviour. We performed experimentsusing a
single-goal flight booking dialogue system, and compare twodia-
logue strategies (deterministic and optimized) using three types of
simulated user (novice, experienced and expert). Our results show
that HAMs are promising for both dialogue optimization and simu-
lation, and provide evidence that indeed partially specified dialogue
strategies can outperform deterministic ones (on average 4.7 fewer
system turns) with faster learning than the traditional RL framework.
Index Terms: reinforcement learning, spoken dialogue systems.

1. INTRODUCTION

A dialogue strategy is a key component for a spoken dialogue sys-
tem because it governs the control flow of the conversation. Ideally,
dialogue strategies should lead dialogue systems towards successful,
efficient and natural conversations. However, designing such dia-
logue strategies is a challenging task without a simple solution. On
the one hand, dialogue strategies must collaborate with imperfect
components such as the automatic speech recognizer (ASR). On the
other, dialogue strategies must consider all possible situations in the
conversation taking into account the ASR performance, typeof user,
database content, etc. Furthermore, whilst designing dialogue strate-
gies for system-initiative and small-scale dialogue systems may be
straightforward, the opposite occurs for mixed-initiative and larger-
scale dialogue systems. This means that as the dialogue complexity
increases, dialogue strategies designed by humans are moreprone to
errors, labour-intensive and non-portable. These facts motivate the
topic of semi-automatic dialogue strategy design.

Previous research efforts have proposed several methods for di-
alogue strategy design. The most basic methods are based on de-
terministic finite state machines, where the states represent ques-
tions and the transitions control the flow of the conversation [1].
These methods have been successful for system-initiative dialogue
systems, but are impractical for mixed-initiative dialogue systems.
A more recent approach applies the reinforcement learning frame-
work [2], in which an agent learns the best actions for every sit-
uation in the conversation. This approach is a promising solution
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for mixed-initiative dialogue systems; however, it is computation-
ally expensive since it requires many dialogues to learn near-optimal
dialogue strategies. Potential solutions for this probleminclude re-
duced search spaces (before learning) [2,3], function approximation
[4] and dialogue simulation [5,6]. However, there is a lack of a prin-
cipled methodology for reducing search spaces to manageable sizes.

In this paper we propose to design dialogue strategies usinga
combination of Finite State Machines (FSMs) and Reinforcement
Learning (RL) in the context of Markov Decision Processes (MDPs).
The basic idea is to design dialogue strategies using FSMs, speci-
fying obvious actions deterministically and specifying difficult ac-
tions stochastically; the latter are the ones to be optimized. For such
purpose we apply RL with Hierarchical Abstract Machines (HAMs)
[7,8]. This method offers the following benefits among others: a)
partially specified dialogue strategies, because the system developer
decides what to hand-craft and what to optimize; b) faster learn-
ing, because the RL agent uses reduced search spaces due to the
prior knowledge incorporated in the HAMs; c) potentially improved
performance, because RL optimizes parts of the dialogue strategy;
and d) knowledge transfer, because the HAMs may be reusable.In
addition, we propose to build simulated user models using HAMs,
incorporating hierarchical deterministic and probabilistic behaviour.

In this paper we assume the reader is familiar with the funda-
mentals of FSMs, MDPs and RL.

2. REINFORCEMENT LEARNING WITH
HIERARCHICAL ABSTRACT MACHINES

A Hierarchical Abstract Machine (HAM) is a program that con-
strains the actions that an RL agent can take in each state [7,8].
HAMs are similar to non-deterministic FSMs whose transitions may
invoke lower-level machines. When a hierarchical machine is called,
control is transferred to the start state, where machine states are vis-
ited until reaching a stop state, which returns control to the caller,
and then determines the next machine state, and so on until reaching
the stop state of the root machine.

A HAM is a collection of three-tuplesHi = (µ, I, δ), whereµ
is a finite set of machine states,I is the initial state, andδ is the tran-
sition function determining the next state using either deterministic
or stochastic transitions. The main types of machine statesare:start
(execute the current machine),action (execute an action),call (ex-
ecute another machine),choice(select the next machine state), and
stop(halt execution and return control). A machineHi is abstract
(or partially specified) if it specifies non-deterministic choice states.

For any MDPM and any HAMH , there exists an induced MDP
M ′ = H ◦M [7]. The solution defines an optimal policy that max-
imizes the expected total reward by an RL agent executingH in M .
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Fig. 1. Hierarchical deterministic and abstract machines for two generic dialogue strategies: Deterministic (left) and Optimized (right).
Notation: Ellipses=call states, rectangles=choice states, lightly shaded circles=action states.

A brief description of the induced MDPM ′ =< S′, A′, T ′, R′ >
is as follows: a) the set of statesS′ is the cross-product1 between
the choice states ofH and the states ofM , b) the set of actionsA′

for a given state corresponds to the action states (or call states) that
change only the machine component, c) the transition function T ′

corresponds to executing the transition functionsT andδ in paral-
lel, and d) the reward functionR′ is the same asR for single-step
actions, otherwise the reward is zero.

The aim of the induced MDP is to work with a reduced search
space using single-step and multi-step (or high-level) actions, the
latter correspond to call states. As a consequence, the induced MDP
is in fact a Semi-Markov Decision Process (SMDP), because actions
can take more that one time-step to complete.

A learning algorithm for the induced SMDP is a variation of Q-
learning called SMDP Q-learning2. This algorithm can be applied
to the HAMs framework using an extended Q-tableQ([s, m], a),
which is indexed by an environment states, machine statem, and
actiona taken at a choice statem. In this way, the algorithm applies
the following update rule from choice state to choice state:

Q([s,m], a)← Q([s, m], a)+

α[r + γτ max
a′

Q([s′, m′], a′)]−Q([s, m], a)],

wherer = rt+1 + γrt+2 + ... + γτ−1rt+τ , andτ is the number of
time steps elapsed between states and states′.

3. DIALOGUE STRATEGY OPTIMIZATION

3.1. Designing Partially Specified Dialogue Strategies

The idea of partially specified dialogue strategies serves two impor-
tant purposes. First, to give freedom to the system developer in what
to specify manually and what to optimize; and second, to reduce
search spaces due to the fact that they grow exponentially using the

1Parr and Russell [7] propose a method to reduce large inducedMDPs,
but we used the following conditions: a) parent transitionsof choice states
are taken into account, b) environment states that did not match any choice
state are removed, and c) states with an empty set of actions are also removed.

2SMDP Q-Learning converges under similar conditions as Q-Learning.

Table 1. State-action space representation4−6 .
STATE ACTIONS

(dialogue history , slot in focus)

q0.u|q1.u|q2.u|q3.u|q4.u,q0 req,apo,sec,sic,mec,mic,acc
q0.l|q1.u|q2.u|q3.u|q4.u,q1 req,apo,sec,sic,mec,mic,acc
q0.m|q1.u|q2.u|q3.u|q4.u,q2 req,apo,sec,sic,mec,mic,acc
q0.h|q1.u|q2.u|q3.u|q4.u,q3 req,apo,sec,sic,mec,mic,acc

... ...
q0.c|q1.c|q2.c|q3.c|q4.c,q4 g

standard RL framework. We propose the following methodology to
design optimized dialogue strategies: 1) Design an MDP by choos-
ing an appropriate representation of states, actions and reward func-
tion; 2) design a dialogue strategy using HAMs, 3) generate the in-
duced (S)MDPM ′ = H ◦M , 4) learn a dialogue strategy usingM ′

and simulated users3, and 5) test the learnt dialogue strategy.
As an illustrative case study, consider a single-goal flightbook-

ing dialogue system with slots4 Q = {q0, q1, q2, q3, q4}, state vari-
able describing the slot status5 V = {u, l, m, h, c} and actions6

A = {req, apo, sec, sic, mec, mic, acc}. Assume that the environ-
ment states are compounded by dialogue history and slot in focusqi,
where the former has combinations ofQ andV separated with the
character “|” (see table 1). The size of this state space is computed as
|S| = |V ||Q| × |Q| plus the terminal state. Thus, the size of the full
state-action space corresponds to|S ×A| = 109376 state-actions.

The rest of this section focuses on step two of our methodology,
which describes the design of two dialogue strategies usingHAMs,

3Learning dialogue strategies with real users is possible but impractical.
4Slots: q0=departure city, q1=destination city, q2=departure date,

q3=departure time, q4=flight offer. The last slot within a dialogue goal is
referred to as the terminal slot, the others are non-terminal.

5Values of the state variable slot status: u=unknown, l=low confidence,
m=medium confidence, h=high confidence, c=confirmed.

6Actions: req=request, apo=apology, sec=single explicit confirmation,
sic=single implicit confirmation (with request), mec=multiple explicit con-
firmation, mic=multiple implicit confirmation (with request), acc=accept slot
in focus (and move to the next unfilled slot, from left to right), g=goal.
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Fig. 2. A simulated user model using hierarchical abstract machines, where sequences of action states correspond to user responses.

illustrated in figure 1. The first strategy uses a deterministic HAM,
labelled as H07. Notice that this machine has only deterministic tran-
sitions, meaning that no optimization is required at all. But if we per-
form the cross product of this machine and the state space of our case
study, the size of the induced state-action space is|S′×A′| = 2261,
representing only2.06% of the full search space. However, there
may be better dialogue strategies than deterministic ones,and rein-
forcement learning with HAMs aim to find those ones.

The second strategy for our case study uses a HAM with deter-
ministic and stochastic transitions, labelled as machine H1. It means
that whilst deterministic transitions of choice states correspond to
one action per environment state, stochastic transitions produce a re-
duced action set that will be optimized using RL. For instance, the
action set for environment states = q0.m|q1.u|q2.u|q3.u|q4.u, q0
is a = {sec, apo, acc}, because the slot in focusq0 is filled and
there is a single slot to confirm, corresponding to the transition con-
dition “s=ntfsif+sstc”. The cross product of the machine H1and
the state space of our case study yields a state-action spaceof size
|S′×A′| = 5261, representing only4.81% of the full search space.
Obviously, the quality of the learnt dialogue strategy willdepend on
the constraints specified in the HAM, but there are benefits atthe
same time: a) tailored dialogue optimization, b) faster learning, c)
reduced computational demands, and d) reusable HAMs.

3.2. User Simulation Using HAMs

Most of the previous work in user simulation for optimizing dialogue
strategies uses statistical techniques [5]. Such methods are useful
because they explore a vast amount of user behaviour due to the ran-
domness in the models, but they can yield incoherent user responses.
In this paper we propose hierarchical behaviour modelling for user
simulation, and use HAMs such a purpose. HAM-based user mod-
els are attractive for the following reasons: a) models can be fully-

7Abbreviations: s=state, a=action, ntus=non-terminal unfilled slots,
ntfs=non-terminal filled slots, ntcs=non-terminal confirmed slots, ntsif=non-
terminal slot in focus, tsif=terminal slot in focus, usif=unfilled slot in fo-
cus, fsif=filled slot in focus, csif=confirmed slot in focus,nstc=none slots
to confirm, sstc=single slot to confirm, mstc=multiple slotsto confirm,
cl=confidence level, ntusif/ntfsif=non-terminal unfilled/filled slot in focus.

handcrafted, this is useful in the absence of training data;b) models
can be fully learnt from data, this is useful in the presence of train-
ing data; c) models can be partially specified, this is usefulbecause
the combination of hierarchical deterministic and probabilistic be-
haviour may yield more coherent user responses; and d) HAM-based
user models assume that they know the current state and action of
the environment, which may yield more consistent responses. This
makes HAM-based user models different from previous approaches.

Figure 2 illustrates a hand-crafted HAM-based simulated user
model using intentions8, suitable to interact with the spoken dia-
logue system described in the previous section. This model includes
three types of user: novice, experienced and expert. The execution
of the HAM H2 generates a user response given by the sequence of
visited action states9. As an example, consider the environment state
s = q0.u|q1.u|q2.u|q3.u|q4.u, q0, actiona = req, and type of user
um = 1. The machine H2 invokes the child machine H20 (because
the action is a request), then it invokes the machine H200 (because
the user type is novice), then it chooses between an in-vocabulary
or out-of-vocabulary response, the former takes into account the slot
in focus to observe action states, and so on until the stop state of the
root machine is found. Notice that machines H200-H202 (compactly
illustrated) have different probabilities for each type ofuser. These
machines model user behaviour according to the following assump-
tions: a) novice users behave with more confusion and less initiative,
b) expert users behave with less confusion and more initiative, c) ex-
perienced users behave between novice and experts, and d) positive
confirmations are more likely to higher confidence levels.

The justification for building a hand-crafted simulated user model
is due to the lack of richly annotated dialogue corpora for training
models. For instance, the DARPA Communicator corpora does not
include annotations for ASR confidence levels. Nevertheless, the
proposed user model utilizes empirical knowledge to model simple
reasonable behaviour of real users. Furthermore, the use ofmore
complex hierarchies could describe more complex behaviour, and
they may be reusable and/or task independent, facilitatingthe opti-
mization of dialogue strategies in new domains.

8Level of communication above words, analogous to dialogue acts.
9Intentions: yes, no, c1=departure city, c2=destination city, da=departure

date, ti=departure time, oov=out-of-vocabulary response, rs=reprovide slots.
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4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

Our experiments used a single-goal flight booking spoken dialogue
system, as described in section 3.1. The aim was to investigate the
performance of deterministic and optimized dialogue strategies us-
ing different types of user, by applying the proposed approach of par-
tially specified dialogue strategies. In our experiments only the op-
timized dialogue strategy required learning. These experiments uti-
lized a simulated environment including a simulated user model and
an ASR confidence level model. Whilst the simulated user model
was described in section 3.2, the ASR confidence level model used
the HAM illustrated in figure 3. This HAM observes confidence
levels given the type of user, and its stochastic transitions apply the
following assumption: ASR performance is better (i.e., higher con-
fidence levels) for expert users than for novice users. Thus,the in-
duced MDP was generated as follows: a) states and actions as de-
scribed in sections 2 and 3.1, but we only used single step actions,
and leave multi-step actions as future work; b) the transition function
used deterministic transitions, based on the current environment-
machine state, action, user response and confidence level; and c)
the reward function evaluated dialogue length, consistingof +100 if
all slots were confirmed and0 otherwise.

Our experiments used the following learning setup: algorithm
= SMDP Q-Learning, equivalent to Q-Learning when using single
time steps; step sizeα = 100/(100 + t), with t elapsed time-steps;
discount factorγ = 0.9; selection strategy= ε-greedy, with20%
exploration; initial Q-values= 0; and learning episodes= 105.

4.2. Results

Figure 4 shows test results comparing both dialogue strategies (de-
terministic and optimized) using three types of user (novice, experi-
enced, and expert). The X-axis corresponds to the type of user used
to test the dialogue strategies, and the Y-axis correspondsto average
number of system turns. All dialogues were successful, the only dif-
ference being in the number of turns taken to reach the final state.
The optimized strategies report a cross evaluation using the three
types of user and a mixture of them, the last (ALL) means that each
episode (dialogue) used a randomly chosen user.

Each bar reports the mean and standard deviation (thin lines),
and used105 simulated dialogues. Our results are statistically sig-
nificant because of the large number of simulations (p < 0.01). We
can observe that the optimized strategies performed significantly bet-
ter for novice users, slightly better for experienced users, about the
same for expert users, and significantly better using all users (on av-
erage4.7 fewer system turns than the deterministic strategy). This
result tells us that our deterministic strategy was more appropriate
for expert users than for the other users. Also, this result tells us that
simulated user models must take into account different types of user,
otherwise the learnt strategies will be sub-optimal for different users.
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5. CONCLUSIONS AND FUTURE WORK

In this paper we proposed partially specified dialogue strategies for
dialogue strategy optimization. For this purpose we used Reinforce-
ment Learning (RL) with Hierarchical Abstract Machines (HAMs).
We also proposed to build simulated user models using HAMs. Our
findings are as follows: a) HAMs are useful to reduce search spaces
for dialogue optimization, b) HAMs are useful for modellinguser
behaviour in a hierarchical way, c) user simulation must take into ac-
count different user types, and d) partially specified dialogue strate-
gies are promising due to the fact that they can outperform deter-
ministic ones (on average 4.7 fewer system turns using the optimized
strategy with all users) with fewer computational demands than stan-
dard RL (less than5% of the full search space in our case study).

Recommended future work is as follows: a) more complex and
larger-scale spoken dialogue systems, b) hierarchical reinforcement
learning of dialogue strategies using SMDPs and partially observ-
able SMDPs, c) comparison with function approximation methods
e) evaluation of task-(in)dependent/hand-crafted/learnt HAM-based
user models, and f) experiments with real users.
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