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Abstract

We describe a unit selection technique for text-to-speech synthe-
sis which jointly searches the space of possible diphone sequences
and the space of possible prosodic unit sequences in order to pro-
duce synthetic speech with more natural prosody. We demon-
strates that this search, although currently computationally expen-
sive, can achieve improved intonation compared to a baseline in
which only the space of possible diphone sequences is searched.
We discuss ways in which the search could be made sufficiently
efficient for use in a real-time system.
Index Terms: speech synthesis, unit selection, prosody.

1. Introduction
At its best, unit selection speech synthesis can produce synthetic
speech with a segmental quality almost indistinguishable from nat-
ural speech. As a consequence, the inadequacy of current models
of prosody become much more apparent, if theF0 and segment
durations predicted by such models are imposed on the synthetic
speech. In some circumstances, the prosody of synthetic speech
can be considered of limited importance and one can use sim-
ple constraints to ensure the system produces conservative neutral
prosody.

There are however many application of speech synthesis
where correct, natural sounding prosody is important. Specifi-
cally, situations where a synthesiser is expected to convey mean-
ing through the prosody. Language generation systems and any
form of dialogue are likely to require the ability to produce em-
phasis and contrasts, and even pitch contours which express doubt
or confirmation. In these situations, neutral prosody is entirely in-
appropriate, and a system using it will sound bad.

The usual approach to modelling prosody is to predictF0 and
duration, usually in terms of symbols which are subsequently re-
alised in theF0 contour and segment durations. In diphone synthe-
sis, theseF0 and duration specifications are imposed using signal
processing. In unit selection, it is more usual to incorporate them
into the specification of target utterance and then to search for units
(e.g. diphones or half-phones) that match the target (the closeness
of the match being measured by the target cost function).

Festival has, to date, used CARTs [1] and linear regression
models [2] for the prediction of prosody. These models are appro-
priate for diphone synthesis, or perhaps for HMM-based synthe-
sis; in both cases, signal processing leads to a noticeably unnatural
quality to the synthetic speech signal. However, when these mod-
els are used in a unit selection system, they are clearly the weakest
link in the overall quality of the resulting speech; we have found
that a system without any prosodic model at all often sounds better.

Recent work [3, 4] has shown that unit selection techniques

can be used to search for sequences of prosodic units rather than
segmental ones. However, in this previous work, these methods
have only been used to find a single target prosodic specification
which is then used, via the target cost, as a constraint for the
segmental search. This method has the major drawback that the
prosodic sequence is chosen independently of the segmental units;
there is therefore no guarantee that a suitable sequence of segmen-
tal units exits in the database. Additionally, since there are likely to
be many acceptable prosodic realisations for any given utterance,
the early decision to choose a single target prosodic sequence is
far from optimal (and reminiscent of early “phonetic typewriter”
approaches to automatic speech recognition (ASR), in which the
phone sequence was first decided, and then decoded into words).

2. Approach
We now introduce a unit selection method that adopts a key prop-
erty from ASR: the principle of delayed decisions, or the propaga-
tion of uncertainty. This methodjointly searches for a sequence of
segments and a sequence of prosodic units that together minimise
some cost function.

In the following explanation, we will first consider a simpler
system in which a singleF0 contour is first predicted by a search
for a sequence of prosodic units, and then segmental units are cho-
sen that have similarF0 values to this predicted contour. After
this explanation, we describe how our system performs the two
searches jointly.

2.1. Comparison to previous work

The closest previous work is that of [5] which composes a pre-
dictive prosodic model with the segmental search by the use of
weighted finite state transducers, to allow for a search of more
than one fixed prosodic target. Our approach differs in that in-
stead of having a structured model trained on data incorporated
dynamically into the search procedure, we rely only on the inher-
ent structure of the unit selection database, plus the prosodic target
and join costs, to predict prosody.

An advantage of our technique is that it requires minimal extra
preparation of data when building a new voice, and the prosodic
model for a given voice is always specific to that voice and does
not use data from other speakers. A consequence of this is that the
database must be designed to take prosodic coverage into account
as well as segmental coverage.

2.2. Predicting anF0 contour

We do not employ an explicit predictive model ofF0 to produce
this contour. Instead, theF0 contour is found using unit selection



techniques by selecting a prosodic unit sequence that minimises
a cost function, similarly to [4]. The prosodic units are syllables,
from the same speech database used for the segmental units. So,
the prosodic “model” is composed of the speech database plus the
cost function.

The cost function used to select the optimal sequence of
prosodic syllable units ignores the segmental constituents of the
units and is composed of target and join sub-costs, as in a con-
ventional segmental search. The join cost is very simple and only
measures theF0 mismatch at prosodic unit concatenation points.

The target cost uses the following component features: the
phrase typethat a syllable is found in, theposition in the phraseof
the syllable, theposition in the wordof the syllable, the presence
of lexical stresson the syllable, and the van Santen and Hirschberg
[6] classifications of the structure of the onset and coda of the syl-
lable.

The phrase type takes values such asstatement ,
YN-question , Wh-question , and is intended to allow pre-
selection of units of a particular intonational tune type in an at-
tempt to provide consistency at the intonational tune level. The
work in this paper only uses units of the phrase typestatement ;
design and annotation of datasets containing a wider rage of phrase
types is work in progress.

Both theposition in the phraseandposition in the wordfea-
tures take one of six values each to represents the position of the
syllable. The values (illustrated in figure 1 forposition in the word)
are designed to determine whether a syllable is initial, medial or
final in the larger local utterance structure. The six possible values
for these two features are:

IF (Initial and Final) A syllable is the only syllable in the
word/phrase

IP (Initial and Penultimate) The syllable is the first of only two
syllables in the word/phrase.

I (Initial) The syllable is the first syllable of three or more sylla-
bles in the word/phrase

FS (Final and Second) The syllable is the final syllable of a two
syllables word/phrase.

F (Final) The syllable is the final syllable of a word/phrase of
three or more syllables.

M The syllable is medial in a word/phrase of three or more sylla-
bles.

IF

IP FS

I

M

F

cat
catless catless
catlessness
catlessness
catlessness

Figure 1: Examples of syllables for each of the values of theposi-
tion in the wordfeature.

The lexical stressfeature is binary, and the van Santen and
Hirschberg features take the values:-V for unvoiced,+V-S for
voiced but no sonorants, and+S for sonorants.

For each target syllable we currently preselect as suitable can-
didates only syllables which have the correctphrase type, position
in phraseandposition in wordfeatures. This is done to ensure a

level of consistency in the intonation tune at the utterance level.
These features are then left out of the target cost.

For example the first syllable unit in the utterance “Take the
black one.” would be have the featuresstatement;I;IF (the
syllable is from an utterance with a statement contour, is the first
syllable in a phrase containing more than three syllables and is
in a word consisting of a single syllable) and only syllables in the
database matching this description would be considered as suitable
prosodic candidates for the syllable ‘take’

2.3. Using the resultingF0 contour to guide the segmental
search

For simplicity of explanation, let us continue to assume that the
prosodic search has predicted a single targetF0 contour. The seg-
mental search now simply proceeds in the usual way [7], with the
target cost incorporating a component that measures the difference
between each candidate unit’sF0 and the targetF0. Note that the
F0 contour found by the prosodic search isnot imposed on the seg-
mental units, it is merely a constraint guiding the segmental unit
search.

2.4. Joint search

In our system, the prosodic search is not carried out first, but is
done jointly with the segmental search. This is equivalent to first
finding the N best prosodic unit sequences (for very large N) then,
for each of them, finding the best segmental unit sequence, and
combining the prosodic and segmental costs to make the final de-
cision as to the best segmental sequence.

Rather than constructing a very large finite automaton (FSA)
from the product of the two FSAs for the segmental and prosodic
candidate units, we implement an equivalent algorithm which we
describe as atied search of the two FSAs.

In addition to target and join costs for each search space, atie
cost is introduced. The tie cost replaces theF0 component of the
segmental target cost and compares a segmental candidate and a
prosodic candidate in terms ofF0.

An updated version of the Festival’s [8] Multisyn [7] engine
was used to implement the proposed method. From a single voice
database, twoinventoriesare indexed. This indexing specifies how
the data is to be used in each part of search. The database is first
indexed as a set of diphones, to produce and inventory for use in
the segmental search; it is then indexed as a set of syllable sized
units to be used as the inventory for the prosodic search.

Before the search is performed for a target utterance, the lan-
guage processing stage of text-to-speech synthesis is carried using
the default Festival front end, resulting in a heterogeneous relation
graph structure [9] representing the utterance. From this structure,
two target sequences are created. A segmental target sequence of
diphones is created from the phone sequence of the target utter-
ance, and a prosodic target sequences of syllables is created from
the syllable sequence of the target utterance. Two time-aligned fi-
nite state networks are then constructed from the two sets (prosodic
and segmental) of candidate units retrieved from the database.

Each of the states in the prosodic network, which correspond
to syllable-sized units, are assigned a time index to match the time
index of the first phone in the rhyme of the syllable. As the seg-
mental units represent diphones rather than phones, the match is
actually made with the segmental units whose left half is the first
phone in the syllable rhyme. An example of this alignment is
shown in figure 2
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Figure 2: Alignment between prosodic syllable units and segmen-
tal diphone units. Prosodic unit candidates receive a time index
corresponding to the first diphone whose left edge is part of the
syllable rhyme.

The search for units is implemented as token passing [10]. To-
kens are associated with a pair of states: one from each of the two
FSAs. As a token is duplicated and passed on to the connecting
states in one network, the copies of the token keep their association
with the original token’s state in the other network. As propaga-
tion occurs, tokens maintain a record of their path history through
both networks and the cumulative cost of the path so far.

Propagation of tokens occurs in a time synchronous fashion.
As the time variable is incremented, any tokens associated with
a state in the segment network with a time index of less than this
value are propagated forward one state in that network. Once there
are no tokens in the segment network at times less than the cur-
rent time, tokens are propagated through the prosodic network in
a similar manner. Note that the units in the prosodic network are
syllables, so are generally of longer duration than the segmental
units.

As a token enters a new state in either network, the local (ei-
ther prosodic or segmental) target and join costs are added to the
cumulative cost of that token. In addition, if a token enters a state
in one network with the same time index as the node that the token
is associated with in the other network, then the tie cost is calcu-
lated and added to the cumulative cost of that token.

2.5. Dynamic programming and pruning

Since the search space is very large (the square of the usual seg-
mental unit selection search space), an efficient search strategy is
of paramount importance. The first technique considered is dy-
namic programming, in which tokens which are in the same pair
of states can be directly compared and only the best (lowest cost)
one retained. This is known as “Viterbi search” in ASR and leads
to much faster search with no reduction in accuracy.

In practice, we have found that Viterbi search alone is not suffi-
cient to make the search computationally feasible, so we currently
allow the comparison of two or more tokens that are in the same
statein only one of the machines. Unlike Viterbi search, this tech-
nique may lead to a reduction in accuracy.

To further reduce the computational cost of the search, beam
pruning is employed performed at two different points in the
search. An initial pruning occurs as the the networks are first con-
structed. Target costs are pre-calculated for each candidate unit
and a beam is used to prune away high cost candidates. The sec-
ond beam pruning occurs during token propagation, as in ASR.

3. Performance issues and system analysis
The current implementation is designed to demonstrate that the
proposed method can produce improved prosody. For computa-
tional reasons, we currently only use a voice database of limited
size (from the ARCTIC [11] datasets).

3.1. Setting Parameters

The search depends on a number of parameters which require tun-
ing. There are now five sub-components making up the cost of
a chosen segmental unit sequence: prosodic and segmental target
costs, prosodic and segmental join costs and the tie cost.

Each of these costs ranges from 0 to 1 and they are combined
in a weighted sum to form the overall cost. Initial results suggest
the tie cost needs to be weighted quite heavily to ensure that syn-
chronisation between the two candidate paths outweighs other se-
lection criteria. With the target and join costs all weighted at unity
and a tie cost with a weight of five, the system produces reasonable
results.

To compare the proposed approach to a baseline system with-
out the prosodic search, a series of sentences generated with both
systems were compared. It was found that, in general, the seg-
ments chosen by the proposed method had exactly the same seg-
mental target costs as the corresponding units chosen by the base-
line system1 but that different segmental units were being chosen
for a given target the majority of the time. In other words, includ-
ing the prosodic search does not lead to worse selections of seg-
mental units (as measured by the segmental target cost).In contrast,
the segmental join costs were generally different and, on average,
slightly higher for the full prosodic search than for the segmental-
only search. This result is important because it shows that can-
didate unit sequences are available from the inventory that have
better prosody without having worse segmental quality.

4. Discussion
As the ARCTIC datasets only provide a basic level of diphone cov-
erage, with no specific account of prosodic coverage, we expected
the resulting synthetic speech to have reduced segmental quality
in return for improved prosodic quality. However, it appears that
the alternative segmental unit sequence chosen when the prosodic
search is included is generally as good as the sequence chosen
when only the segmental search is performed.

The main drawback of the current system is that the small
database does not really provide sufficient prosodic coverage to
generate anything other than statement intonation. However as the
system is designed to partition the prosodic data based on tune
type, there is no reason to think that system could not generate
other tunes if the underlying database was sufficiently rich.

To further reduce the computational cost of the method, a va-
riety of standard techniques are available from ASR, including
multi-pass search in which an initial N-best search of the prosodic
and segmental spaces is performed using simpler models (e.g. with
no join cost).

One situation where the search space becomes very large is
when, for two adjacent target units, a large number of candidates
are found in the inventory. It may be possible to resolve this prob-
lem by applying pruning during token propagation, rather than

1Note that the target cost is essentially quantised (it has only a limited
set of possible values within the interval 0 to 1) because it is composed of
a small number of discrete features



only at the end of each time cycle.

4.1. Specification of Intonation

The method we have described does not yet allow direct control
over intonation, either symbolically or acoustically. This is prob-
ably acceptable the statement intonation generated so far, but the
main motivation behind our development of the method is to allow
prosody to carry specific meanings. Once a larger database is used,
which contains more variation in prosody, we predict that perfor-
mance will degrade unless intonation is symbolically represented.
The categorisation of the prosodic units into subsets of individual
phrase types, so that only prosodic units from the phrase type of
the target are chosen, should allow the system to perform reason-
ably well for different types of pitch contour, but this will not be
enough to deal with contrastive stress, for example. In future, we
plan to use the method with a voice database designed specifically
for prosodic richness [12]. Precisely how intonation should be rep-
resented, in order to facilitate the control required to realise con-
trastive stress and other phenomena, is still open to question. The
main requirements of such a representation include that it should
be a simple representation with which the the database can be auto-
matically labelled, given the speech and the text of each utterance
in the database.

5. Conclusions
We have demonstrated that a parallel search of the segmental can-
didate unit space and a prosodic unit space is feasible, at least with
a small database. The method produces improved synthetic speech
with more natural pitch contours, without reduction in segmental
quality. This technique is computationally expensive, but we be-
lieve we can use ASR-like techniques to provide a real-time solu-
tion.
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