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ABSTRACT

This thesis addresses the problem of quality degradatiogpeech produced by
parameter-based speech synthesis, within the framewoak @lfrticulatory-acoustic
forward mapping.

[ firstinvestigate current problems in speech parametarisaand point out the fact
that conventional parameterisation inaccurately exdrée vocal tract response due to
interference from the harmonic structure of voiced spe&clovercome this problem, |
introduce a method for estimating filter responses morageldrom periodic signals.
The method achieves such estimation in the frequency ddoyaapproximating all the
harmonics observed in several frames based on a least squaegion. It is shown
that the proposed method is capable of estimating the respmiore accurately than
widely-used frame-by-frame parameterisation, for sirtiafes using synthetic speech
and for an articulatory-acoustic mapping using actual gpee

| also deal with the source-filter separation problem andpethdent control of the
voice source characteristic during speech synthesis.pgsea statistical approach to
separating out the vocal-tract filter response from theeve@urce characteristic using
a large articulatory database. The approach realises speination for voiced speech
using an iterative approximation procedure under the aggsamthat the speech pro-
duction process is a linear system composed of a voice sant@ vocal-tract filter,
and that each of the components is controlled independeyntljfferent sets of factors.
Experimental results show that controlling the source attaristic greatly improves
the accuracy of the articulatory-acoustic mapping, and the spectral variation of
the source characteristic is evidently influenced by thel&unental frequency or the
power of speech.

The thesis provides more accurate acoustical approximaficthe vocal tract re-
sponse, which will be beneficial in a wide range of speechrteldyies, and lays the
groundwork in speech science for a new type of corpus-bdagstial solution to the

source-filter separation problem.
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CHAPTER 1

Introduction

1.1 Prologue

“Mmm, sounds really good for synthetic speech, and | like tluice. I'd like a system
which speaks English with the same voice identity.” Seveealrs ago | demonstrated
a newly developed Japanese text-to-speech (TTS) syn#etem, when a customer
said this to me while listening to synthetic speech from §ystesm. | was involved in
the research and development of speech synthesis in a cgrapiuat time. Although
the company had also developed English speech synthead tblanswer this request
as follows: “The synthesiser doesn’t speak English with tlmice. This voice is avail-
able for Japanese speech synthesis only.” Speech syntbéssechers, including me,
had already realised a methodological limitation to theilfidity of speech synthesis,
which will be mentioned below.

The speech quality of TTS synthesis reached a commerciedigpaable level in
the late 1990s, with the invention ohit selection speech synthesignit selection
speech synthesis has already been put to practical apptisatsuch as automated
answering systems and car navigation systems, and islstilitainstream in TTS
synthesis research today. Unit selection synthesis, irtshall, first divides recorded
speech into small speech fragments, which are referreddgrakesis unitsand then
produces speech Iselecting unitand concatenating them according to the text to be
synthesised. Since a large variety of speech fragmentsessary in order that they

can be joined smoothly, a large speech database is builtvanad. The database,

1
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—
\—__/
ﬁ Japanese English text
. \% speech corpus *
~, \_//
B, —

- English <:> Speech
Bilingual speech corpus synthesis
speaker T

Synthetic speech
(in English)

FIGURE 1.1: Synthesising speech of different languages with the same voice quality

(Solution A)

which is often referred to as tspeech corpysontains prerecorded speech of several
hours to several tens of hours, annotated with informatiah $hows what phones are
pronounced and in what period they are pronounced; thisrirdtion is referred to as
labels

Whilst the introduction of unit selection synthesis has ioved the quality of syn-
thetic speech, it has reduced flexibility in voice altenafimm speech synthesis. In the
methodology, the character of the speech synthesised ashygoependent upon that
of the prerecorded speech contained in the corpus, andhbusyhthesiser produces
speech only in the language and speaking style of the speegus It is, in principle,
difficult in the framework of unit selection synthesis toealtoice timbre or produce
speech with emotion, let alone speak other languages, wiiteoording a corpus with
the required properties.

The mainstream technology hence provides only one worksdilgion that an-

swers the customer’s request above, as follows:

Solution A: Recording English utterances of the same speaker as we uséukefo
Japanese TTS, and building another speech corpus, baseticm speech is

synthesised in English (Figure 1.1)

However, this solution requires additional long hours aforeling of utterances in
English by the same speaker, and time-consuming labellorg.vDuring the develop-
ment of unit selection synthesis, building a speech corpusié of the processes that

cost a great deal of time and manpower. Of course, the speaks&ralso be able to
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speak fluent English; preferably he/she is a near-nativakgpeof both Japanese and

English.

1.2 History of speech synthesis

As already noted, recent mainstream unit selection spagthesis lacks flexibility in
producing various types of timbres or speaking styles. Whie liasearchers chosen
such methodologies with little flexibility? We can see thasen by taking a historical
view of TTS synthesis research. This section briefly sumgearthe history of TTS
synthesis; a detailed review of each synthesis method ppiéar in the second half of
this chapter.

The history of TTS synthesis started out wititiculatory speech synthesis
(Umeda, Matsui, Suzuki & Omura 1968), which is also knownhas/bcal tract ana-
logue method In principle, articulatory synthesis produces speechgiiie transfer
characteristic of the vocal tract computed on the basis tfaheneasurement of the
vocal tract shape, or a model formulated on the structurédefarticulatory organs.
Major merits of the synthesis are that coarticulation i@ty described, and that
speech can be produced by direct control of the vocal traagtesior the articulators’
movement. These merits give the synthesiser a high degflexibility. However, this
methodology cannot precisely approximate the transfaiacieristic of the vocal tract,
and consequently the quality of synthetic speech from ththodeis still low. This is
mainly because an accurate measurement technique hasendubig established, and
the articulatory motion has not yet been sufficiently cladfi

The first commercially successful speech synthesis wasoutitdoubt,formant
speech synthes{Klatt 1980, Holmes 1983). Formant synthesis approximgtedre-
guency characteristic of speech with several frequencyaiio peaks, calletbrmants
which play an important role in the human perception of pmee® In formant syn-
thesis, speech is generated using cascaded or paralletcied resonators, each of
which produces a formant. Formant synthesis still consroebe used today by lin-
guists, since it allows researchers to introduce knowlgédgehas been accumulated

over a long time in acoustic phonetics, such as informatiothe behaviour of for-
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mants. The synthetic speech can be easily modified by ctngrahe characteristics
of the resonators. However, speech produced by this methodlso many artefacts.
This is partly because the synthesiser is not able to prodnteesonance charac-
teristics. Also, a small number of formants only roughly Epmate the vocal tract
transfer characteristic. It should be possible to imprénespeech quality with a large
number of resonances. However, analysing and controliegeésonance parameters
for achieving various types of articulation and co-arttidn becomes too complicated
and almost impossible in that case.

Concatenative speech synthesigercomes the drawbacks of formant synthesis.
During concatenative synthesis, speech is producedomgatenatingsmall speech
fragments, called synthesis units, according to the telx¢teynthesised. The synthesis
units are usually represented as speech parameters siumbeapledictive coefficients
(LPC) or the cepstrum, in order to facilitate modifying thediamental frequency)
of the units. Since the units contain the co-articulaticieas$ in themselves, it can
avoid the intricate control of acoustic characteristias.early systems, rather small
units such as the monophone or diphone were used (HamonjiddulCharpentier
1989, Moulines & Charpentier 1990, Shiga, Hara & Nitta 19%wever, because of
difficulty in reducing artefacts caused by spectral intéapon at joins and prosodic
modification, much attention has been given to a new type otaienative synthe-
sis, unit selection speech synthe@ack & Campbell 1995, Hunt & Black 1996), in
recent years.

In the methodology of unit selection synthesis, synthesitsware selectively re-
trieved from a large speech corpus based on given cost funsstand the chosen units
are concatenated with the minimum amount of signal proogssin respect of se-
lecting units included in the large corpus, the unit setecynthesis is different from
traditional concatenative synthesis. The units are ssdesh as to decrease the distor-
tion of joins, and the method tends to choose units that ansezutive in the corpus,
so that speech produced by this technique has fewer agéfatbwever, as already

pointed out, the voice quality of synthetic speech from thé& selection method is

1In exchange for high-quality synthetic speech, howeveit, selection synthesis requires speech
data of huge size (more than several gigabytes) to obtageptrally smooth joins. This means that the
problem of perceptible discontinuity at joins still remsiiwhen the corpus is limited in size.
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greatly dependent upon that of the speech contained in tip@€0oThus unit selection
synthesis completely lacks flexibility in producing varsaypes of timbres or speaking
styles.

From the view of such a historical backdrop, it can be saidl tsearchers have
sought better speech quality at the expense of synthetibifigx Campbell (1998)
claims that even signal processing for smoothing joins esusgrious degradation of
synthetic speech in unit selection synthesis, and remdzagptocessing. By avoiding
as much signal processing as possible, and using unprocggsech, Campbell, and

others, have succeeded in realising high-quality speeuhsyis.

1.3 Back to the episode

Let us get back to the episode of the demanding customer. Wheeetain level of
quality degradation may be tolerated, we can answer theegequth the following

approaches, giving up using the cutting-edge technology.

Solution B: Extracting speaker identity from the Japanese speech, @tidgthe
speaker identity to English speech synthesised using dadanative speaker
of English (Figure 1.2)

Solution C: Modifying Japanese sounds in articulatorily meaningfulysvao as to

suit them to the English language (Figure 1.3)

Solution B is assumed to adogtice conversiofalso called/oice transformatio)
which converts the voice quality of one speaker into thatrafther speaker. Various
reports have been given on this study over a long time (Ab&ahara, Shikano &
Kuwabara 1988, Stylianou, Cap@& Moulines 1995, Baudoin & Stylianou 1996, Ar-
slan & Talkin 1997, Kain 2001, Gillett & King 2003, Toda 2003jowever, method-
ologies in most of these studies change voice qualitiegwsiracoustic mapping func-
tion, trained on pairs of the same utterances by differegdlsprs. Since those methods
do not extract the voice identity itself, it is impossible donvert voice quality be-
tween different languages. Mashimo, Toda, Kawanami, Sioilkéa Campbell (2002)

report cross-language voice transformation using theevoanversion technique of
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English text

- ¢
English <:> Speech
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@ Voice
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Toda above; however, as illustrated in Figure 1.2, theirhoettrains the mapping
function in one language, and transforms voice quality endther using the mapping
function obtained. Thus, it is again necessary to build agligim speech corpus using
a native speaker of both languages; however, once it is, litniglish speech can be
synthesised in the voice quality of any Japanese speaker ib#er small number of
Japanese utterances are taken.

Solution C requires us to modify speech in articulatorilganingful ways. One
possible realisation of this solution is the use of artitukaspeech synthesis (Umeda
et al. 1968, Coker 1976), which produces speech by simuléti@gnovement of the
articulators or the shape of the vocal tract; however, cuiagiculatory speech synthe-
sis still has a problem of speech quality as already mentioBesides, this solution
seems to include a lot of problems including how to extracapeeters associated with
articulation. Still, the solution could, if realised, pide speech synthesis with consid-

erable flexibility, so that it is a critically interesting dattractive subject of study.

1.4 This thesis

This thesis was inspired by Solution C above. Modificatiosgdech in articulatorily
meaningful ways has the potential not only to synthesiseefiovhich do not exist in
the speech corpus, but also to alter voice timbre or speakyhgin a similar fashion as
we humans do. This section sorts out the ideas and clariggsutpose, methodology

and scope of the thesis.

1.4.1 Objective

The ultimate goal of this study is to realise articulatontganingful speech modifi-
cation with little degradation in signal quality of speedhore specifically, this study
pursues a speech production model which can modify acocissicacteristics corre-
sponding to place and manner of articulation whilst mamtey aspects of the signal
relating to speaker identity, and with high signal quality.

Toward this goal, this thesis explores the realisation ghtgquality speech synthe-



8 Chapter 1. Introduction

sis from articulatory information. If it is realised, postities will be opened up for
the ultimate goal and, in addition, more knowledge will beéamted on the relation
between the acoustic characteristics of speech and thigopesand movements of the

articulators.

1.4.2 Methodology

As we discussed earlier, the current mainstream synthathslittie flexibility can
hardly realise such articulatorily-meaningful modificatifor speech. Then, what sort
of synthesis methodology is suitable for the realisation?

There exist two possible options to achieve synthesis fadicugatory information:
e an approach based on a physical model of the vocal tract

e an approach using a mapping function from articulatorynmiation to acoustic

characteristics of speech.

The former approach corresponds to articulatory speectmagis, mentioned briefly
in Section 1.2 on page 3. The approach allows us to examineftbence of each of
the vocal organs on speech characteristics for clarifylregsppeech production mech-
anism, by introducing various knowledge or measurementhervocal tract shape.
However, it is difficult to gain sufficient information for earately approximating the
tract shape, and, in particular, there still exists a pnobie the representation of dy-
namic characteristics of the vocal tract. For this readus,dpproach still needs a lot
more investigation even for just synthesising fluent speech

On the other hand, the latter approach is reported to praatisfactory dynamic
characteristics of speech, and produce comparativelytfiypeech (Kaburagi & Honda
1998). In this approach, speech is synthesised from aatimupositions based on the
search of a database composed of pairs of articulatory amastic data. However,
judging from the background of the invention of unit selectsynthesis, it seems cer-
tain that synthesis methods which use any signal processimgot completely avoid
degradation in the synthetic speech. In fact, although Kadh& Honda demonstrate
the capability of their method for producing fluent speegeexh synthesised by their
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method still has as many artefacts in speech quality as nemayneter-based TTS syn-
thesis methods have. However, it is also certain that somectpparameters should
be capable of approximating any characteristics of the\toaet filter in detail. Then,
why does signal processing during speech synthesis resa#rious degradation in
synthetic speech? It seems that the exact cause of the dégratias not been fully
investigated yet.

Based on the above consideration, this study chooses tee tagthod with the
aim of synthesising high-quality speech, in whose framé&wer address the problem

of speech degradation caused by signal processing in taep#er-based synthesis.

1.4.3 Scope

The thesis aims at realising an articulatory-acoustic rmgpibat gives a closer approx-
imation to the acoustic characteristic of speech and, fsraim, this thesis addresses

the following three points:
1. precise estimation of the vocal tract transfer charatier
2. articulatory-acoustic mapping
3. source-filter separation

These points will be investigated exclusively for voice@egh (i.e., speech excited
with the vibration of the vocal folds), where it is difficulb tprecisely estimate the
vocal tract transfer characteristic because of the intenfge of the harmonic structure,
while voiced speech conveys major information on spealantity.

First, we will deal with the estimation of the vocal tractriiséer characteristic.
If conventional methods estimated the transfer charatieprecisely, natural speech
could be produced using the characteristic estimated.thieiefore hypothesised that
the conventional methods fail to estimate the vocal traotgfer characteristic accu-
rately enough. The transfer characteristic is usuallyregéd as an envelope of the
speech spectrum. However, the spectrum of voiced speeglsstarmonic structure,
and thus only has energy at frequencies correspondingedgradtmultiples ofF}. It

is therefore impossible to identify transfer characterssbetween the harmonics. In
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order to resolve this problem, a novel approach, calledti-frame AnalysigMFA),
Is introduced. MFA estimates a spectral envelope usingiphelitframes which are vo-
calised using the same articulatory configuration. Sincé eathe frames usually has
a differentfy and ensuing different harmonic structure, harmonics caobibeined at
various frequencies to form a spectral envelope. The metieeby gives a closer
approximation to the vocal-tract transfer characteristic

Second, we deal with the mapping of articulatory configoratito acoustic char-
acteristics of speech. The mapping is realised with pieseapproximation functions,
which perform mappings locally in each of a number of clusteithe space of articu-
latory configuration. In order to accurately estimate atouharacteristics of speech,
MFA is applied to the mapping using an articulatory database

Third, we address the source-filter separation problem.rc®eiilter separation
is an issue dealing with the problem of how to separate theeveource and vocal
tract transfer characteristics. Since speech is direnflyenced by the variation of
the source characteristic, the acoustic characteristgpeéch cannot be determined
only by the articulatory information. Moreover, such véina of the source may in-
terfere with the accurate estimation of the vocal tractsfancharacteristic. Whereas
conventional methods estimate both of the characteristozgly within each analysis
frame, the proposed method statistically separates owtttation of the source from

the vocal tract filter characteristic using an articulatdayabase.

1.4.4 Significance

With the articulatory-acoustic mapping, it will become pitde to investigate articula-
tory effects upon the acoustic characteristic of speech, ®rmant transition caused
by coarticulation. Moreover, the subsequent future stushyatd the aforementioned

ultimate goal is expected to offer some possible applioates follows:

e Foreign language speech synthegslyglot speech synthesis using a monolin-

gual corpus could be realised.

¢ Articulatory interpolation at joins in the unit selectiogrgthesis not only acous-

tically smooth but alsarticulatorily smoothoins could be achieved by interpo-
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lating joins in the articulatory domain.

e Expressive speech synthesigroper alteration from the normal articulation

would change speaking styles or express emotions in syngpech.

e Foreign language educatiormodel pronunciations for phones of foreign lan-
guages would be provided in the learner’s own voice quadyhat he/she could

effectively learn such unknown pronunciations.

e Experimental tool for phoneticsince speech can be produced from any given

articulator positions, it would be a useful tool in phonstic

Itis of interest to note that, apart from the articulatoppastic mapping, there exist
a considerable number of studies that take articulatorg@spf speech into consid-
eration in recent years. In the research field of speech sgigthfor instance, Shiga,
Matsuura & Nitta (1998) applied an articulatory model toreegtal duration control
for TTS synthesis. In their study, phoneme duration is aeit@ed under the simulated
constraints of the movement of the articulators in the ma8kadle & Damper (2001)
pointed out the limitation of concatenative synthesis, arglied the significance of
articulatory speech synthesis having greatest flexibilgpa (2004) proposed join
smoothing using a Kalman filtering with hidden pseudo-atéitory movement under a
hypothesis that co-articulation is best described in thewdatory domain, whilst joins
are generally interpolated in the acoustic domain in mdstrostudies (e.g., Klabbers
& Veldhuis 1998, Wouters & Macon 2001, Chappell & Hansen 2002) the field
of speech recognition, Frankel (2003) proposed a stalstiodel which possesses
hidden articulatory movement following a Markov process] generates speech pa-
rameters using a piecewise linear mapping of the hidden meweto the parameters;
this model was also used in Vepa’s work above.

The significance of the research in this thesis is supporngdtidse studies. Since
articulator movement drives the production of speech,dpesflects the acoustic char-
acteristic of the vocal tract shape determined by the postof the articulators, and its

dynamics is greatly affected by the physical constrainttherarticulator movement.
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1.4.5 Content and structure

With the aim of investigating acoustically precise appnaoxiion of speech using artic-
ulatory information within the framework of an articulayeaicoustic mapping, the rest

of this thesis contains the following chapters:

Chapter 2. “Data”. This chapter explains the articulatory database that wili&ed
throughout the thesis, and some data processing that issageprior to the

experiments of each chapter.

Chapter 3. “Estimating vocal tract responses from voiced spech”: This chapter
discusses a method for precise extraction of the vocaltiatsfer characteristic,

and then the effectiveness of the method is confirmed expeitaly.

Chapter 4. “Articulatory-acoustic mapping based on multi-frame analysis”: This
chapter combines the spectral envelope estimation prdpasg€hapter 3 with
articulatory-acoustic forward mapping, which is realigeth piecewise approx-
imation functions based on clustering in the articulatgrgice. The mapping

performance is compared to that of a widely-used paraneteed approach.

Chapter 5. “Source-filter separation using articulatory data”: This chapter exam-
ines a corpus-based approach to source-filter separatidicoafirms its validity

through experiments.

Chapter 6. “Conclusions”: This chapter summarises findings from the study in the

thesis, and discuss some future work and application ta fittds.

1.4.6 Publications

The thesis includes materials that have appeared earlsemme published papers and
conference presentation materials. The relation betwsasetand the thesis chapters
is as follows. The idea on the estimation of the vocal traatsfer characteristic that
will be presented in Chapter 3, first appeared in Shiga & Kir@0@&). Articulatory-
acoustic mapping to which the above transfer characteestimation will be applied

in Chapter 4 was published as Shiga & King (28®}. The corpus-based approach to
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the source-filter separation that will be dealt with in Chaptevas originally presented
in Shiga & King (200®), and was fully examined by applying the approach to two
available articulatory corpora in Shiga (2004) and Shigai&g{200%£).

1.5 Review of speech synthesis

This section reviews some studies amongst the broad argaetls synthesis technol-
ogy. The purpose of this review is to identify the positiortla# study of this thesis in
the field. Research topics that are closely related to thefgpelsapters are reviewed

separately in those chapters.

1.5.1 Articulatory speech synthesis

Articulatory synthesis may generally be classified into tyaes: an approach based on
accurate physical models derived from the measurementeofdbal tract shape, and
an approach based on an articulatory model of speech productluding simplified
models of articulators.

The former approach is highly dependent on the measurenfiehé wocal tract
shape. Early modelling relied only on two-dimensional ies@f the vocal tract on
the midsagittal plane; however, the midsagittal modellniag some problems. As
Badin, Bailly, Raybaudi & Segebarth (1998) pointed out, thenogdeannels of lateral
consonants cannot be detected using only the midsagittaépmages. Also, the area
function of the three-dimensional vocal tract mustguessedrom two-dimensional
images. To address these problems, Badin et al. (1998) msbsee-dimensional
modelling reconstructed from two-dimensional images #inatmeasured by Magnetic
Resonance Imaging (MRI).

The latter approach formulates a model based on the steuofithe articulators.
The approach parameterises the positions of the articaladnd synthesises speech
by controlling the parameters. One of the well-known modeSoker's model (Coker
1976). The model controls the vocal tract midsagittal cseEsgion using eleven pa-

rameters, which determine the tongue tip, tongue body @rehkpes, velum position,
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jaw opening and hyoid bone position. The shape of the matietbeal tract is rep-
resented as aacoustic tubewhose transfer function is computed on the basis of the
shape of the tube. Amongst studies based on the latter agpprasseries of works
by Sondhi et al. (Schroeter, Larar & Sondhi 1987, Sondhi &r8eter 1987, Larar,
Schroeter & Sondhi 1988) is worthy of attention. From an itlest speech can be
represented most efficiently by human articulation, thexestigated an articulatory
speech synthesiser for the purpose of speech coding at towates (below 4.8 kb/s).
Their synthesiser is calledrgybrid articulatory speech synthesisarhich consists of

a time-domain nonlinear model of vocal fold oscillationhjlzaka & Flanagan 1972)

and a frequency-domain linear model based on an articylatodel.

The above studies are definitely important for closely elating the speech pro-
duction mechanism (Bailly, Badin & Vilain 1998). However, dseady pointed out
in Section 1.2, the quality of synthetic speech from arttay synthesis is low at the
moment. This is mainly because the measurement is stillufbtiently accurate, and
accordingly it is difficult to precisely approximate thertsder characteristic of the vo-
cal tract for speech synthesis. That is also because therdgsaf articulators have
not yet been sufficiently clarified. About the series of Cakevbrk, Gold & Morgan
(2000) mention: “... but the difficulty of deriving the phgal parameters by analysis
and the large computational resources required for syisthase made this approach

more interesting from a scientific standpoint than a pratboe.”

1.5.2 Formant speech synthesis

Formant speech synthesis is often referred to atetimeinal analog methadTlhe term

‘terminal’ can be understood from Sondhi (2002): “In a teratianalog model, the vo-
cal tract is treated as a black box and onlyétsninalbehaviour is simulated.” Formant
synthesis approximates the frequency characteristic @édpwith several formants,
and generates speech with cascaded or parallel-connexgedators, each of which
produces a formant. Since the formants play an importastirothe human percep-
tion of phonemes, as well as having a straightforward ac@psionetic interpretation,

formant synthesis serves as a useful tool in the field of pise
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Much contribution was made by Klatt (1987) toward the depeient of formant
synthesisers in the 1970s and 1980s, although the syntiragiisally started out with
the work of Fant (1960). By the use of both cascade and paralatection of res-
onators and the improvement of the glottal source wavefédait succeeded in de-
veloping a speech synthesiser, Klattalk (Klatt 1982), vatimmercially acceptable
intelligibility.

In later work, Rodet (1984) introduced a different approacfotmant synthesis,
calledformant waveformg~WF). They realised a formant corresponding to a second-
order resonator by applying a certain shape window fundioa sine wave with a
formant frequency. The window shape and the formant frequéar each formant are
computed using an analysis-by-synthesis (AbS) algorithm.

Hanson, McGowan, Stevens & Beaudoin (1999) and Hanson & S¢e{z002)
recently proposed a formant synthesiser with articulatorytrols. They call this syn-
thesiser ‘HLsyn’ because of the use of high-level (HL) pagters associated with the
articulation. The approach employs 13 physiologicallgdshparameters (HL parame-
ters), instead of 40-odd acoustically-based parametdrpélameters) used in Klatt’s
synthesiser. The HL parameters are transformed into thedfameters through a set
of mapping relations, which are built based on knowledgeised mainly in acoustic
phonetics. The synthesiser was reported to produce moueahapeech because of
the use of this higher-level articulatory control, in pladelirect control over acoustic

parameters.

As already noted, formant synthesis provides a good irg&pon between pho-
netic aspects and acoustic aspects of speech, and cahgtaigrdly reflect findings
in acoustic phonetics on the characteristics of synthgiesh. It is, however, true
that speech cannot be precisely approximated by formaateahlthough the for-
mants give a good approximation to the characteristics ofel® Acoustically, the
system of speech production has poles and zeros, whichspommd to formants and
anti-formants respectively in the frequency domain, adiogy to the characteristics of
the vocal tract (and the voice source). Anti-formants bezaivious in nasals and
nasalised sounds, under the influence of coupling of thel mas#y, and thus it is

difficult for formant synthesis to approximate the frequerbaracteristics of these
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sounds.

Despite this theoretical limitation, there exist somerafits for producing high-
quality speech using formant synthesisers (Karlsson & Nmso¥994). It is conceiv-
able that, in those attempts, anti-formants are formedoqpately by a set of for-
mants. However, as Dutoit (1997, p. 180) points out, althoiigs possible for for-
mant synthesis to produce high-quality, natural-soungdpgech (using a number of
resonances), rules that realise such speech quality hayehbeen discovered. Du-
toit (1997) also makes an important point: “What is more, fanmfrequencies and
bandwidths are inherently difficult to estimate from spedata. The need for inten-
sive trials and errors in order to cope with extrinsic errarakes them time-consuming
systems to develop (several years are commonplace).”derestimation of the vocal

tract characteristic is one of the topics we deal with in thesis.

1.5.3 Concatenative speech synthesis

In the 1980s and 1990s, many types of speech synthesis basadancatenative
approach were reported. This approach synthesises spgamnbatenating speech
fragments (synthesis units) which are stored in advancelsttbrmant synthesis has
difficulty in establishing rules to control each formantncatenative synthesis can
avoid describing rules of intricate formant behaviourcsithe units contain the co-
articulation effects in themselves. In the beginnings afcaienative synthesis, the
synthesis units were manually cut from speech data.

There have been broadly two types of central issue in conaate synthesis at its
early stage. One is what type of acoustic parameter to addphdamental frequency
(Fp) contour to be synthesised for a unit does not always confortine original con-
tour; itis thus necessary to altgj of the unit. For the modification df;, the synthesis
units were usually represented as a speech parameter, sticha predictive coeffi-
cients (LPC) or the cepstrum. Such a parameter can exdpactral envelopesvhich
are separated out from the component caused by the signadioéy of speech. When
units are concatenated, joins are smoothed in the paragwtain, in order to reduce

spectral discontinuities. However, it was found that fiaemodification and spectral
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modification within the units causes serious degradati@ymnthetic speech.

Moulines & Charpentier (1990) presented the pitch synchusnoverlap-add
(PSOLA) method, which can effectively suppress the aboveraeation caused by
the modification. PSOLA, or time-domain PSOLA (TD-PSOLA)widely used in the
field today, because of its high synthetic speech qualitye Method extracts wave-
forms pitch-synchronously using a window of two pitch peded The time-domain
windowing produces the same effect as interpolating spéetween harmonics in the
frequency domain, as explained in Huang, Acero & Hon (200B22). Each of the
extracted waveforms is therefore equivalent to the imprdsponse of a system with
a frequency characteristic corresponding to the intetpdl&@armonic spectrum (i.e.,
speech spectral envelope). Consequently, the PSOLA taghisgconsidered as an
impulse-excited all-zero/FIR filter with a frequency respe of the speech spectral
envelope (Huang et al. 2001, p. 821).

The other issue is what type of synthesis unit/units shoeldded. Rather small
units such as the monophone or diphone were used in earlaative synthesis
(Hamon et al. 1989, Moulines & Charpentier 1990, Shiga et34), and larger units
such as consonant-vowel-consonant (CVC), or combinatiorotif large and small
units were used later (Portele, Hofer & Hess 1996). Synshewthods using such
uniform units had a measure of success in producing intelligibledmebut the de-
velopment ofgoodunits required a substantial number of tries and errorshéndte
1980s, two types of methods based on a large speech databasmvented in Japan,
which can reduce the above conventional time-consumingldpmnental process. The
context-oriented clustering (COC) technique by Nakajima &ndda (1988) can au-
tomatically generate a set of synthesis units of monoph&mes a speech corpus of
a single speaker. In this approach, the phonetic contexadt anit can be taken into
consideration. The other method was proposed by Sagis@R8&8),lin which units with
variable length are used depending on the size of the cofnse synthesis units are
beyond the scope of this thesis, see Nakajima & Hamada (k88B8pagisaka (1988)

for more information.

One of the most serious problems in concatenative speetihesysiis, as noted, the

2Here the term ‘pitch’ is used with the same meaning as fundémh&equency Fy'.



18 Chapter 1. Introduction

degradation in the quality of synthetic speech caused laf [§#f;) modification and
spectral modification at joins and within the units. Certgitile TD-PSOLA technique
IS more robust to such type of modification than conventionethods using speech
parameters such as LPC or the cepstrum; however, the metimodicperfectly deal
with the problems existing in conventional parameter-daseathesis. Moreover, its
time-domain treatment causes difficulty in concatenatimigsiat a join with different
spectra on each side, and sometimes introduces phaseidistpas pointed out in
Dutoit (1997, p. 267), due to mismatch in phase between tite anthe join. That is

definitely because joins are smoothed in the time domain.

1.5.4 Unit selection

Because of difficulty in reducing artefacts caused by spiEatierpolation at joins and
by pitch modification, much attention has been given to a ryp& bf concatenative
synthesisunit selection speech synthesis recent years. Unit selection synthesis is
definitely a kind of concatenative speech synthesis. Howéwe concept of unit selec-
tion synthesis is somewhat different from that of convemia@oncatenative synthesis,
and thus we deal with unit selection individually in this tea.

The very first unit selection synthesis system was develapAdR in Japan (Black
& Campbell 1995, Hunt & Black 1996, Ding & Campbell 1997). Its Mguality
natural-sounding synthetic speech attracted much adteatnong researchers in the
field. Since this invention, a large number of studies hawnl@one on unit selection
synthesis (e.g., Huang, Acero, Adcock, Hon, Goldsmith, &iBlumpe 1996, Dono-
van & Eide 1998, Beutnagel, Conkie, Schroeter, Stylianou &18ly1999, Coorman,
Fackrell, Rutten & Van Coile 2000). Unit selection synthesia mainstream approach
in the field of speech synthesis today.

Unit selection synthesis produces speech by selectingbgesgments included
in a large speech corpus, and concatenating those fragausding to the text to be
synthesised. The speech corpus includes labels whichaergtonemic and prosodic
information on the speech waveforms. These labels servedases for retrieving the

fragments from the corpus. Several candidate units arevett from the corpus for
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each target unit composing the target unit sequence to ldbesised, and the best
sequence of the candidates is selected so as to minimise l@r@tan of two types

of cost functionstarget costandjoin cost The target cost represents how close each
candidate unit is to the target, and the join cost how welheatjacent candidate units
are concatenated. (See Hunt & Black (1996) for details.)

It is safe to say that unit selection synthesis is capablesotrating speech with
the highest quality amongst all the approaches presentedfén; however, the ap-
proach has some problems to be resolved. First, even if megdthe concatenative
smoothness of joins in the join cost, we cannot obtain p#yfemooth joins. Spec-
tral discontinuity or pitch discontinuity at joins is, evédnsmall, sometimes easy to
perceive in unit selection synthesis, in contrast to themwogarts of synthetic speech,

which have perfect quality.

To cope with this problem, several smoothing methods hawn oposed.
Stylianou (2001) uses thHearmonic plus noise modér efficiently encoding speech,
and effectively smoothing joins between units. Wouters &bta(2001) proposed the
use offusion units which characterise spectral dynamics at joins betweemshel
concatenation units. The fusion units are selected for @ganhso as to minimise a
linguistically motivated target cost, independently o telection of the concatena-
tion units (Wouters & Macon 2001). Vepa (2004) introducdgalatorily-meaningful
smoothing using a Kalman filtering with hidden pseudo-attitory movement. His
approach is based on the hypothesis that co-articulatibessdescribed in the articu-

latory domain.

However, we should recall the reason why unit selection waisduced. Adopting
these methods certainly leads to reduction of discongratifoins, but processing the
speech signal causes perceptible artefacts around jouth &tefacts are perceived
easily in unit selection synthesis, in contrast to the otrigh-quality parts synthe-
sised. Second, it seems that unit selection synthesis adiytdeal with languages
with accentual tones, such as Japanese. Relative changehn(fgj) across syllable
boundaries plays a role in expressing lexical meaningsasghanguages. Unit se-
lection synthesis often causes sudden pitch change at jBunsh unexpected change

is perceived by listeners as a word with a different meanamgn utterance in a dif-
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ferent dialect. Finally, and most importantly for this tisgshe method has very little
flexibility, as we have already seen in Section 1.1. In thishoeology, both spectral
and prosodic character of the synthetic speech is gregbigratent on that of the pre-
recorded speech contained in the corpus. Thus it is tedhnalanost impossible to

alter voice timbre, produce speech with emotion, or spebhkrdanguages, without

recording a corpus with the required properties.

1.5.5 Summary

Let us recall that the ultimate goal of this study is “artetokily-meaningful speech
modification.” Amongst all the methodologies above, atttory speech synthesis
allows articulatory control over acoustic characterst€ speech very easily. The ar-
ticulatory control becomes possible also in formant spesycithesis, if we can relate
formants to articulation in the way that Hanson et al. (199®) Hanson & Stevens
(2002) have been trying to do. However, it is theoreticaliglgpematic for these syn-
thesis techniques to produce high-quality speech becdube difficulty in approx-
imating detailed speech characteristic. On the contragyJéading-edge technology
of TTS synthesis, unit selection, can produce high-qualtythetic speech; however,
articulatory modification is almost impossible using suctee@hnology which keeps
any signal modification to the minimum. It is hence essembidind a solution to this
methodological dilemma.

At least for the purpose of realising an articulatory-atisusiapping/conversion,
we need to adopt an approach capable of modulating speebb Bpeech parameter
domain, such as the spectrum. For this reason, this thessad parameter-based
approach. As discussed above, however, the use of such amaapdeads to seri-
ous degradation of the synthetic speech. Therefore, irthleisis, we shall focus on
addressing the problem of the speech quality degradatipariameter-based speech

synthesis, as well as the realisation of an articulatoguatic mapping.



CHAPTER 2

Data

2.1 Introduction

This chapter focuses on the data that are used throughsuhtsis. Since the choice
of what type of data to use is strongly dependent on what $agroach is being used,
here we consider data in connection with methodology. Asalrasdy been discussed
in Section 1.4.2, approaches to realising conver&iom articulation to speeclare
broadly divided into two groups: one based on a physical inegeesenting the shape
of the vocal tract (Badin, Bailly, Raybaudi & Segebarth 1998kd@mma, Miki &
Ogawa 1998), and one based on a function mapping articulatorfigurations into
acoustic parameters of speech (Kaburagi & Honda 1998).

In the former approach, the vocal tract area function is &ésstmated based on a
two- or three-dimensional physical model which precisetitates the actual shape of
the vocal tract. From the area function estimated, the ambraalculates the vocal
tract transfer function, on the basis of which syntheticesppeis produced. Hence, in
order to formulate an accurate model, the approach reqiétascapturing the detailed
shape of all parts of the vocal tract. Data best suited fan smcapproach and receiving
attention include Magnetic Resonance Imaging (MRI) data.

In the latter approach, statistical methods are applieceftimating a function
which maps articulatory data into speech parameters direSpeech is synthesised
from speech parameters into which the estimated functigrsrgaven articulatory con-

figurations. The approach is data-driven, and hence rexjaitarge quantity of data;

21
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but, they need not be so detailed because the approach dbesnstruct the vocal
tract shape as the former approach does. The data may tHudanoformation on
the movement of primary articulators which cause significamiation in the speech
parameters. Suitable data for such an approach includeateagnetic articulography
(EMA) data (Wrench 2001) and X-ray microbeam cinematogrgptgstbury 1994).
We have chosen the latter approach in Section 1.4.2 becdutsecapability of
synthesising natural speech; the advantage of the appi®aldo understandable from

the aspect of the nature of data required, as explainedftearea

The first point to consider is the time resolution of the afatory data. In order
to synthesise natural-sounding speech, the data must fiiaest time resolution to
capture articulatory motion, particularly during the tsamt part of speech production.
According to Muller & McLeod (1982), articulator movemerdstuated by muscle
contraction have a bandwidth below 15 Hz. It is thereforeeseary to sample the
movements at a frequency of more than 30 Hz, twice the maxifnequency of the
bandwidth, by the sampling theorem (Nyquist 1928). Moreca®andwidth up to ap-
proximately 500 Hz is required, if capturing aerodynamicaifluenced movements,
such as those in plosive release, is taken into accountéP&riCohen 1986).

The time resolution of MRl measurement is, however, ratharsm It is reported
that the measurement requires 4 seconds to take a midasageige in thd-ield Echo
mode, and 45 seconds to take 55 cross-sectional vocalitnages in theSpin Echo
mode (Honda, Hirai & Dang 1994, Badin, Bailly, Raybaudi & Seg&ba998). MRI
is therefore unsuitable for capturing the movements ofaldtors.

On the other hand, EMA and X-ray microbeam measurementsasapls the ar-
ticulator movements at relatively high frequency. For eglanthe EMA system used
by Wrench (2001) can record the articulator positions at goiagrate of 500 Hz, and
the X-ray microbeam system by Westbury (1994) at variabhepsag rates between
40 and 160 Hz according to the articulator’s acceleratitthpagh these measurement
techniques are capable of tracing only certain points oatteulators. These methods

are therefore more suitable for capturing the articulatovements.

The next consideration should be the level of backgrounsencaused by measure-

ment equipment. Such machinery noise is a serious problgpecelly for the latter
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approach based on a mapping function, where speech sigeatssential to finding
the relation between speech acoustics and articulatiore MRI system generates
a considerable noise level while taking cross-sectionalges, so that simultaneous
recording of speech signals is almost impossible. A reapunt reveals that the noise
level of the system is sometimes as much as 100 dB (in the Ahtedl sound pressure
level) (Muto & Yagi 2005). The X-ray microbeam system alsagates a certain level
of noise; but, it is possible to make a recording of speecinduhe measurement of
articulation. However, due to the interference of the miaehy noise, it becomes hard
for subjects to make normal speech production (Junqua ¥9@R)ly EMA among
the measurement methods enables a noise-free recordipgedts Machinery noise
caused by the EMA system during the measurement is so sragubjects can pro-
duce speech in a normal way.

On the basis of the above considerations, we may concludehbaest option
in the current state of the art is the combination of the apghmobased on a map-
ping function and the EMA measurement. EMA is capable of wapg the articu-
latory dynamics, and simultaneous speech recording islpjesa a noise-free envi-
ronment. Therefore we choose EMA data as articulatory dataordingly, for all
experiments throughout the thesis, we will use sets of th&i®dannel Articulatory
(MOCHA) corpora, each of which includes EMA recording. Thédwing section
first summarises the MOCHA database, and then explains sota@ueessing (pre-

processing) necessary for later experiments.

2.2 MultiCHannel Articulatory (MOCHA) corpora

The MOCHA corpora have been recorded at Queen Margaret WitiveCollege,
Edinburgh? All the experiments in this thesis were carried out using MOCHA
corpora which were available at the time of experimentingie @ontains the utter-
ances of a female speaker (with a southern British Engliskraf,d sew0, and the

other contains the utterances of a male speaker (with aearoartBritish English ac-

1Such influence of environmental noise on speech productiknawn as the Lombard effect.
2See Wrench (2001) for more information.
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cent),nsakO.

As listed in Table 2.1, each of the corpora consists of fomdgiof informa-
tion recorded concurrently using different input devicelSach corpus contains a
phonetically-balanced set of sentences, called ‘TIMITtseces’ (Lamel, Kassel &
Seneff 1986), read out by a speaker. The data used in this tivese speech wave-
form, electromagnetic articulograph (EMA) tracks and reyggraph waveform. This
section summarises the principle of EMA and laryngograppild, lariefly explains the

phonetically-balanced sentences, TIMIT.

2.2.1 Electromagnetic Articulograph (EMA)

Articulator positions are measured using a two-dimengietectromagnetic articu-
lograph system, AG100 Articulograph, manufactured by @assMedizinelektronik
GmbH?3

The measurement technique of EMA is based upon Faraday’'sfladuction —
induced electromotive force occurs in a coil placed withitinge-varying magnetic
field. In the EMA system, such a magnetic field is formed by wipgl an alternating
current to another type of coil. Such a coil is referred to amasmitter coil whilst
the coil in which a current is induced is referred to ageeiver coil Magnetic field
intensity at the location of the receiver coil decreasesctoedance with increasing
distance between the transmitter and receiver coils. Tistamte can thus be deter-
mined by measuring a current induced in the receiver coil.

The placement of multiple transmitter coils at differenspions enables pinpoint-
ing the relative location of the receiver coil to the tranens. Each of the transmitter
coils generates a specific magnetic field, by applying amredteng current with a dif-
ferent frequency. Thereby, from the current in the recesedr the component induced
by each transmitter coil can be separated, and accordinglgtistance is measured si-
multaneously between each transmitter coil and the receoik.

Carstens AG100 Articulograph employs three transmittds cahich are mounted

on a frame to be fixed on subject’s head with a helmet. For therdeng of the

3http://www.articulograph.de
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FIGURE 2.1: Placement of the receiver coils in EMA measurement. The coils are
glued on selected articulators on the midsagittal plane. The trajectories of seven of
these coils (shown in blue dots) serve as articulatory data, and the remaining two coils
(shown in red dots) provide reference points, with respect to which post-processing
compensates head movements relative to the transmitter coils. The names of the
receiver coils: bn (bridge of the nose), ui (upper incisor), | i (lower incisor), ul (upper
lip), I I (lower lip), tt (tongue tip, 5-10 mm from extended tip), t b (tongue body, 2—3
cm beyond tt), t d (tongue dorsum, 2—3 cm beyond t b), and v (velum, approx. 1-2

cm beyond hard palate).

MOCHA corpora, nine receiver coils are used. They are gluetherselected po-
sitions of the articulators: bridge of the nosm{, upper incisor (i ), lower incisor
(I'i), upperlip @), lowerlip ( | ), tonguetip{t ), tongue bodyt(b), tongue dorsum
(t d) and velum¥). The approximate positions of the receiver coils are shiowig-
ure 2.1. The coils are wired to the main unit which measuresrtiuced current. The
X andY coordinates of each receiver coil are sampled, and therd®dimensional
articulatory data compose the EMA data for the MOCHA corpu positions of two
coils,ui andbn, serve to correct head movement, and the trajectories oéthaining
seven receiver coils are used as articulatory data. Fig@rer@dvides actual EMA data
and the corresponding speech waveform fromrtekakO corpus. Two-dimensional

trajectories of the receiver coils are also plotted in Feg2u3 for the same utterance.
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FIGURE 2.2: EMA measurement data from the MOCHA corpus (msak0) — “This was
easy for us.” The names of the receiver coils: i (lower incisor), ul (upper lip), | |

(lower lip), tt (tongue tip), t b (tongue body), t d (tongue dorsum), and v (velum).
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FIGURE 2.3: EMA trajectories from the MOCHA corpus (msak0) — “This was easy
for us.” The names of the receiver coils: | i (lower incisor), ul (upper lip), I I (lower

lip), tt (tongue tip), t b (tongue body), t d (tongue dorsum), and v (velum).

2.2.2 Laryngograph / Electroglottograph (EGG)

The laryngograph measures electrical impedance acrodsirihex, using a pair of

electrodes held in contact with the external skin of eithde ©f the larynx. The

impedance obtained is closely related to the degree ofgjlmpening, although it does
not represent the actual volume flow through the glottis. [Bimgngograph provides
information useful for precise pitch-marking, for whichettaryngograph is widely
used to determine the positions of waveform extraction iohpsynchronous overlap
and add (PSOLA) (Moulines & Charpentier 1990), one of thedsash techniques in

speech synthesis today.

2.2.3 TIMIT sentences

The TIMIT sentences are a ‘phonetically balanced’ set,giesd originally by Lamel,
Kassel & Seneff (1986) as part of the development of the TIkbipus for the eval-
uation of automatic speech recognition systems. The @iget consists of 450 sen-
tences designed to provide the good coverage of phonetiexdtsnin American En-
glish. Each MOCHA corpus consists of 460 British TIMIT sentesovhich include
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an additional ten sentences for the purpose of coveringgitfwoontexts peculiar to

the received pronunciation of British English.

2.3 Data processing

2.3.1 Drift elimination for articulatory data

Richmond (2002, p. 68) discovered the existence of driftxplieable as an articu-
latory variance, in each EMA track throughout the corpusggufe 2.4 shows a plot
of the mean of velumX coordinate for each utterance of corgusew0 (blue line).
Obviously from this figure, there exists a relatively slondarying movement over
the entire recording of the corpus. Richmond gave severdigiie causes of the
underlying trend; however, it has not been thoroughly itigesed, and its definitive
explanation is still unknown.

In order to eliminate this trend, he estimated the drift afteBMA track for each
utterance. In the algorithm, the mean of each EMA track faheatterance is first
calculated. Then, the means are ordered in the recordingeseq (shown with blue
line in Figure 2.4), and finally the sequence is low-pasgétldo extract the underlying
trend. By subtracting the estimated drift from the originflAtrack on an utterance-
by-utterance basis, the underlying component is elimthatem the EMA data.

This thesis adopts the same technique to remove that ¢if;all the experiments
were carried out using drift-free EMA data. The low-passfilused for the drift
extraction was an FIR filter of order 100 with cut-off nornsell frequency.04x rad.
The filter was applied twice using the MATLAB functidn | tfi |l t. In Figure 2.4,
the red solid line shows an underlying trend estimated bynse&the above technique

for the velumX coordinate in corpussewO.

2.3.2 Epoch extraction from laryngograph waveforms

As already noted, this thesis deals only with voiced speeeh §peech excited with

the vibration of the vocal folds), where it is difficult to mieely estimate the vocal



30 Chapter 2. Data

65 T T
—— raw means
—— low-pass filtered means

) n

iy

63.57 ‘m H
il
63k

1M

621 b

mean velum X (mm)

w

61.5 1 1 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450

utterance number

FIGURE 2.4: An EMA track showing an underlying trend, and an estimated trend

tract transfer function because of the interference of thenlnic structuré. It is
hence necessary to derive accurate voicing informatiorpeésh. For this purpose,
pitch epochs were estimated using laryngograph waveformishvhave already been
mentioned in Section 2.2.2. The pitch epochs are also Hefpdbtaining fundamental
frequencies for the estimation of harmonics used latererthiesis. Note that it is not
necessary to identify the precise periodgbdttal closure since in this study epochs
extracted are applied to the voicing discrimination andifemonic extraction, where
the glottal closure information is not required.

Figure 2.5 provides the flowchart of the pitch-epoch extoactThe laryngograph
waveform is first passed through a filter having passband GD+&. The filtered
signal still has small fluctuations that can interfere witle £poch estimation, and
therefore such fluctuations are removed usingcir@re-clippingtechnique. Then, all
the points with negative value are set to zero, and finallyeihechs are detected as
timings at which the waveform intensity rises up from zertuga

The existence of pitch epochs indicates that the sectioait®d, and the time in-

4Chapter 3 covers this problem.
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FIGURE 2.5: Flow of pitch epoch extraction

terval of adjacent epochs shows the pitch period. A reswdtial epoch extraction is
shown in Figure 2.6, together with the output of each prangdsvel of the flowchart

in Figure 2.5.

2.3.3 Harmonic estimation

The harmonics play an important role throughout this theEige harmonic spectrum
is extracted using the method of Stylianou (2001). The ntedsdimates the amplitude
and phase of the harmonics from the speech waveform usinggighted least squares
method.

A speech signal at the discrete timéof thenth sample) is modelled within a short

time period by the sum of a set of sinusoids as

N
Sn=Y_ Arexp(p2mfoTiin), (2.1)

I=—N
where A4, is the complex spectrum of thgh harmonic, andV, f, and7; denote the

number of the harmonics, the fundamental frequency andaimpkng period respec-

tively. Let s, be an observed speech signal at#iie sample. Then the squared sum
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FIGURE 2.6: A result of pitch epoch extraction
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of the errors between the modelled and observed harmonitrager thekth frame is

written as
Ny

D= Z [wz (sn—I—i - gn-‘ri)}Qa (22)

i=— Ny
wherew; is a window function with width2N,, + 1. The above equation can be

rewritten in terms of vectors and matrices as follows:

D = (s —Bh)" W'W (s — Bh), (2.3)
where
s = [Sn—Nwa Sn—Nw+15 Sn—Ny+2) - - - 78n+NW}T (24)
[ 727 foTs(=N)(=Nw) 12 foTs(=N+1)(=Nw) cov @2mfoTiN(=Nw) 1

o2 foTs(~N)(=Nu+1)  op2nfoTo(~N+1)(=Nw+1) ... o227 foTsN(—Nu+1)

B = _ _ _ (2.5)
e]?ﬂ'foTs(—N)Nw 6]27rf0Ts(_N+1)Nw L. e]Qﬂ'foTsNNw

h = [A—J\h A_Ni1, A—N+27 e JAN]T‘ (2.6)

The matrixW is a diagonal matrix with the following vector in its diagdetements:
diag W = [w_n,, W_N, 41, W_Ny12; - - -, WN, ] - (2.7)

The harmonic spectrurh can be found by reducing Equation (2.3) to a problem of

weighted least squares, for which the normal equation is:
(B"W'WB) h = B"W'Ws. (2.8)

The amplitude and phase of the harmonics are found as th@aegaand imaginary

part, respectively, of the natural logarithm of the com@prctrumA,.

2.4 Building data sets

In order to restrict the experiments to voiced speech, bgections were first ex-
tracted from the corpus. All the speech in the corpus wasldid/into frames using a

Hanning window, whose width and spacing were 20 ms and 8 rpecésely. If there
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TABLE 2.2: Data sets used in the experiments

— data set, number of frames
number| train test

1 82556 8495

2 82304 8747

3 81813 9238

4 81709 9342

f sew0 (female speaker) > 81962 9089
6 81731 9320

7 81865 9186

8 81607 9444

9 81574 9477

10 82338 8713

nsak0 (male speaker) 1 | 66597 6896

was at least one pitch epoch (extracted in Section 2.3.Ajmwét frame, the frame was
regarded as a voiced frame. All the frames judged to be voierd used to build a set
of pairs of harmonic spectra and articulator positions. Adr@nonic spectra (amplitude
and phase) were estimated from the speech waveform usinggigated least squares
method explained in the previous section. According to thecsg of the analysis
frame, the articulatory information was downsampled toshme spacing of 8 ms so
as to synchronise the harmonic parameters. Out of the @utaioiced frames with
parallel acoustic-articulatory information, we set 10%ha sentences (46 sentences)
aside for testing, and used the remaining 90% (414 senteforasaining. Details of

the data sets are given in Table 2.2.
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Estimating vocal tract responses

from voiced speech

3.1 Introduction

The source-filter model, originally proposed by Fant (19&)ommonly known as

a theoretical framework modelling the human speech praslugrocess. As shown
in Figure 3.1, the model produces a speech signal by passirexatation source
signalG(w) (voice source) through a time-varying filtél{w) (vocal tract filter) and a
radiation filter L(w). The voice sourcé&/(w) is generated by the periodical vibration
of the vocal folds, and the vocal tract filteé{w) is characterised by resonances of the
vocal, nasal and pharyngeal cavities. The radiation filier) is usually regarded as a
filter with a constant characteristic that approximatesetfiects of radiation from the
mouth. The source and filter are assumed to be linearly delpaemnd accordingly the

frequency response of the output speech signal is givereifottm of the product of

4, G(0) 3, S(w)
211y, —LV@ | L@ "éhh‘lﬂ‘r
= T, = >
glottal source  vocal tract  radiation speech

FIGURE 3.1: Source-filter model for the production of voiced speech

35
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E(w)

S(w)
i, @k

FIGURE 3.2: Simplified source-filter model for the production of voiced speech. The

magnitude
magnitude

acoustic characteristics of glottal source, vocal tract and radiation are expressed as

an integrated response, H(w)

the source and filter frequency responses.

Undoubtedly, such a representation models the intricategss of the speech pro-
duction simplistically. Due to such oversimplification seal problems have been
pointed out for this model. One of them is a problem causechbyassumption of
no interaction between the source and filter during voicesksp production. Owens
(1993) argues this point as follows: “In addition, the saufitter model assumes that
the source is linearly separable from the filter and thattl®eno interaction between
them. This is not strictly true since the vibration of the abcords is affected by
the sound pressure inside the vocal tract and there is coupétween the vocal tract
and the lungs during the period when the glottis is opengethemodifying the filter
characteristics every cycle of the excitation.” (p. 7)

In spite of the existence of problems, however, the effeslteng from the prob-
lems is approximately negligible in many cases. Owens (L8®3es the above quoted
paragraph as follows: “However, very often these secontiantprs are ignored and
the source-filter model is perfectly adequate.” Hence, nmeckent speech research
has been based on the source-filter hypothesis, and theesfitec model has been
fully established as a fundamental principle underlyingougs applications in speech
technology today.

In most practical applications, the spectral envelopereggd from the observable
output (i.e., speech signal) is regarded as the transfetibumof the vocal tract filter,
since the source signél(w) can not be observed. In this case, we assume that the
sourceG(w) is periodic impulses, and that the vocal tract filt&w) and lip radiation
L(w) are unified into a filter (w), as in Figure 3.2. An alternative interpretation is an

impulse-excited filter response into which the source, Moaat filter and radiation are
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all integrated. Under either of these assumptions, estignaocal tract filter responses
becomes approximately equivalent to estimating speatkalepes, and consequently,
the filter response can be obtained from the speech signpliohy estimating its
spectral envelope.

This chapter deals with the estimation of vocal tract filesponses from voiced
speech signals for our articulatory-acoustic mappiagd proposes a method of ob-
taining spectral envelopes which reflect the vocal tractsier function more accu-
rately than conventional techniques. The chapter is coapas follows: the next
section presents the background of this area by explaimimgonventional methods
of estimating parameters related to the vocal tract filtepoase. After that, drawbacks
of the conventional methods are pointed out in Section 3e&ti& 3.4 explains our
proposed approach in detail, following which two differerperiments are conducted
and the results are discussed in Sections 3.5 and 3.6. ¥i8alttion 3.7 concludes the

chapter.

3.2 Spectral envelope estimation and its trends

Generally, a spectral envelope of voiced speech is obtdiyedemoving harmonic
structure, which reflects the voice source characterjsfrcgan a speech spectrum.
Voiced speech shows quasi-periodicity in the time domanal, its spectrum consists
of harmonics, and only has energy at frequencies correspgmal integral multiples
of the fundamental frequency{). Resulting from the signal property of the voice
source, the harmonic structure needs to be removed frompéetram in order to
obtain the vocal tract filter response, which holds phoriefarmation of speech.
Such fine structures of the speech spectrum are eliminated atrly stage in
many speech applications which need to estimate the vaaal fitter characteristic.
In speech recognition, for example, feature extractiorsatrobtaining a spectral en-
velope representing the outline of the vocal tract filtepogse by removing the fine
structure in the front end. On the other hand, in speech sgighthe spectral envelope

needs to be estimated for synthesising speech with a plartisarmonic structure ac-

1The articulatory-acoustic mapping will be described in @tba4.
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cording to a givernfy. For this reason, it is necessary to obtain spectral eneslojith

the fine structure removed.

With respect to speech parameterisation, a representdéoved from spectral
peaks at harmonic frequencies of voiced speech has attraitéation widely in speech
technology. Gu & Rose (2000) have proposed feature extrafticspeech recognition
based on théerceptual Harmonic Cepstral Coefficier(HCC), and confirmed by
experiments that PHCC outperforms standard cepstral mpason, mel-frequency
cepstral coefficients (MFCC) (Davis & Mermelstein 1980). A malea of PHCC is
that, in the process of extracting the coefficients, voigezksh is sampled at harmonic
locations in the frequency domain. Such harmonic-basednpeterisation has also
been used in the field of speech coding since the early 199@®foeptually efficient
encoding (El-Jaroudi & Makhoul 1991, McAulay & Quatieri 139

It must be noted that, besides having an important role indruauditory percep-
tion, the harmonic peaks reflect the vocal tract transfectfan, since voiced speech,
due to its quasi-periodicity, has energy only at frequesxcarresponding to integral
multiples of Fy. For this reason, similar techniques (Nakajima & Suzuki7Zl 93alas &
Rodet 1990, Capgn Laroche & Moulines 1995, Campedel-Oudot, GagpMoulines
2001) which trace the harmonic peaks have been appliedtéaespeech synthesis in
order to obtain spectral envelopes corresponding to thalvoact filter responses. A
recently developed high-quality vocoder, STRAIGHT (Kawah&997), also exploits
harmonic peaks, into which a bilinear surface is interalan the three-dimensional

space composed of time, frequency and spectral power.

3.3 Problems in spectral envelope estimation

This section clarifies problems in estimating the transfearacteristics of the vocal

tract from voiced speech.
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3.3.1 Limited frequency-resolution

In existing spectral envelope estimation methods, theugaqy resolution of the es-
timated response is limited by harmonic density, whichesadepending on the fre-
quency spacing of adjacent harmonics, theoretic&jlyWe can only obtain a partial
clue for estimating the vocal tract response due to the haiorsiructure of voiced
speech. Ag, increases, the number of harmonics decreases and freqgapsybe-
tween adjacent harmonics widen. Thus, estimating a ddtaiteelope becomes much
more difficult. Even identifying the location of formantsclae difficult in some cases.
Female voice with higl#, makes accurate estimation almost impossible. Kent & Read
(1992, p. 156) mention this problem as follows: “The highandamental frequency
of women’s voices can present occasional difficulties inugtio analysis. As funda-
mental frequency increases, there is a correspondingasera the interval between
harmonics of the laryngeal source spectrum. At some haerspacings, it becomes
difficult to discern the location of formants in the spectrurhe problem is essentially
one of sampling: widely spaced harmonics do not reveal matdldbout the spectral

envelope.”

3.3.2 Interference of harmonic structure

It has been pointed out that the harmonic structure of vaspegch interferes with the
estimation of vocal tract responses (e.g., Makhoul 19786)a &pectral envelope es-
timated by conventional methods, sections between haopeaks are interpolated,
and do not reflect the real vocal tract filter response. Theigtivelope varies depend-
ing on the harmonic structure of the observed speech, evtie ¥ocal tract system
maintains an identical transfer characteristic.

Figure 3.3 shows spectra of artificially-produced speedhichvwas synthesised
with a periodic impulse train through an all-pole filter. Tiesponse of the filter has
two poles, as in Figure 3.4, at frequencies correspondimgptaen’s average first and
second formant frequencies of the English vojegl(Kent & Read 1992, p. 95). The
bandwidth of those resonances are set according to the meeasuots by Fujimura

& Lindqvist (1971) using a sinusoidal swept-tone sound seutEach spectrum was
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FIGURE 3.3: Spectra of artificial voiced sound with different Fy’s: real filter response
(dashed lines), FFT spectra (thin solid), and spectral envelopes computed (thick solid).
The discrete regularised cepstrum method (Cappé et al. 1995) was used to obtain the
envelopes, where a 96-order cepstrum with A\ = 3.5 x 10~3 for penalization, and a

Hanning window with 256-point width and 128-point spacing were applied.
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FIGURE 3.4: z-Plane depiction of the resonances of the synthetic filter. The poles
are located at frequencies 850 and 1200 Hz (the sampling frequency is 16 kHz) with
bandwidths 50 and 60 Hz, respectively. The configuration corresponds to women'’s

average first and second formants of English vowel [a].

computed from filter output generated using an identicarfiltansfer characteristic
but a differentF;,. The thick line shows a spectral envelope estimated by aectimnal
cepstrum-based method (C&ppt al. 1995), the thin line the FFT spectrum of the
output, and the broken line the transfer characteristibefitter.

As is obvious from the graphs, the spectral envelopes of éhgantional method
vary considerably depending on whether harmonics appdegqiencies around the
formant peaks of the filter characteristic. The estimatedkpare dulled if no harmonic
exists at the peak frequency, and moreover the formant pegkéncies tend to be in-
correctly estimated, being affected by harmonics haviegllg maximum amplitude.

Figure 3.5 shows the spectrograms calculated from syuotlspiech using the
narrow-band FFT. The synthetic speech was produced thrblbgis with fixed re-
sponses corresponding to those of the soynfland [i], whose pole locations are
shown in Figure 3.6. The filters were excited by a periodicutse train with linearly
increasingF;, contour (200—300 Hz). Meanwhile, Figure 3.7 shows the eped
of the spectrograms, whose envelopes are estimated on a-bgfftame basis using
the same cepstral analysis methods above. The estimatetlogpams surprisingly

have time-varying spectral peaks, the power and frequehahizh sway in the low
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FIGURE 3.5: Spectrograms of the synthesised speech obtained by narrow-band FFT.

The fundamental frequency changes from 200 Hz to 300 Hz.
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FIGURE 3.6: z-Plane depiction of the resonances of the synthetic filters. The poles
are located at frequencies 850 and 1200 Hz with resonance bandwidths 50 and 60 Hz,
respectively, which configuration corresponds to women’s average first and second
formants of English vowel [a] (left). The poles are located at frequencies 300 and
2800 Hz with resonance bandwidths 77 and 60 Hz, respectively, which configuration
corresponds to women'’s average first and second formants of English vowel [i] (right).

The sampling frequency is 16 kHz.
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frequency band, and tremble in the high frequency band.dbisous from the com-
parison of Figure 3.5 with Figure 3.7 that the movements efgeaks are influenced
by the harmonic structure.

These facts become a problem in speech synthesis wheréhspessts to be gener-
ated at variougrys and ensuing harmonic structures different from the oaigirin
the case of synthesising speech using the same harmonatusérias the original,
spectral envelopes obtained by conventional methodsqilrfeproduce speech with
high fidelity? However, in the case of applying harmonic structures difiefrom the
original, synthesised speech is likely to suffer degrastefiom the use of unreliable
interpolated sections of the spectral envelopes (harrsanismatch). In order to syn-
thesise high-quality speech in any harmonic structure required to estimate spectral

characteristics not only at harmonic peaks but also betwezpeaks.

3.3.3 Quefrency-domain aliasing

It is quite interesting to consider the effects of harmoiiacure on spectral envelope
estimationin terms of the cepstrunAs already quoted in Section 3.3.1, Kent & Read
(1992) point out: “The problem is essentially one of sanglin..” There is some
guestion as to whether they have noticed the fact, but thielgmoactuallyis one of
sampling. Let us here practically regard harmonics as sashpdints in the frequency
domain and consider the influence on spectral envelope at#bim

According to Nyquist (1928), a continuous signal can be veped from its sam-

pled, discrete form using the following formula:

x(t) = Z x(nTy) sinc [% (t — nTS)} , sinc(x) = sinéx)) (3.1)

S

wheret denotes time, and; represents the sampling period. Here we must note that
the signal is completely recoverable only when no alias ;cwhich means that
the original continuous signal does not contain any frequexomponent above the
Nyquist frequency, i.e., half the sampling frequency. Heme order to avoid the alias-
ing, a low-pass filter with a cut-off frequency below the Nigjdrequency is usually

placed prior to the sampling .
2This is the case of sinusoidal speech coding. (e.g., McARIQuatieri 1986, 1993)
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FIGURE 3.8: Schematic diagram explaining aliasing effect in the quefrency domain

The amplitudes (and phases) of harmonics can be consideiezlthe points ob-
tained by sampling a filter frequency response withfgrspacing. Since a cepstrum
is given as the (inverse) Fourier transform of the sampleguency response, as with
the sampling process in the time domain, the sampling thetmestricts theguefrency
bandwidthof signal under half theampling quefrencyl}, /2. Unlike the above general
sampling, however, it is impossible to placdoav-pass lifterfor restricting theque-
frency bandwidthsince such frequency-domain sampling is actually pati@speech
production process.

As a consequence, in the conventional approach with inksipo between har-
monics, the quefrency component ab@yg2 causes aliasing in the quefrency domain,
as shown schematically in Figure 3.8, even if Equation (849 used for the interpo-
lation# The aliasing affects cepstral elements particularly inttigln quefrency band,
and, in addition, the lower the sampling quefrency (i.ee, tigher thef,) becomes,

the more the original cepstrum is smeared by the aliasing.

3.3.4 Statistical processing blurring the envelopes

More importantly, statistical averaging on such interpediaenvelopes can result in

making envelopes blurred. When there exists considerabilanee among the esti-

3“Nyquist’s sampling theorem states that signals shouldanepded with a sampling frequency cho-
sen to be at least twice their highest frequency compongmidted from Dutoit 1997)

4As far as the author knows, only Quatieri mentions this typguefrency-domain aliasing caused
by the harmonic structure of periodic signals (Quatieri2q 277).
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FIGURE 3.9: Schematic diagram explaining oversmoothing problem caused by aver-

aging several spectral envelopes

mated envelopes due to harmonic interference (as in Fig@BjetBeir resulting aver-
age can be smoothed as Figure 3.9 explains schematicalbt iFtecause in such
processingeliable characteristics observed at harmonic locationsiandliablechar-
acteristics interpolated are both treated equivalently.

Considering this effect from the cepstral viewpoint makeseadise that the effect
is highly complicated. Theampling quefrencyaries depending on the value Bb§.
Different F causes different aliasing even if vocal tract responsesdamical, as
shown in Figure 3.10. The computation is hence made for thstghaving different
quefrency bandwidtlnd different quefrency-domain aliasing. Although thasihg
IS unavoidable as we discussed in 3.3.3, its influence halsew®t taken into account

in conventional statistical speech processing.

3.3.5 Perceptual effects by oversmoothed envelopes

Several observations on the vocal-tract response havalesvéormant bandwidths
to be notably low (e.g., Fujimura & Lindqvist 1971). Such ghéormant peaks can
hardly be extracted by conventional frame-by-frame spéetivelope estimation, and
cannot accordingly be realised by averaging low-resatuéiovelopes obtained using

such conventional estimation.
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Perceptually, the bandwidth of formants can influence thiaralness of speech.
Kent & Read (1992, p. 99) make the following points on the petual effects of
formant bandwidth: “The primary perceptual effect of fomhdandwidth is on the
naturalness of the vowel sound. Vowels that have unusualiyow bandwidths sound
artificial even though listeners usually can identify theeeels.”; “At the other ex-
treme, increasing formant bandwidth eventually can redueelistinctiveness of vow-
els, because the energy of the different formants begingadap. In such an instance,
the vowel spectrum loses the sharpness of its peaks angisadNasalization of vowels
has this effect, and it is interesting that nasalized vowetsess distinctive than their

nonnasal counterparts.”

Consequently, in order to synthesise highly intelligiblel avatural speech, it is
required to preserve not only phonetic information, repnésd by formant frequencies
and powers, but also other information, such as speaketitigewhich is held by
details of the filter response, such as formant bandwidthihénspectral envelope.
For this reason, we need a method of obtaindtegailed spectral envelopeashich

accurately represent the vocal tract transfer function.
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3.4 Multi-frame analysis (MFA)

In order to resolve the problem of oversmoothed spectralepe which is discussed

in the previous section, we will introduce a new method i g&ction.

3.4.1 Fitting harmonics of multiple speech segments

As we have discussed, voiced speech having energy at diggous frequencies in the
spectrum causes problems in estimating vocal tract filsgporeses, especially of voice
with a high fundamental frequency, and, as a result, sdesmtkeelopes estimated by
conventional methods have unrecoverable distortionsrdésmiving this problem, the
thesis proposes a method for estimating the spectral gge®lof voiced speech based
on the diverse harmonic structures of multiple short-tipeesh signals produced un-
der the same articulatory configuration.

Several FFT spectra with differeit are plotted in the same graph in Figure 3.11.
Then, it seems that the envelope can be estimated more taelguraing all the har-
monic peaks, the number of which is virtually four times Erghan the number of
harmonics in a single frame. As illustrated in Figure 3.h2, proposed approach first
collects a sufficient number of speech segments vocalised tise same vocal tract
shape (which is assumed to have an identical filter transfgranse), but having dif-

ferent[ (and ensuing different harmonic structure). Although eaallected segment
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FIGURE 3.12: Collecting speech segments vocalised in similar articulatory configura-

tions so as to form a spectral envelope

provides us little clue (i.e., a small number of discretengg)i with the spacing ofj

in the frequency domain, the approach obtains, by usingakesegments, a lot more
information at various frequencies to form a more detailedetope which reflects
the intricate vocal tract shape. In other words, it virtyaficreases the number of
harmonics.

The envelope is then estimated by fitting a curve to all thenloaic spectra of
all the segments. The method thereby improves the frequesojution of envelope,
and inhibits the influence of harmonic structure upon thelpe estimation. We will
henceforth call this analysis technigMeilti-frame Analysi{MFA) because of the use
of multiple frames in spectral envelope estimation. MFAxpected to be capable of
coping with the problems we discussed in Section 3.3. Alsmay be suitable for

statistical processing since it deals with multiple frantiesompute an envelope.

3.4.2 Assumption behind MFA

There is clearly an important assumption behind MFA: allgheech frames applied

to MFA are produced using the same vocal tract shape. It isehessential to measure
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the similarity of the vocal tract shape amongst frames irctirpus.

In this thesis, the similarity is measured on the basis ofstadce of articulatory
configurations derived from the EMA data. Capturing the maomets of primary ar-
ticulators, the EMA measurement does not allow us to knowd#tailed shape of the
vocal tract as MRI does, but can tell us how close one artioglatonfiguration is to
another in the corpus. It is controversial whether just semgiculators on the mid-
sagittal plane can represent all articulatorily significeonfigurations. However, we
use the EMA data because of its great advantage — it is clyrém@ most suitable
method for capturing the dynamics of the articulators, énglsimultaneous recording

of speech in a noise-free environment — as discussed indBeztl.

3.4.3 MFA as a solution

We can summarise the problems discussed previously forectional spectral enve-
lope estimation as follows. In the conventional approacknetinterpolation is made
between harmonics for a single frame, theoretically:

1. the quefrency bandwidth is restricted to below half thedamental period,

which results in a spectral envelope with limited frequeresolution.

2. the spectral envelope is distorted by cepstral aliasing, distorted differently
depending on the sampling quefrency (if8,), which appears as interference of

harmonic structure in the frequency domain.

3. if several frames are produced through an identical fdtet each of them has
a differentFy, averaging interpolated envelopes across the frames adridea

further oversmoothed envelope.

MFA addresses all these conventional problems with theemional approach. It
can deal with problem 1 by increasing the virtual number ofigles, i.e., harmonics
(although the sampling intervals are uneven). The use dfigisnt number of samples
at various frequencies means decreasing the samplingahtand thus it copes with
problem 2. In connection with 3 above, MFA estimates an epeetloser to the filter

response by applying more frames, unlike the conventigo@iaach.
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3.4.4 Time-domain vs. frequency-domain approach

Up to this point, we have discussed the proposed estimatitimei frequency domain
for the sake of clarity. In practice, however, there exigi thifferent possible solutions
for it: a solution in the time domain and a solution in the fregcy domain. The
major difference between those two solutions is the domdiare distortions to be
minimised are defined between observed and estimated issgp0n

The former solution defines the estimate error in the timealopas with standard
LPC analysis. Such a time-domain approach is known to besta@mainst unneces-
sary additive noise, such as noise originating in the rengreinvironment or recording
equipment. Having a random-phase property, this type afencan be cancelled by
summing multiple observations of the signals. For this athge, in acoustics, trans-
fer functions are often found in the time domain or the edeiafrequency domain
represented by the complex spectraim.

However, our preliminary experimefitsevealed that the time-domain solution for
multiple speech segments was unfit to identify the vocal nesponse because of the

following problems:

1. ltis difficult to introduce processing in consideration of the human auditory
perception, such as log-scale power and mel-scale frequsnc
Such processing contributes not only toward synthesisanggptually intelligi-
ble and natural speech, but also toward encoding speecieeffjowvith a smaller
number of parameters so that computational complexity eareuced. These

merits cannot be applied easily to the time-domain approach

2. It attenuates nonperiodic components of speech, such as asgions and
fricatives.
Since such signal components have noise-like random ptiesepproach re-

duces them together with the unwanted noise.

SThe cross-spectrum method (Carter, Knapp & Nuttall 1973)ictv identifies a system transfer
function from several sets of input and output signals, isvikm as a typical method for efficiently
identifying a system transfer function in acoustics.

5The details of the time-domain solution are described inekujix A.
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3. It also weakens signal amplitude in the high frequency band.
To obtain highly natural synthetic speech, the speech mtamumodel needs
to have zeros in its response. When the model has zeros, textitaust be
assumed for the model input. However, placing pitch markstiie input is
strongly restricted by the sampling period, and therefotiena lag of half the
sampling period at maximum can occur between observed dimabagsd wave-
forms. Given as an angular frequency multiplied by a time f#tpse is more
sensitive to the time lag at the higher frequency band. Thenate error in
phase accordingly becomes greater in the higher frequeaiyg, kand conse-

quently high-frequency signals decrease due to the langanee in phasé.

On the other hand, the frequency-domain approach compisiestobn in the log-
spectral domain. Although unable to cancel the environalamtise, the approach
itself employs a perceptually meaningful logarithmic scal power, and can easily
introduce a perceptual-based frequency scale. Moreover power and phase can
be treated separately, it maintains both the nonperioditpoments of speech and the

speech energy in the high frequency band.

3.4.5 Speech representation
3.45.1 Cepstrum

According to the discussion in the previous section, we atlmpcepstrum(Oppen-
heim & Schafer 1989) as a frequency-domain expression dfigbetral envelope. The
cepstrum is adequate to represent both zeros and poles aitlalinumber of coeffi-
cients® This parameterisation is, in addition, a frequency-domapresentation and
thus has good interpolation properties. Furthermorewei-known that the cepstrum

can easily be developed into a perceptual scale, such asahscale and Bark scale

"This seems to be a general demerit of time-domain speeckgsing. The same problem is pointed
out as a problem of a PSOLA-based analysis-by-synthesii@olfor building a set of diphone speech
synthesis units (Kagoshima & Akamine 1997).

80n the other hand, the all-zero model, such as PSOLA (Masigh€harpentier 1990), the model
of which is explained as an impulse-excited FIR filter by Hyahal. (2001), demands a large number of
coefficients (or taps in terms of the FIR filter) to describe detailed spectral envelopes of speech sig-
nals. Accordingly, more training data and computationahplexity are required to obtain the optimal
coefficients.
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(Koishida, Tokuda, Kobayashi & Imai 1995, Young 1996). Tdawerits mean that the
cepstrum is applied widely in the field of speech technolagyg.( Shiga et al. 1994).
Now we investigate the relationship between the spectrurttacepstrum of the
speech signal for the purpose of approximating harmonicsulfiple speech spectra.
Let X (/) denote the Fourier transform of the speech waveform. Thenatural

logarithm, X (¢/?), is given as
X (e = In X (')
= In| X ()] + jarg X (), (3.2)

wherearg(.X) denotes the unwrapped phase of complex specXurAlso, X (e’ is

defined as the Fourier transform of the complex cepsti{thby

o0

X(e) = Z &[n]e (3.3)

n=—oo

We can rewrite Equation (3.3) as follows:

[e.9]

X (&) = Z z[n] (cosnfl — ysinnQ)

= Z z[n] cosnQl — Z z[n] sin nQ2. (3.4)

Taking into consideration the properties of the complexstepn thatz[n| is a real
number and the sum of an even functiQm| and an odd function,[n], we obtain the

following equations on referring to Equations (3.2) and})3.

o

ln‘X(eJQ)| = Z ca[n] cosnf2, (3.5)
arg X (e’) = — i cpln] sinnfl, (3.6)

where

Equations (3.5) and (3.6) are the cepstral representattiog-@amplitude spectrum and

phase spectrum, respectively.
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FIGURE 3.13: Schematic representation explaining difficulty in unwrapping the phase
spectrum of speech with high fundamental frequency. The phase spectrum of real
filter response and a phase spectrum estimated from harmonic phases by unwrapping

are shown in dotted and solid lines respectively in each graph.

3.4.5.2 Importance of phase

Conventional frame-by-frame spectrum estimation requitesse unwrapping. Un-
wrapping phase is not an easy task, however, as pointed odubpg et al. (2001,
p. 313). The heuristic approaches which form the basis ofyrphase unwrapping al-
gorithms are known to be unreliable particularly when agaptio high-pitched speech
with large harmonic spacing. Such wide gaps between adjaaemonics cause the al-
gorithms to incorrectly unwrap phase spectrum, as showersatcally in Figure 3.13.
Besides, the phase unwrapping deteriorates in reliabilltgrwapplied in frequency
bands with a low signal to noise ratio (SNR). For these regsoasy speech syn-
thesis applications, e.g., STRAIGHT (Kawahara 1997), apbidse unwrapping and
do not actually estimate the phase spectrum. Instead, Hseations employ the
minimum phase spectrum, which is computed from the amm@igpmkctrum.

However, it has been pointed out that speech synthesis ttgnigiinimum phase
spectrum causes perceivable degradation in the speecld gpaduced. Quatieri

(2001, p. 292), for example, claims: “For a database of fivéeemand five females
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(3—4 seconds in duration), in informal listening (by ten exenced listeners), when
compared with its minimum-phase counterpart, the mixeasplhsystem produces a
small but audible improvement in quality. When preferre@ mhixed-phase system
was judged by the listeners to reduce ‘buzziness’ of the mim-phase reconstruc-

tion.”

3.4.5.3 Cepstrum and Time-domain Smoothed Group Delay

Here, let us differentiate Equation (3.6) with respect agtrency? and change sign.

Then, we obtain the following interesting formula:

oo

d 0
_Earg){(e] ): Z ncp[n] COS”Q- (37)

n=—oo

Equation (3.7) shows the group delay function in terms ot#@strum. Itis of interest
to note that group delay represented by the low-order elesydmc,[n] corresponds
to Time-domain Smoothed Group Del@SGD) proposed by Banno, Lu, Nakamura,
Shikano & Kawahara (1998). They demonstrate that TSGD ig@eptually efficient
representation for the short-time phase of speech sigaadstherefore the cepstrum,
equivalent to TSGD, promises to be a suitable parametemiooding phase spectra

effectively and efficiently.

3.4.6 Envelope estimation using the least squares method
3.4.6.1 Estimating the spectral envelope of amplitude

Let us first determine a cepstrum which approximates theitudpk of all the harmon-
ics of M speech frames. Based on Equation (3.5), the least squarksdngtapplied
to the amplitudes as in Figure 3.14. The approach can bedsresi an extension of
the cepstrum estimation using spectral amplitudes at hamfikequencies (Nakajima
& Suzuki 1987, Galas & Rodet 1990, Cappt al. 1995), to the analysis of multiple
frames.

Let aff) denote an observed natural-logarithmic amplitude ofthéarmonic(l =
1,2,3,..., Ny) at frequencyf,gl) included in speech frame(= 1,2,3,..., M). Then



3.4. Multi-frame analysis (MFA) 57

power-compensated harmonics

log amplitude [dB]

cepstrally fitted envelope

frequency

FIGURE 3.14: Schematic illustration explaining the estimation of an amplitude spectral

envelope using the least square method
an amplitude estimate error for th#& harmonic of frame: is given as
er = — 30, (3.8)
Wherey,ff) is the following power-compensated amplitudeﬁﬁ?:
y = a)) — d. (3.9)

Hered, is an offset that adjusts the total power of each frame so eartoel out power
difference among the frames, apdf) is an amplitude of the estimated envelope,
which is expressed using a cepstrum as follows:

p
G =3 Galn] cosn@y, (3.10)
n=-—p
wherec,[n] indicates thenth cepstral coefficient estimated, aﬂép is an angular fre-

guency given by
Q,(f) = 27rTsf,§l) (rad), T sampling periods). (3.11)

The sum of squared errors for all the harmonic amplitudesohék is thus expressed

as
N

I SICUN (3.12)

I=—Ny,
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In Equation (3.12) we have introduced a weighting functidrf) for attaching impor-
tance to frequency bands with high SNR. For the least squatesan we define the

following distortion:

M
D= o E® + AR 5(1)) (3.13)

k=1
wherep,, compensates the difference of harmonic density among déimeefs so as not
to deal more importantly with frames having a larger numbieharmonics, but to
evaluate each frame equally regardless of the number ofdracs Let us here define
the compensatiop, by
pe = TR,

WhereFO(k) denotes the fundamental frequency for frameThe functionR,[ ] in
Equation (3.13) is a smoothness criterion which penaligesssively rapid changes
in the envelope. Such changes tend to occur in the frequeantay between zero fre-
guency to the minimum frequency &t values, where no harmonics exist. Here we
adopt the following criterion according to Cappt al. (1995):
T ~ 2
R0 =5 [ || a0

—T

By substituting (3.10) and applying Parseval’s relation,cae rewrite the equation as

follows:
1 " [ad (& i
Rali(] = o / ) <Z Ca|n) cosn9> o
| =
1 [ ’
= — - Z néa[n]sinn| dQ
2 ) .
L n=-p
1 [ ’
= Z néa[n]e ™" dQ
2 J_,
n=—p
p
= Z (néa[n])2, (314)
n=-—p

Equation (3.13) is thus expressed in terms of vectors andaeatas

M

1

aDa = Zﬂk [(yk - Pkca)TWk(yk — Pyc.) + )\aCaTRCa]- (3.15)
k=1
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The vectory, denotes harmonic amplitudes adjusted with offgetand expressed as
Y = ap — dpuy, (3.16)
wherea, andu, are both/NV,-dimensional vectors:
ap = |a, ap° ap ‘- a ,

w=[111 - 1]".

In Equation (3.15)¢, is the unknown vector, which consists of the cepstral caeffis

of order0 to p as follows:
Cy = [6a[0} éa{l} éap] T Ea[p] ]T'

The matrixPy is an /N x (p + 1) matrix with the following elements:

1 2cos Qg) 2 cos QQ,(:) --- 2cos pQS)

1 2cos ng) 2 cos 291(3) <o+ 2co0s pQ,(f)
Pk = . . . . .

1 2cos Q,&N’“) 2 cos 2Q,(€N’“) <o+ 2cos pngN’“)

The weightW, is the following N, x N, diagonal matrix:

[ w(f) 0
W, = . (3.17)

0

w( M)

andRisa(p+ 1) x (p + 1) matrix for the penalisation as follows:

! 0

12
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Equation (3.15) can be solved by reducing it to a problem agiaed least squares.

The normal equation is thus given as follows:

M M
(Z Pk [PZWkPk + )\aR}) Co = Z PP LWy, (3.18)

k=1 k=1
By solving the above equation, the cepstrantan be found.

With ¢, obtained, the offsel;, is so calculated as to minimise Equation (3.12) for

each framék. It is accordingly given as
dj, = argmin [(ak — duy, — Prcy) " Wi(ay, — duy, — Pkca)} .
d

Partially differentiating the right-side content with pest tod, and setting it equal

zero, then,
0

%{(ak — duk — Pkca)TWk(ak — duk — Pkca)}

= —2u;‘ng(ak — duk — Pkca) =0.

By solving the equation, we obtaif} as follows:

T
u, Wi(a, — Pre,)
u;{Wkuk

Zl 1w(f;§l))< —23"P cln ]coan )
Zz 1“’( ) '

Practically, the cepstrum which best approximates all grelonic amplitude spec-

d, =

(3.19)

tra of all theM frames is found in accordance with the following procedure:

~
1. Substituted for c, (initial value).

2. Findd,, using Equation (3.19).

3. Calculate D, of Equation (3.15), and terminate the procedurelf

converges.

4. Finde, by solving Equation (3.18).

5. Return to Step 2.
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unwrapping reference 9, (f)

unwrapped harmonics

phase [rad]

Qo

cepstrally fitted envelope

D)

FIGURE 3.15: Schematic diagram explaining the estimation of a phase spectral enve-

lope using the least squares method

3.4.6.2 Estimating the spectral envelope of phase

Let us next determine a cepstrum which approximates theeghafsall the harmonics
of M speech frames. Based on Equation (3.6), the least squarbkedristapplied to
the phases as in Figure 3.15. For the sake of clarity, theitiefia of notations that
will be used in this section are summarised in Table 3.1.

Let Q,Ef) denote an observed phase (wrapped) ofitheharmonic included in the

speech framé. Then an estimate error is given as
o =0 = a(f)). (3.20)

In the above equation?(f) represents a phase of estimated envelope, which is ex-

pressed using a cepstrum according to Equation (3.6) asvsill

p

@(f,gl)) =— Z épln] sian,(fl), (3.21)

n=-—p
whereé,[n] indicates thenth cepstral coefficient estimated. In Equation (3.2I§y,

denotes an unwrapped phaseéfﬁ)r, and is given as

00 = Dt (1) + wrap [0 — 27 7 — v (1] (3.22)
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TABLE 3.1: Notation definition

notation | definition

T, sampling period

M number of frames used for MFA

N, number of harmonics of frame

P order of cepstrum

9,&” observed phase of thth harmonics of framé

,gl) frequency at Whicw,(f) is observed

19,(;) time-delay compensated, unwrapped phas%lbf

I(f) estimated phase at frequengty

Yhet(f) | unwrapped phase envelope (with reference of wmgh is un-
wrapped)

épln] nth cepstral coefficient for representing phase envelope

cre¥[n] | nth cepstral coefficient estimated in the last iteration

Ca[n] nth cepstral coefficient for representing log amplitude épe

T time delay compensating the linear phase of frdame
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FIGURE 3.16: Moving average of phase in the complex frequency domain

whereT; is a time delay that compensates the linear phase compohém phase
spectrum. The operatarrap|f] wraps the phase, and causes it to fall betweenr

andr using the following calculation:
wrapld] = [(0 — 7) mod 27?} + .

The functiond,.¢(f) represents an unwrapped phase spectrum, with referendedb w
all the harmonic phases @il frames are unwrapped. Accordingly, Equation (3.22)
removes the linear phase component from the observed [ﬁgjésand unwraps the
phase so as to cause it to fall betwe%gg(f,gl)) — 7 and v, ( ;’>) + .

One option for such a reference is the moving-average of ie-delay-
compensated phase‘l{f) — 27rf,£l)rk (for all the harmonics of all the frames), along
the frequency axis in the complex frequency domain, as shoviaigure 3.16. It is

expressed as

S o Sk GUEY = fexp (o)) — 2 f7)
Yo S G = )

whereG( f) indicates a moving average window. The other option for éfierence of

ﬁref(f) = arg ) (323)

unwrapping is the previously estimated phase, which is cdetpas
p
Oret(f) = =2 ) &V [n]sinng, (3.24)
n=1

wherech'[n] is thenth phase cepstral coefficient found in the last iteration, @n=
2r fT.
For the initial value off,.¢(f), we adopt the following minimum phase spectrum

calculated from the cepstruiqn|(n = 1,2, 3, ..., p), which has already been obtained
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for the amplitude spectral envelope:
p
et (f))) = =2 Galn] sinn). (3.25)
n=1

The sum of squared errors is then expressed for all the hacrpbases of framé as

follows:
Ng 9
EW =" w() (5,@) . (3.26)
I=—Nj,
For the least squares criterion we define the following dikto:
M ~
Dy =3 i (EY + MRy [0(£)]). (3.27)
k=1

The functionR,,[ ] in Equation (3.27) is a smoothness criterion which pensilese
cessively rapid changes in the envelope. Such changesdeautr in the frequency
band between zero frequency and the minimiégnwhere no harmonics exist. Here
we adopt the following criterion:

&szi/ﬂ%ﬁ

2

ds.

By substituting (3.21) and applying Parseval’s relation,cae rewrite the equation as

follows:
- 1 ([ d d i
Ro[V(f)] = %/ ) (— Z épln) sian) ds2
| =
1 [ ’
=5 Z nép[n]cosnfl| dQ
T |2
I i ’
= — néy[n)e " dQ
2 J_. =,
p
=) (néy[n))*. (3.28)
n=-—p
In terms of vectors and matrices, Equation (3.27) is expkas
1 M
500 = D7 | (W — Qi) W9 — Quey) + Acp Rey . (3.29)

k=1
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whered, is an N,-dimensional vector consisting of harmonic phaégéas its ele-

ments, and is expressed as

T
9 = [ o o o o™

The vectorce, is the unknown which consists of the cepstral coefficientsrdér1 to

p as follows:
¢, = [6&[1] G[2] &[3] -+ Glpl ]T'

The matrixQ, is an N, x p matrix as follows:

sin Qg) sin QQ,(:) -+ sin pQ,(Cl)
0@ (2) : (2)
sin €7 sin207 .- sinpl
Q=(-2)- . . .
sin Q,E:N’“) sin ZQ,gNk) e sian,(gN’“)

Thus, the cepstrura, can be found by solving the following normal equation:

M M
(Z Pk [QZWka + )‘pRi|> c, = Z Pk QL W9 (3.30)
=1 =1

The delayr, in Equation (3.22) is calculated on the basis of cross-taron be-
tween observed and estimated signals for framélere, we take into consideration
that cross-correlation of two signals is the inverse Fauri@nsform of their cross-
spectrum. The cross-spectrum of the observed Iine-spapetls«p(ag) +]9,(€l)), and the

estimated spectrumxp[g,(f) + 70t ( f,gl))}, is expressed as

Gr(f") = exp (a;(f) + 995)) exp [ﬂ;(f) - ]ﬁref(flgl))}

= exp <a,(€l) + ﬂ,g”) exp (j [9,(!) — ﬁref(f,gl))D . (1=1,2,3,..., Ny).

(3.31)

Note thatG),(f) is zero wheref # f\”. The cross-correlationg,,(7), of these two

signals is obtained as the inverse Fourier transform of th&sespectrum as follows:

Re(r) = F ' [Gu(f)] = L / N Gr(f)e™Tdw

21 J_ o
1 al 1) j27rf(l)7' X/ p(l) —j27rf(l>7'
= = > |G L G e ] (3.32)

=1
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where the superscript denotes complex conjugate operation, and the operation
T [X] represents the inverse Fourier transform.of Substitution of Equa-

tion (3.31) into (3.32) yields the following formula:

Ng

1
Ri(1) = - Z exp (a;) + y,(g)> Ccos |:27Tf]§l)7' + 9,(;) — ﬁref(f,gl)) ) (3.33)

=1

The delayr, for framek is thus given as

T, = argmax Ry (7). (3.34)

_Ty Ty
) <TL )

It may be practical to use discrete time with a period thaufficgently smaller than

the sampling period. Lef; denote that period. Then,
=T, (1 <Ty). (3.35)

Equation (3.34) is accordingly rewritten as

ng = argmax R.(n), (3.36)
TO <”< 2T
where
Z exp (ak + ykl)) cos [27Tfk T.n + 0 — Vet ( ,gl)) . (3.37)

=1
Practically, the cepstrum which best approximates all grenlonic phase spectra

of all the M frames is found in accordance with the following procedure:

4 I
1. Initialised,¢(f") using Equation (3.25).

2. Find7, (for all k) using Equations (3.35), (3.36) and (3.37).

3. CalculateD,, using Equation (3.29), and terminate the procedur®jf

converges.
4. Finde, by solving Equation (3.30).

5. Findﬁref(f,gl)) using either Equation (3.23) or (3.24).

6. Return to Step 2.
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TABLE 3.2: Formant frequencies and bandwidths of filter responses for simulation

. first formant second formant
voice type
frequency (Hz) bandwidth (Hz) frequency (Hz) bandwidth (Hz)
[a] 850 50 1200 60
female

[i] 300 77 2800 60
[a] 730 42 1100 45

male
[i] 270 57 2300 40

3.5 Simulation using artificial filter responses

In this section, we confirm the validity of the proposed méltlhy investigating the
accuracy of the method through experiments. There existethads capable of ob-
serving speech signals and measuring vocal tract respeimsetianeously. Hence
the use of actual speech signals for the experiments preusnrom examining the
estimation accuracy because the true responses of the tvackbre unknown. The

experiments are therefore carried out using artificialgelced vocal-tract responses.

3.5.1 Data

Experimental samples were amplitude and phase of harmanidsh are produced
by sampling designed frequency responses with the spadidg o the frequency
domain. For the samples the experiments did not adopt spegohls synthesised
using the responses, because error caused by identifymgoh&s could influence
the resulting accuracy. In other words, it was assumed #wadnics were perfectly
estimated, in order to avoid the ill effects of any harmorsitireation errors.

The responses are all-pole and are designed to have tworitsr{@oles), whose
frequencies and bandwidths are shown in Table 3.2. The farfrequencies were set
to the typical values described in Kent & Read (1992, p. 95, the formant band-

widths were set in accordance with the result of sweep-tagssorements by Fujimura
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TABLE 3.3: Fundamental frequency distribution

corpus | voice type| mean (oct) | standard deviation (oct)

fsewd | female | 7.62 (196 Hz) 0.324
nmsak0 male 6.80 (112 Hz) 0.189

& Lindqvist (1971)%1° The frequency characteristic for each pole is representéidh
following equation (Huang et al. 2001):

1
1 —2e " cos(2mf)zL + e~ 2mby—2’

Hpole(z) (338)

where f andb are the frequency and bandwidth of a formant in the normalise
quency scale. Thereby four types of frequency responses aesigned, which are

shown in Figure 3.17.

The frequency responses were sampled with the spacifg dihe F; values were
generated randomly conforming to a normal distribution séhanean and standard
deviation are those afy values in each speech corpus. The means and deviations of
F, for corporaf sew0 andnsakO are listed in Table 3.3. Also, shown in Figure 3.18
are the histograms afy values in the corpora, and normal distributions fitted to the
histograms. In order to prevent generatiigvalues extremely far from the meaky,’s
generated outside a range betweehand2 standard deviation were removed. In each

graph of Figure 3.18, the pair of vertical dotted lines shewsh frequency range.

A data set comprises amplitude-phase pairs of harmonics/férames. Each of
the pairs was produced using a vocal-tract frequency respamd)/ fundamental fre-
guencies generated in the manner described above. In20td4ta sets were prepared,

to each of which a different; set was applied.

9Their measurement having been made in closed-glottis tiondithe actual bandwidth of vocal
tract resonances may become larger being influenced by #regimse of glottis.

10The measurement in the article is so reliable as to be reféorm Allen, Hunnicutt & Klatt (1987,
p. 142) for the development of a formant synthesiser.
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FIGURE 3.17: Synthesised frequency responses of vocal tract
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FIGURE 3.18: Histograms of fundamental frequency, and fitted normal distributions

3.5.2 Method
3.5.2.1 Multi-Frame Analysis (MFA)

Ford..¢(f) in Equation (3.22), Equation (3.24) was applied. The wanghtunction,
w(f), was set flat@(f) = 1) over the entire frequency band. The coefficientgnd
Ap for the smoothness criteria in Equations (3.13) and (3.128pectively, were both
set tol x 1073, The iteration procedures (for the spectral envelopes qiitude and
phase) were terminated when the ratio of the absolute vdlireaifference between
the current distortion and the previous distortion for theent distortion became less
than0.001.

3.5.2.2 A conventional method for comparison

As a conventional method for comparison, we also computedniean of cepstra
which represent log-amplitude spectral envelopes of a&llftames within each data
set (we hereinafter call the spectral envelope represédnytéte mean cepstrum ‘mean
amplitude envelope’).

The mean amplitude envelope was calculated as follows: ¢pstum analysis
method proposed by Cagpet al. (1995) first estimated a cepstrum representing the

spectral envelope of each frame on a frame-by-frame basit; the mean envelope
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was computed by calculating the algebraic mean of the addadepstra. Such pro-
cessing corresponds to a conventional method which stafigtdeals with cepstra
obtained by frame-by-frame analysis. In the cepstrum a@mglyhe coefficient for the
smoothness criteria was setit® x 1073,

Phase spectra were computed as minimum phase spectra,asbiciiculated from
the cepstrum of a mean amplitude envelope. A cepstrum repiiag the minimum
phase is equivalent to a cepstrum representing the amglgpectrum except at zero
guefrency, and therefore

caln], (n>0)
cpln] = (3.39)
3.5.2.3 Distortion measure

The cepstral distance (Furui 2001, p. 202) was applied talistertion measure for

amplitude response as follows:

D, = - 23 (el =) (@) (3.40)

where the cepstral distance above is defined on the basisdbliowing Parseval

relation (Oppenheim & Schafer 1989, p. 58):
2 1 7"'
= / W
F

P
wherer «<<— X means thak is the Fourier transform af, andz is the inverse Fourier

if x[n]iX(eﬁ), then i ‘x[n] X (] dQ, (3.41)

’ 2

transform ofX. Thus the following relation holds between an amplitudectpen and

its cepstrum:

, then i (ca[n]>2 = % /_7; <10g |X(€JQ)‘>2dQ
T (3.42)

Notice that such a relation also holds between a phase speetnd its cepstrum as

if  ca[n] Z, log | X (e")

follows:

o]
a

if  c¢p[n] &, garg X ('), then Z (cp[n])2 = % /_: (argX(eJQ)>2dQ
(3.43)

n=—oo
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We may hence define the following formula as a new distancesaneaor phase

spectra:

Peval

CDy = [2)  (cp[n] = &[n])*  (rad) (3.44)

In order to obtain a precise evaluation, the order of cepstpy,.;, was set to 512 for
both of the distortions. The cepstra,[n] andc,[n], of the filter response were ac-
cordingly calculated as a 1024-point discrete Fouriersiaim of the target frequency
response. Henceforth let us simply c&lD, amplitude distortionand CD,, phase

distortion

3.5.2.4 Procedure

First, an amplitude envelope and a phase envelope wereagstias a complex cep-
strum from the multiple speech frames of each data set. Sedwstortions for both
envelopes were computed against the known responses dftraxtdbased on the dis-
tortion measures as described above. Finally, the mean wéhil the distortions were
calculated. In estimating the envelopes, different cepstdersp, and different num-
bers of frames)\/, are used to examine the variation of the distortions depgneh

these two parameters.

3.5.3 Results

Figures 3.19 and 3.20 show the relation between the amplénd phase distortions,
and the order of cepstrum, when 80 speech fram&s80) were used for the estima-
tion. Both distortions of MFA decrease asymptotically asddpstral order increases.
Of note is that both the male and female voices show similacei@ curves in the re-
sults of MFA. On the other hand, the distortions of the coteeral method decrease
as MFA when cepstral order is relatively low; however, theadmt curves level out
when the cepstral order exceeds a certain level. When the fortleer increases, after
showing the minimum values, both amplitude and phase distar increase gradu-
ally for the conventional method. Comparisons between thesyf voices show that

the descents become slow around order 70 and 40, and thes&hee the minimum



3.5. Simulation using artificial filter responses

0.8 ‘
\ - » —conventional
0.7 }? —6&—proposed N
\
—0.6f \ |
3 \
5 0.5¢ \\ |
5 \
o 0.4 \ ]
=l X
z \
Zo03 |
& Se e e e R
0.2t |
O—
0.1 G\e\\\t ]
0 . . }‘—9\6”9 N o—o—p
0 50 100 150 200 250

order of cepstrum

(a) amplitude distortion (vowel [a])

1.4 ‘
- = -conventional
Ll —e—proposed
z 1§
k=) \
Sogl |
o \
P \
S o6l \
2
& 04l
0.2 Sgo xmx X Tex meme e Temx
TS
i | ‘ © ——e—‘—efﬁa——e—‘—e—e”@
o 50 100 150 200 250

order of cepstrum

(c) amplitude distortion (vowel [i])

73

0.2 .
- = —conventional
\@ —o— proposed
0.15¢ \
=1 \
I \
= \
S \
s 0.1f \\
(]
2 AN
= Nl
0.05} \?\; ************
(\& a_
o ‘ ‘ ‘ —o - —»5 o
0 50 100 150 200 250
order of cepstrum
(b) phase distortion (vowel [a])
0.25 T
ﬁ - = —conventional
\ —o— proposed
0.2 |
\
= \
i \
< \
=0.15- |
2 \
5]
[0} &\
@ 0.1f \
g X
0.05 e
vww&"’“’ﬁfwe\
\6"*(—»,,@,7677@7 R
0 ‘ ‘ ‘ ‘ ©
0 50 100 150 200

250
order of cepstrum

(d) phase distortion (vowel [i])

FIGURE 3.19: Distortion of estimated envelopes (male voice, M = 80)
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values around order 90 and 50, for the male and female voesgsectively. From
those results it is clear that MFA is superior to the converdl method in accuracy
especially when a cepstrum of high order is used. The distmricaused by MFA are
approximately half of those caused by the conventional otetbr both amplitude and
phase, when cepstral order is around 120 for the male vaickeaeund 60 for the fe-
male voice. When the order exceeds 200, the distortions of MB&h approximately

one quarter and one tenth of the conventional method, raggkyc

Next, Figures 3.21 though 3.28 show amplitude and phasertiists in the case
of 40, 20, 10 and 5 frames, respectively, in use for the esomdg)/ = 40, 20, 10,
5). When five frames were used, MFA shows relatively largeodisins in the high
cepstral order range approximately above 100, but thertists are less than half
of those of the conventional method. When the number of framge= or more, the
distortions become sufficiently low and stable. On the otreerd, the conventional
method estimates envelopes with stable accuracy regaroiése number of frames;

however, its distortions are higher than those of MFA athalnumbers of frames.

Figures 3.29 and 3.30 show several pairs of log-amplitudepdrase spectral en-
velopes of the female voice. In the figures, each graph orefivddnd side shows a
log-amplitude spectral envelope estimated by MFA, whilehean the right shows a
phase spectral envelope. During the estimation, differepstral orders were applied.
When the order is 32, there is not much difference in both spdédtween MFA and
conventional method; both of the methods do not sufficieagigroximate the origi-
nal filter frequency response. Evidently from the comparisb(b-1) and (b-2), and
(c-1) and (c-2) in Figure 3.29, as the cepstral order in@gas|FA becomes able to
estimate an envelope which expresses the original filtgrorese with high fidelity,
while on the other hand the conventional method still edtesmian envelope with blunt

formant peaks.

Also, for every data set, the conventional method tendstimete a considerably
different spectrum compared to MFA for every data set, whgh brder of cepstrum
is used. For example, if comparisons are made in Figure 2@den spectra of MFA
and the conventional method in the case of cepstral orderthi@@&nvelopes estimated

by the conventional method fluctuate noticeably from datatselata set, whereas
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MFA reproduces the formants of the original response welafithe data set.

3.5.4 Discussion

3.5.4.1 Accuracy of estimation

The experimental results reveal that MFA is capable of esting the filter responses
with high accuracy by increasing the order of cepstrum. dbdlecame clear that
the proposed estimation is remarkably stable when obgiaisufficient number of

frames.

On the other hand, the conventional method cannot improseatituracy even
if applying a high-order cepstrum. The conventional metbhothputes spectral en-
velopes on a frame-by-frame basis. As discussed in Seci®)rilg& frame-by-frame
analysis is unable to obtain envelopes in sufficiently higgotution due to harmonic
spacing, so that averaging such envelopes causes a meamsp@de over-smoothed
on the same level. The frequency resolution of the envelbpesmes saturated due to
the influence of harmonic structure. If the cepstral ordenised even further in the
conventional method, the resulting envelope becomesedaurrore. Since harmonic
structure further influences the envelope estimation, stienated envelopes become
considerably different from frame to frame. Averaging sddferent envelopes over-
smooths the resulting mean envelope even more. This maydehd gradual increase

of the distortions in Figures 3.19 through 3.28.

3.5.4.2 Difference between male and female voices

For MFA, both of the distortions decrease as the cepstrarontreases regardless of
whether the voice is male or female. In contrast, the comweak method is unable to
decrease the distortions when the cepstral order excepds@pately 70 for the male

voice, and 40 for the female voice.

These cepstral orders are considered to be correlatedhveiiubhdamental periods

of these voices. The above cepstral orders, 70 and 40, ponmd$o 4.4 ms and 2.5 ms
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in quefrencyt! Meanwhile, the mean values 6 generated for the experiment were
112 Hz for the male voice and 196 Hz for the female voice, aeg ttorrespond to
8.9 and 5.1 ms in fundamental period, respectively. We carilss, at the quefrency
of half the mean fundamental period, the accuracy reaclegthéoretical limits in the
conventional method. It is considered that, according éoghmpling theorem, the

guefrency bandwidth was restricted to under half the samgpjuefrency.

3.5.4.3 The number of multiple frames, M

In order to improve the accuracy of estimation, MFA increatde apparent number
of harmonics by applying all the harmonics of several spderhes. It is therefore
essential for MFA to obtain a sufficient number of frames.dewitly from Figures 3.19
through 3.28, however, MFA maintains better performan@&naevhen a small number

of frames are used.

3.6 Applying MFA to actual speech signals

It has become clear in the previous experiment that, cordp@reéhe conventional
method, MFA can estimate spectral envelopes with high acguand stability, and
with little interference of harmonic structure. MFA provés worth when applied to
speech with highy,, where conventional frame-by-frame methods are unablbtt

sufficient resolution in the spectrum due to the low numbdrasmonics.

In this section, MFA is applied to actual speech, for whichogpas of female
speech having higlt} is used. As we have already seen, MFA forms a spectral en-
velope with several speech frames produced through a filteram identical transfer
response. For this application, therefore, we need firsb¢ateé where speech is vo-
calised using the same vocal-tract shape. For this purplage,are required which

represent the actual shape of vocal tract with sufficieilvéity.

1 (cepstral order)

f =
quefrency) (sampling frequency)
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number of frames per cluster
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FIGURE 3.31: The number of speech frames in each cluster

3.6.1 Data and method

The MOCHA corpusf sew0 was used in the experiment. As has already been
mentioned in Chapter 2, the corpus is composed of 460 semsteritszed by a fe-
male speaker, and includes parallel acoustic-articyfatdgormation, recorded using

a Carstens EMA system at Queen Margaret University Collegmbldgh. All the
voiced frames (91051 frames) were applied for spectrallepes from the corpus.

In order to identify speech frames having similar articotaettings, all the voiced
frames were divided into 512 clusters by applying LBG clustg(Linde, Buzo &
Gray 1980) to the articulatory data. Prior to the applicatd clustering, the articu-
latory data were normalised using the method explained ati®e4.3.2. Figure 3.31
shows how many speech frames comprise each cluster. Cepsbefficients were
calculated by applying MFA to all the frames in each clusasrshown schematically
in Figure 3.32. During the calculation of MFA, a Gaussiartribsition with 4 kHz
standard deviation is used for the weighting functiafy) in Equations (3.12), (3.17)
and (3.26); and Equation (3.24) was applieddQg( f) in Equation (3.22). Figure 3.33
shows the weighting function. The cepstral order was se#tthhéughout this exper-
iment. The coefficients, and ), for the smoothness criteria in Equations (3.13) and

(3.27), respectively, were both setittoc 1073.
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As a conventional method for comparison, mean amplitudelepes and their
minimum phase envelopes were computed using the same neho&ection 3.5.2.2.

The cepstral order was set to 64.

3.6.2 Results

Figure 3.34 shows a pair of spectral envelopes calculatad frepstra obtained by
MFA. In the figure, the dots represent observed offset-cors@ied harmonic ampli-
tudGSy,(gl) of Equation (3.9) in the upper graph, and linear-phase-emnsgated harmonic
phases?,(f) of Equation (3.22) in the lower graph. The solid line indesathe envelope
of the amplitude spectrum (upper) and phase spectrum (Jaa&ulated by MFA.

Figure 3.35 provides a comparison of an MFA amplitude spéetnvelope and a
mean amplitude envelope. As is the case with the simulatid®eiction 3.5, we can
see that the MFA envelope undulates more steeply than the areplitude envelope
especially in some formant peaks. However, differenceérsteepness between these
two envelopes is not so marked as that of the previous resnltsynthetic data in
Figure 3.29.

Figure 3.36 compares a MFA phase spectrum with the minimuasgpectrum.
As we can see in the figure, these two spectra differ remaylalthe frequency bands

below 500 Hz and above 4 kHz, whilst showing agreement in #meltbetween them.

3.6.3 Discussion
3.6.3.1 Comparison with a mean amplitude spectrum

As in Figure 3.35, difference in the undulation steepnesthefamplitude envelope
between MFA and the conventional method has not been so thakén the case
of the simulation in Section 3.5. This is probably becausetthe response to be
estimated is subtly different for each frame in a cluster,tfi@ conceivable reasons

below. How to remove these fluctuations is hereafter our foexis.

¢ MFA assumes the application of speech signals produceddhra filter having

an identical response, and under this condition the metlaodpcovide opti-
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FIGURE 3.34: Spectral envelopes of an articulatory cluster estimated using MFA.
The solid line indicates the envelope of the amplitude spectrum (upper) and phase
spectrum (lower) calculated by MFA. The dots show observed offset-compensated
harmonic amplitudes y,(f) of Equation (3.9) in the upper graphs, and linear-phase-

compensated harmonic phases ﬂg) of Equation (3.22) in the lower graphs.
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mal performance. Whereas the simulation allowed the filtéyatee an identical
frequency response, in this experiment using actual speettulatory config-
urations are not necessarily the same even if they belorgpteame articulatory

cluster.

e The frequency characteristic of the voice source varieedpg on factors
other than articulatory configuration. In Section 3.1 weuassd that the voice
source in the source-filter model was a periodic impulsetrand thus consid-
ered spectral envelopes as the vocal tract transfer cleaisdcds. However, it
has been reported (e.g., Miller 1959) that the glottal sewltanges its wave-
form depending mainly on the; and power of the source. We need to take into

consideration spectral variation caused by the voice sddrc

3.6.3.2 Comparison to the minimum phase spectrum

MFA efficiently unwraps phase using the phase informationuwherous harmonics
at various frequencies of several frames. In this ingenwayg MFA avoids the un-
wrapping problem caused by frequency-domain harmonicisgad hat problem has
already been discussed in Section 3.4.5.2. In additionmtod is expected to im-
prove the reliability of the phase spectrum in frequencydsawith low SNR, since
the phase spectrum is given as a statistical mean among #seplof a number of
harmonics.

On the other hand, the comparison of phase spectra estirbgtdtFA and the
conventional method (Figure 3.36) suggests that the mimmbase can cause per-
ceptible degradation in speech quality. Wouters & Maco®(@@nake a point in their
study on spectral modification to English vowels: “We havaoted good experimen-
tal results by maintaining the phases of the original spdstbw 300 Hz and above
4 kHz, and using the all-pole model phases in between.” Atingrto this conclu-
sion, phase information except in the range 0.3—-4 kHz mudefbentact in order
to produce high-quality speech. Most of our results incigdrigure 3.36, however,

show that the minimum phase spectrum differs considerabiy the observed phase

2\We will deal with such source-filter separation in Chapter 5.
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of harmonics in the frequency bands below 500 Hz and abovez} WiHere original
phase information must be preserved. Itis, consequemthgaivable that speech may
be synthesised with higher quality using phase obtainethi&ptoposed method than

using the minimum phase.

3.7 Conclusions

This chapter dealt with spectral envelope estimation, aoggsed a method of es-
timating the detailed spectral envelope of voiced speeeh firom the effects of its
harmonic structure. We discussed the theoretical aspétite proposed method, and
conducted experiments by applying the method to both stintaed actual speech.

As it became evident from the simulation in Section 3.5, emonal frame-by-
frame analysis is, due to the interference of harmonic &ira®f the periodic signal,
unable to estimate a spectral envelope which preciselyctsfiee transfer function of
the system. The result suggests that the conventionalrapentelope estimation can-
not reconstruct the vocal tract transfer function in ddtaiin periodic voiced speech.

On the other hand, the proposed method, MFA, virtually iases the number of
harmonics by using harmonics of multiple frames, and comsetly is able to estimate
a detailed spectral envelope which precisely reflects drester function of the filter.
The method thereby improves the envelope’s frequencyutisn| and estimates the
envelope with little influence of the harmonic structure atle frame. In addition,
MFA is far less prone to blurring the envelopes when applrestatistical processing
(averaging) compared to the conventional method.

The detailed estimation of vocal tract filter responses se®$al for speech syn-
thesis, but is not treated as an important issue in the otldsfof speech technology.
Speech recognition only requires the outline of the spketrzelope, preserving suf-
ficient information to discriminate phoneme types. In soidal speech coding, it is
sufficient to preserve harmonic amplitude and phase. Shedarmonics locate at
discrete frequencies, high frequency resolution is natired for their representation.
However, differently from those technologies, speechlsysis requires spectral en-

velopes that precisely reflect the vocal tract transfer tioncwith sufficiently high
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resolution, for the purpose of producing speech with anynloaiic structure.

As far as cepstrum-based spectral envelope estimationniseceed, discarding
high-quefrency coefficients is required to remove the haimstructure caused by the
periodicity of speech signals. Conventional cepstrum-tbageech synthesis has, for
this reason, applied a cepstrum of at most 32nd order (ehggaSHara & Nitta 1994,
Eriksson, Kang & Stylianou 1998). However, the simulatiorSection 3.5 revealed
that a cepstrum of order 50—-100 was required to express tiadatefrequency re-
sponse of the vocal tract. If the order of cepstrum is notaefiily high, the estimated
spectral envelope loses the sharpness of formant peakh.|&scof sharpness in the
spectrum is reported to degrade the perceived naturaliegseech (Kent & Read
1992, p. 99). By applying a high-order cepstrum, MFA can dlosgpresses formant
bandwidths, which influence the naturalness of speech, @ fine structure com-
posed of small formants or anti-formants, which may consagnal aspects relating to

speaker identity.

In Section 3.4.5.3, we discussed that Time-domain SmootBealp Delay
(TSGD) (Banno et al. 1998) is equivalent to the phase reptasen of the cepstrum.
Their study on TSGD reveals from the measurement of seginShtaatios that at
least 100 TSGD coefficients are needed to reproduce spedutunmiegradation. This
order of the parameter is in broad agreement with our refultdhe phase spectrum
in Section 3.5. Also, their subjective evaluation claimattarder 30 is sufficient to
reproduce speech with perceptually negligible degradatidowever, their synthe-
sis process employs amplitude spectra extracted from thmak speech signals, and
hence it is probable that a higher order would be needed iathglitude spectra are

also estimated and have some degradation of their own.

When obtaining amplitude and phase of harmonics in Sect&B8,2ve adopted the
weighted least squares method proposed by Stylianou (206i$)method estimates
harmonics at frequencies corresponding to an integralipheiibf the fundamental. It
is, however, clear from the equations in Section 3.4.6 thathiarmonic frequency,
f,il), does not have to precisely be an integral multiple of thel&mental. Hence we
can apply other widely-used harmonic analysis methodd) asclTerada, Nakajima,
Tohyama & Hirata (1994) and George & Smith (1997). Moreousing the frequency



3.7. Conclusions 97

warping technigue, we can easily introduce perceptuatiyprated frequency scales,
such as the Mel-frequency scale and Bark frequency $gale.

In the second experiment of this chapter, clustering wa®paed in the articula-
tory space. Another aspect of the combination of the adtony clustering and MFA is
that, in the process of estimating the envelopes from a sanping MFA, a codebook
can be produced which relates articulation to spectrallepes. Such a codebook may
realise high-quality articulatory-acoustic conversiapplying the envelopes precisely
estimated by MFA. How to realise the articulatory-acoustioversion is the focus of
the next chapter.

135ection 4.6 will examine MFA to which the Mel-frequency sci applied in the framework of an
articulatory-acoustic forward mapping.






CHAPTER 4

Articulatory-acoustic mapping

based on MFA

4.1 Introduction
This chapter deals with the following two related pointssatie together:

1. a mapping of articulation to the vocal tract filter resgonsing actual measure-

ments of the articulators, and

2. precise estimation of the vocal tract filter responsedasearticulatory data for

high-quality speech synthesis.

As already discussed, we intend to train a mapping of agtony data to speech
acoustic characteristics, based on a speech corpus thaireolarge amounts of par-
allel articulatory-acoustic data. Figure 4.1 shows a @iagnatic illustration of the
articulatory-acoustic mapping. For a number of observads g articulatory con-
figurationz and speech acoustic parametethe mapping is so optimised tha{x)
becomes closest iobased on a certain criterion. As is generally known, the nmpp
is nonlinear. Once the mapping is obtained thereby, it besopossible to synthesise
speech from any given articulatory data, by converting ttiewdatory data into speech
acoustic features, and producing speech from the acoesiiares with a speech syn-

thesis technique.

99
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Mapping function: F'(x)

e

Articulatory configuration Speech representation
X c

FIGURE 4.1: Articulatory-acoustic (forward) mapping. Articulatory configuration «x is

mapped to speech acoustic feature ¢ by function F(x).

Such a type of mapping is sometimes called an articulatoogsticforward map-
ping, in contrast to the articulatory-acoustiverse mappinga mapping in the reverse
direction from speech acoustic features to articulatoryentents. This thesis uses
the term ‘articulatory-acoustic mapping’, which means fbxevard mapping unless

otherwise stated.

Although extracting accurate vocal-tract transfer chiarastics is essential for
high-quality speech synthesis, current techniques castiyhachieve such extraction.
Since the frequency resolution of estimated spectral epeslvaries depending on the
spacing of harmonics (i.e., depending &) in voiced speech, spectral envelopes ob-
tained by widely-used short-time spectral estimation armsilerably unstable (as in

Figure 3.3 on page 40 in Section 3.3).

To cope with this problem, we will apply tHdulti-frame AnalysiSMFA) spectral
envelope estimation we introduced in Chapter 3, to the psoakEsiapping estimation.
MFA promises to estimate detailed spectral envelopes ctefethe responses of the
intricate vocal tract, which conventional analysis is Ueab estimate due to the in-
terference from harmonic structure of voiced speech. Hedngeising the envelopes
precisely estimated by MFA, we can expect to realise highlityuarticulatory-acoustic

conversion.

Interestingly, we have already realised a clustering-dbas#iculatory-acoustic
mapping during the experiment in Section 3.6, where we peréd data clustering

in the articulatory space, and extracted a spectral engdlopeach of the clusters
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by MFA. Hence, a spectral envelope can be determined as guatooit the conver-
sion, simply by identifying a cluster for each input arti@tadry configuration. In this
chapter, we will first investigate such a cluster-based nmgpand then, in order to
improve mapping accuracy, apply a piecewise linear appraton to such a cluster-
based mapping.

Furthermore, we will discuss new criteria for measuring piag accuracy in
voiced speech. As was made clear in Chapter 3, in spectralopegeestimated by
conventional methods, sections between adjacent harsianécmerely interpolated,
and do not reflect the real vocal tract transfer characiesisHence, the use of such
acoustic features leads to an inaccurate result in evalyatapping performance.

This chapter contains the following sections: in the nextisa, we will take up a
study by Kaburagi & Honda (1998) and discuss the problembeif tnethod and the
current technology. Section 4.3 will outline the proposkster-based mapping tech-
nique, and mention the new mapping performance criteriati®@e4.4 will explain
MFA-based mapping and show the result of an experimentide4t5 will introduce
piecewise linear approximation, and discuss some expataheesults. Section 4.6
will describe the use of a perceptual frequency scale inrdradéwork of the proposed
mapping technique, and compare it to a mapping with a relgtivew speech param-
eterisation technique. Finally, Section 4.7 will summa@asd conclude the chapter.

Note that, in the experiments of this chapter, we will firsbpidone of the standard
truncated-cepstrum methods as a baseline, and then (iroidc6) a recently pro-
posed, improved approach, which we have already seen in &tapthe reason why
the latter was not used throughout this chapter, althoubhdtpreviously appeared,
is that the author reverted and reexamined the study of theeding chapter, after

conducting the experiments of this chapter.

4.2 Existing methods and their drawbacks

This section first presents a conventional articulatoryuatic mapping by Kaburagi
& Honda (1998), and points out its problem. Then we disqgsdfiltering one of the

recent standard expedients to improve the problem.
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4.2.1 Mapping of articulatory data to acoustic features

Articulatory-acoustic mapping using an EMA database wasdichieved by Kaburagi
& Honda (1998). They reported a technique for synthesispegsh from articulator
positions based on search of a database composed of paitsofaory and acoustic
data. For the acoustic data they use the line spectrum paR)(takura 1975). Their
approach first identifies the phoneme category of the ingitudaitory configuration,
in order to restrict the search area of the database. Fardtegory identification, they
use a phoneme-specific feature subspace in the articulgpane (Honda & Kaburagi
1996). This thesis does not use any phonemic categoridatitime reason that will be
described later in Section 4.7; see Kaburagi & Honda (1988jrore information on
their categorisation technique.

After that, M articulatory configurations neighbouring the input confagion are
selected within an identified category of the database basedvariance-normalised

distance between them. The distance is defined as
€; = (33 - :131>TW(33 - wi)a (4.1)

wherex andx; denote articulatory configurations of the input anditheconfiguration
that belongs to the selected category in the database cteghe The matrixW is a

diagonal matrix with the weights
[wl,wg,...,wL], (42)

where
L
w; ocal_l, Zwl =1.
=1

Here, o, denotes standard deviation of each articulator positiorthan database.
Let the jth selected configuration and the corresponding LSP paeairbetr; and
o;j(j =1,2,...,M). Then, an LSP parameter representing speech to be symithesis
is finally calculated as a weighted average of LSP parametaresponding to the

selected articulatory configurations, using the followatgiation:

M
o= Zw;oj, (4.3)
j=1
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where the weighting coefficients is given as

M
/ -2 r_
w; o< e;”, E w; = 1.

j=1
LSP parameters whose corresponding articulatory configansaare closer to the input
are weighted more.
Although the capability of their methodology above is destoated by producing
intelligible speech by employing LSP and multipulse exmia(Atal & Remde 1982),

the method obviously has the following problems:

e Since it requires storing all the articulatory-acousticgpaeters included in a
corpus for each speaker, the synthesis system obviousygersl as the amount

of training data increases.

¢ |ttakes alonger time to search the database for the ne@eggtbour articulatory

configurations, as the amount of training data increases.

The most serious problem of this method is, however, in traitgyuof the repro-
duced speech. Synthetic speech from their articulatooystec conversion has many
artefacts (Kaburagi & Honda 1998, CD-ROM). They parametesgeech on a frame-
by-frame basis, and average the parameters across thesfrahs commonly-used
process oversmooths the speech spectrum, and accordieglyversmoothed spec-
trum degrades the quality of synthesised speech, as we haadywyseen in Chapter 3.
Such speech quality degradation is now a major problem iilowsrareas related to
speech synthesis, such as TTS syntResisl voice transformation (Toda 2003).

Some of the current parameter-based speech synthesisdaekbal with this over-
smoothing problem by emphasising the formants of synthsgi&ech in their post-

processing, as detailed below.

4.2.2 Postfiltering

Formant emphasis as a post-processing step was used lyigmapeech coding,
for the purpose of improving the quality of decoded speecle(C& Gersho 1995,

1To avoid the speech quality degradation, unit selectioreapeynthesis has been attracting the
attention of many researchers and developers, taking &ue pif parameter-based speech synthesis that
requires much more signal processing when synthesisirechpe
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Ramamoorthy, Jayant, Cox & Sondhi 1988). Formants are enggthby a filter sub-
sequent to the decoder that reproduces the speech sigralposifilter reduces per-
ceptible quantization distortion by suppressing the ygblarts of the power spectrum
where human auditory perception is sensitive to the quatiiz distortion. A well-
known postfilter of this type is one using linear predictioefficients (LPC) as follows
(Chen & Gersho 1995):

wherey is a coefficient that compensates the spectral tilt, @nis the jth LPC. The
coefficientp represents the order of LPC. The coefficieptand~, are used to adjust

the degree of formant emphasis.

In parameter-based speech synthesis, the postfilter iddplt the same purpose
of emphasising formants, but the aim is slightly differenoinh that in speech coding.
As already noted, the parameter-based approach tends tulsthe power spectrum
too much. If the spectrum is oversmoothed, entire formaateime diffuse. Such dull
formants nasalise speech, and can cause the loss of tethvainess of voiced sounds
(Kent & Read 1992, p. 99). The postfilter improves the qualitgymthetic speech by

emphasising (sharpening) the dull formants.

However, such usage of postfiltering is obviously a tempoeapedient, and how
much to emphasise the formants must be determined expdsatyelso, emphasis-
ing all the formants equally is obviously wrong; they shob&dsharpened differently
formant by formant, as well as frame by frame (or spectrumggcsum). We should
note that the root cause of the oversmoothing problem igttigimpossible to obtain
the vocal tract frequency response in sufficient resolubypronventional frame-by-
frame analysis, especially for high-pitch voices. Suchnaflequency-resolution spec-
trum makes it difficult to accurately estimate formant bartiks, which are reported
to influence the perceived naturalness of speech; therefocarrate estimation of the

bandwidths is necessary in speech synthesis.
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4.3 Proposed methodology

As we have seen in Chapter 3, the proposed method of spectelbpa estimation,
Multi-frame Analysis (MFA), is capable of estimating dé¢al vocal tract responses
from periodic speech signals (i.e., voiced speech). Inqdar, MFA can extract the
power and bandwidth of formant peaks more accurately thawesdional spectral
envelope estimation. With MFA, we may therefore avoid trereihentioned problem,

the oversmoothed frequency responses of vocal tract.

4.3.1 Outline

For applying MFA to the articulatory-acoustic mapping, wee @ simpler methodol-
ogy than that of the Kaburagi & Honda. Their method has sé¥actors influencing

the accuracy of the estimation during the estimation of attodieature vectors from
input articulatory vectors. As noted in Section 4.2.1, tleeyploy a weighted aver-
age of a specified number of acoustic feature vectors whasespmnding articulatory
counterparts are neighbouring each other. As a result, thethodology causes the

following complications:

e The number of neighbouring articulatory vectors to be ayedavaries depend-

ing on the size of the corpus.
e Mapping performance changes, depending on what types ghivisiemployed.

Here, we investigate whether applying MFA to the articulgtacoustic mapping
is effective. For the purpose of confirming such effectismave may facilitate the
procedures of experimenting by simplifying the methodglofjKaburagi & Honda.

We thus adopt the following procedure offline in training thapping from a corpus:

1. vector-quantising the articulatory space by applyintyatering technique to the

articulatory data, and

2. for each cluster obtained, determining a pair of artiicuiavector and acoustic

feature vector to be representative of the cluster.
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For the representative articulatory vector of each clusteradopt the cluster centroid,
the mean value of all the articulatory vectors belongindi®dluster. We will discuss
determination of the representative acoustic featureovedater, for existing methods
and the proposed method individually, since how to find thgregentatives differs
depending on the methods of estimating spectral envelopes.

Meanwhile, the process of articulatory-acoustic conegrsncludes identifying a
cluster to which the input articulatory vector belongs. sTisimade by computing the
distance between the input articulatory vector and eachefépresentative vectors,
and selecting the cluster with the representative vectsest to the input in the articu-
latory space. The above methodology translates into neglise articulatory-acoustic
non-linear mapping by converting articulatory vector®iatoustic feature vectors lo-

cally within individual articulatory clusters.

4.3.2 Clustering in the articulatory space

Let M denote the total number of observed pairs of articulataguatic data in a
corpus. Assuming that,(f) represents the observed position of ttleEMA receiver
coil at analysis framé (= 1,2,3, ..., M), we now definearticulatory vector o, as

follows:

‘ T
o = Oz,(cl) al(f) a,(f) a,(f)

First of all, we normalise each dimension (i.e., EMA-coikjiton) of the articulatory
vector as follows:
z,=S"? () — a), (4.5)

wherea andS denote a mean vector and a variance matrix for all the aation)

vectors. The mean vecter is given as

a=[a®a®a® ... @(LWT

1 N
==Y o, (4.6)
N k=1

wherea denotes the mean value of the EMA-coil position. The variance matrix

S is diagonal with the following values in its diagonal elertsen

diagS = [0 03 03 -+ 0], (4.7)
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whereo? is the variance of thith EMA-coil position, which is given as

2 1 . OO 2
7t = o (e —a)

k=1
After normalising each dimension of the articulatory vestave apply LBG clus-
tering (Linde et al. 1980), used widely in the field of speeoHing, to all the nor-

malised vectors, and group them intoclusters(C* (i = 1, 2, 3, ....K).

4.3.3 Mapping performance criteria

In order to investigate the accuracy of the articulatorgustic mapping, a criterion is
required to measure the degree of similarity between arabspeech spectrum and a
spectrum generated by the mapping.

For such a criterion, the cepstral distance, which is alregagen in Section 3.5.2.3
on page 71, is used widely in the field of speech technologye@ally in speech

recognition. Let us here restate the distance measure:

10 z ~1 N2
=110 2 Z (c[n] = ¢[n])” (dB), (4.8)

n=1

CD

wherec|n| andp denote thenth cepstral coefficient and the order of cepstrum, re-
spectively. On the basis of the Parseval relation (Oppemi@&eBSchafer 1989, p. 58),
the following relation holds between a pair of cepstrdyp| andc,[n], and a pair of

logarithmic amplitude spectr& (¢’*?) andY (e/*?):

o
if  cx[n] &, log ‘X(eJQ)| and  ¢y[n] Z, log |Y(eJQ)| , then

i 2 1 [T 0 a2

z_: (cx[n] - cy[n]> =5 /7r <10g | X (e")| = log |V (¢/ )|) aQ.  (4.9)
The relation (4.9) shows that distortion in the form of logmitude spectrum is equiv-
alent to the sum of squared distortion in the cepstral domahe cepstral distance,
CD, in Equation (4.8) is the converted value of (4.9) in terrhd&

However, as pointed out in Chapter 3, the Fourier transforeomed-speech cep-

strum means a spectrum whose sections between adjacerdrfiesrare interpolated

by a trigonometric polynomial. Therefore these interpadiasections do not reflect
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the actual vocal tract filter response. In the above cepdistdnce measure, such
unreliable sections are also subject to the distance catipnt so that the mea-
sure can lack accuracy for voiced speech. In other walgble characteristics
observed at harmonic locations, andreliable characteristics interpolated are both
treated equivalently.

To overcome this problem, we here introduce a new distan@suane. This mea-
surement evaluates distortion only at the frequencieseumamonics exist (i.e., where
reliable spectra are observed). First, we compute the mgaere distortion exclu-

sively at harmonic frequencies as follows:

B _ L CNINCETTONE
Eék) = Fklzlw(fk )[?Jk _?J(fk; )} (4-10)
= 1 ! EERTPONE

O = 5 2wl [0 =] (4.11)

Wherefk : y,f) andﬁ are a harmonic frequency, and an observed log-amplitude and
phase of théth harmonic in frame, respectivelyw(f), 5(f) andf}(f) are a weight-
ing, estimated spectral amplitude and phase at frequgn®spectively; anav, is the

number of harmonics in frame

Summing up distortions for all the frames in each clusted eonverting the re-
sults into values of dB and radian, the following distanceasuges are consequently

expressed for both amplitude and phase spectrum as below:

(k)
HD, = lnlO Z > E (4.12)

=1 keC!

HD, = Z Z (rad), (4.13)

=1 keCt?

whereM and K denote the total number of frames included in all the clgstnd the
number of clusters, respectively. We call these distostidiD, andHD,,, harmonic
amplitude distortiorandharmonic phase distortiorespectively, hereinafter through-

out the thesis. Equations (4.12) and (4.13) can be rewritt¢arms of vectors and
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matrices as
1 & 1
HD, = — — W Y 4.14
111 10 Z Nk k(Y — Yi) ( )
i=1 keC"
1 & 1 S \T .
HD, — | — —(0 —ﬁ)W(ﬂ —19), 4.15
p M Z N, k k k k k ( )
i=1 kcC"
where
v = |u o us y,iNk)]

g =[50, G0 90D, - i)
9 = [0, 02, 0, o]
O = (D), DU, DY), - D))

The weightW,, is the following N;, x N, diagonal matrix:

w(f") 0

4.4 Piecewise Constant Mapping

The clustering in the articulatory space means that eagteslincludes speech frames
with comparatively similar articulatory configurationgwe assume those configura-
tions to be identical in a cluster, the acoustical chargttes of the vocal tract can be
assumed constant within the cluster. Under this assumptierproblem is reduced to
estimating one unique spectral envelope for every clugteraccordingly use the dif-

ferent harmonic structures of the multiple frames to forrpecsral envelope for MFA.

4.4.1 Baseline

Cepstral-domain distortion is equivalent to log-spectistiaiition, as has already been
discussed in Section 4.3.3. Here we use such a cepstralhgdmstortion as a criterion

for the baseline, and will compare it with our proposed mdtho
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Let ¢, denote a cepstral vector which represents the acousticréeaf speech
framek belonging to theth cluster,C?. The representative acoustic feature for each
cluster is obtained as a cepstru«ﬁ?, that minimises the sum of cepstral distortions

given by

%DS) = kgcz (cx — cff))T (ex — cg)) , (4.16)
wherec;, represents the cepstrum (exclusive of a coefficient at tieérejucy of zero)
of the amplitude spectral envelope for frafmewhich is computed using a frame-by-
frame cepstral analysis method. Partially differentigtibquation (4.16) bwff), we

obtain the following:
19D

29 = 22 (e—el). (4.17)

keCt

By setting Equation (4.17) equal to zero and solving the eoui&br e, the following

result is obtained:

) = A Z C; (4.18)

where M; denotes the number of frames that belong to clustérhis solution indi-
cates the mean value of the feature vectors of the framesioedtin the cluster. We
computecgi) for every clusteC(i = 1,2,3, ..., K).

As for the phase spectral envelope, due to unreliable phasgapping as we have
already seenin Section 3.4.5.2, we used the minimum phasé&gm, which is derived
from the cepstrum of the amplitude spectral envelope. &wstf the actual phase
spectrum, the minimum phase spectrum is widely used in thdsfad speech coding
and synthesis (e.g., McAulay & Quatieri 1993, Kawahara 1997

4.4.2 MFA-based mapping

Here we will introduce MFA, which was fully described in Chapt3, to the
articulatory-acoustic mapping. By applying MFA to sets afrhanics of all the frames
belonging to each cluster, we can estimate a represengeuestic feature vector, as a
frequency response, for the cluster. As we have already 8&eh obtains frequency

responses of amplitude and phase in the form of a cepstrum.
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Let us consider applying MFA to sets of harmonics for the ®amwhich belong to
clusteri (i.e., framek € C%). According to Equations (3.15) and (3.29) in Chapter 3,
we can define the total distortions of estimated harmonicsliserved harmonics in

amplitude and phase respectively as follows:

DY = 3" pi (i~ Pacl!) Wi (3~ Pec) + A () Rel)|  (4.19)
keCt

N~ N

DY =" o | (90— Quel?)" Wi (95— Quel?) + Ay (cf) Re?| . (420)
keC?

By reducing the above equations to a problem of weighted kxpsdres, a cepstrum
which minimises each of the distortions is given as a satuibthe following simul-

taneous equations:

(Z Pk [Pg WP, + )\aRD =" pPiWyy, (4.21)
keC? keCt
(Z P [Qz WiQ, + ApR]> e =" pQf Wiy (4.22)
keCt keCi

Using the same procedures in Section 3.4.6, cepéi)raand cg) are obtained as
a set of representative acoustic features for articulattugteri. For every cluster

Ci(i =1,2,3, ..., K), ¢ andc! are computed.

4.4.3 Articulatory-acoustic conversion

Once the mapping is obtained, any articulatory configunaten be converted into an
acoustic feature. Such an articulatory-acoustic conver realised by the process

below:

1. For a given articulatory configuration input, one of thecafatory clusters is
chosen whose representative articulatory configuratien @gentroid) is closest
to the input, based on the Euclidean distance between thpsesentatives and

the input.

2. The representative acoustic feature (i.e., cepstrurti)jeo€hosen cluster is then

outputted.



112 Chapter 4. Articulatory-acoustic mapping based on MFA

4.4.4 Experiment

In this section, the accuracy of the proposed piecewisetanhmapping, discussed in

Section 4.4.2, will be evaluated and compared to the basgliBection 4.4.1.

4441 Data

The experiments in Chapter 3 revealed that MFA is more effedtir voices with
higher Fy. For this reason, the data used here is MOCHA cofmesn0.? As already
noted, we set 10% of the sentences (46 sentences) asidstiogteand used the re-
maining 90% (414 sentences) for training. Data set 10 inefa® was used in this

experiment.

4.4.4.2 Mapping Performance criteria

Distortions were evaluated only for the frequency band welokHz (i.e., only for
harmonics at frequencies below 4 kHz), because, in gertbmhoise component of
speech is more dominant than the harmonic one in the freguemd above 4 kHz. As
for the weighting functionu( f) in the criteria of Equations (4.14) and (4.15), a Gaus-
sian distribution was adopted empirically for placing emghbk on the lower frequency
band where the harmonic component is more dominant. Theitumwas normalised

such that the following equation holds:

fmax
/ w(f)df
il (4.23)

where f,..x and f,,;, respectively represent the maximum and minimum frequefcy o
the frequency band for which the distortions are evaluated N( f; 0, 0%) denote a
Gaussian distribution with meanHz and standard deviation Hz. Settingw(f) =

aN (f;0,0%) and substituting it into Equation (4.23), the coefficieris obtained as

fmax - fmin
Jmax )
N(f;0,0%)df

(4.24)

a =

fmin
2The details of the corpus were given in Chapter 2.
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FIGURE 4.2: Weighting function w( f)

The weighting functionu( f) is therefore given as

fmax - fmin

fmax

N(¢;0,0%)d¢

w(f) = N(f;0,0%). (4.25)

fmin
In accordance with the above frequency bafad, and f.,.. were setto 0 Hz and 4 kHz
respectively, and was empirically set to 4 kHz. The weighting function is shawn

graph form in Figure 4.2.

4.4.4.3 Baseline

First, we examined the performance of the baseline methothel baseline, mapping
functions are obtained using a criterionthe cepstral domainFor each articulatory
cluster, a cepstrum was estimated by Equation (4.18) framérby-frame cepstra
¢k, Which were computed using a conventional cepstral arsaiygthod proposed by
Galas & Rodet (1990).

Figure 4.3 shows both harmonic amplitude distortions amthbaic phase distor-
tions of the baseline mapping for the test data, under vamumbers of clusters and
various orders of cepstrum. As is obvious from the resuktyyamplitude distortion
is almost constant up to order 20 (1.25 ms in quefrency), batder 24 (1.5 ms) the
distortion rapidly increases. One main reason for thiseéeoy is considered to be that
harmonic structure comes to appear in the envelopes, sniatetipolation between

harmonic peaks thus fails, and consequently the distortimcreased for the test data,
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which has a different harmonic structure. Order 20 (1.25igkus a limit in this type
of conventional cepstral analysis, for the female voicedusethe experiments, and
synthetic speech deteriorates when a higher order of capstrused.

The same results for cepstral order up to 20 are shown in &idr, together with
distortions for the training data. For the test set, harmamplitude distortion has the
minimum value in the case of 512 articulatory clusters amstral order 20 (1.25 ms),
where the distortion is 2.18 dB. Harmonic phase distortianraimum value in the
case of 1024 clusters and order 8 (0.5 ms), where the dmtdgi0.666 rad.

4.4.4.4 MFA-based mapping

Next, we examined the performance of the proposed MFA-bassobing we dis-
cussed in Section 4.4.2. The coefficientsand A, for the smoothness criterion in
Equations (4.19) and (4.20) were both set to 0, since it wasdan the preliminary
experiment that the influence of the coefficient on the distos is negligibly small
for this application. Equation (3.24) was applied o ( ) in Equation (3.22).

Figure 4.5 shows the harmonic distortions of the MFA-basedgqwise constant
mapping. In this figure, the distortions for the test datahsee the minimum values
in the case of cepstral order 56 (3.5 ms in quefrency) and Bikiktory clusters for
amplitude, and in the case of order 56 (3.5 ms) and 512 chitephase, where the
distortions are 2.12 dB and 0.579 rad. These values are 22804%1% lower than

the distortions of the conventional method.

4.4.4.5 Distortions for each phoneme type

Figure 4.6 shows harmonic amplitude and phase distortipmdhbne category, for the
MFA-based mapping and the mapping using conventionalri@it®oth the mapping
methods tend to have smaller distortions for vowels tharseoants, and relatively
large distortions for fricatives, affricates and plosivés both the distortions. The
MFA-based method is superior to the conventional methodth the distortions for
almost all the categories, except for the harmonic ammitdidtortion of affricates;
but the improvement is small particularly for fricativesdguosives, compared to the

other phone categories.
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4.4.46 Discussion

The following points are discovered through the experiment

e For the piecewise constant mapping, spectral envelopeskaaed with the
highest accuracy when the cepstral order is 56 (3.5 ms inrguef), where
the distortions were minimised. The results suggest thabyder to represent
spectral envelopes reflecting the real vocal tract respaepstral coefficients of
high quefrency range are necessary, which are usuallyrdisgan conventional

speech synthesis to eliminate the pitch component of speech

e Evidently from the comparison between the minimum distodi of the two
mapping methods, the cepstral-domain criterion gives geftadistortion than
the proposed MFA-based criterion. This may indicate thessity of reconsid-
ering the parameterisation used in current speech teaimomarticularly the
phase distortions of the proposed mapping showed remarisatller values
than those of the minimum phase spectrum, which is used yidespeech syn-
thesis. This result suggests a problem of phase predicasadon the minimum

phase.

e The MFA-based mapping only slightly improves or deteriesaharmonic am-
plitude distortion for fricatives, affricates and plossveThis result shows that
MFA can be poor at approximating speech with noise-like gsurA possible
explanation for this is occurrence of an over-training @ffébserved harmon-
ics are actually the sum of a real harmonic component andsg rm@mponent.
During these phones, the noise component is relatively damj and the ampli-
tude of observed harmonics is rather unstable due to theemdfkiof the noise.
Being superior in estimating spectral envelopes in detallANENds to approx-
imate such unstable amplitu@ecurately and produce spectral envelopes with

too much fine structure.
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4.5 Piecewise Linear Mapping

The piecewise constant assumption is clearly a rough appation. Because, in re-
ality, articulation is not identical within a cluster andcaedingly neither is the vocal
tract response, such an approximation generates stepanséant acoustic output, as
shown schematically in Figure 4.7, and thus is likely to eansticeable distortion.
As shown in Figure 4.8, such stepwise acoustic output carch&ldy observed in
the spectrogram of speech produced by the articulatorysticomapping under the

piecewise constant assumption.

For more accurate estimation, we may introduce a mappingfibmwhich trans-
forms articulatory vectors into acoustic features for gveuster, as in Figure 4.9.
We must, however, be aware that models with high complextyestimate harmonic
structure itself, instead of just the spectral envelope.héfece choose a linear map-

ping, the complexity of which is considered low enough.
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4.5.1 Extension of MFA to the linear mapping

Let the cepstral vectors in Equations (4.19) and (4.20) peesented by the linear

transforms ofL-dimensional articulatory vectat, as follows:

i) — ) 4 Vg, (4.27)

whereg®, @, U® andV® consist of the coefficients of the linear transformation,

and are defined as

. i 1T
q" = [Qé)fﬁ” gy --~qz(f)}
. . T
0 — [Tg)réz) Té@) 7,}(;)}
) ) )
@ () (i)
U= | - (4.28)
W ) |
T L
@) () ()
i U v cee U
v = | Sy (4.29)
0 o o)

The problem is now reduced to finding these matrices and rsectye can rewrite

Equations (4.26) and (4.27) as follows:

cl(f’k) =r® 4 Vg, = Akv(i), (4.31)

where

; 7 7 7 7 7 1 ) i T
= [u o o o] - ) )l g

o)

oo o) o o o o oo oo 0@ )
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r, — {xlgl)E(p+1) Ex,(f)E(pH) Exl(:’)E(erl) L Exl(CLfl)E(erl) Exl(cL)E(erl) : E(p+1)]
Ay = [x,g”E@ PR PEE L EURE (RE Eﬂﬂ} .

Here,E® denotes @ x p unit matrix. By substituting Equations (4.30) and (4.31pint
Equations (4.19) and (4.20) respectively, total distortion logarithmic amplitude and
phase are given as

1 .. , ,
§De(f) = ]{Z; Pk |:(yk - Pkrku(z))TWk (v — Pulpu®)
o

+ A (u?) TTRDu®| - (4.32)

1 . , .
§D§f) = Z Pk [(1% - QkAkU(Z))TWk (ﬂk - QkAk'U(z))
keC?

2 () ATRAWY | (4.33)
Thus, the coefficient vectors™ andv® can be found by solving the following simul-
taneous equations:

(Z Pk [FZ PIW,P,[ + AT} Rm]) u® =Y TP Wiy, (4.34)
keCt keCt

(Z o | ATQIWLQu AL + ApAZRAkD v = " ATQIW, . (4.35)
keC? keCi

For every cluste€’(i = 1,2,3,..., K), v andv) are computed.

4.5.2 Piecewise linear mapping using conventional crite-
rion

The piecewise linear approximation can be applied alsodatmventional cepstral-
domain criterion we discussed in Section 4.4.1. Subsiutif Equation (4.26) into
Equation (4.16) yields the following piecewise-lineaterion:

1. . , , T . :

EDS) = kzc |:Ck — (q(’) + U(’)wk)} [Ck — (q(’) + U(Z)iﬂk)

e 1

= Z (Ck — I‘ku(i))T (Ck — I‘ku(l)) . (436)
keC?
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Let us partially differentiate Equation (4.36), and setrb&ult to zero. Then,
19Dy |
= -2 T{ (e — Twul?) =0.

2 ou® A
keCi

Rearranging the above equation, a simultaneous equatidmamed as follows:

(Z rg’rk> u? =Y "T{e. (4.37)

keC? keC?
By solving Equation (4.37), vectar” can be found which minimises amplitude dis-
tortion D). For every cluste€(i = 1,2,3,..., K), u" is computed.
For phase spectral envelopes, as is the case with the aselBection 4.4.1, we
adopt the minimum phase spectrum, which is derived from #psttum representing

the amplitude spectral envelope.

4.5.3 Atrticulatory-acoustic conversion

Once the linear transformation coefficients are obtaine@#&ch cluster, any articula-
tory configuration in the EMA form can be converted into anustiz feature. Such an

articulatory-acoustic conversion is realised by the feitay process:

1. For a given articulatory configuration input, one of thecafatory clusters is
chosen whose representative articulatory configuratien the centroid) is clos-
est to the input, based on the Euclidean distance betwesa tepresentatives

and input in the articulatory space.

2. From the linear transformation coefficients of the choslkeister, an acoustic

feature (in terms of cepstrum) is calculated.

4.5.4 Experiment

In this section, the accuracy of the proposed piecewissatimapping discussed in
Section 4.5.1 will be evaluated, and compared to the baseéliisection 4.5.2. The
same data set (data set 10 in Table 2.2) from the articulatornyusf sew0 as in
Section 4.4.4.1 was used, and the same mapping performateéea and weighting

function as in Section 4.4.4.2 were applied.
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4541 Baseline

First, we examined the performance of the baseline methexbpted in Section 4.5.2.
For this baseline, mapping functions were obtained usingterion in the cepstral
domain A set of linear transformation coefficients was estimatgdeaich articulatory
cluster by Equation (4.37) from frame-by-frame cepstra, which were computed
using a conventional cepstral analysis method by Galas & R@880).

Figure 4.10 shows the harmonic distortions of the baselinppimg for the test
data, under the various number of clusters and the variales of cepstrum. As is the
case for the piecewise constant mapping, every harmoniditangdistortion for the
test data is almost constant up to order 20 (1.25 ms in quafyebut at 24 (1.5 ms)
the distortion rapidly increases. That is probably becdasenonic structure starts to
appear in the envelopes.

The same results with cepstral order up to 20 are shown ir&igd 1. For the test
set, harmonic amplitude distortion has a minimum value éndhse of 32 clusters and
cepstral order 20 (1.25 ms), where the value is 2.03 dB. Haiopdrase distortion has
a minimum value in the case of 64 clusters and cepstral orders8ms), where the

value is 0.655 rad.

4.5.4.2 MFA-based piecewise-linear mapping

Next, we examined the performance of the mapping functioeagpmposed in Sec-
tion 4.5.1. The distortions were calculated for both tragnand test data set using
Equations (4.14) and (4.15), for amplitude and phase réispc The coefficients\,
and )\, for the smoothness criterion in Equations (4.32) and (4v@3) both set to
zero, since it was found in the preliminary experiment thetinfluence of the coef-
ficient on the distortions is negligibly small for this apgaltion. Equation (3.24) was
applied ford,.¢(f) in Equation (3.22).

Figure 4.12 shows the result. The distortions for the tetd dat have the min-
imum values in the case of order 56 (3.5 ms) and 32 clusterarfgalitude, and in
the case of order 64 (4.0 ms) and 32 clusters for phase, whenatues are 1.97 dB
and 0.552 rad. These values are 3.0% and 15.7% lower thandfwetions of the
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conventional method.

4.5.4.3 Distortions for each phoneme type

Figure 4.13 shows harmonic amplitude and phase distortippfione category, for the
MFA-based mapping and the mapping using conventionalr&it&imilarly to the re-
sult of the piecewise constant mapping, both the mappingoadsttend to have smaller
distortions for vowels than consonants, and relativelydatistortions for fricatives, af-
fricates and plosives, for both the distortions. The MFEAdthmethod is superior to
the conventional method in both the distortions for almtisha categories, except for
the harmonic amplitude distortion of affricates and plesivbut the improvement is
small particularly for fricatives.

Figure 4.14 shows the distortions by phone category, foMRA-based piecewise
constant mapping and the MFA-based piecewise linear mgppircan be seen that
the linear mapping is superior to the constant mapping, éin khe distortions of all
the phone categories.

45.4.4 Discussion

Through the experiments the following points are discodere

e We made a piecewise linear approximation to the articwaa@oustic mapping,
which is globally a non-linear function. The piecewise &nenapping requires
a smaller number of clusters and is more accurate than tlvewige constant
mapping. Both harmonic amplitude and phase distortionseptacewise lin-
ear mapping are respectively 7.4% and 4.6% lower than thioes piecewise

constant mapping.

e For the introduced piecewise linear mapping, spectrallepes are obtained
with the highest accuracy when the cepstral order is 56 (Z5nnguefrency)
for amplitude and 64 (4.0 ms) for phase. The results suggest éhat, in order
to represent spectral envelopes reflecting the real voaet tesponses, cepstral

coefficients of high quefrency range are necessary.
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¢ Also for the piecewise linear mapping, it is evident from tdeenparison of Fig-
ures 4.11 and 4.12, the cepstral-domain criterion leadsadyeing larger dis-
tortion than the proposed MFA-based criteria. Especiélé/phase distortions
of the proposed mappings showed again much smaller valaeshiose of the

minimum phase spectrum, which is used widely in speech sgigh

e Similarly to the experimental result of the piecewise cansimapping in Sec-
tion 4.4.4, the MFA-based mapping only slightly improvesdeteriorates har-
monic amplitude distortion for fricatives, affricates apldsives. It is conceiv-
able that MFA approximates unstable amplitude of noise taijeand produces

spectral envelopes with too much fine structure.

4.6 Mel-scale frequency domain MFA

In current speech technology, speech signals are oftemeéeased with a frequency
scale following the nonlinear properties of human perceptf frequency. The Mel
scale and Bark scale are well known nonlinear frequency scalkich are derived
from psychoacoustic experiments. The Mel scale is, for @tapalmost linear below
1 kHz and logarithmic above 1 kHz. The relationship betwéenMel scale,..;, and

linear frequencyy, in Hz is often approximated by the equation
fmel = 100010g, (0.001f +1),  f>0. (4.38)

If we narrow down the focus to the cepstrum (used as a speeampter through-
out this thesis), the Mel-cepstrum is used widely in the fafldpeech technology. The
Mel-cepstrum is generally expressed as an inverse Fouaiesform of the logarithmic
spectrum in the Mel-frequency domain.

In a spectrum using such a nonlinear frequency scale, how@semonics are not
spaced evenly. Figure 4.15, for example, shows the frege®@at which harmonics
exist. Such unevenly spaced harmonics make it difficult tassut-off order for the
cepstrum, so as to eliminate the fine structure of the spmabfuvoiced speech. The
fine structure tends to appear particularly in the low freapyeband, because the har-

monic spacing is wider than in the higher frequency band ch suscale.
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FIGURE 4.15: Diagrammatic illustration showing harmonic density in the Mel-scale

frequency domain, in the case Fy = 300 (Hz)

For the above reason, some researchers have recently ddogtieods capable of
estimating the cepstrum that trace harmonic peaks withrtie@thest possible spec-
trum. Cap@ et al. (1995), for example, obtain a smooth spectral epeelohilst
avoiding an ill-posed problem which can occur in tracing pleaks with a high order
cepstrum, by penalising sudden changes in the envelopa (B)3) uses the Mel-
cepstrum to approximate the spectra obtained by a receatiglaped high-quality
vocoder, STRAIGHT (Kawahara 1997), where a bilinear surfadaterpolated into
the peaks of harmonic power in the time-frequency domaines&éhmethods have
been successfully applied to speech synthesis (Stylia@6t)2and voice conversion
(Stylianou et al. 1995, Toda 2003).

In the analysis which discards the high order part of thetceps the cut-off order
tends to be set rather low, for the purpose of removing finggire in spectra with
high fundamental frequency. On the other hand, the aboveyymse of methods esti-
mate spectral envelopes with low resolution during highand with high resolution
during low Fy. The methods are thereby capable of estimating spectrala®s with
the highest possible resolution, dependingign Such frequency-resolution-variable
analysis can estimate spectral envelopes with higheruggn) and is consequently
considered to synthesise speech with higher quality thamalysis using a truncated,
low order cepstrum.

In this section, we take up the method proposed by Eapal. (1995) from among
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those recently developed analysis methods, and compairthibur proposed method.

4.6.1 Applying the Mel-frequency scale to MFA

So far we have discussed the articulatory-acoustic mapfporg the viewpoint of
acoustical approximatiomf speech signals. In this section, fperceptual approx-
imation of speech we will introduce a parameterisation and critenmoaccordance
with human auditory perception to the proposed articujagmoustic mapping.

As a speech representation we adopt the Mel-cepstrum, viteagesncy scale fol-
lows nonlinear properties of the human perception of freqgugStevens & Volkman
1940, Fant 1973). For easy treatment in transforming to #pstcum, we normalise

Equation (4.38) as follows so that the warped scale falle@range betweehandr:

m1og(0.001f + 1)

Qme = >
' Tog(0.001f, + 1)

F>0 (4.39)

where f,, designates the Nyquist frequency. Figure 4.16 shows thpimgafunction
given by Equation (4.39).
Hence, instead of angular frequer@)(z) in Equation (3.11) on page 57 in Sec-
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tion 3.4.6, we adopt the followin@,(f), derived from Equation (4.39):

o _ Tlog(0.0015 + 1)
¥ log(0.001f, +1) 7

f=0. (4.40)

As noted above, periodic signals have uneven harmonic tyemsithe Mel-
frequency domain. Thus, when the distortion is calculateldaamonic frequencies
according to Equations (4.14) and (4.15) on page 109 in &edti3.3, the high fre-
guency range where harmonics are closely-spaced influgimeéstal distortion more
than the low frequency range where harmonics are sparsethiéiefore necessary to
compensate this effect with weighting inversely propardioto the harmonic density.
The reciprocal of the density is proportional to the absolalue of differentiated Mel-
frequency with respect to linear frequengtyand thus if we differentiate both sides of
Equation (4.39) by and take the absolute value of it, then

deel . ™ 1
df  log(0.001f, +1) f+ 1000
1
— > 0.
1000

We define the weighting functiom(f) so that its mean value within the range to be

evaluated({ < f < fuax) is equal to 1, as follows:

_ fmaX 1
wlf) = /f L [+1000
o [+ 1000
fmaX 1

_ . >0 4.41
10g(.001 fmax + 1) f + 1000 / (4.41)

Equation (4.41) will be used as a weighting function, wheplypg the Mel-frequency
scale to MFA. Whereas the previous weighting functions, Eqoa (3.12) and (4.25),
were heuristically determined, Equation (4.41) is a fumrctlerived from the property

of human auditory perception.

4.6.2 Experiment

In this section, we will evaluate the accuracy of the propgsecewise-linear mapping
using the Mel-cepstrum, and compare the mapping to theibaseding the parame-
terisation proposed by Capet al. (1995).
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FIGURE 4.17: Weighting function w( f)

Data set 10 in Table 2.2 from corpfisew0 was again used in the experiment.
Also, the same performance criterion was adopted, for whighation (4.41) serves
as the weighting function. In Equation (4.41),.. was set to 4 kHz (for the rea-
son explained in Section 4.4.4.2). The weighting funct®shown in graph form in
Figure 4.17.

4.6.2.1 Baseline

First, we examined the performance of the baseline, for imapping functions were
obtained using criterian the Mel-cepstral domain A set of linear transformation
coefficients was estimated for each articulatory clusteEdpyation (4.37) from frame-
by-frame Mel-cepstra;, which were computed using the cepstral analysis method by
Capye et al. (1995). The coefficientfor the smoothness criterion was settox 102,
where the optimal result had been obtained in the prelingieaperiments.

Figure 4.18 shows the harmonic amplitude distortion andnbaic phase distor-
tions of the baseline, under various numbers of clustersandus orders of cepstrum.
For the test data set, harmonic amplitude distortion hasyamim value in the case of
64 articulatory clusters and cepstral order 40 (2.5 ms) revttee distortion is 1.90 dB.
Harmonic phase distortion has a minimum value in the casd afticulatory clusters

and cepstral order 24 (1.5 ms), where the distortion is Or&d2
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4.6.2.2 MFA-based piecewise-linear mapping using Mel-cep  strum

Next, we examined the performance of the mapping functioegliscussed in Sec-
tion 4.6.1. The distortions were calculated for both tragnand test data set using
Equations (4.14) and (4.15), for amplitude and phase réispc The coefficients
. and ), for the smoothness criteria in Equations (4.32) and (4.33ewvboth set to
1.0 x 1072, where the optimal result had been obtained in the preliniegperiments.
Equation (3.24) was applied fok.(f) in Equation (3.22).

Figure 4.19 shows the result of the piecewise linear mapbasgd on the Mel-
cepstrum. The distortions have minimum values in the caseddr 40 (2.5 ms) and
32 clusters for amplitude and in the case of order 48 (3.0 m$)L& clusters for phase,
where the values are 1.89 dB and 0.527 rad. These valuegapectively, 0.5% and

21.6% lower than those of the baseline estimation.

4.6.2.3 Distortions for each phoneme type

Figure 4.20 shows harmonic amplitude and phase distorbgrnghone category, for
the MFA-based mapping and the mapping using the conventoiteria. Similarly to
the result of the piecewise constant mapping and the piseeiviear mapping, both
the mapping methods tend to have smaller distortions foelewhan consonants, and
relatively large distortions for fricatives, affricateadhplosives, for both the distor-
tions. As for the harmonic phase distortion, the MFA-basethwd is superior to the
conventional one for all the categories. As for the harmamnplitude distortion, the
MFA-based method is slightly superior to the conventionaHil the data, but inferior

for most of the consonant categories.

4.6.2.4 K-fold cross-validation

In this experiment, the result of the proposed method (MMws only a small im-
provement; particularly the amplitude distortion has dyasmall difference between
the conventional and proposed methd@§% improvement).K -fold cross-validation
was thus performed for the purpose of confirming whether tiference is significant.

Data sets 1-10 for the corpiisewO in Table 2.2 were used to the experiment under
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FIGURE 4.19: Harmonic distortion vs. order of cepstrum, in the case of the piecewise

linear mapping with MFA
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TABLE 4.1: Means and standard deviations of distortions by data set
HD, (dB) HD, (rad)

mean| standard deviation mean| standard deviation

proposed (MFA)|| 1.87 1.33 x 1072 0.522 4.19 x 1073

conventional 1.88 1.23 x 1072 0.669 3.20 x 1073

the same experimental conditions as in Sections 4.6.2. 1 &n2l.2.

Figure 4.21 plots the mean values of harmonic amplitude dra$e distortions
which are computed using the conventional method for alddia sets. Meanwhile,
Figure 4.22 plots the mean values of the distortions congpustng MFA for all the
data sets. These results are in good agreement with thosgureb 4.18 and 4.19,
where no cross-validation was performed.

Both distortions were then examined for the test data set.c&pstral order and
the number of clusters where the mean distortion shows amami value for the test
data were used. Figure 4.23 shows the distortions by dataséttheir means and
standard deviations are shown in Figure 4.24 and Table 4rithEse results, statistical
significance was confirmed using the t-test. The test rebolwved that the difference
between the two methods is statistically significantpby 0.01 (¢ = 5.27, d.f. =9,

p = 5.13 x 10~%) for the harmonic amplitude distortion, and alsoby 0.01 (¢t =
143.9,d.f. =9, p = 3.24 x 10~1°) for the harmonic phase distortion.

4.6.2.5 Discussion

Although the MFA-based mapping outperforms the mappinggiihe conventional
cepstral-domain criteria, the difference is very smalliie harmonic amplitude dis-
tortion, compared to the results in the previous experigieivet we can find some
interesting points.

Let us first closely look at the difference of tendencies ia tarmonic ampli-
tude distortion between the conventional mapping and théde#sed mapping. As
for the conventional mapping (Figure 4.18), overall terayeaf the distortions lev-

els off above the cepstral order 28, whilst the distortioageha tendency to continue
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of 64 articulatory clusters and cepstral order 24).



4.6. Mel-scale frequency domain MFA 145

1.9 T T 0.68 T
¢

1.895} 1 0.66
- 1.891 064l
< =)
= 1.885} &
g s 0.621
=} E=]
% 1.88r 5
g g 0.6
S 18751 @
g £ 0.58f
< 1.87 L
2 c
S g 056
€ 1.865[ =
3 <
< Lssl 0.54}

1.8551 1 0.52} 4’

‘ - 0.5 ‘ -
proposed (MFA) conventional proposed (MFA) conventional

FIGURE 4.24: Means and standard deviations of distortions by data set. The means
are indicated with circles, and the ranges of plus or minus one standard deviation are

shown with solid lines.

decreasing as for the proposed MFA-based mapping (Figd8).4ln the latter case
(Figure 4.19), however, we can see that the use of a largebauaf clusters causes
large, unstable distortions at higher cepstral order,Hertést data. For instance, the
harmonic amplitude distortion rapidly increases arourt®o#40 in the case of 64 artic-
ulatory clusters, and around order 20-30 in the case of 1&8erk. Since increasing
the number of clusters decreases the number of data in theiduit is probable that

insufficient data in some clusters causes an over-trairffegte

The comparison of these two mapping methods by phone claisg(upper graph
of Figure 4.20) showed that the MFA-based mapping is infenidiarmonic amplitude
distortion for many phone classes of consonants. We shaik] however, that the
number of clusters where the distortion minimised was 32HerMFA-based map-
ping, and 64 for the conventional mapping. Figure 4.25 coegpthe harmonic am-
plitude distortion of the MFA-based mapping in the case diveen 32 clusters and
64 clusters for data set 10. The figure obviously shows tleethxist improvements

for some phone classes of consonants, when 64 clustersede Hewever, the dis-
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tortion then becomes worse for the vowels, to which most efftames belong, and
consequently the overall distortion became higher in tise ©f 32 clusters than in the
case of 64 clusters. It is therefore possible that the mgpaacuracy of the MFA-

based mapping would improve when different numbers of ehssare applied for each

phone class (e.g., 32 clusters for vowels and 64 clustexsofasonants).

4.7 Conclusions

In this chapter, we introduced an articulatory-acoustippiag which enables the esti-
mation of detailed spectral envelopes using MFA. The expenial result suggests that
MFA can achieve higher accuracy in estimating vocal-trasponses than cepstral-
domain criteria which are used widely in current speechneldygy, and that cepstral
coefficients of higher quefrency range are required fonesing acoustically-precise
envelopes that reflect the vocal tract transfer charatitsjssompared with the order
used commonly in conventional speech technology. Alsoréisalt shows that the
piecewise linear mapping has higher accuracy than the \piseeconstant mapping
for representing the relationship between articulatonyfigoiration and acoustic char-
acteristics of speech represented by the cepstrum.

During the theoretical examination in Chapter 3, we considéne process of find-
ing spectral envelopes in MFA to be the smoothing of all thertmics of multiple
speech frames. However, as is clear from the application A kb the piecewise-
linear mapping in Section 4.5, MFA calculates spectralodigin only at frequen-
cies where harmonics exist, and estimates a cepstrum tminises the distortion.
This means that, whereas the conventional estimation usesacfor mathematically-
interpolated spectral envelopes as in Figure 4.26, MFA tdopteria only forob-
servedharmonics in voiced speech signals as in Figure 4.27 anddi28. The
distortion defined in the conventional methods includesrsrior the interpolated sec-
tions of the envelope, which may result in inaccurate estona

Kaburagi & Honda (1998) categorise articulatory data irftorge classes, and first
identify a class for a given input articulation, in order magrove the accuracy of their

conversion. However, we did not use any phone class cagegiom. That is because
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we intend to realise a mapping from phones that are not gwdan the corpus, for

such applications as foreign language speech synthesib.rfiumexistent phones may
not belong to any phone classes in the language of the corptiss case, we cannot
determine to which class those phones belong. Broader phatasses (e.g., vowel

and consonant) can be, accordingly, effective to improvppimg performance, and

thus such phone classification is a subject of future ingason.

We would rather investigate additional factors that infeeespeech spectra, other
than the articulatory configuration given by EMA data. If Bunfluence exists, the
observed speech spectrum will vary independently of EMA sueaments, and the
variance will disturb the spectral envelope estimationthianext chapter, we will fo-
cus on the elimination of such influence by factors other #réinulation, in particular

pitch and power.






CHAPTER 5

Source-filter separation using

articulatory data

5.1 Introduction

In the conclusions of Chapter 4, we pointed out that the vaeal tshape may not
be the one and only factor that determines spectral envelopspeech. As shown
schematically in Figure 5.1, we have so far considered a mgpyf observable ar-

ticulatory configurations in the form of EMA data, reflectiagcal tract shapes, into
cepstra, representing acoustic characteristics of spddotwvever, if there exist fac-

tors other than the vocal tract shape which influence speabehestimate becomes
inaccurate and those factors can interfere with the pressmation of the vocal tract

response.

Let us recall the assumption we set earlier for the estimaifdhe vocal tract re-
sponse. In the introduction of Chapter 3, we assumed thatdice gource was a train
of impulses in the time domain (i.e., the source had a flattspecin the frequency
domain). Under this assumption, which is commonly used mecu speech technol-
ogy research, we have estimated the vocal tract responbe asvelope of a speech

spectrum.

The above assumption for the voice source in the source+filbelel is definitely a

rough approximation, although most practical applicagiare based on this assump-

151
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source speech

Vocal tract shape

Articulatory data

(EMA): x Mapping

FIGURE 5.1: Source-filter model applied thus far. Only articulatory configuration is

mapped into speech representation (i.e., cepstrum).

tion because of difficulty in separating out the vocal trasponse from speech. The
source is in fact far from such an impulse train, and variedrégquency character-
istics from time to time. Actually, several reports on thesetvation of the voice
source have made the point that the acoustical charaaterighe voice source is in-
fluenced mainly by variation in the fundamental frequengy) @nd power of speech
(e.g., Miller 1959).

Since variation in the source directly causes a change iadbestic characteristics
of speech, it is essential to clarify the properties of therse for accurate modelling
of speech production, and to properly control the sourcedas the factors during
speech synthesis for generating high-quality speech. ¢idns chapter will address
the source-filter separation problem, one of the most wadkn problems in speech
science, and investigate how to estimate characteridtiostb source and vocal tract

filter simultaneously.

There have been various reports on simultaneous estimaititre characteristics
of voice source and vocal tract. The approaches in thosetssgam broadly be divided
into two types. In one type of approach, approximating thes®waveform using a
rather simple model, the methods estimate a small numbeiodehparameters that
determine the shape of the source waveform and parametdrgxpress the vocal
tract transfer characteristic (e.g., Hedelin 1984, Fijigaljungqvist 1987). In the

other type of approach, approximating the vocal tract attarstic using a rather sim-
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ple model, such as the all-pole model, the methods estirhatedurce waveform by
filtering the speech signal through the inverse of the vaeat icharacteristic (Wong,
Markel & Gray 1979, Alku 1992). In either type of the above wemtional approaches,
one of the characteristics is simplistically modelled amaier the restriction of the

model, the other characteristic is found.

From the viewpoint of acoustics, however, the source-fétgparation seems an
almost impossible problem to solve. In acoustics, when iiteisessary to know the
transfer function of a system, the input and output of théesyshould be experimen-
tally observable. From such observation, the transfertfonas calculated using a
technique such as the cross-spectrum method (Carter et7d). 19 the source-filter
separation problem, however, only the output (i.e., speeah be observed, and the
input (i.e., voice source) and the system transfer fundfi@n, vocal tract response)
must be estimated simultaneously. Hence the problem besctimaeretically difficult,
and, due to the difficulty, researchers cannot help relymgmproximation using the

above rather oversimplified models for realising the sejgara

To address this source-filter separation problem, we wviiboiuce a novel approach
that is completely different from the conventional onese @pproach separates out the
vocal-tract filter response from the voice source charettestatistically using a large
articulatory database. The separation is achieved foedospeech using an iterative
approximation procedure under the assumption that theckg@eduction process is
a linear system where the voice source and vocal tract aoaded, and that each of
the components is controlled independently by differetd séfactors. This chapter
first demonstrates how these two characteristics are degarader this assumption,
and then reports in detail the results of applying the sejoaréo two different speech
corpora, from one female speaker and one male speaker. R@mesults, we will
examine the differences in the variation of the source fe@gy characteristics between

the two speakers.

The chapter is organised as follows: Section 5.2 reviewsescomventional ap-
proaches for source-filter separation, and points out trawbacks. Sections 5.3 and
5.4 explain how the source and the filter are separated inrtsped methodology.

Section 5.5 conducts experiments using an articulatorgbdete, and discusses the
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results. Finally, Section 5.6 concludes the chapter.

5.2 Existing methods and their drawbacks

This section reviews details of the two types of current siameous estimation men-

tioned in the introduction.

5.2.1 Inverse filtering

Estimation of the voice source using inverse filtering hasng lhistory. Miller (1959)
published a paper investigating the voice source wavef@inguan analogue network
which was inverse to the vocal tract transfer characterigti conventional difficulty
In source estimation using inverse filtering is that the dietcies and bandwidths of
formants of the vocal tract filter cannot accurately be estital due to the interference
of the source. Inaccurately estimated tract parametesstdtie inverse filtering, and
lead to inaccurate source waveform estimates.

Most of the inverse filtering methods rely on the linear pcade coding (LPC)
parameter for representing the vocal tract transfer chkeniatic. LPC is based on all-
pole modelling, and thus assumes an impulse train as an aighe vocal tract for
voiced speech. However, the actual input (excitation) exlpced by the vibration of
the vocal folds, and is never a train of impulses. Hence, foergod where the input
exists, the LPC parameter obtained is not accurate enougiptesent the vocal tract
transfer characteristic. For accurate estimation, the p®@meter is often computed
only in the closed phases of the glottal source signal (L.&iaaka & Childers 1985,
Veeneman & BeMent 1985), where there exists no excitatiorn¥man & BeMent
(1985) used laryngograph signals to identify the glottekare periods. However, the
closure period tends to be very short, especially in the chdegh-pitched voices
or breathy voices. Such a short analysis period causes &epraf unstable LPC
estimates.

To cope with this problem, Lu, Murakami & Kasuya (1990) estiman LPC pa-

rameter across several consecutive glottal closure peribtiki, Takemura & Nagai
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(1994) increase the closure periods by mapping the speeatfoven within each lim-
ited short-time period into a continuous function definethmmwhole time domain, us-
ing the Fegr kernel. McKenna & Isard (1999) treat the glottal openihgges as miss-
ing data periods, and smooth LPC parameters that appeamittently only during
the closed phases using Kalman-Rauch forward-backwasatidges (Kalman 1960).

However, inverse filtering has some problems. The closuneg®sometimes be-
come too short to be analysed even with the above methodst. (A892) argues this
point as follows: “First, quite often only a certain kind gfesech material can be accu-
rately analysed with an inverse filter algorithm. The clopbkdse covariance method,
for example, gives reliable results only in the case whergtbgal source has a sulffi-
ciently long closed phase (Wong et al. 1979).” He also argiiasthe adjustment of
the filter depends on the subjective judgement of each relseraiand that the resulting
source waveform is greatly influenced by the acoustic chariatc of the recording
equipment.

Also, since most of these methods adopt classical linealigiren, they are suit-
able for analysing the behaviour of the source waveformnduthe phonation of
vowels. However, nasalised sounds, for example, have zeoakiced by the anti-
resonances of the nasal and paranasal cavities. All the pésuch sounds are repre-
sented by the source waveform in this framework; but thioistimeoretically correct.
These zeros should be included in the vocal tract filter cterstic; however, the

all-pole tract model is not good at approximating them.

5.2.2 Glottal waveform modelling

In this realisation, the glottal source waveform is modelethe time domain, based
on the prior knowledge of the glottal volume velocity. Theverm is approximated
by the composition of piecewise sinusoidal and/or polyrariunctions, whose pa-
rameters are calculated simultaneously with parametetfseo¥ocal tract filter. Sev-
eral models have been proposed for the glottal source wamef@ne by Rosenberg
(1971) consists of two sinusoidal segments and a discatytinepresenting glottal

closure. Fant (1979) introduced a model which can contefltdw derivative discon-
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tinuity, following which Ananthapadmanabha (1984) addeaabrupt termination of
the glottal air flow towards closure according to the restibeerse filtering. Fujisaki
& Ljungqvist (1986) compare several typical models inchglthese, and propose a
model covering all the properties that previous models ggss Their model uses
piecewise polynomial functions with seven parameters.

Although such time-domain approximation can be meaningfutlarify the be-
haviour of the glottal volume velocity, such hand-made Viawa models are clearly
oversimplified. Hence it is usually true that the more par@nsewe use, the better
approximation we achieve. The Fujisaki-Ljungqvist modsas the greatest number of
parameters, and thus the closest approximation is obtaiRedhermore, the time-
domain approach is seriously influenced by the acousticgrtpf the recording
equipment, as in the case of inverse filtering. Fujisaki &ggvist (1986), for exam-
ple, employ a calibration signal to cancel the phase distodaused in the amplifier
and the recorder, and a variable all-pass filter to comperbkatcharacteristic of the
microphone. Such acoustic compensation must be done vesfuttg and completely,

but one cannot always do so.

5.3 Proposed method

5.3.1 Assumption 1: linearly-cascaded source and filter

The proposed method assumes the speech production prockssatlinear system
composed of a voice source and a vocal tract filter. The sditeemodel under this
assumption was first proposed by Fant (1960). As discusgéidraa the introduc-
tion of Chapter 3, since the model gives a sufficiently good@ygmation to speech
production, it is still the basis of many speech applicatitoday.

Figure 5.2 is a block diagram showing the linear model of shg@oduction. The
voice source waveform(t) is generated by passing an impulse train through a filter
having the transfer characteristi§w), and the speech waveforsit) is generated by

passingy(t) through a filter having the transfer characterigfi¢o).

1The radiation characteristic is usually includedifw) for source-filter separation.
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impulse train voice source waveform speech waveform

i Ay WA
—

G(w) \—b H(w) \—b

voice source vocal tract filter

FIGURE 5.2: Speech production model

SpeechS(w) is therefore represented by the product of the voice saiifeg and
vocal tract filterH (w) in the frequency domain as

S(w) = H(w)G(w). (5.1)

This is described in the natural-logarithmic spectral dion@s the sum of these two
components by
InS(w) =InH(w)+InG(w),

where, for a spectrumX (w), In X (w) means
In X(w) =In|X(w)| + yarg X (w).

Note that the phase of (w) in the imaginary part is unwrapped, otherwise Equa-

tion (5.2) does not always hold.

5.3.2 Assumption 2: controllable factors

We should notice that, when synthesising speech, we neezhtoot both the source
and filter characteristics. To achieve this control, it isessary to decide the control-
lable factors that are input to the speech synthesis systamh alter the characteris-
ticsG(w) andH (w).

The proposed methodology realises this control by applyiagpings of control-
lable factors to the source and filter characteristics. Lgfw, v) be the mapping of
some controllable factoy to In G(w), and¥y(w, ) be the mapping of some control-
lable factorz to In H(w). Hereinafter, we describe the vectarsand~y as thefilter

controllable factorand thesource controllable factorespectively. Then, according to
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voice source vocal tract filter

— G(w) \—» H(w) \—»

1 1 |

Air pressure Vocal tract shape
and pitch

Speech power
and pitch:

Articulatory data
(EMA): x

FIGURE 5.3: Factors controlling speech production model

Equation (5.2)]In S(w) can be expressed as the sum of these two mapping functions

as follows:

InS(w) = ¥Yy(w,z) + Yg(w, 7). (5.2)

If we can find both mapping function®/y(w, ) and ¥ (w,«), it becomes possible
to control speech characteristic individually in the seuaad filter, according to those
controllable factors.

Variation in the transfer characteristic of one componaent lse separated approx-
imately, when the transfer characteristic of each compbisecontrolled by a set of
factors which are uncorrelated with those controlling ttteeocomponent (as we will
discuss later in Section 5.3.3). In order to satisfy thisditbon, we add the following

two assumptions:

A. The filter frequency characteristié (w) changes depending only on tkecal

tract shape

B. The source frequency characteristi¢w) changes under the influence aif
pressure from the lungs at the gloftesd thundamental frequency of the vocal-

fold vibration

In order to train the above mapping functions, the contbbéldactors must be ob-

servable in speech data. Thus, for the filter controllabiéofs, we choose articulator
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configurations given by the positions of the EMA coils. Foe gource controllable
factors, we adopt the fundamental frequengy) (and power of speech, according to
an early observation that the voice source waveform varedgminantly depending
on these two properties (Miller 1959). These factors cdimigp speech production

model are shown schematically in Figure 5.3.

5.3.3 Simultaneous estimation

Let @H(w, x) and\TJG(w, ~) be the approximate solutions for the mappiNgs(w, )
and U (w,~y) in the previous section, respectively. Also, &t be the log-spectral

envelope of an observed speech signal at framehen, the following relation holds:

-~ ~

Sk = Uy (w, 1) + Vo (w, 7). (5.3)

The problem here is therefore to find optimal mappingsffg(w,a:) and \TJG(w,fy)
which give the best approximation cﬁ(w) based on Equation (5.3). Meanwhile
the following relation holds on the assumption that the shg®oduction is a linear
system:

Se(w) = Hy(w) + Gr(w), (5.4)

whereH,, andG, represent the true (but unobservable) log-spectral dofreguency

characteristics of the vocal tract filter and voice sourdeasmek, respectively. In both
Equations (5.3) and (5.4) above, it is assumed that lineaseis removed from both
sides of each equation, and that the interference of undanaise is negligibly small.

Let us here define the mean®@f (w) as
. 1L
Gre(w) = -2 Y Gi(w), (5.5)

and the variation o@k(w) from the mean as
Gr(w) = Gy(w) — Gmem (W), (5.6)

where M indicates the total number of frames. UsiGg<(w) and@;ar(w), Equa-

tion (5.4) can be rewritten as

~

Sp(w) = Hy(w) + G (W) + G\ (w). (5.7)
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Consider optimising the mappi@H(w, x) SO as to best approximate the observed
speech{§k(w)} from the filter controllable factofx,}, statistically across all frames

in the corpus. Therﬁ/H(w, x) is trained so as to make the following approximation:
Wni(w, @) & Hy(w) + G (w), (5.8)

where we assume thét}f‘r(w) in Equation (5.7) cannot be explained by the filter con-
trollable factorz,, because we assumed tI@fr(w) is controlled by the source con-
trollable factor+,, which is uncorrelated witke,.. (Note that both terms on the right
side are not functions a,, since they are part of the observed spe@,glw).)

Substituting Equation (5.8) into Equation (5.7) and reagiag it, we obtain the
following equation:

G (w) ~ Sp(w) — Uy (w, ).

Hence,@ﬁr(w) is given as the residual of speech estimated by the trainggbimz
Uy (w, ). The residual is thus considered to reflect the source dlesistic variation
@;ar(w) which cannot be approximated from the filter controllabletdax).

The mappingl ¢ (w, ~) can now be optimised so as to best approximate the residual
{S(w) — Wy (w, xx)} from the filter controllable factofx; }, across all frames in the

corpus. It then means thatg (w,7) approximates?;af(w), as follows:
U (w, 7h) ~ Gy ().

As above, we can find optimal mappin‘@g(w, x) and\TJG(w, ~) from observable data.
We should, however, notice that, from Equation (5.8), thempnag estimateffH(w, x)
clearly includesémea“(w), the mean characteristic of the voice source. Hence the
trained mappingflg(w,fy) does not represent the source characteristic itself, laut th
variation of the characteristic.

Practically, however, there is the case t@f‘“(w) happens to be partially corre-
lated due to bias of the training data, and accordir@ﬂyw,ack) approximates part
of @;ar(w). To reduce such interference, we iteratively re-estimgggw, ) and

U (w,~) as follows:

e Find the mapping function’y;(w, ) from pairs of articulatory datdz;} and
corresponding residualsS;,(w) — U (w,~,)} for all the frames in the training

data.
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e Find the mapping functionffg(w,fy) from pairs of {~,} and corresponding

residuals{Sy,(w) — Uy (w, )} for all the frames in the training data.

5.3.4 Summary

As we have seen, the proposed approach separates out tHdéraot#ransfer char-
acteristic from the voice source characteristic, statidly, using a large articulatory
database. In this respect, the approach differs from theecional approaches pre-
sented in Section 5.2, where both characteristics are a&&thon a frame-by-frame
basis. We should also note that the proposed approach assunparametric model
for either frequency characteristic, whereas the conwaatiapproaches represent ei-
ther the voice-source waveform or vocal-tract filter reg@owith a simple model, to

obtain the separation.

5.4 Exact algorithm

This section explains the exact algorithm of the proposedcssfilter separation. The
separation will be achieved by iterative approximatiomgsa large corpus with the

controlling factors of both components well represented.

5.4.1 Mapping functions

Each of the two mapping functions consists of several piegelinear approximation
functions, each of which locally maps a controllable faatéo a cepstrum (the Fourier
transform of the spectrum on a linear frequency scale). li@ptecewise approxima-

tion, the following two different types of clustering arepdipd to the same corpus:

e All the voiced frames are divided int& clusters (articulatory clusterg)y
(i = 1,2,3,...,K) based on the filter controllable factor, i.e., the posgion
of the EMA coils, so that each of the clusters consists of &awith similar

articulatory configurations (according to assumption A@tt®n 5.3.2).

¢ All the voiced frames are divided intd clusters (source clustergé (G =
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1,2,3,...,L) based on the source controllable factor, i.e., Hgeand theOth
coefficient of the speech cepstrumy)( so that each of the clusters consists
of frames with similarF, and ¢, values (according to assumption B in Sec-
tion 5.3.2).

LBG clustering (Linde et al. 1980) is adopted to group framéh gimilar values for

a particular controlling factor.

5.4.2 Spectral estimation

We apply Multi-frame Analysis (MFA) presented in Chapter 3ttie estimation of
the frequency characteristics of the voice source and viraet filter from voiced
speech. As already discussed, MFA puts emphasis on harmpeals in the spectrum
of voiced speech in a manner similar to some methods (GalastetR®90, McAulay
& Quatieri 1993, Gu & Rose 2000) successful in speech teclgyoldn addition,
the method inhibits an adverse effect of harmonic structuréhe spectral envelope
estimation by using the spectra of multiple speech framesalhsed with similar ar-
ticulatory configurations, and consequently is capablestfrating detailed spectral

envelopes. See Chapter 3 for more information.

5.4.3 Iterative procedure
5.4.3.1 Estimating amplitude characteristics of the source and filter

Let Ay(x) andAg(«) be functions which map the vectarsand~y into cepstral vectors
representing the log-amplitude characteristics of theavtract and voice source, re-
spectively. Those functions are different fram (w, ) andW ¢ (w, v) in Section 5.3.3.
Whilst Uy (w, ) and ¥ (w, ) are spectral estimates at frequenay, Ay(x) and
Ag(~) return acepstralvector, which contains théth—pth cepstral coefficients in the
elements. Next, let, be a filter controllable factor that represents an artiouat
configuration in terms of EMA coil positions, amd be a harmonic amplitude vector
given as

‘ T
a;, = a,(gl) a,(f) a,(j) e al(CN’“) ,
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Wherea,(f) denotes an observed logarithmic amplitude ofithénarmonic at frequency
f,ff) (l=1,2,3,..., Ny) included in frame:(= 1,2, 3,..., M).

The problem here is thus to find optimal mappings\ef(x) and Ag(v) which
give the best approximation of the observed amplitugleThe proposed method trains

these mappings according to the iterative procedure below.

Step 1: The mapping function\y(x), which maps the filter controllable factarto
a cepstrum, is trained by applying MFA to pairs of the filtentollable fac-
tors {x;} and the harmonic amplitude vectofa,} (the first approximation).
More specifically, for each articulatory cluster (explalre Section 5.4.1), we
find the transformation coefficients of the piecewise lineapping by applying
Equation (4.34) on page 123.

Step 2: The procedure is terminated if the following sum of squangdraximation

errors converges:
M

D, = Z pr€r W iep,
=1

wherep, compensates the difference of harmonic density amongahess so as
not to deal more importantly with frames having a larger namdf harmonics,
but to evaluate each frame equally regardless of the nunfdearmonics. Let
us here defing, by

pe=TF",

WhereFék) denotes the fundamental frequency for frakln@he matrixWy, is a

weighting matrix given by the followingv, x N, diagonal matrix:

[ w(f) 0

Wy,

The vectore,, is defined as

€, = ap — dyuy — Py, [AH(ka) + AG(7k)]>
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wheredy, is an offset to théth cepstral coefficientc() of framek, andu, is

an N,-dimensional vectors where every element is 1. The offsé$ obtained
during the spectral envelope estimation of MFA describe8antion 3.4.6. The
matrix Py, is anNVy, x (p+1) matrix that converts a cepstral vector into a harmonic

amplitude vector, and is given as

1 2cos Q,(:) 2 cos QQ,E}) <o+ 2cos pQ,ﬁl)

1 2cos Q,(f) 2 cos QQ](CQ) <o 2cos pQ,(f)
Pk = . . . .

1 2cos Q,gNk) 2 cos QQ,(gN’“) <o+ 2cos pQ,(CN’“)

If the frequency scale is linear, thélf) is given as
o = or T,

whereT; is the sampling period, and if it is mel scale, tk(éjj) is given from
Equation (4.40) as

o mlog(f/1000 + 1)

7 log(f,/1000 +1)

wheref, denotes the Nyquist frequency.

Step 3: For all the harmonics, the difference between the obserasehdnic ampli-
tude a,, and the harmonic amplitude estimated fram using the previously

trainedAy, as follows:
D, = ap — PkAH(CUk)-

The residualp, reflects the source characteristic variation which cannot
be approximated from the filter controllable factan, (i.e., articulatory

configurations).

Step 4: The mapping functiom\¢(v), which maps the source controllable factpr
to the cepstrum, is trained by applying MFA to pairs of thersewcontrollable
factors{~,} and the harmonic residualp, }. More specifically, for each source
cluster (explained in Section 5.4.1), we find the transfdiomecoefficients of the

piecewise linear mapping by applying Equation (4.34) orepkzf3.
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Step 5: For all the harmonics, the difference between the obserasehdnic ampli-

tudea,; and the harmonic amplitude calculated fremis computed as follows:
q, = ar — PrAc(vy)-

Step 6: The mapping function\yx (), which maps the filter controllable factarto
the cepstrum, is trained by applying MFA to pairs of the fittentrollable factors
{xx} and the harmonic residua{g, }. More specifically, for each articulatory
cluster (explained in Section 5.4.1), we find the transfaromacoefficients of

the piecewise linear mapping by applying Equation (4.34page 123.

Step 7: Return to step 2.

5.4.3.2 Estimating phase characteristics of the source and fi lter

LetOy(x) andO©¢ () be functions which map the vectatsand-y into cepstral vectors
representing the phase spectra of the vocal tract and voigees respectively. Each
cepstral vector has thest-yth cepstral coefficients in the elements. Nextplebe the
source controllable factor consisting 8§ andc, of framek, and8, be a harmonic
phase vector given as

o= [0 o0 ]

Wheree,(f) denote an observed phase of theharmonic { = 1,2,3,..., N;) at fre-
quencyf,gl) included in framé:(= 1,2,3, ..., M).

The problem here is thus to find optimal mappingslf(x) and ©¢(v) which
give the best approximation of the observed amplitderhe proposed method trains

these mappings according to the iterative procedure below.

Step 1: The mapping functio®y(x), which maps the filter controllable factarto
a cepstrum, is trained by applying MFA to pairs of the filtentollable fac-
tor {x;} and the harmonic phase vectdi®,} (the first approximation). More
specifically, for each articulatory cluster (explained acfon 5.4.1), we find the
transformation coefficients of the piecewise linear maggg applying Equa-
tion (4.35) on page 123.
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Step 2: The procedure is terminated if the following sum squared@pmation er-

rors converges:

M

k=1

The vectord,, is defined as

0r =0 — 217, fr. — Qp [@H(wk) +Oa(Ve) |

whereT; is a time delay representing the linear-phase componemaoidk,

and f, is the following N,-dimensional vector:

T
1 2 3 N
Jr= flg)li)z]lg)"' Iik)]

The time delayr; is obtained during the spectral envelope estimation of MFA
described in Section 3.4.6. The matfi, is an N, x p matrix that converts a

cepstral vector into a harmonic phase vector, and is given as

sin QS) sin 2Q,(€1) -+ sin pQ,(:)
0@ 2 - (2)
sin €2, sin207 .- sinp€)y
Q= (-2) . .
sin Q,iNk) sin ZQ,E:N’“) e sian,(cN’“)

Step 3: For all the harmonics, the difference between the obseragddnic phasé,
and the harmonic phase estimated fremusing the previously traine@y is

computed as follows:
Tr = 0p — QOu(T4).

The residuat;, reflects the source characteristic variation that cannapipeox-

imated from the filter controllable factar;, (i.e., articulatory configuration).

Step 4: The mapping functior®¢(v), which maps the source controllable factpr
to a cepstrum, is trained by applying MFA to pairs of the seurontrollable
factors{~,} and the residual$r,}. More specifically, for each source clus-
ter (explained in Section 5.4.1), we find the transformatoefficients of the

piecewise linear mapping by applying Equation (4.35) orepkzf3.



5.5. Experiments 167

Step 5: For all the harmonics, the difference between the obseraaddnic phasé,

and the harmonic phase calculated fregis computed as follows:
sk = 6 — Q;Oc(7x)-

Step 6: The mapping functio®y (x), which maps the filter controllable factarto
a cepstrum, is trained by applying MFA to pairs of the filtentrollable factors
{x:} and the residual§s; }. More specifically, for each articulatory cluster (ex-
plained in Section 5.4.1), we find the transformation coieffits of the piecewise

linear mapping by applying Equation (4.35) on page 123.

Step 7: Return to step 2.

5.5 Experiments

For the purpose of examining the effectiveness of the pegha@®urce-filter separa-
tion, experiments were conducted by applying the separaticpeech corpora with

articulatory information.

5.5.1 Data and procedure

Data used in the experiment were from the MOCHA (Multi-CHanfglculatory)
database (Wrench 2001): the corpora of a female spehkemQ) and a male speaker
(msak0). From corpud sew0, data set 10 was used (see Table 2.2). All the voiced
frames in each test data set were divided into 32 articylatioisters { = 32) and 64
source clusters/( = 64) using the LBG clustering technique. The order of cepstrum
was set to 56 for the vocal tract characteristic, and 32 ®wtice source characteristic.
These numbers were established from the results of prelipexperiments. Finally,
according to the procedure in Section 5.4.3, iterative @apration was performed
to find the piecewise-linear approximation functions, facle articulatory and source
cluster.

Accuracy of the estimation was evaluatedharmonic amplitude distortioflD,,,

and harmonic phase distortiodD,, which we have already introduced in Sec-
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TABLE 5.1: Improvement by the source-filter separation (test dataset)

female voicef{sew0) | male voice (rsak0)
HD, (dB) | HD, (rad) | HD, (dB) | HD, (rad)

without separation  1.97 0.553 2.12 0.739

with separation 1.84 0.546 2.03 0.736

. 0.13 0.007 0.09 0.003
Improvement

(6.87%) | (1.30%) | (4.45%) | (0.32%)
HD,: harmonic amplitude distortiod]D,,: harmonic phase distortion

tion 4.3.3. Equations (4.14) and (4.15) can be rewritterobsvis:

10 |2 1
HD, = — | — — €T B 5.9
"= 10 MZZ; N Wier  (dB), (5.9)
- H
L
2 1
HD, = MZZ Md{Wkék (rad). (5.10)
J=1 gec?

Both distortions were computed in step 2 of the proceduregati& 5.4.3.

5.5.2 Results

Figure 5.4(a) shows the relationship between the numbdegitions and harmonic
amplitude distortion. Figure 5.4(b) shows the relatiopdietween the number of iter-
ations and harmonic phase distortion. As is evident froradlggaphs, these distortions
decrease and converge as the process is iterated, for bptituata and phase. Particu-
larly the harmonic amplitude distortions are greatly dasegl by the iteration for both
female and male voices. Table 5.1 summarises the improvgorezach distortion by
the source-filter separation with seven iterations. By @dlitig the source character-
istic, we have approximately 4—7% improvement in harmomgplktude distortion for
both corpora.

Figure 5.5 shows harmonic amplitude and phase distortigiqghbne category. It

can be seen that the iteration improves the amplitude disouniformly for all the
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phone categories. Now let us examine the variation of estidhsource characteristic.
We will first check frequency characteristics of the sourapced at a fixed, but
with differentOth cepstral coefficient,, for each speaker. Specifically, tiig value
was set to its mean value of each speakergmeas changed in 16 steps within plus or
minus two standard deviations. Figures 5.6 and 5.7 showstiaa&ed variation in the
log-amplitude spectrum of the voice source depending omrghalue. In this figure,
co 1S expressed using relative power in dB. We can observe tln&in whe controllable
factor ¢y (which we set in Section 5.4.1) is sufficiently low, the arygdie spectra of
the source frequency characteristics are relatively riche low frequency band below
1 kHz (aroundFj) and the high frequency band above 4.5 kHz, and have sugpress
amplitude in the middle frequency band of 1-4 kHz. This tenges observed in both
female and male voices, but clearly the female voice hagtagectral variation with
different powers than the male voice. In the female voice Jolwering ofc, increases
amplitude in the low frequency band by more than 10 dB, anderfribiquency band
of 5—-6 kHz by more than 5 dB, compared to the frequency charsiits whenc, is
large.

Let us next examine the characteristics of the source pextlat a fixed power,
but with differentF,. More specifically, the;, value was set to each speaker’'s mean
value, andF|, was varied in 16 steps within plus or minus two standard diewia (on
a log frequency scale). Figures 5.8 and 5.9 show estimatéitioas in the amplitude
spectrum of the voice source depending onfihealue. We can see from these figures
that, as the pitch frequency decreases, the source loses fpovthe low frequency
band, which tendency is remarkable especially in the maleevoContrary to the
result depending on, (Figures 5.6 and 5.7), in this case, the male voice has larger
spectral variation than the female voice. In addition, aghHe male voice, increasing

pitch frequency raises the amplitude by 5-7 dB in the highdemcy band of 4-8 kHz.

5.5.3 Analysis of the results

In discussing the experimental results, we must be awatéthaesulting source char-

acteristic derived by the proposed separation is not theahebice source character-
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istic, but the variation of the characteristic (due:§@and/orFy), as noted at the end of
Section 5.3.3. First, the tendency that amplitude in theffegquency range relatively
increases in the case of lawy or high Fj is very much in agreement with the reports
that the glottal waveform becomes more sinusoidal whenevpawer lowers or pitch
frequency rises (e.g., Miller 1959).

It can be explained that the increasing amplitude in poweval.5 kHz indicates
a relative rise of the noise level. Since the speech speasugenerally inclined at
6 dB/oct, the low amplitude section of spectrum in the higlgfency range becomes
buried under the noise level, as the speech power decressesFigure 5.10. The
noise in the high frequency band is accordingly detectegestsal change caused by
the lowering of coefficient,. Evidence that supports this explanation is prominent
variation around 5-6 kHz in the source frequency charatterof the female voice
(Figure 5.6). As shown in Figure 3.34, spectral envelopab®female voice tend to

have a valley around frequency band 5-6 kHz, where the goeeltake the smallest
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value. Therefore the envelopes in this frequency band caffbeted by noise most
easily.

Explanation is provided below of the tendency for amplitudthe high frequency
band of the male voice to increase relatively in the casegth hj. Let us consider
two different spectra whose harmonic envelopes have the sgrbut differentFy’s,
as shown schematically in Figure 5.11. Singeis the same, vertical positions of
the envelopes (dotted line) are the same. However, theelifté;, means a different
number of harmonics, and thus the spectrum at Igw(left in the figure) has more
signal power than that at highy (right). We can hence conclude that speech showing
the left spectrum is produced by air pressure of higher gnieogn the lungs. If each
spectrum includes a noise component, such as fricatives riaspiration noise, the
¢o of the noise component becomes different as shown in thesfigneicause the noise
component produced with the air pressure of higher energygheater power, which
is directly in the spectrum, differently from the harmonimngponent. Loweringy
highlights the noise component. The experimental resudfufe 5.9) shows that that
tendency is obvious in the high frequency range in the caseeofmale voice, which
supports this explanation. Having lowé}, than the female voice, the male voice
possesses a relatively high power noise component. Althtlugpretically possible,

the above interpretation needs to be verified by furtherstigation.

With all the results considered, the source varies diffiéyamith Fj or ¢y across
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the speakers. This may be expanded into an interpretatairttie tendency of the
variation is closely related to speaker identity or gend#ermd@nce of the source. To
clarify this we would need to accumulate more analysis tesal other speakers and

to investigate how much those spectral changes influencahaonditory perception.

5.6 Conclusions

We introduced a new approach to separating out the voicesdrom the vocal tract
characteristic for voiced speech. The experimental retghved that the spectral vari-
ation was definitely influenced b¥, or ¢, and suggests that the tendency of the vari-
ation is closely related to speaker identity or gender rhffiee.

The proposed method statistically discovers variatiorh@woice source charac-
teristic from a large articulatory corpus, and enablespeaelent control of the source
in speech synthesis. Strictly speaking, however, the @gbraloes not completely
separate the characteristics of the voice source and vaclfiiter, as already noted
in Section 5.3.3. Still, it is a great advantage that voicere® and vocal tract filter
characteristics are learned automatically from a corpand,accordingly it becomes
possible to control the characteristics independentlygguie learned functions. Such
independent control has the potential to effectively imvprthe quality of synthetic
speech.

In fact, with harmonics reproduced from the mapping es&@tiagpeech was exper-
imentally generated using sinusoidal speech synthesia(iMy & Quatieri 1986), and
confirmed informally that speech quality is improved by $asising speech with the
control of the source characteristic, compared to speenthuged without the source
control. In this informal experiment, the time series:oand F,, and articulatory con-
figurations were first converted into cepstrum parametgnesenting the source and
vocal tract filter frequency characteristics, using ther fmapping functions Ay (x),
Ac(v), ©u(x) andO¢(v)) learned from a corpus. The parameters were then summed
in the quefrency domain, and sampled withspacing in the frequency domain for har-
monics on a frame-by-frame basis. Finally, speech wavefavare generated from the

harmonics using a sinusoidal approach. In listening witidipdones, speech produced
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without the control of source characteristic sounded dwifvbice quality varied every
short period of time and felt unstable, whilst speech predweith the control sounded
sufficiently stable.

Essentially, we should use thveice source powemhich can be obtained by fil-
tering speech through the inverse of the vocal tract filiénpagh here we employed
the Oth cepstral coefficient of speech as a controllable factotife source. However,
a problem in applying the voice source power is that it beconezessary to compute
the power by inverse filtering whenever the vocal tract fittearacteristics are renewed
in each iteration and, moreover, to repeat the clusterihgs Would make the training
process time-consuming.

It has become clear from the experiments that the propospagh may also
extract the noise component of speech as part of variatidhansource, although
such variation is not caused by the source. The theoretitaipretation we made in
Section 5.5.3 (which still needs to be verified) suggestsigoessity to decompose the
harmonics and noise components, and control each of thearmenps independently.

Independent control over the source characteristic (arerammponent) accord-
ing to speech power dr, is overlooked in current speech synthesis techniques,asich
pitch-synchronous overlap-add (PSOLA) (Moulines & Chat@#ril990) and multi-
band resynthesis overlap-add (MBROLA) (Dutoit & Leich 199Bhe loss of this con-
trol can be another cause of degradation in synthetic sdeathconventional speech
synthesis. Also, the fact that acoustic characteristispe&ch vary with speech power
or Fj is a potential problem for unit selection speech synthdgist a join, the syn-
thesis units of both sides have different speech powefyorspectral discontinuity
possibly occurs, due to difference in source characteyistien if power and-, are

interpolated across the join.






CHAPTER 6

Conclusions

6.1 Achievements

For acoustically closer approximation of speech in the &éawork of an articulatory-
acoustic forward mapping, this thesis principally dealthwiwo crucial aspects of
speech synthesis: the accurate estimation of the vocaltteasfer characteristic, and
source-filter separation.

We first addressed the problem that the harmonic structuveioéd speech inter-
feres with the estimation of the vocal tract transfer chiarastic. Multi-frame Analysis
(MFA) was proposed which can estimate spectral envelogesffom the adverse ef-
fect of harmonic structure. It was shown that MFA is the@adty capable of estimat-
ing more detailed vocal tract transfer characteristic ttenframe-by-frame spectral
envelope estimation that is used in many fields of speecimtdotyy. The effectiveness
of MFA was proven experimentally by simulations where transfer characteristics
of imitated vocal tract system were estimated by MFA andcfanparison, the con-
ventional estimation from system output, or synthetic she@he results showed that
MFA can precisely extract the peaks of formants, while ondtieer hand the con-
ventional combination of frame-by-frame estimation aradistical averaging blurs the
resulting spectral estimates. More specifically, the cotiseal approach tends to un-
derestimate the amplitude of formants, and overestimatéandwidth. Although not
perceptually significant in recognising phonemes, botlmesé formant-properties af-

fect the naturalness of speech (Kent & Read 1992). Thereilorgpeech synthesis,

181
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such oversmoothed envelopes can cause serious degradatiematuralness of syn-
thetic speech. In addition, it was also shown through exrpamis using actual speech
that MFA can accurately estimate the phase spectrum in dgéncy bands below
500 Hz and above 4 kHz, whilst the minimum phase spectrumnoamy-used in

conventional parameter-based synthesis, does not agiteebgerved harmonic phase
in these frequency bands. Preserving phase in such fregbands is reported to be
important to resynthesise high-quality speech (Wouters&dh 2000). These faults
in the spectral estimation could be the main reasons whyesdional parameter-based

synthesis causes artefacts in the synthetic speech.

We next incorporated MFA into the framework of articulat@goustic mapping.
The mapping consists of piecewise approximation functieash of which maps an ar-
ticulatory configuration, given as EMA data, into the acaustaracteristics of speech,
represented by the cepstrum, locally in the articulatorgcep We investigated the
performance of the mapping learned from the MOCHA articulatmorpus by ex-
perimenting. For this experiment, a new performance measarmonic amplitude
distortion and harmonic phase distortion, was proposeck mbasure evaluates dis-
tortions of estimated spectra for observed spectra onlgrhbnic frequencies, where
the spectra reflect the real vocal tract transfer charatieriThrough the experiment
it was confirmed that the MFA-based mapping gives an acallstimore accurate ap-
proximation than mapping with the widely-used distortioitezion based on cepstral
distance. It was also confirmed that the piecewise lineactiom can approximate
the mapping much better than piecewise constant one. Tleundpping function is

considered close to linear, locally in the articulatorycgpa

Finally, we dealt with a well-known problem in speech scenre source-filter sep-
aration. As a cause for decrease in the accuracy of artylaicoustic mapping, we
pointed out that our earlier speech production model hadosidered the variation
of the source characteristic. To estimate the charadteoisthe source simultaneously
with the vocal tract transfer characteristic, we discusssthtistical approach based on
an articulatory corpus. This separation was applied to theudatory-acoustic map-
ping, and proven effective by extensive improvement egtligen the harmonic ampli-

tude distortion. Overall tendencies of the estimated tiandn the source characteris-
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tic were in excellent agreement with many observations enstturce (e.g., Miller
1959). In addition, comparison between results from the@@@ of two speakers
showed that there is noticeable difference in the variatemnsed by each controlling
factor between speakers. This result suggests that theesaariation influences voice

quality which relates to speaker identity or gender diifer

As above, the study provided more accurate acoustic appedxin of the vocal
tract transfer characteristic, which will be beneficial iwale range of speech tech-
nology, and laid the groundwork in speech science for a ng® tyf corpus-based

statistical solution to the source-filter separation peail

6.2 Room for improvement and future work

This section will mention some work that is still in progreasd problems that should

be dealt with in future work.

6.2.1 Articulatory clustering

Although we employed a data clustering technique based t@ulatory data in the
MOCHA corpora, the movements of articulators are sometineesgptually signifi-
cant and sometimes less significant depending on theiripasit It is therefore nec-
essary to perform clustering in the articulatory spaceguaigriterion in the acoustic
(or perceptual) space, but a good solution has not yet besmlfto this problem. We
may perform clustering in the joint space of articulatory atoustic spaces; how-
ever, we should be aware that MFA was originally inventedabise of the difficulty
in estimating the acoustic characteristics in voiced dpeand thus it is impossible
to obtain accurate acoustic characteristics in the stagéustering prior to applying

MFA, which uses the result of the clustering.

IPapcun, Hochberg, Thomas, Laroche, Zacks & Levy (1992)tediaut the presence of articulators
critical andnon-critical to the production of certain phones.
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6.2.2 GMM-based mapping

Although the introduction of the piecewise linear approaiion improved the map-
ping performance, the acoustical discontinuity still remsan produced speech at the
cluster boundaries. One solution to this problem is the fidlopf probabilistic cluster-
ing, Gaussian Mixture Model (GMM) which has been recently employed in various
areas including voice conversion (Stylianou et al. 1995nKR801, Toda 2003, Gillett
& King 2003). The application of GMM to the MFA-based artiatdry-acoustic map-
ping is briefly described in Appendix B.

6.2.3 Mapping for unvoiced speech

This thesis has concentrated on finding articulatory-atooeapping in voiced speech,
where it is particularly difficult to extract the vocal tracansfer characteristics due to
the interference of harmonic structure, and where the sdiilter separation problem
is involved. How should unvoiced sections of speech be sgmted and produced in
the framework? Since the production of unvoiced speech doeswolve the voice
source, unvoiced speech does not show harmonic structtrmtarferes with accurate
estimation in the frequency domain. Therefore it is onlyessary to compute its
acoustic characteristic using the commonly-used method frame-by-frame basis.
Also, the acoustic characteristics of unvoiced speech easbumed to depend only on
the vocal tract shape, and thus it is sufficient to realisewdatory-acoustic mapping
using a function estimated from pairs of the acoustic charestic and articulatory

configurations.

6.2.4 Mapping performance criteria

The mapping performance criteria proposed in Section 98.page 107 evaluate
spectral distortions of estimated spectra only at harmfaguencies. This is because
voiced speech has harmonic structure in the frequency dpraad the harmonics are,
at least where they are dominant, the only clue showing thaltoact transfer charac-

teristic in the voiced speech. When harmonics are reprodaceatding to a givetk

2Stylianou, Capp & Moulines (1998) call it ‘soft classification’.
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contour, however, it is rare that one of the harmonics istextat a formant frequency,
where conventional methods tend to underestimate the tdeliand overestimate
the bandwidth (as in Figure 3.29 on page 84). For this reasmgonsidered that the
superiority of the proposed method does not show clearlpenhiarmonic amplitude
distortion of the performance criteria.

Interestingly, it is well-known that human auditory pertiep is sensitive to the
amplitude and bandwidth of formants, but these properteime noticeable only
when a harmonic frequency coincides with the frequency of@mént. The knowledge
suggests that the human ear may be sensitive particuladydb coincident parts,
even if their periods are very short. This suggestion reguus to consider a new

performance criteria that weight such specific periods.

6.2.5 Subjective evaluation

As a measure to judge the improvement of the estimation,tti@sis has relied on
the acoustic accuracy of approximation, and has not ad@piggubjective evaluation
such as listening test. This is mainly because, as Mayo, @lding (2005) argue
on perceptual evaluation of speech produced by concatergieech synthesis, sub-
jective evaluation for synthetic speech involves variawdrs to be tested, and those
factors are interacting each other in a complicated manHeerefore the evaluation
should be designed very carefully, and it is, as a matter wifs®g required to introduce
statistical examination, so as to isolate the influencesof dactor. An extreme, but
likely case in subjective evaluation is that an impulsivesacaused by a single phase
mismatch gives listeners a bad impression, and makes thage jine overall speech
quality to be low. Moreover, as discussed in the previous@gctuman auditory per-
ception is possibly sensitive to speech where the frequehone of the harmonics
coincides with a formant frequency. Under this hypothetsigauld be necessary to
evaluate synthetic speech for the same acoustic chasditéni a number of different

fundamental frequency ) contours® The subjective evaluation is, without doubt, an

3This may be the same problem of diphone speech synthessytiitaesising a speech segment with
Fy contours different from the original often decreases thadityuof synthetic speech (and intelligibility
sometimes). The author actually faced this problem wherldping a diphone-based TTS system
several years ago.



186 Chapter 6. Conclusions

important part of assessing speech synthesis, but invoteey complicated problems

as above. It should be dealt with as a subject for a furthelystu

6.2.6 Waveform generation

We did not deal with how to synthesise the speech waveforimamody of the thesis,
since waveform generation is beyond the scope of this thé&isvever, in conjunc-
tion with the subjective evaluation explained in Sectio2.%. it is necessary to con-
sider generating a speech waveform from the acoustic desistcs obtained by the
articulatory-acoustic conversion.

Sinusoidal synthesis (McAulay & Quatieri 1986) is, so famsidered most suit-
able among a great deal of existing methods for the wavef@nemgtion, because
the analysis method we have dealt with in the thesis estsriatth the logarithmic-
amplitude and the phase of each harmonic. Appendix D insladerief explanation
on the use of sinusoidal speech synthesis within the ovieaatiework of articulatory-

acoustic conversion.

6.2.7 Harmonic-noise decomposition

Throughout the thesis, we have focused on approximationetd&rmonics of voiced
speech. As is well known, however, the noise component rnieeois combined with
the harmonic counterpart to obtain high-quality speech.

To handle the noise component, some recent speech syntbelsigques, such
as multiband resynthesis overlap-add (MBROLA) (Dutoit &dleil993) and the har-
monic plus noise model (Laroche, Stylianou & Moulines 19XyJianou 2001), divide
the speech spectrum into several frequency bands, andqeahise in specific fre-
guency bands where the noise component is dominant oveath&hic counterpart.

However, ag; decreases, certain types of noise produced in the vocabkueah as
fricatives and aspirations are theoretically highlighteldtive to the harmonics in the
frequency domain, as discussed in Section 5.5.3 on pageThé&before, if following
this speech production theory, the above noise-dominarddlaave to vary depending

on Fy of speech. The current techniques never change these banmidiag toF;), and
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thus are contrary to the speech production process. Maresiaee the noise which is
generated in the vocal folds can be influenced by their vidmmatve should deal with
such noise separately from the noise generated in the vacal t

By training the variation of each noise characteristic, amdtiolling each of the
characteristics during synthesis, the noise componentldo@ approximated with
acoustically higher accuracy. Learning and controlling #itoustic characteristic of
these noises can be achieved in the same manner as for heasmdhe proposed the-
oretical framework for the noise component is describedppéndix C. Confirmation

of the effectiveness of this framework will be a subject fduture study.

6.2.8 Signal-noise ratio weighting

In connection with the harmonic-noise decomposition inti®ac6.2.7, if the noise
produced in the vocal tract was theoretically highlightethtive to the harmonics as
F, decreases, the harmonics of very Iéyvoice would tend to be buried in the noise.
In this case, the noise could seriously influence harmorimasion. As a result, es-
timated harmonics often include a relatively large amodmaise. Such harmonic
estimates smeared by the noise prevent accurate estinohtronal tract responses. In
order to reduce the influence of the noise on the resultingoreses, it would be ef-
fective to weight each harmonic depending on the signadenamplitude ratio (SNR)
at each harmonic frequency. The weighting can be achievexpplying SNR to the
weights, W, in Equation (3.17) on page 59. Campedel-Oudot et al. (206d)gse
such usage of SNR in their spectral envelope estimation. &ginm reliance on noise-
free harmonics in this manner, more accurate acoustic cteaistics would be esti-

mated from among multiple frames in the process of MFA.

6.3 Contributions to other research fields

Vocal tract transfer characteristic estimation and sofite¥ separation, dealt with in
this thesis, are universal issues in speech science antblegly. Some methodologies

proposed in the thesis can be thus applied to other fieldsesfcsptechnology. Let us
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consider their adaptation in this section.

6.3.1 Harmonic-weighted cepstral-domain criteria

As already noted, the widely-used cepstral domain criteli@sed on the cepstral dis-
tance computes distortions for spectral sections intatpdlby a trigonometric polyno-
mial between adjacent harmonics. These sections are jiisematically interpolated,
and do not reflect the vocal tract transfer characteristiwus] in a sense, evaluating
spectral distortion there is meaningless. This problenoimas more serious when we
handle voice with high¥}), because such high, speech has wider interpolated sec-
tions due to fewer harmonics. Distortions should theref@realculated exclusively at
harmonic frequencies, where the speech spectrum reflectedhvocal tract transfer
characteristic.

However, it is rather hard to deal with the distortion cisesf MFA in other ap-
plications, since the criteria employ harmonics whose remviaries depending on
Fy. Here, let us consider a different form of the proposed @Gata order to facil-
itate their adaptation. Let us first restate the one for auoqidi envelope estimation,

Equation (3.15) on page 58:

M
1 5 .
g Da= ; o(Yr, — Prta) Wi(y,, — Piéa).

For the sake of clarity, the smoothness criterion term has benitted from the original
equation, and we have put a tilde over the cepsteyno express that it is estimated.
If we take the matriceP;, outside the brackets, we obtain the following equations:

1 M

SDa= " pelPyly, — &) PTWPL(P Y, — &),
k=1

Here, the ternP; 'y, represents a cepstrum whose Fourier transform, i.e., rspect

traces the amplitude of every harmonic in frafnéd_et the cepstrum bel”. Then,
1
5D = D () — &) Wi - &), (6.1)

where

W), = pPLW,Py. (6.2)
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We may find the cepstrurzcﬁk) using a conventional frame-by-frame spectral envelope
estimation. Interestingly enough, Equation (6.1) has émeesform as the conventional
criterion based on the cepstral distance, but is equivadethe MFA-based criterion of
Equation (6.1), which calculates spectral distortiony @tlharmonic frequencies. We
can also notice that, although the equation is a cepstrahdooriterion, the matrix
W/, weights the amplitude of harmonics in the frequency domain.

As for the phase distortion, Equation (3.29) on page 64 arits

M

1 - -
7Dp = Dok — Quey) " Wi(9s — Qu&p)
k=1
can also be rewritten as
1 M
5Dp = D (el —e,)" Wil - &), (6.3)

Wherecg“) denotes a cepstrum whose Fourier transform traces the phasery har-

monic in framek, and
W/ = p.QiW,.Q,. (6.4)

Equations (6.1) and (6.3) are in a more suitable form for awgpo various other
applications; we should note that the matrid®§ and W, are symmetric, and func-

tions of harmonic frequencies.

6.3.2 Source-filter separation

The source-filter separation technique presented in Chamteuld be applied to text-
to-speech synthesis, using clustering based on phonetiexdonstead of the articula-
tor positions measured by the EMA system. One example of plsiapplication to a
corpus-based diphone synthesis is as follows. The tinmessef acoustic parameters
corresponding to each of the diphones is first estimated grafirihe tokens of the
same type of diphone in the corpus. Let us call such a seriparaimeters a repre-
sentative diphone. The representative diphones are, &ampbe, computed by taking
the mean of these tokens. We can view such classificationghode type as corre-

sponding to the articulatory clustering we saw in Chapter SidRels (errors) of the
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representative diphones are then calculated for all dipliokens included in the cor-
pus. Finally, voice source variation is estimated from ¢hessiduals of the previous
estimate, in the same manner as in Chapter 5 with speech poder,aas control-
ling factors. These two estimations of the representaipleahe parameters and voice
source variation are alternately repeated for the resscfathe counter estimate until
total error converges. Thereby, it would be possible toialgpectral variation of the
source depending on the speech powefF@rin the framework of the corpus-based

diphone synthesis.

6.4 Epilogue

At the very beginning of the thesis, it was mentioned thatttilgger of this research
was a question if polyglot speech synthesis was possibieywsispeech database of
a single language. Using an articulatory-acoustic mapf@agied from an English
corpus, an attempt was made for synthesising vowels of Egegiother than English.
The experiment was quite informal, but the produced speaslgiven evidence that it
is possible to produce foreign phones, such as close fromicked vowely], from an
English corpus. However, while it would be no problem whermarge to be produced
is given as an interpolation of speech in the corpus, it maghise difficulty when
it is given as the extrapolation. Since the mapping of aldicuwy configurations to
the acoustic characteristic of speech is nonlinear, thagalation by piecewise linear
functions could cause unexpected results.

Apart from foreign language speech synthesis, it has besmiaformally con-
firmed that the synthesiser can mumble by restricting thenlgvement, and slur by
restricting the tongue movement. Needless to say, artmytacoustic mapping that
enables such speech modification is obtained only whenutatary data are available,
and the articulatory data are the key to accurate estimafitime source characteristic
and vocal tract transfer characteristics, under the ptesemlitions. Still, these infor-
mal results suggest that there is potential to synthesisagshof different languages
and speech of different speaking style, from speech dataivigde language in a sin-

gle speaking style. The author believes that this thesidtmgyht new capabilities for
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speech synthesis, and opened up possibilities toward tingatd goal of this research

— articulatorily-meaningful speech modification.






APPENDIX A

Time-domain multi-frame analysis

This appendix introduces the time-domain approach to théi-siname analysis
(MFA), whose frequency version was discussed in Chapter 30 flipes of time-
domain multi-frame analysis (TD-MFA) are presented her®-MFA based on the

all-pole model, and based on the all-zero model.

A.1 All-pole model
Assume that a speech signal observed inktineframe is represented as
sp = [s(ng) s(np +1) -+ s(ng+ Ny — 1)]",
wheren, and N, denote the first data point of thgh frame and the number of data
points in the frame. Then, the standard linear predictiocgsube following time-
domain distortion as a criterion to find the predictive casffnts:
Dk = (Sk — <I>ka)T W;;FWk (Sk — <I>ka,) .

Here, the vectoa is given as

a=la ay - apl
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wherea; denotes théth linear predictive coefficient. The matrid, is, in the case of

the covariance method, given as

[ sm—1) -2 o s(m—p) '
®, — s(ny) f("k—l) f‘("kJrl_P)
| s+ Ne—2) s(ng+ N —3) -+ s+ Ne —1—p) |

The matrixWy, is a diagonal matrix with the following vector in its diagdetements:
diag Wy, = [w(1) w(2) - w(Ny)],

wherew() is a window function.

Now, we expand this criterion for a single frame into a cr@afor multiple frames.
For such expansion, we take a summation of the distotfigrior the frames to be
analysed. Let us consider the speech signals/dfames,{s;|k = 1,2,3,..., M }.

Then, the criterion of MFA is written as

M M
Dyipa = Z Dy, = Z (s — ®ra) WIW,, (s, — ®1a). (A.1)
P =1

We can find the predictive coefficient vecterthat minimises the above criterion as

follows. By differentiating Equation (A.1) partially witrespect taz, we obtain

ODhira
da

M
=2 ®IW{W, (s, — Bra).
k=1

Setting the left side of the equation equal to zero, and aeging the formula, we

obtain a set of simultaneous first-order equations below:

M M
(Z @}fWZWk@k> a=> ®/W{W,s. (A.2)
k=1 k=1

By solving the above equation, optimal linear predictiveftioents for all the frames
can be found.

The solution above is the same as that used in the Multi-Céosuerval Linear
Prediction method (MCLP), which was proposed by Lu et al. 96 avoid unstable
estimation when the linear predictive analysis is appledpgeech with very short

period, during the closed phase analysis explained in @ebtR.1.
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A.2 All-zero model

The all-zero realisation requires an input to the systemstFassume a linear source-
filter model composed of a vocal tract filtéf(z) and voice sourcé/(z). The output

speechS(z) is expressed in the z-domain by

The time-domain representation is given as

s(n) = h(n) * g(n),

wheres(n), h(n) andg(n) denote a speech signal, the impulse response of the vocal
tract filter component, and the impulse response of the v&acece component, re-
spectively. The symbal stands for the convolution operation. The above equation ca

be rewritten as

s(n) =Y h(i)g(n —i). (A.3)

1=—00

Practically, it is assumed that the impulse response is iretioe negative time and
has a finite length in the positive time. Assume the resparsgth isp. Then, Equa-
tion (A.3) can be rewritten as

If we consider a speech signal in the range< n < n; + Ny — 1, s(n) can be

expressed in terms of vectors and a matrix as

s = xGh, (A.4)
where
s = [s(ng) s(ng+ 1) -+ s(np+ Ny — D)7,
h = [1(0) h(1) h(2) --- h(N = 1)]",
[ g(m) gm—=1) o glne—p) '
Ge— g(nk +1) 9(r) gl +1-p)

g(nk + Np = 1) gk +Ne—=2) -+ gng+ Ny —1—p)
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Let us now consider how to find vocal tract impulse respdnggiich best approx-
imates speech signals of multiple frames. kEgbe a speech signal estimate of ftik
frame, calculated from the responke Then, s, is expressed, using Equation (A.4)
with a gain factory,, as

S = a,Gph,

whereG, denotes a glottal excitation matrix for théh specific frame. The gain factor

ay, IS obtained by
op= G s B Gio (A5)
(Gxh) - (Gyh)  RTGIG.h

The optimal impulse respongeis so calculated as to minimise the following sum of

squared errors for all the frames:
M
DMFA = Z S — Sk> Wka(sk — Sk) (A6)

M
Z S — Oék;Gk WfWk(sk — Oékah),
k=1
whereW, is a diagonal matrix with the following vector in its diagdeéements:
diag Wy, = [w(1) w(2) - w(Ny)],

wherew() is a window function. We can find the impulse respohsat minimises
the above criterion as follows. By differentiating the ab@epiation partially with

respect tch, we obtain its solution based on the least-squares miniiorsa

M
=2 Z akwa;fWk <Sk — CYkah) .

ODyipa
Ooh

Setting the left side of the equation equal to zero, and aeging the formula, we

obtain the following simultaneous first-order equations:

M M
(Z ?GIWT Wka> h=> a,GiW{W;s;. (A7)

By solving this equation, an optimal vocal tract impulse oesge for all the frames can
be found.
Note that we need to assume a certain time-domain model éovdite source

excitationg(n). If we assume periodic impulses fofr), the above solution becomes
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very similar to that used in the closed loop training of Kdgosa & Akamine (1997),
which served as their PSOLA-based analysis-by-synthetisi@n for building a set

of diphone speech synthesis units.






APPENDIX B

Gaussian Mixture Model

The Gaussian Mixture Model (GMM) has recently been appleddveral areas of
speech technology. A GMM is considered to be a mapping methitda statistical

clustering, and is capable of achieving a smooth mappingtim In this appendix,
we will consider the application of a GMM method, which Stylou et al. (1995)

propose for their voice conversion, to our proposed MFAedaarticulatory-acoustic

mapping.

B.1 Introducing statistical clustering

Using Stylianou’s GMM-based mapping, the cepstm{fﬁ is estimated from the artic-

ulatory configuratione; using the following equation:
Moo 4 -1 .
el =3 pl {qm Ly (2“)) (s, — u(”)} , (B.1)
=1

where¢® is an estimate ot{", and =) and () are the covariance matrix and
the mean vector of th&h Gaussian component, respectively. Representepl,giby

Is the posterior probability that théh Gaussian component generated the spectrum at
framek. The problem here is to find the unknowf’ andU®. The equation is for

the case of estimating the amplitude characteristic oféraniRearranging the formula

similarly as in Section 4.5.1, the above equation can beittewras follows:
M . .
e =" p TP u. (B.2)
=1
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Unlike the case in Section 4.5.1, the matﬂg) is given as

I‘fj) _ y,gi’l)E(p“) ;Vlgiﬂ)E(erl) ... Ey,gi’L)E(p“) 8 Diaa)

whereE® denotes @ x p unit matrix, and

V/gm‘) — g (25 — u(i)) .

J

The vectore\” is the jth row vector ofS®”). Equation (B.2) is further rewritten as

W — M, (B.3)
where
Iy = {pil)l“g) T 5p1§M)F;§M)] ,

T

u = {(uu))T : (u@))T S (u<M>)T}

Having the same form as Equation (4.30), optimal linearsi@mation coefficients
u' can be found using the same solution as in Section 4.5.1wiske we can obtain

optimal linear transformation coefficients for mappingiatphase spectrum.



APPENDIX C

Harmonic-noise decomposition

As we have discussed in the main chapters of this thesis,dmacamoise decompo-
sition is vital to represent the acoustic characteristicspgech more precisely, and
to improve the quality of synthetic speech. This chapterchgroposes a method of

decomposing harmonic and noise components from speech.

C.1 ‘Noise harmonics’

In general, residuals of speech for its harmonic componentegarded as the noise
component. However, since harmonic analysis usually eséishharmonics as spec-
tra at harmonic frequencies, the harmonics contain theenmsnponent as well as
the true harmonic component. As a result, the residuals have alnssetamplitude
at harmonic locations, and accordingly notches are obddnvéhe spectrum of the
residuals, as shown in Figure C.1. When we estimate a spentr@ope of the noise
component, those notches can cause the envelope to be sthdated. For this rea-
son, the proposed method estimates noise onfgrat- 1)Fy/2 (n = 1,2,3,...,N')

as in Figure C.2, in order to avoid the influence of these natchet us call these
discrete noise spectrise harmonidere. ThusV’ above denotes the number of the

noise harmonics.

201



202 Appendix C. Harmonic-noise decomposition
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FIGURE C.1: Spectral ‘notches’ at harmonic frequencies in the spectrum of a residual.
The dashed line shows the FFT spectrum of the original speech, and the solid line

represents the FFT spectrum of its residuals for the harmonic component estimated.
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FIGURE C.2: Schematic illustration showing the extraction of ‘noise harmonics’
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C.2 MFA for the noise harmonics

The gaps between adjacent noise harmonics can be filledvaigle iof multiple frames,
as we have done for the spectral envelope estimation of thiedmc component in
Chapter 3 (i.e., by applying Multi-Frame Analysis). Since tioise component shows
random phase, only the amplitude characteristics shouéstimated. With such rep-
resentation of the noise component, all the solutions irthiesis can be applied; the
source-filter separation in Chapter 5 can separate noisaniitience from the voice

source, and noise without the influence.






APPENDIX D

Overall system for

articulation-to-speech synthesis

D.1 Analysis

Figures D.1 and D.2 are schematic diagrams illustratingutfadysis phase of harmonic
component and noise component, respectively. Mappingifumgfor the components
are both estimated using the combination of Multi-frame lysia and source-filter
separation, each of which is introduced in Chapter 3 and Ch&ptespectively. As
for the harmonic component, the mapping functions of boéhamplitude and phase

spectra are estimated for both the vocal tract filter and theevsource (Figure D.1).

mapping functions of
amplitude spectra for

harmonics {hk } —I_> the vocal tract and
voice source
MFA

+ AH(x)a AG(y)
Fo power (c,) {?’k} —> source-filter »®H(x) ®G(y)

—|-> separation
. mapping functions of
articulatory {x,} phase spectra for

configuration
g the vocal tract and
voice source

FIGURE D.1: Analysis of harmonic component
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noise harmonics {n k }
_|-> MFA

F,, power (c,) {yk} —1 sourc-;—filter ) Ey(x), E6(Y)

separation mapping functions of
articulatory {x } amplitude spectra for
k

; . the vocal tract and
configuration .
voice source

FIGURE D.2: Analysis of noise component

As for the noise component, the mapping function of only thpl#tude spectrum is

estimated for both the vocal tract filter and the voice so(iFagure D.2).

D.2 Articulation-to-speech synthesis

All the six mapping functions are applied to the articulgtacoustic conversion. Asin
Figure D.3, for the given time series of the filter control&factors{x, } (articulatory

configurations) and the source controllable facfeys} (£, and the Oth cepstral coef-
ficient), a cepstrum representing the amplitude spectrutheoharmonic component

to be synthesised is generated by
ca™™mMe = An(@r) + Ac(vi) (D.1)

whereAy(x) and Ag () are the mapping functions for the amplitude spectra of the
vocal tract and the voice source, respectively. A cepstepresenting the phase spec-

trum of the harmonic component to be synthesised is prodoged

charmonic — @H<wk’) + 6@(7k> (DZ)

p

where©y(x) and© () are the mapping functions for the phase spectra of the vo-
cal tract and the voice source, respectively. A cepstrumessmting the amplitude

spectrum of the noise component to be synthesised is prddyce

noise

e, = En(xr) + Za(vs) (D.3)

whereZy(x) and=q(v) are the mapping functions for the amplitude spectra of the

vocal tract and the voice source, respectively.
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> Ay(x)
Xk > O4(x)
articulatory
configuration amplitude
—_ harmonic and phase
> “:'H(x) generator = of
é__» harmonics
> A
G(Y) amplitude
é——i FFT [mp spectrum
of noise
e =¥ O4(»)
F,and
power cepstrum vectors

FIGURE D.3: Block diagram of articulatory-acoustic conversion

Harmonic spectra of speech are generated from the cepdiguations (D.1) and
(D.2). A spectrum of the noise component is produced usiegctpstra of Equa-
tion (D.3). Finally, the periodic component of a speech viawa is synthesised using
sinusoidal speech synthesis (McAulay & Quatieri 1986), #nednoise component is
generated using Gaussian noise through a filter that hasatpeeincy characteristic of
the noise spectrum produced above. Synthetic speech isggddy summing both
the components.
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