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Abstract

Speech recognition has been a very active area of research over the past twenty years.
Despite an evident progress, it is generally agreed by the practitioners of the field that
performance of the current speech recognition systems is rather suboptimal and new ap-
proaches are needed. The motivation behind the undertaken research is an observation
that the notion of representation of objects and concepts that once was considered to be
central in the early days of pattern recognition, has been largely marginalised by the ad-
vent of statistical approaches. As a consequence of a predominantly statistical approach to
speech recognition problem, due to the numeric, feature vector-based, nature of represen-
tation, the classes inductively discovered from real data using decision-theoretic techniques
have little meaning outside the statistical framework. This is because decision surfaces or
probability distributions are difficult to analyse linguistically. Because of the later limita-
tion it is doubtful that the gap between speech recognition and linguistic research can be
bridged by the numeric representations. This thesis investigates an alternative, structural,
approach to spoken language representation and categorisation. The approach pursued
in this thesis is based on a consistent program, known as the Evolving Transformation
System (ETS), motivated by the development and clarification of the concept of structural
representation in pattern recognition and artificial intelligence from both theoretical and
applied points of view.

This thesis consists of two parts. In the first part of this thesis, a similarity-based
approach to structural representation of speech is presented. First, a linguistically well-
motivated structural representation of phones based on distinctive phonological features
recovered from speech is proposed. The representation consists of string templates rep-
resenting phones together with a similarity measure. The set of phonological templates
together with a similarity measure defines a symbolic metric space. Representation and
ETS-inspired categorisation in the symbolic metric spaces corresponding to the phonolog-
ical structural representation are then investigated by constructing appropriate symbolic
space classifiers and evaluating them on a standard corpus of read speech. In addition,
similarity-based isometric transition from phonological symbolic metric spaces to the cor-
responding non-Euclidean vector spaces is investigated.

Second part of this thesis deals with the formal approaches to structural representa-
tion of spoken language. Unlike the approach adopted in the first part of this thesis, the
representations developed in the second part are based on the mathematical language of
the ETS formalism. This formalism has been specifically developed for structural mod-
elling of dynamic processes. In particular, it allows the representation of both objects and
classes in a uniform event-based hierarchical framework. In this thesis, the latter prop-
erty of the formalism allows the adoption of a more physiologically-concrete approach to
structural representation. Two representations were developed. The first representation is
based on gestural structures and encapsulates speech processes at the articulatory level.
Algorithms for deriving the articulatory structures from the data are presented and eval-
uated. The second representation is a result of a formal approach to modelling of cochlear
transduction mechanism. It is shown how to derive this representation from the acoustic
data. A hypothesis for the emergence of linguistic classes within this representation is
then put forward.
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CHAPTER 1

Introduction

The last two decades have seen significant advances in human-machine in-
terfaces. Speech and language technology (speech recognition, in particular) is
among several areas which have benefited enormously from these advances (Young,
2001). Numerous prototype systems developed within the research community
are now extensively used both in commercial environments and are available to
end-users (Greenberg, 2001). Among many reasons given for these advances (like
technological improvements in hardware which led to the increase in the compu-
tational resources available for modelling), one of the most crucial factors to us
seems to be the following: these impressive advances were made possible by the
introduction of formally rigorous modelling framework (based on the advances in
mathematical statistics, as we shall see in Section 1.2). This framework, on the one
hand, is flexible enough to accommodate the variety of research models (incorpo-
rating recent results from the field of machine learning) and, on the other, robust
and computationally efficient enough to allow for extensive experimentation and
development of practical systems for commercial use.

Despite the evident progress in speech recognition, many researchers have ar-
gued that the performance of the state-of-the-art models, which emerged in the last
two decades of the twentieth century, have reached a “local optimum” (the original
goal was the “global optimum” defined as machine performance indistinguishable
from human performance on natural speech) (Bourlard et al., 1996; Deng, 1998;
Deng et al., 1997; Ostendorf, 1999; Young, 2001). It was argued that in order to
rectify this situation, the current approaches to speech recognition need tighter
integration with the methods and theories elaborated over the years by the linguis-
tic community. Sadly enough, these results were often neglected. In recent years,
alternative approaches to speech recognition, which are the result of a more care-
ful development, have been gradually crystallising (e.g. Bilmes, 2003; Deng, 1998;
Glass, 2003; King et al., 2000; Livescu et al., 2003) and are very promising. To-
gether with the researchers who work on alternative approaches to speech modelling
and recognition, the author believes that new approaches are definitely desirable.
The approach pursued in this thesis is the result of a consistent program aimed at
research into formal approaches to structural representation of speech.

Although the traditional means of studying speech phenomena in linguistics
have been symbolic (structural), the approaches to pattern representation in speech
recognition are predominantly numeric. The alternative, structural, means of pat-
tern representation have, however, received little attention. In our view, one of the
main reasons for this situation is the apparent lack of suitable structural frame-
works possessing the necessary formal power to accommodate the class representa-
tion of complex linguistic phenomena (e.g. phonemes and syllables). Sadly enough,
this state of affairs also appears to apply to many other areas of pattern recogni-
tion (Pavlidis, 2003). It is hypothesised that the appearance of such a systematic
analytical framework and the development of appropriate representations within it
could potentially help in bridging the gap between, in particular, speech recognition
and linguistic research. What is the basis for such a hypothesis? The concept of
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2 1. INTRODUCTION

class is absolutely pervasive in many areas of science, including linguistics. Hence, it
is reasonable to assume that spoken language modelling and recognition can benefit
from models that allow the derivation of linguistically sound class representations
from the data.

Before proceeding with the exposition into the proposed approach, in Sec-
tion 1.1 we open with the brief description of a more general research area — pattern
recognition. The reason for doing this is simple. On the one hand, modern speech
recognition (among with other specialised fields, like optical character recognition)
is partially subsumed by the field of pattern recognition. On the other hand, some
of the fundamental theoretical ideas that appeared in the general pattern recogni-
tion literature have added to the motivation of research presented in this thesis. In
Section 1.2, we overview several approaches to speech modelling practiced in mod-
ern day speech recognition. A special emphasis is placed on numeric and structural
approaches to representation in speech recognition, since these approaches gener-
ally reflect the current situation in pattern recognition. Motivations behind the
research undertaken in this thesis are described in Section 1.3. The major research
objectives are set in Section 1.4. This chapter concludes with a description of the
thesis structure (Section 1.5) and a list of current publications which have resulted
from work on this thesis (Section 1.6).

1.1. Pattern Recognition: A Brief Overview

Pattern recognition refers to the ability of humans to perceive regularities in
the observations in some environment. A pattern is generally viewed as an object
which belongs to some class. A class, in turn, is seen as a concept of a collection
of objects. According to Watanabe (1985), the latter definition is, generally, in
agreement with Platonic philosophy, where all similar objects are but the imperfect
material realisations of an “ideal” object (concept), which exists in some alternative
reality and cannot be directly comprehended by our senses. In reality, the humans
do not need an “ideal” object to form an idea about classes. In order to form
an idea about some class in a human mind, it actually suffices to be presented
with a limited set of related objects which represent that class (this is in line with
Aristotelian philosophy according to Watanabe, 1985, Section 4.4). In general,
pattern recognition refers to the latter process: having been shown a few positive
samples (objects “belonging” to a class), and perhaps a few negative ones (objects
from a different class), one is able to tell if a new object (whose exact classification
is unknown) belongs to this class. In this sense, pattern recognition forms the
foundation of categorisation in humans (where the latter is understood as formation
of the categorised knowledge). Moreover, it has been argued by some scientists that
the mechanisms of perception (especially inductive inference, which is inferring a
generality from a few concrete classes) and pattern recognition are, in fact, identical
(e.g. Goertzel, 1993, Chapter 9). The latter view was succinctly summarised in 1956
by Schrödinger (2003, p. 96):

“A single experience that is never to repeat itself is biologically
irrelevant. Biological value lies only in learning the suitable reac-
tion to a situation that offers itself again and again, in many cases
periodically, and always requires the same response...”

1.1.1. The Fundamental Tasks of Pattern Recognition. The fundamen-
tal tasks encompassed by any pattern recognition system are the following (Duin
and Pȩkalska, 2005; Duin et al., 2004; Goldfarb, 2004):

Representation: The first issue which needs to be addressed when mod-
elling some real world phenomena (objects, processes and so on) is the
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issue of representation. The framework used for representation imposes
certain (formal) restrictions on the form of the objects being modelled,
hence representations in pattern recognition are only a simplified approx-
imation of the corresponding phenomena. The degree of “faithfulness” of
the representation depends, to a large extent, on the modelling power of
the corresponding formal framework. An additional consideration is the
incorporation of a priori domain-specific knowledge into the representa-
tion. Fundamental issues involved in the representation are treated in
more detail in Section 1.1.2. Once the representation of the objects is
obtained, the next step is generalisation.

Generalisation: Traditionally, generalisation received the most attention
in pattern recognition research. This is entirely justified by the abso-
lutely crucial role played by this step in human perception. Generalisation
encompasses two fundamentally related tasks: learning and recognition.
Learning is commonly understood as an inductive process of constructing
a representation of a set of classes based on a limited training set of objects
representing these classes. Recognition, on the other hand, is, in theory1,
a deductive process in which the previously unseen objects are related to
the representation of the concepts of the classes derived during the learn-
ing stage, rather than to the representation of the objects in the training
set. Hence, it is important to make a distinction between the represen-
tation of objects and representation of classes. Several important points
on the relation between the generalisation and the classes are presented
in Section 1.1.3 (for statistical pattern recognition) and Section 1.1.4 (for
structural pattern recognition).

1.1.2. Representations in Pattern Recognition. As mentioned earlier,
the representation of some phenomenon is inextricably linked to the formal proper-
ties of the corresponding modelling framework (space). In modern pattern recogni-
tion, one usually distinguishes between the two approaches to modelling: numeric
and symbolic2. The latter two types of representation delineate the two rather
broad, and historically not very related, approaches to pattern recognition.

1.1.2.1. Numeric Representations. Numeric representations lie at the founda-
tion of statistical pattern recognition (Duda et al., 2001; Mitchel, 1997). The adjec-
tive “statistical” refers to the fact that this area of pattern recognition was motivated
by (and, in fact, was derived from) mathematical statistics. In statistical pattern
recognition, the representational spaces correspond to vector spaces. Historically,
the overwhelming majority of the state-of-the-art approaches to statistical pattern
recognition employ Euclidean vector spaces for modelling. A numeric representa-
tion of an object in a statistical pattern recognition framework is essentially an
embedding of the data into a Euclidean space. In other words, the object is rep-
resented (encoded) as a feature vector. This process is sometimes called feature
selection.

It is generally agreed in statistical pattern recognition that the choice of fea-
tures is a highly non-trivial task and no universally accepted procedures for feature
selection exist. One of the main reasons for this is because the encoding of the
objects into vectors requires domain-specific knowledge. In some areas of pattern
recognition, the nature of the “object” is static, in others dynamic. In the latter

1In practice, it is sometimes possible to directly relate the previously unseen objects to the
classes based on the training set objects.

2From this point onwards we will often refer to symbolic pattern recognition as structural
pattern recognition. This is not to be confused with the structural models often employed in
statistical (i.e. numeric) pattern recognition, such as graphical models (Zweig et al., 2002).
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case, the object refers to some dynamic process. Dynamic processes can only be ap-
proximated by sampling, which allows representation of the process by the sequence
of feature vectors, each corresponding to an instantaneous (snapshot) representa-
tion of a process. In online handwriting recognition, for instance, one often encodes
both the spatial (local geometry) and temporal (movement of a hand) information
contained in strokes (Lui et al., 2003). The letters and words are then encoded as
sequences of the above vectors.

1.1.2.2. Structural Representations. The non-numeric, structural, representa-
tions are the subject of study within the area of structural pattern recognition (Bunke
and Sanfeliu, 1990; Fu, 1982). Structural representations are more advanced than
their numeric counterparts in terms of the modelling spaces they offer. Unlike
numeric representations, which are limited to vector spaces, structural representa-
tions can be based on a wide variety of discrete algebraic structures — strings, trees,
graphs and so on. They are better suited to model the morphological makeup of the
corresponding objects and events. A very informal, but intuitive, observation will
perhaps help to clarify this point: structural pattern recognition replaces a rigid
encoding in terms of vector (or sequence thereof) with a discrete structure of an
arbitrarily chosen complexity that preserves the “original” part/whole relationship
describing the inter-dependencies between atomic constituents of an object.

It is not surprising that structural representations in pattern recognition pre-
date the numeric ones because from the early days of pattern recognition it was as-
sumed that there is more to the objects and events than just numeric features. In his
book, Watanabe (1985) mentions the earliest (and surprisingly elegant) structural
approaches: the cursive handwriting representation by Eden (1962) and the chro-
mosome representation by Ledley et al. (1966). Among the most popular modern
structural representations are string-based representations of molecular sequences
in computational biology (Gusfield, 1997). We conclude by noting that the struc-
tural representations require an even greater domain-specific knowledge to properly
encode the structural richness of the corresponding phenomenon.

1.1.3. Numeric Class Representation and Generalisation. Statistical
approaches to pattern recognition use decision-theoretic methods in a feature vec-
tor space. Decision-theoretic methods were extensively studied in the early days
of cybernetics, pattern recognition and mathematical statistics. The numerous
theoretical and practical advances in these fields led to the emergence of several
overlapping fields of activity — computational learning theory (Devroye et al., 1996;
Vapnik, 1998), machine learning (Mitchel, 1997) and neural networks (Bishop, 1995)
among the others. See Kulkarni and Lugosi (1998) for a rather involved, but excel-
lent, overview presented from the point of view of computational learning theory.

In statistical approaches, the objects and events in the environment are usually
encoded as real-valued feature vectors. Let d be the dimension of the feature vector
x ∈ Rd. In this case, the representation of a real world object engendered by x
is a point in a d-dimensional vector space. Informally, each such vector can be
seen as a result of d instantaneous observations of the corresponding object in the
environment. When defining generalisation, we mentioned that it is essentially a
two stage procedure consisting of learning and recognition steps. The goal of the
learning (or training) stage is to infer a representation of classes. In statistical
language, this is equivalent to determining the probability distribution of points x
of each class in the representation space Rd. Hence, the representation of a class is
given by some probability distribution in a vector space. The goal of the recognition
(or classification) stage is to determine to which of its distributions the new vector
should belong.
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Adopting statistical notation, let random vector X denote the feature vectors
which are “observables” of the process. The outcome of X is a concrete object rep-
resentation x, mentioned above. Similarly, let Y be a random variable engendering
some class representation y. The goal of the training step is to determine the class-
conditional probability P (X = x|Y = y), which, geometrically, is a probability
density for points from class y being at position x. Conversely, the classification
step is guided by the inverse conditional probability P (Y = y|X = x) which can be
interpreted as probability of the position x in the vector representation space Rd

belonging to class y. In what follows, we briefly discuss the training and classifi-
cation stages of the statistical pattern recognition framework. We show that class
representation in this framework has two related interpretations: probabilistic and
geometrical. In the first case, the class representation can be seen as a statistical
distribution of points in Rd representing the class. In the second case, the class
representation is a decision surface in Rd separating the region corresponding to
the points representing a given class from the points representing all other classes.

1.1.3.1. Deriving Class Representation in a Vector Space. The usual dichotomy
in pattern recognition consists of supervised and unsupervised modes of learning.
Here we discuss the supervised mode, where the class membership of object in the
training set is known. Unsupervised learning, such as clustering, is outside the
scope of this discussion (the interested reader is referred to an overview by Jain
et al., 1999).

Let n be the number of classes in the environment. In other words, the outcome
y of a random variable Y is a member of a set of n elements. Assume that y is
fixed. To discuss the probability distribution of the points representing y, one must
assume the existence of an infinite number of such points. In reality, to each class y
there corresponds only a finite number of object representations from a training set.
To simplify the discussion, we assume that the class-conditional probability only
depends on the object representations belonging to y. This assumption allows the
estimation of class-conditional distributions separately for each class. Hence, for the
training stage, we fix X to denote the random vector representing a finite number
m of training samples for y. Since y is fixed, we will refer to the class-conditional
probability as simply P (X|y). In general, there are two approaches to estimation of
the class-conditional distribution — parametric and nonparametric (Devroye et al.,
1996; Watanabe, 1985).

In parametric approach, one usually assumes that the functional form f of the
distribution P (X|y) is known and the only unknown element in the specification of
distribution is the parameter set θ. In other words, the probability of obtaining m
feature vectors X assuming the probability density P (X|θ), given by configuration
f(X; θ), is

P (X|y) = P (X|θ) = f(X; θ) .

Hence, the goal in parametric estimation is the search for parameters θ given the
data X. The latter goal can be stated using the Bayes theorem as

P (θ|X) =
P (X|θ)P (θ)

P (X)
,

where P (θ) is a prior probability of the parameter set and P (X) is simply a nor-
malisation term. The optimal parameter set θ̂ is then given by the following max-
imisation

(1.1) θ̂ = arg max
θ

P (θ|X) = arg max
θ

P (X|θ)P (θ) .

The last term in the equation above is known as the Bayes estimate (sometimes
also called maximum a posteriori estimate), which is logically the best estimate
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of the parameters one can hope to obtain (Devroye et al., 1996; Kulkarni and
Lugosi, 1998). An important property of the Bayes estimate is that it makes it
absolutely explicit that in order to obtain an analytically best estimate of the
parametric configuration, one needs an additional a priori knowledge expressed
by P (θ). Moreover, this prior knowledge is logically independent of the empirical
evidence, expressed by the training data X. Thus, the sole assumption of the
functional form f of the distribution is not enough. In practice, one can only make
assumptions about P (θ) and hope that the estimation process using the resulting
approximation will attain a set of parameters “close” enough to the ideal Bayes
estimate.

Comprehensive review of various parametric estimation strategies is outside
the scope of this thesis. In the remaining discussion we will only mention what is
perhaps (historically) one of the most widely used estimates — the maximum like-
lihood estimate (Aldrich, 1997). One of the possible ways of obtaining a maximum
likelihood estimate is to assume a uniform prior on the distribution P (θ). In other
words, one fixes the latter term to some constant so that it becomes independent
of θ and can be dropped from the estimation process in equation (1.1). This leads
to the following optimal (in terms of maximum likelihood) parameter set

(1.2) θ̂ML = arg max
θ

P (X|θ) .

Having fixed a functional form of P (X|θ), estimation of the parameters now
becomes possible, as demonstrated by the following example:

Example 1.1 (Maximum Likelihood Estimation). One of the most popular
distributions for representing continuous data is the Gaussian multivariate distri-
bution. In what follows, we give a very brief and informal example of estimating
this distribution using a maximum likelihood approach.

Assume that the occurrences of the feature vectors in the training set, engen-
dered by the random vector X, are independent and identically distributed. In
addition, assume that the vectors are drawn from the multivariate Gaussian distri-
bution given by (Deller et al., 1993)

(1.3) P (X|θ) = f(X |µ,Σ) =
1√

(2π)m|Σ|
exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
.

Without going into much detail (for details on this method see Aldrich, 1997),
the optimal set of parameters θ̂, corresponding to the maximisation of equation (1.3),
is obtained as follows. First, a log-likelihood function

L(µ, Σ) = log f
(
X; µ,Σ

)
is defined. Then, one takes partial derivatives of L with respect to µ and Σ and
equates them to zero. Solving the latter system of two equations yields the optimal
(in terms of maximum likelihood principle) parameter configuration, given by

θ̂ =
(
µ̂, Σ̂

)
=

(
(1/N)

m∑
i=1

xi , (1/N)
m∑

i=1

(xi − µ)(xi − µ)T
)
,

where the µ̂ corresponds to the mean feature vector of the training set and Σ̂ to its
covariance matrix. B

Finally, we very briefly mention an alternative area of activity within statisti-
cal pattern recognition — nonparametric estimation. Unlike parametric estimation
techniques, nonparametric estimation techniques make no assumptions about the
type of class-conditional distribution P (X|y). The nonparametric estimation is
essentially concerned with construction of the probability distribution which fits
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the training data. This has been a vast and fascinating area of statistical pattern
recognition since the earliest days. Perhaps the first and the most popular nonpara-
metric estimators were the histograms and decision trees. The interested reader is
referred to work by Kulkarni and Lugosi (1998) for an overview of nonparametric
methods.

1.1.3.2. Classification in Vector Space. Assume the modelling environment con-
sists of n classes. In other words, the class random variable Y has n outcomes, de-
noted yi, 1 ≤ i ≤ n. One is also given a set D of k previously labelled observations,
represented by feature vectors xj , 1 ≤ j ≤ k. In what follows, the counter i ranges
over a set of classes

{
yi

}
, whereas the counter j over the training set objects

{
xj

}
.

The goal of the classification process is the construction of a decision function (or
classifier)

(1.4) DD(x) = yl .

The above equation indicates that a new object representation x should be assigned
to a class yl on the basis of a training set D, where the optimal selection is the class
with a maximum a posteriori probability

(1.5) P (yl|x) = max
i

P (yi|x) .

The above equation can be specified in slightly more detail. Given class-
conditional probability P (x|yi) one can obtain the above a posteriori probability

P (yi|x) =
P (x|yi)P (yi)

P (x)

using Bayes theorem. The only additional information which is required is the
normalisation factor P (x), such that

∑
i P (yi|x) = 1, and the prior probability of

the class P (yi). Substituting the above equation in (1.5) we obtain

(1.6) P (yl|x) = max
i

P (x|yi)P (yi) .

The above equation, known as Bayes decision rule, similar to the Bayesian estimate
from the previous section, is the best decision that can be taken given that class-
conditional and a priori distributions are completely specified.

In reality, one encounters problems with the accurate specification of the prior
class probabilities and the nature of the statistical distributions of the training
data D. The most likely cause for this is the sparsity of the training sample and
insufficient prior information about the classes at hand. Hence, one hopes to con-
struct classifiers which somehow mimic the optimal behaviour of the probabilistic
Bayesian decision rule.

In the previous section, a statistical estimation approach was adopted for esti-
mating the per-class conditional probabilities P (x|yi). If class-conditional density
estimate and the estimate about the prior are given, the estimate of P (yl|x) can be
obtained using the equation (1.6). This is demonstrated by the following simplified
example:

Example 1.2 (Maximum Likelihood Gaussian Classifier). Assume a uniform
prior on all the classes. In other words, for each of the m classes yi in the environ-
ment, P (yi) = 1

m . Given this assumption, the term representing the prior vanishes
from maximisation in equation (1.6). Also assume that the functional form of the
distribution P (x|yi) is a multivariate normal density. In this case, the maximum
likelihood estimate of P (x|yi) is given by

P (x|yi) = P (x|θ̂i) = N (x; µ̂i, Σ̂i) ,
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where the per-class optimal parameter set θ̂i was derived in Example 1.1. Substi-
tuting the above equation in equation (1.6) we obtain the following classifier:

P (yl|x) = max
i
N (x; µ̂i, Σ̂i) ,

where the chosen class yl corresponds to the parameter set θ̂l = (µ̂l, Σ̂l). B

When discussing nonparametric estimation methods in the last section, we
mentioned the methods which attempt to construct a probability distribution whose
type and parameters are induced by the training data (e.g. histograms). Overall,
these approaches fall, to a certain extent, within the Bayesian framework because
they involve estimation of probability distributions and their consequent use in the
classifiers.

The parametric and nonparametric approaches, which attempt to model the
densities directly, are often criticised for making quite unrealistic assumptions about
the distributions (Watanabe, 1985, Section 9.1). In particular, it has been argued
that for several tasks where the training sets are quite limited, the distributions
are, in fact, not an appropriate way of modelling, since they assume existence of
an infinite training sample for each of the classes. An alternative to density-based
modelling is what is sometimes called a geometric, or curve fitting, approach (Jain
et al., 1999). In the geometric approach, decision surfaces that separate the class
distributions of points in Rd are constructed directly from the training data. These
decision surfaces characterise the decision function DD(x) from equation (1.4) on
p. 7. The parameters of the decision surfaces are estimated during the supervised
learning stage by optimising a certain error criterion over a training set. There
are various optimisation criteria available (such as mean squared error between the
current classifier output and the training target value), usually adopted from the
area of nonlinear functional optimisation. Perhaps the most widely known are the
two-class classifiers, such as Fisher’s discriminant, single-layer perceptron, support
vector classifiers, and others (Jain et al., 1999; Kulkarni and Lugosi, 1998).

We conclude the discussion with one important observation. Statistical ap-
proaches employing the construction of decision surfaces are related to the density-
estimation approaches for the following reason: a good fit for a decision function for
some class y amounts to geometrically “encoding” the region of the maximum a pos-
teriori class-conditional probability P (x|y)P (y). In particular, it has been shown
that Bayes classifiers (equation (1.6)) can in theory be approximated arbitrarily
well by multi-layered perceptrons (cf. Kulkarni and Lugosi, 1998, Section VI).

1.1.4. Structural Class Representation and Generalisation. Structural
approaches to generalisation can be divided into two groups: syntactic and metric
(or topological) approaches.

1.1.4.1. Syntactic Approach. In syntactic approaches (Fu, 1982), one assumes
the existence of a finite set of basic structures, called atoms, which can combine
together using the composition rules specifying a priori domain-specific interrela-
tionships between these atoms. The choice of atoms is important because on the
one hand, they must possess the structure that can realistically be derived from
the data and on the other, be rich enough to allow for encoding of complex objects
and events using the composition rules.

When specifying syntactic representation and generalisation procedures, one
usually draws an analogy between the structure to be represented and the theory of
formal languages. In syntactic pattern recognition one assumes that any collection
of observed object representations for a given class constitutes a realisation, or
language, generated from some finite class description. One of the forms of class
description is called grammar. A grammar is a rewriting system consisting of a
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finite set of atoms together with a finite set of composition rules. The syntactic
approach is very appealing because of the following generative property: using a
set of composition rules one can, in theory, generate representations of an infinite
number of objects belonging to a class.

In the early days of structural pattern recognition, it was believed that the
notion of grammaticality holds the key to understanding the mechanisms of struc-
tural generalisation (see Tanaka, 1995). The notion of grammaticality originally
appeared in linguistics due to Chomsky (1957) who introduced syntactic grammars
as a compact mechanism for describing and generating grammatically correct sen-
tences of natural language. This result has spawned the syntactic field of pattern
recognition, where the notion of grammaticality can informally be stated as follows:
given a grammar Gi describing a certain class, an object is said to belong to this
class if it can be generated (or parsed) by that grammar. Objects belonging to
other classes will not be parsed by Gi because they are “ungrammatical”, i.e. outside
the scope of a class description specified by a grammar. The task of generalisation
within a syntactic pattern recognition approach is therefore an inference of a com-
pact class description for a language which represents the training set. This task
is often referred to as grammatical inference, where the goal if to infer a grammar.
Alternative means of descriptions are possible if there a priori assumptions about
the type of the language are made. For instance, if one is dealing with strings as
object representation and the language L is assumed to be regular, the goal of gen-
eralisation is to infer a finite state automaton that represents L during the learning
stage and then use this automaton to decide whether unknown strings belong to L
during the classification stage. ,

The in-depth exploration of syntactic techniques is beyond the scope of this
thesis. The interested reader may want to consult several chapters dealing with the
syntactic approach in Bunke and Sanfeliu (1990). The study of grammars and au-
tomata for various classes of languages forms a vast field within the field of symbolic
computation. Depending on the structure of the object representation, there are
various theoretical results and techniques at one’s disposal. Historically, the most
studied structures are strings. For this type of structure, a vast array of formal
results and tools, dealing with the representation and generalisation of the string
languages, emerged over the years (e.g. Denecke and Wismath, 2002; Parkes, 2002;
Sudkamp, 1997). The formal results (and as a consequence, applications) for other
types of more complex structures (trees and graphs) are in a less mature state. For
the current state-of-the-art in tree languages and automata (for which an excel-
lent textbook by Gécseg and Steinby, 1984 is available), see work by Droste et al.
(2005); Engelfriet et al. (2002); Fülöp and Vögler (1998, 2004). Similarly, the the-
ory of graph grammars, languages and automata is still very much in development
(some of the important results can be found in Ehrig et al., 1999 and overview of
recent state-of-the-art in Brandenburg and Skodinis, 2005).

To close this section, above we showed that the result of syntactic generalisa-
tion is class representation which is essentially a grammar (or equivalent form of
description, like finite state automaton). The type and formal properties of this
class description are heavily dependent on the underlying symbolic modelling space,
which is induced by the type of the object representation (strings, trees, graphs,
etc.).

1.1.4.2. Topological Approach. In the general discussion concerning the con-
cept of class it was mentioned that a class can be viewed as a collection (set) of
object representations which are somehow related to each other. In topological
approaches, this relation is more often than not expressed via the numeric measure
of similarity. The latter notion appears so fundamental in pattern recognition that
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many researchers consider it to be the only scientific reality. The rather philo-
sophically involved, and general in nature, arguments for primacy of a notion of
similarity over that of classes and objects, definitely lie outside the scope of this
discussion. The interested reader may want to consult work by proponents of this
view, e.g. Edelman (1998; 1999). There is no doubt as to the fundamental role of
the notion of similarity and nowhere is this role more evident than in the topo-
logical (i.e. similarity-based) approach to structural pattern recognition. The two
mutually related and inseparable cornerstones of the latter approach are the object
representation and the representation-specific similarity measure.

Let O be the set of object representations. One can define a special function fO

(whose properties are not discussed at this point), which given any two objects in O
generates some numeric indication of how morphologically similar these objects are.
In the topological approach, one usually assumes that the modelling environment
is given by a pair M , informally called a modelling space, consisting of the above
set of objects O together with a similarity measure fO. The notion of a modelling
space is conceptually related to the notion of a metric space which is absolutely
pervasive in mathematics.

Similar to the syntactic approach, one assumes the existence (in the represen-
tation) of a set of basic and yet distinctive morphological structures (atoms) which
describe the structural inter-dependencies in the representation of different objects.
The main difference between the two approaches, however, lies in the requirement
that the choice of structural inter-dependencies in the data O induce the similarity
measure fO. In other words, instead of treating the objects O in the representation
as productions of some grammar, as it is done in purely syntactic approaches, in
topological approach the objects are treated as “points” in some abstract symbolic
space the properties of which are described by the similarity measure. Given the
latter observation, one can hope to treat the problem of generalisation in a symbolic
space similarly to the vector-space scenarios. This expectation turned out to be
näive, as we shall see below.

It should not come as a surprise that generalisation in abstract symbolic spaces
is a very non-trivial task. The difficulties arise from the inherent structural com-
plexity of the representation. In theory, one can hope to derive the “symbolic”
analogues of the well-established analytical notions available in vector spaces. For
instance, given some symbolic space (O, fO), one can attempt to define the mean
of set O, which is an object, not belonging to O but of a similar structure, with the
same distance (or similarity) to all elements in O. This is a complex task, obviously
dependent on the complexity of representation O, because it involves construction
of a new object (e.g. string, graph, tree). In order to appreciate the dimensions
of the difficulty (both analytical and computational) the reader is referred to some
works dealing with the generalised notion of a mean for the case of strings (Nicolas
and Rivals, 2003) and graphs (Jiang et al., 2000), which are NP-hard problems for
which various approximations were proposed recently.

Despite the obvious difficulties, the topological approach to structural pattern
recognition is very popular, especially in those applications where modelling the
structure of the domain is of paramount importance (e.g. bioinformatics Gusfield,
1997; Sankoff and Kruskal, 1983 and vision Edelman, 1999). The most fundamental
question in these approaches is the choice of a similarity measure, which is heavily
dependent on the structure of object representation. The structure of strings, being
by far the most popular structural representation in pattern recognition, allows for
several efficient ways of introducing the similarity, the most popular of which is
the edit-distance proposed by Levenshtein (1966). Recently there has been a resur-
gence of interest in similarity measures defined on more complex structures, like
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graphs (Bunke and Jiang, 2000; Bunke and Shearer, 1998). The next fundamental
issue is the issue of generalisation in the symbolic space M , mentioned above. In
the topological approach, the class is usually represented as a small collection of
prototype objects. During the classification stage, new objects are compared (by
matching) to the prototype objects by using a pre-defined similarity measure. The
classifier then assigns an unknown object to the class which contains the highest
number of nearest (in terms of similarity) prototypes. The above classification rule,
known as k Nearest Neighbours, is perhaps the most popular in structural pattern
recognition. Its popularity stems from the fact that it is independent of object
representation and, given a reasonable similarity measure, performs well in many
different structural domains.

The above approach to representing classes as the prototypes is rather sim-
plistic. Unfortunately, there is no general consensus in the pattern recognition
community about the alternative ways of generalisation in the structural domain,
which avoid the shortcomings of the syntactic approach (summarised by Tanaka,
1995), and yet utilise some of its most attractive features and realistic assumptions
(e.g. see comments in Aiserman, 1969; Bunke et al., 2001; Duin and Pȩkalska, 2005;
Duin et al., 2004; Goldfarb, 1990, 1992). We will return to the latter point in
Section 1.3.

1.2. Representations in Speech Modelling and Recognition

At the beginning of this chapter, we mentioned that most of the advances in
speech recognition research during the last two decades are often attributed to a
flexible formulation of the speech recognition problem within a statistical pattern
recognition setting (Jelinek, 1997; Young, 2001). In Section 1.2.1 we give a brief
overview of statistical framework within which most of modern speech recognition
research is conducted.

Similar to the analysis of the representations in a more general pattern recog-
nition setting, described earlier in Section 1.1.2, in this section we introduce rep-
resentations which are specifically used in speech recognition and modelling. As
before, we consider two types of modelling spaces — numeric (Section 1.2.2) and
structural (Section 1.2.3). The latter choice was motivated by the desire to compare
and contrast the current speech recognition models with the models and formalisms
we covered during the more general discussion in the previous section.

1.2.1. Speech Recognition Problem: An Overview. Speech recognition
problem can be elegantly expressed within the statistical framework. Let O = oT

1

be a sequence of acoustic observations. Without going into much detail about
particulars of extracting these observations from the speech signal, at this point it
suffices to mention that the above observations numerically encode in various ways
the corresponding portion of the speech signal. The task of a obtaining observations
from the speech signal is performed by a speech signal processing front-end of a
recogniser, which, generally speaking, is not part of the statistical framework. In
addition to the acoustic (physical) information described by O, let W ′ = wN

1 be the
sequence of words communicated by the speaker. The utterance W ′ corresponds to
the acoustic record O. The goal of a speech recogniser is the find the most likely
word sequence Ŵ given the acoustic data O. If the recogniser does not make a
mistake, Ŵ will coincide with the word communicated sequence W ′.

Within the probabilistic framework, which we briefly discussed in Section 1.1.3,
we can formulate the latter statement as follows: Let

{
W

}
be a finite set of al-

lowable hypotheses produced by the recogniser. The probability of each hypothesis
W given the data can be expressed as posterior probability P (W |O). Within the
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Bayesian framework, the most likely hypothesis

(1.7) Ŵ = arg max
W

P (W |O) = arg max
W

P (O|W )P (W )
P (O)

= arg max
W

P (O|W )P (W )

is then chosen on the basis of maximum posterior probability. The above equation
is sometimes referred to as the fundamental equation of speech recognition (Deng,
1998). The terms P (O|W ) and P (W ) in the last term of the above equation give
rise to two major components in the statistical speech recognition framework.

1.2.1.1. Acoustic Modelling. The first major component of a speech recogni-
tion system is responsible for producing accurate estimates for P (O|W ), which is
a probability of a certain word sequence generating a sequence of acoustic obser-
vations. These estimates are supplied by an acoustic modelling component. The
acoustic model is an absolutely crucial component of any speech recogniser in that
it tries to probabilistically bridge the gap between a sequence of linguistic signs,
represented by W and the corresponding acoustic surface realisations O. This is
usually accomplished by assuming the existence of an intermediate discrete-valued
sequence of linguistic sub-word (or sub-lexical) models (or units) M , using which,
the acoustic probability P (O|W ) can be factored as

(1.8) P (O|W ) =
∑
M

P (O|M)P (M |W ) ,

where the probability is taken over all the sequences of sub-word models M . First,
these models specify, according to probability P (M |W ), how words and words
sequences can be expressed in terms of a particular linguistic organisation of a
sub-word sequence M . Second, these models also provide information, in terms of
probability P (O|M), about how likely a particular sequence M is to produce surface
acoustic observations O. The latter term P (O|M) in the above equation (1.8) is
often referred to as an interface model, where M provides the missing acoustic-
linguistic link (e.g. see Deng et al., 1997).

One of the simplest approaches to acoustic modelling is often referred to as
beads-on-a-string (Ostendorf, 1999; Young, 2001). In this approach, a sequence M
of K models corresponding to W is organised by linearly concatenating all the con-
stituent sub-lexical acoustic models. The sub-lexical models can take many possible
forms (phones, context-dependent phones, syllables and so on). The sequence (or
more typically — sequences, in case a word has multiple pronunciations) of models
for each particular word w is guided by the pronunciation lexicon.

The most widely used acoustic models are the Hidden Markov Models (HMMs).
HMMs are essentially characterised by two random variables. The discrete sequence
of K sub-word models needed to obtain W is modelled by an unobserved, and thus
“hidden”, discrete random variable S. This variable is called a state variable, whose
outcome (state) st at each time instance t uniquely identifies the model mi in a
sequence. The identification can be accomplished by assigning a label to each state,
designating a model this state belongs to. Moreover, the state variable is assumed
to possess the following property (called Markov property of order 1 ) (Bourlard
and Bengio, 2002): All the information about the past of the system is summarised
by the previous state only. In other words, the state transition probability can be
written as

P (st|st−1
1 ) = P (st|st−1) ,

Let S = sT
1 denote a particular state path through a sequence of M sub-word

models. Using the above property P (M,S|W ) can be expressed as

(1.9) P (M,S|W ) = P (s1)
T−1∏
t=1

P (st+1|st) .
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Figure 1.1: A typical single phone (monophone) HMM (after Young, 2001), where
the state sequence is organised in left-to-right and self transition arrangement. The
actual acoustic model consists of three emitting states s2, s3 and s4. The auxiliary
non-emitting states s1 and s5 are needed for connecting this model to other models.

An additional random variable, called the observation variable, corresponds to the
observation sequence O and is dependent on the state variable S. However, because
of the above Markov property of order 1, dependence of the acoustic observations
on the state sequence S can be expressed as

(1.10) P (ot|st
1, o

t−1
1 ) = P (ot|st) .

The above assumption is often referred to as the conditional independence property:
the observation is only dependent on the current value of the discrete state variable.
Hence, the probability of a model M generating a sequence of acoustic observations
O by following the state sequence S can be estimated as

P (O,S|M) =
T∏

t=1

P (ot|st) ,

where P (ot|st) is called an emission probability.

Example 1.3 (Hidden Markov Model). In speech recognition literature, by
structure of an HMM-based model one usually understands a sequence of the val-
ues of the state variable S linked by nonzero transition probabilities. An overall
structure is thus referred to as topology of a model.

Topology of a typical single phone (monophone) HMM is shown in Figure 1.1. A
phone is a smallest perceptible discrete sound segment in a speech stream. The state
sequence for this model is organised in left-to-right and self transition arrangement.
The actual acoustic model consists of three emitting states s2, s3 and s4. The
auxiliary non-emitting states s1 and s5 are needed for connecting this model to
other models. Transition probabilities P (si|sj) are denoted aj,i and the emission
probabilities P (oj |si) by bi(oj). Six observations are “emitted” by three states in
this example.

The single phone (or other sub-lexical) models are concatenated together ac-
cording to pronunciation dictionary to form a compound HMM model for some
word w, as shown in Figure 1.2. According to the model shown in the figure,
the structure of word w represents various (ordered) sequences of three models{
m1,mi,mj

}
, where mi ∈

{
m2,m3,m4

}
and mj ∈

{
m5,m6

}
. Note that the

structure of the sub-word models is not necessarily fixed (model m6 has a structure
different from the rest of the models). B

In light of the above, within the sub-lexical HMM framework, the overall acous-
tic estimate P (O|W ) is not only dependent on all possible sequences M of the sub-
word models, but also on all the possible state transition sequences S within these
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Figure 1.2: Simple word-level HMM model formed from constituent sub-word HMM
models according to pronunciation dictionary.

models. In other words, equation (1.8) can be rewritten as

P (O|W ) =
∑
M

∑
S

P (O,S|M)P (M,S|W )

=
∑
M

∑
S

P (s1)
T−1∏
t=1

P (st+1|st)
T∏

t=1

P (ot|st) ,

where the sum is taken over all the pronunciation sequences M and over all the
possible (non-zero) state paths S in each of the pronunciation sequences.

There is a strong correlation between pronunciation variation for each word
w in a sequence W and the type of the sub-lexical units (called baseforms) which
represent the structure of w. Usually, the more sophisticated the baseform is, the
bigger the number of possible paths through the word model. The latter point
is demonstrated by the following discussion where we compare and contrast two
different types of sub-lexical models. For HMMs representing single phones (Ex-
ample 1.3), since there are around 45 distinct phonemes in English (Young, 2001),
pronunciation variation is usually constrained by a small number of possibilities for
each word. The more accurate sub-word models take into account the contextual
influence of the previous and following number of phones on the realisation of a
given phone. The most common type of such context-dependent models is a tri-
phone, where one previous and one next phones are taken into account. Thus it is
possible to better model the pronunciation variation, e.g. [s-t-oh] in “stop” versus
[ae-t-sil] in “that”, where the latter realisation of [t] sound is usually unaspirated
at the end of the word in American English (Jelinek, 1997). Compared to mono-
phones, the number of possible context-dependent units grows exponentially with
the size of the context. For example, there are 453 triphone models correspond-
ing to 45 single phone models. Obviously, large proportion of triphones is ruled
out by phonological rules (e.g. clusters like [zh-z-zh] are clearly not encountered in
English). There is still, however, a significant number of legal combinations that
are either not observed in the data or appear rarely. In order to deal with this
problem, often referred to as data sparsity, efficient techniques were developed to
automatically reduce the number of model parameters by the use of various clus-
tering techniques (perhaps the most popular is the state-tying strategy, overviewed
by Young (2001)).

We will return to acoustic models in Section 1.2.1.3, where they will be consid-
ered in the context of generalisation.
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1.2.1.2. Language Modelling. The prior probability P (W ) in the “fundamental”
equation (1.7), specifies how probable a word sequence W is, based on some a
priori , supra-lexical, information that is independent of acoustic observations. This
estimate is produced by a language modelling component. Informally, the task
of a language model is to indicate which hypothesised word sequences are likely
to be encountered in the natural language based on some syntactic and semantic
information. Consequently, the estimate produced by a language model for a given
hypothesis W will weight down the overall estimate of P (W |O) if the hypothesis
W is not very likely to be grammatical. Alternatively, it will boost the confidence
of the estimate if the hypothesis is likely to be legal. Initially, statistical language
modelling was considered to be solely within the domain of speech recognition
research and statistics. For some early applications of language modelling to speech
recognition see the works of Bahl and Jelinek (1989; 1990; 1985). The earliest,
the simplest and also historically the most widely used supra-lexical model is the
stochastic n-gram language model which specifies the probability of the next word
given its n − 1 contexts. The size of the context is intentionally limited (usually
to be not larger than 3) in order to make estimation of the individual probabilities
from the data tractable. Using an n-gram model, the probability of a word sequence
W = wN

1 can be expressed using as

P (W ) =
N∏

i=1

P (wi|wi−1
1 ) =

N∏
i=1

P (wi|wi−1
i−n+1) .

The above language model is perhaps the simplest of all possible because it relies
solely on the word distributions and ignores the long-range word dependencies and
any explicit a priori syntactic and semantic knowledge. Nevertheless, it proved to
be surprisingly reliable and still forms the language modelling backbone of many
state-of-the-art modern commercial and research speech recognition systems.

In HMM-based speech recognition framework, language models allow to link the
word-level HMM models by transition probabilities which represent the language
model estimates. The simplest structure may correspond to the case when the
language model is memoryless, i.e. the probability of any given word is independent
of the history. In this case one can simply combine all the models of words from
some lexicon in a parallel loop. In practice, in order to obtain reasonable estimates,
at least a trigram (n is 2) model should be used. This complicates the decoding
process since the overall network has to maintain all the possible word histories of
length n − 1. In general, the longer the list of word dependencies of a language
model, the more complicated is the overall network (the number of states in the
overall framework is proportional to V n−1, where V is the size of vocabulary).
Partial transition structure for recognition network employing trigram language
model is shown in Figure 1.3.

During the last decade, due to the success of the statistical language modelling
techniques they also formed a vast research area within the field of computational
linguistics (see an overview by Manning and Schütze, 1999). Language modelling
has also influenced the development of statistical approaches in other areas of pat-
tern recognition, such as handwriting recognition (Lui et al., 2003). Although
language models per se are outside the scope of this thesis, we will nevertheless
return to them later on in this section and consider them in slightly more detail in
the context of decision making within probabilistic speech recognition framework.

1.2.1.3. Categorisation in Statistical Speech Recognition. We open this section
by briefly discussing the recognition stage of the generalisation process. One of
the most attractive features of speech recognition models (such as HMMs) that are
based on the discrete state random variable is the fact that these models can be
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Figure 1.3: Partial transition structure of an HMM-based speech recognition net-
work based on a trigram language model. The vocabulary consists of two words
w1 and w2. The boxes represent HMM-based word models, like those shown in
Figure 1.2 (after Jelinek, 1997, Figure 5.3).

seamlessly combined together to obtain complex compound state-space structures,
which are amenable to the same analysis as the constituent models. In the previ-
ous section we already mentioned the integration of various sub-lexical (acoustic)
and supra-lexical (language) knowledge sources into one compound HMM model
(Figure 1.3). In general, in order to represent various knowledge sources associated
with a particular speech recognition domain, one usually compiles a large recogni-
tion network, prior to recognition stage. Schematic representation of hierarchical
knowledge within an overall HMM-based recognition network is shown in Figure 1.4.

During the discussion of HMMs, we mentioned that to each state in a model
there corresponds a classification label which uniquely identifies a unit (e.g. phone)
it belongs to. Hence, in an HMM-based recognition framework, to each state se-
quence corresponds a sequence of classification labels. The latter fact allows the
clarification of objectives for the recognition stage (often referred to as decoding):
Given an acoustic stream O = oT

1 , obtaining an optimal word hypothesis Ŵ = ŵN
1

amounts to finding a state sequence Ŝ = ŝT
1 maximising posterior probability given

the observations. The search is conducted in a recognition network (mentioned
above) that represents all the relevant linguistic knowledge in one compound HMM.
In general, the decoding problem is hard because of the inherent complexity of
hypothesis space and the “straightforward” dynamic programming approaches are
often computationally intractable. The standard state-of-the-art schemes use mul-
tiple passes over the recognition network. At each pass, rather than producing the
most optimal sequence, the decoder outputs a lattice of word sequence hypotheses.
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Figure 1.4: A simplified illustration of hierarchical organisation of speech knowledge
within a hypothetical HMM-based recognition network. The dashed arrows indicate
internal organisation of a unit in question. The thick line divides the organisation
of sub- and supra-lexical levels. The syntactic layer units (PSi, etc.) indicate parts
of speech and are shown for illustrative purposes only.

A lattice essentially indicates which words were likely to be uttered at which time
intervals. Thus one can constrain the search space for the next pass. Interested
reader is referred to reviews of decoding state-of-the-art in (Aubert, 2000; Jelinek,
1997; Young, 2001).

The computational (in terms space and time) cost of the recognition step can be
greatly reduced by using an alternative approach employing finite state transducers.
Finite state transducers can efficiently and unambiguously represent the recogni-
tion network in an elegant mathematical framework without the loss of original
information. In his paper, Mohri (1997) mentioned that for a 10-word sentence
from an ARPA ATIS task, the recognition network consisted of nearly 83 million
paths. When encoded as a finite state transducer and optimised, the resulting lat-
tice consisted of 18 paths. Thus, conducting the search on the optimised lattice
greatly improved the performance. For more information on finite state technolo-
gies in speech recognition the reader is referred to recent reviews and applications
in (Hazen et al., 2005; Mohri et al., 2002). We will briefly return to the discus-
sion of finite state devices later on in Section 1.2.3.2, where we consider them in a
structural pattern recognition setting.

We next consider another stage of generalisation in speech recognition that
deals with learning. Nearly all of the approaches to statistical speech recognition
employ parametric estimation techniques. These techniques were considered in a
more general pattern recognition setting in Section 1.1.3. In speech recognition,
the most commonly encountered learning target is the maximisation of P (O|W, θ),
where

• The training data O consists of a set of acoustic observations
{
Oi

}
cor-

responding to a set W of utterances
{
Wi

}
;

• The model parameter set is given by θ.
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The traditional approach to training is to consider each model (e.g. word-level
model) independently and to estimate the distribution parameters of subsequences
of acoustic observations which correspond to that model. In HMMs, for instance,
when training with a particular word, the path through the compound HMM rep-
resenting the training set utterance is constrained so that it can pass only through
that word’s model. After the several complete passes through the training data, the
parameters of the overall network representing the training set are updated with
an optimal parameter set θ̂.

As mentioned in Section 1.2.1.1, the parameter set of the HMMs consists of the
transition probabilities and emission distributions. Since the state transitions are
the outcomes of a single discrete random variable S, they can be simply represented
by a transition probability matrix Ai,j = P (st+1 = j|st = i). Emission probabilities
are usually modelled by a Gaussian mixture

P (ot|st = i) =
∑

k

ci,kN (ot;µk; Σk) ,

where ci,k is the k-th mixture non-negative weight (constrained so that the weights
of all mixtures sum to unity), and N (ot µk; Σk) is a k-th Gaussian distribution
(parametrised by a mean vector µk and the covariance matrix Σk) specifying a
probability of observing vector ot. Modelling the observation vector with the mix-
ture of Gaussians attempts to model correlation structure in the observation vector
ot. Thus, the parameter set θ for HMMs, can be represented as a three-tuple con-
sisting of transition matrix, a set of mean vectors and a set of covariance matrices.

In statistical speech recognition, there are various parametric parametric ap-
proaches to learning which usually mirror state-of-the-art in machine learning and
pattern recognition. Traditional parametric learning approaches employ maximum
likelihood criterion for estimation of the parameter set θ (this criterion was briefly
described in Section 1.1.3). In maximum likelihood approach to speech recogni-
tion, one chooses the parameter set θx which maximises the product of the class-
conditional likelihoods P (Ox|Wx, θx) over the training sequences representing some
class x (this could be almost any non-trivial speech unit). In other words,

θ̂x = arg max
θx

L(θx) = arg max
θx

P (Ox|Wx, θx) = arg max
θx

∏
i

P (Ox
i |W x

i , θx) .

The above optimisation can be efficiently implemented by several standard algo-
rithms, the most popular of which is known as expectation-maximisation (EM)
algorithm. The details of this algorithm can be found in any standard textbook on
speech recognition, such as (Jelinek, 1997) and (Deller et al., 1993).

The above parametric approach is often called non-discriminant because it
deals with an estimation of the acoustic distributions corresponding to a particular
speech unit (e.g. word) rather than attempting to estimate the acoustic differences
between various classes of speech units. This observation led to the emergence of
various discriminant criteria for the training phase of speech recognisers. These
criteria include the maximum a posteriori (MAP) optimisation of P (O|W, θ) and
the estimation based on the maximum mutual information (MMI) optimisation of
log P (Ox|Wx)

P (O) . Optimising the MMI criterion essentially amounts to simultaneously
increasing the likelihood of the constrained model P (Ox|Wx) while decreasing the
likelihood of the unconstrained model that represents all the word sequences. The
estimation algorithms for implementing the above criteria are generally more com-
plicated than the ones used for maximum likelihood estimation. These algorithms
use gradient descent approaches adopted from non-linear functional optimisation
(see Bourlard and Bengio, 2002 for an overview).
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1.2.2. Numeric Representations. In the previous section we reviewed some
of the fundamental components of mainstream speech recognition systems. As men-
tioned earlier, the factor that contributed most to the advances in performance of
such systems is a statistically sound formulation of speech recognition problem. In
this section we briefly outline some current and existing research aimed at improv-
ing the modelling and recognition process. Precise classification of the following
approaches and research directions is difficult because there is a significant over-
lap and mutual influence between them. The need for alternative approaches is
clearly manifest in the considerable amount of literature describing new models
(e.g. see an editorial by Russell and Bilmes, 2003 and upcoming special issue on
non-conventional techniques in Faundez-Zanuy et al., 2004).

The majority of mainstream speech recognition systems are based on the HMMs,
which we briefly described in the previous section. The key feature of HMMs that
was criticised by many researchers (e.g. Young, 2001) is the frame independence
assumption, whereby each successive speech feature vector is assumed to be condi-
tionally independent given the HMM state (equation (1.10) on p. 13). Deng et al.
(1997) argued that such assumptions are too severe and discard many of the key
temporal correlation properties in the speech signal, which result from relatively
smooth movement of articulatory structures during the act of speech production.
Moreover, it was observed that these correlation properties are not frame-specific
but rather depend on segments. A segment is some variable-length linguistic unit,
usually a phone. While the acoustic correlation within the same segment is usually
high, cross-segmental correlations are lower (Glass, 2003).

A desire to weaken the above assumption motivated the development of seg-
ment models (Ostendorf et al., 1996). In segment-based modelling, it is convenient
to think of a model as generating segments ol

1 of random length l, rather than
individual feature vectors, which are still used for representing the speech signal.
In probabilistic terms, a segment of random length l representing some phone m is
given by

P (ol
1, l|m) = P (ol

1|l,m)P (l|m) ,

where P (ol
1|l,m) is the observation distribution provided by acoustic model and

P (l|m) is the estimate provided by the duration model. Several approaches have
been proposed for modelling the observation distribution characterising a segment.
Some use functional parametrisation using trajectory functions (Holmes and Rus-
sell, 1998; Young, 2001). The other approaches describe the above observations via
linear dynamical systems where the trajectory over the segment is described by a
continuous-state variable from which the observations are derived (see an overview
by Frankel, 2003). In yet another approach, used in the SUMMIT speech recogni-
tion system, the variable-length segments are not based on speech frames but rather
on acoustic landmarks, which are various asynchronous acoustic events detected in
the signal (see the work of Glass, 2003 and his group).

Another frequently criticised property of the HMM-based systems is the beads-
on-a-string assumption (Ostendorf, 1999), described in Section 1.2.1. It was argued
that, as far as everyday spontaneous speech is concerned, this configuration fails
to model significant phonological variations which are otherwise easily accounted
for by modern phonological theories. In phonology, the phonological processes
responsible for this variation are modelled by parallel feature streams (or tiers).
A certain variation in the realisation of some phoneme is not modelled by the
substitution of one segment (phone) for another, as it is done in beads-on-a-string
approach, but rather by difference in timing of asynchronous feature changes in
some of the feature streams. The adjective “asynchronous” above corresponds to
the observation that features rarely change at the phone boundaries. Hence, the
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streams cannot be “lined up” (Livescu et al., 2003) to form phonetic segments
(phones). The above observations motivated various studies which, on the one
hand, focus on modelling “hidden” multiple parallel asynchronous processes (e.g.
factorial HMMs used by Nock, 2001, Dynamic Bayesian Networks used by Livescu
et al., 2003, nonlinear dynamic models used by Deng, 2000) and on the other
focus on the automatic mapping between the acoustics and phonological feature
space in which acoustic modelling can be conducted (e.g. work by King and Taylor,
2000; King et al., 2000). Another area of research is the incorporation of a full
nonlinear dynamic speech production model motivated by the theory of articulatory
phonology (this work was primarily conducted by Deng, 1998 and his group).

Another open research direction is the issue of learning the appropriate topolo-
gies of the acoustic models which may better suit the speech data. In traditional
approaches, topology (or structure) is usually understood as representation of tran-
sitions of a hidden state variable. Such representation is crucial because it captures
temporal dependencies of the process being modelled. In most of the conventional
approaches a significant amount of a priori knowledge influences the choice of model
structure before considering the actual learning process. Some promising results in
the area of statistical inference of acoustic model structure were recently reported
by Zweig et al. (2002) in the context of graphical models. Graphical models are
powerful statistical graph-based abstractions flexible enough to encompass nearly
all the statistical models proposed to date (see an excellent overview in Bilmes,
2003).

1.2.3. Structural Representations. In this section we briefly review some
common structural models which are used in speech modelling and recognition.

1.2.3.1. Annotation Graphs. Various graph-based paradigms used for annotat-
ing speech corpora are collectively referred to as annotation graphs. The emergence
of general-purpose frameworks for annotating speech was motivated by the apparent
lack of standards, the need for which was acutely felt within the speech commu-
nity (Bird and Liberman, 2001). The proponents of the above standardisation hope
that the adoption of a unifying formal approach to representing speech corpora will
greatly facilitate research within the field.

Annotation graphs cover any descriptive or analytic notation applied to raw
speech data. The notations might come from a wide spectrum of sources ranging
from phonological features to discourse structures, morphological and syntactic
analyses, word senses, semantic relations and so on. Several speech annotation
frameworks have been suggested up to date, among which we would like to single
out the most flexible ones: annotation graphs (AG) by Bird and Liberman (2001),
and heterogeneous relation graphs (HRG) by Taylor et al. (2001). HRGs have
seen extensive use in speech synthesis applications as representational devices (e.g.
see Taylor and Black, 1999), while AGs so far have only seen use in annotation.

Among the multitude of available multilayer graph-based formalisms, we can
discern the single common most important feature: the ability to associate a label
or an ordered set of labels with a stretch of time in the recorded speech (Bird and
Liberman, 2001). An additional important advantage offered by these formalisms
is that each utterance is represented by a single multilayer graph structure, in
which various knowledge sources are unified. This graph structure is obviously
fully amenable to linguistic analysis because it is created either by a human expert
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or constructed automatically (as it is the case with the text-to-speech synthesis
systems) from various previously annotated sources3.

Although annotation graphs are very attractive in terms of their capacity of
representing the variety of linguistic information associated with the speech wave-
forms, these frameworks are unfortunately not suitable as pattern recognition mod-
els. This inadequacy is currently due to the following factor: from the formal point
of view, since the graph structures used in annotation frameworks incorporate het-
erogeneous information, it is not clear how to treat them as object representations.
In the discussion of structural pattern recognition in Section 1.1.4, we mentioned
that in order to conduct any kind of structural generalisation using annotation
graphs, one essentially needs to introduce either:

• a graph grammar for annotation graphs, which, in theory, will allow the
application of syntactic pattern recognition techniques, or
• a similarity measure defined on a set of annotation graphs, which will allow

the introduction of a notion of symbolic space and application of structural
pattern recognition techniques (e.g. nearest neighbour analysis).

The first option is hard due to the high inherent complexity of graph representations
(we briefly mentioned this issue in Section 1.1.4.1). In addition, since representa-
tion has multiple semantically distinct layers, it is not clear how to combine this
information in a single grammar. The latter is also the reason for the impractical-
ity of the second, similarity-based, option. It is not clear whether definition of a
real-valued similarity mapping on annotation graphs is linguistically meaningful.

1.2.3.2. Finite State Transducers. In this section we briefly review the use of
finite state transducers in speech recognition (which we already mentioned in the
context of decoding in Section 1.2.1.3). In general, a finite state transducer (FST)
is a finite state machine whose state transitions are labelled with a pair consisting
of input and output symbols from some finite alphabets (Parkes, 2002; Sudkamp,
1997). Any path through a finite state state transducer algebraically encodes the
mapping from a sequence of input symbols to a sequence of output symbols. An
important modification of the FST architecture is obtained if the output of each
transition is also allowed to have some numeric value associated with it. The re-
sulting configuration is called a weighted finite state transducer (WFST). A WFST,
in addition to encoding the symbolic transduction also allows computation of an
overall cost of the corresponding path through the model. A WFST whose transi-
tions are weighted but contain no output symbols, is called a weighted finite state
acceptor (WFSA).

As mentioned earlier during the discussion of decoding techniques, in speech
recognition, finite state machines (mostly WFSTs and WFSAs) have become very
popular for representing various knowledge sources (language models, pronunciation
models, acoustic models and so on), in a single formally homogeneous recognition
network, which in itself is a finite state machine. This popularity is due to the
fact that the mathematical (algebraic) theory of the finite state machines is very
powerful (at least for the case of string transduction) and, in particular, provides
efficient means for drastically reducing the size of the original FST representing
the recognition network (this is called minimisation) and also removing structural
ambiguities (resulting in exactly one transduction path per input sequence) in the
original FST (determinisation) (Mohri, 1997; Mohri et al., 2002). The performance

3The research work on this thesis initially started from an attempt to model HRG structures
in a graph transduction framework, which, in theory, would have allowed efficient (time and space-
wise) encoding of the various knowledge sources used in text-to-speech engines (the idea due to
Paul Taylor).
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of the various approximating search algorithms used by the decoders is often dra-
matically improved if, instead of an unoptimised network, the search is conducted
in a recognition network optimised using the above techniques. This is caused by
a large decrease in the complexity of a search space (during the FST optimisation,
all the redundant transition paths are removed and many paths are shortened).

Recently, parametric optimisation techniques were extended to weighted finite
state transducers. Among these is an expectation-minimisation (EM) algorithm for
WFSTs (Eisner, 2002). Given the fixed WFSTs configuration and a training set of
input/output symbolic sequences, EM algorithm infers a set of optimal transduc-
tion weights associated with the training sequences. Trainable WFSTs are becoming
more popular in pronunciation modelling. One interesting application of WFSTs
to pronunciation modelling is the incorporation of the likelihoods of alternative
pronunciations of various words in a lexicon (traditional lexical FST-based models
assume that all the pronunciations are equally probable). While some of the al-
ternative pronunciations are more likely to be encountered in practice, the others
are highly improbable. Incorporation of a likelihood model ensures that the recog-
niser picks the more probable hypothesis. Inference of likelihoods of alternative
pronunciations by training the pronunciation WFSTs was recently demonstrated
by researchers working on the SUMMIT speech recognition system (Hazen et al.,
2005; Shu and Hetherington, 2002).

To summarise this section, in speech recognition finite state transducers of
various types (FSTs, WFSTs and so on) are used primarily as efficient knowledge
representation devices which combine various knowledge sources. These knowledge
sources, in turn, can be seen as finite state devices themselves, because they are of-
ten based on similar Markovian assumptions (HMMs in acoustic modelling, n-grams
in language modelling are typical examples of such models). If we compare this as-
pect of transducers to the models used in structural pattern recognition, FSTs bear
certain similarity to syntactic approaches because historically, finite state machines
appeared as “automated” means of computing various formal languages (Sudkamp,
1997). Similar to grammatical inference (Section 1.1.4.1), structural inference of
automata and transducers from the data is a hard problem, the complexity of which
grows with the complexity of the structural object representation. Within the sta-
tistical framework of speech recognition, since the representation space is a vector
space, structural inference of transducers is simply not possible. Instead, the task
of interfacing with the object representations (expressed as feature vectors) is del-
egated to acoustic models of inherently numeric nature. Hence, in the context of
speech representation and generalisation, the role of transducers can be considered
to be secondary.

1.3. Research Motivations

1.3.1. Current Situation with Representations. As was shown in Sec-
tion 1.1, the concept of representation is absolutely crucial in pattern recognition.
The representation of real world objects or events is supposed to encode them in
some mathematical framework that has the capacity of relating these encodings to
one another. Furthermore, as a consequence, generalisation is achieved by deriving
some compact discriminating descriptions of classes represented by the related en-
codings. Despite the critical role the notion of representation is supposed to play,
traditionally it has been frequently neglected. As was aptly observed by Duin and
Pȩkalska (2005), many relatively recent books on pattern recognition and machine
learning disregard the issue of representation altogether by assuming that the rep-
resentation is somehow provided by some outside expert knowledge (e.g. Bishop,
1995; Ripley, 1996). However, there is a certain danger in placing the notion of
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representation outside the scope of the overall generalisation framework, because
representation and generalisation are not independent. The choice of the represen-
tation essentially induces the modelling framework in which the generalisation can
be approached. Moreover, the process of generalisation itself involves representation
of the classes.

Earlier in this chapter, an overview of current approaches, both structural and
numeric, to representation in pattern and speech recognition was provided. The
ongoing debate in artificial intelligence on which one of the approaches is better
suited for modelling human intelligence, is definitely outside the scope of this thesis.
The philosophical arguments put forward by proponents of either approach are
certainly within the domain of cognitive science, psychology and philosophy (for
example, see Stender and Addis, 1990). These arguments are not very productive
from the applied point of view because the value of the theory is usually in its
utility. In contrast to the field of artificial intelligence, in pattern recognition it
is generally agreed (see remarks by Kanal, 1993, Pavlidis, 2003 and Goldfarb and
Nigam, 1994, for instance) that there is no single best approach and any complex
domain often requires a combination of both. In what follows, we briefly summarise
our observations with regard to the two approaches to representation in pattern
recognition (and speech recognition in particular) and attempt to outline some
of the open issues. When talking about representations, we consider both the
representations of objects and the representations of classes.

1.3.1.1. Open Issues in Numeric Modelling. In the previous sections of this
chapter we mentioned that numeric representation is essentially an embedding of
the data into some d-dimensional vector space, whereby each object is represented
as a point in Rd. Categorisation is then performed using mathematical decision-
theoretic tools available in vector spaces, such as estimation of density functions
underlying the clusters of points (Section 1.1.3). Once the representation is fixed,
there is a multitude of analytical tools available in vector spaces that can be used
for constructing models for generalisation. In the context of speech recognition,
the representations correspond to sequences of acoustic feature vectors, while the
generalisation mechanism is provided by the statistical learning and recognition
framework (Section 1.2), where the interface between the representation and gen-
eralisation is provided by the acoustic models. In the context of study of represen-
tations, we briefly outline some of the open issues with the feature vector-centered
approach. More often than not, some of the issues mentioned below are dictated
by the nature of the modelling space Rd rather than by ill-formed assumptions:

First, the most often heard criticism of the feature vector representation is
that it is too restrictive. Any spatial, temporal and other relations between the
“parts” of the original object or event are usually not preserved by the reduction
of an object to a vector. This criticism is especially relevant when it is generally
agreed that the domain in question contains some well-identifiable structure (e.g.
genomes in bioinformatics, characters in optical character recognition). Certain
original relations are usually partly recovered statistically during the generalisation,
however these relations are not present in the representation itself. As a result, the
feature vectors are often not interpretable without the generalisation framework.
Reduction of the original complexity of the domain to feature vectors, shifts the
emphasis to introducing some of the lost structural relations into the generalisation
framework. It is interesting to note that some simpler models in speech recognition,
such as HMMs, are often criticised for not possessing enough structure (Deng, 1998,
2000), where the structure is often interpreted in statistical terms. In the words
of (Jelinek, 1997, p. 10), such models “... have no more than a mathematical reality.
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No claims whatever can conceivably be made about their relation to human’s actual
speech production or recognition”.

Second, the elements of a feature vector are often mutually incommensurable.
This is problematic because the entire generalisation framework in vector space
rests on the Euclidean assumption that all the dimensions in the representation
have equal weight. In physics, for example, the problems with the above assump-
tion led to emergence of special (Minkowski) vector spaces in which the incom-
mensurable dimensions are “decorrelated” in order to accommodate for space-time
vectors (Pyenson, 1977). One of the popular representations in speech recognition
is based on the mel-cepstrum, which is well-motivated by studies of human auditory
perception (Deller et al., 1993). Without going into much detail about derivation of
this representation, it suffices to note that more often than not, the vector represen-
tation of mel-cepstrum, called the mel-cepstral coefficients (MFCCs) often includes
delta and delta-delta mel-cepstral information, because this information was ob-
served in practice to improve the recognition performance. In terms of a Euclidean
modelling space, however, this inclusion can hardly be justified on mathematical
grounds.

Before formulating the third objection to feature vectors as the basis of repre-
sentation, a following observation is in place: once fixed, the mathematical proper-
ties of object representation essentially dictate the ways in which the next general-
isation stage (involving learning and recognition) can proceed. In other words, one
of the results of the generalisation stage is the representation of the classes in ques-
tion, which in turn is heavily influenced the original representation of the objects.
The generalisation processes in vector spaces have been extensively studied over
the years and a multitude of diverse techniques were developed (Jain et al., 2000;
Kulkarni and Lugosi, 1998). What is a class representation in vector space? As
was shown in the previous sections, class representations in vector spaces are essen-
tially defined by the parametric distributions describing clusters of points, decision
surfaces which separate these clusters or surfaces produced by parametric curve
fitting. To what degree such a representation of classes is informative or adequate
(in terms of interpretation) is a matter of dispute. The author believes that in
linguistic and artificial intelligence terms such class representations are suboptimal.
Some highly nonlinear separating hypersurface in d-dimensional space does not tell
one much about the morphological makeup of the original classes in question and
it is not difficult to find a linguist who might object to such a notion of a class (in
other areas, similar concerns were voiced by Abela, 2001; Davis and Shrobe, 1993;
Goldfarb, 2004, and others).

1.3.1.2. Open Issues in Structural Modelling. Structural approaches to repre-
sentation and generalisation were described in Section 1.1.4 (for general pattern
recognition) and in Section 1.2.3 (for speech recognition). As was mentioned in the
discussion of structural approaches, their main benefit is that (well-formed) struc-
tural encoding of objects retains the original relations between various constituent
parts of an object. This is because the structural modelling space induced by the
representation is structurally more expressive than a regular vector space. More-
over, in theory, in a structural modelling space the introduction of a non-trivial
class representation should be possible. The above benefits, however, come at the
following costs:

It is not clear on which foundation such structural representation should be
based. Unlike vector space approaches, there is no fixed modelling space induced
by the chosen representation. This issue is definitely not trivial. On the one hand,
the choice of a more complex representation would allow the encoding of more
complex relations within an object. On the other hand, since the representation is
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based on real data, the more complex the representation, the more difficult it is to
derive it from the data. Hence, the open issue is how to balance the complexity
of representation and the complexity of the algorithms needed for its automatic
derivation.

Earlier in this chapter, we mentioned that there are essentially two approaches
to structural representation: syntactic and topological. Purely syntactic approaches
to pattern recognition have been repeatedly criticised (e.g. Tanaka, 1995 and Watan-
abe, 1985) for making unrealistic “grammaticallity” assumptions about the data
(Section 1.1.4). Just as there is no such notion as grammaticality for images, it is
difficult to conceive (by looking at the real data) some notion of grammaticality for
the spectrum of an acoustic waveform or the recording of articulator movements.
Hence, modern structural approaches usually adopt a topological, similarity-based,
approach to modelling.

The adoption of a topological approach leads to the two issues we discuss next.
The first issue is how to introduce a good metric on a set of objects. Unlike regular
vector spaces, there are infinitely many similarity measures which can operate on
the symbolic object representations. Adoption of each of these measures results in a
symbolic modelling space with unique properties4. The second big issue is what and
how to learn in such a space during the generalisation stage. The difficulties arise
because the theory of symbolic spaces is in a much less analytically developed stage
than the vector space theories. Thus, on the one hand symbolic spaces seem to
offer a bigger modelling freedom than the vector spaces, but on the other, severely
restrict the amount of available analytical tools5.

1.3.2. Unification of Structural and Numeric Approaches. Given struc-
tural and numeric approaches to pattern recognition, one of the interesting ques-
tions is how to combine them within a single framework. Compared to other
pressing issues in pattern recognition which are investigated within computational
learning theory and machine learning (quality of the classifiers, model selection and
combination and so on), this issue has received relatively little attention. Similar
to the explanation given in the previous section, we believe this to be due to the
limited attention that the notion of object and class representations received over
the years. It is interesting to note that the issue of potential unification of the
two approaches was raised quite early on, at the onset of the field (e.g. Aiserman,
1969). Why is such a unification desirable? As we saw from the previous discussion,
each approach possesses interesting features lacking in the other. The structural
approach provides an expressive modelling space for representations, while the nu-
meric approach provides a powerful analytic environment for decision making.

In general, there are two different approaches to unification. It is interesting
to note that both approaches are primarily motivated by the idea that adequate
representation leads to adequate generalisation. In this respect, these approaches
are representation-centric and are of primary interest to the author in the scope of
this thesis. These approaches roughly correspond to two possible (and related) in-
terpretations of the definition of what pattern recognition is. In Section 1.1, pattern
recognition was (very informally) defined as the ability to perceive regularities in
patterns of classes and relate them. The natural question that arises next is how to
interpret the regularity? The proponents of the similarity-based approach believe

4 As was mentioned earlier in Section 1.1.4.2, where the topological approach was introduced,
the symbolic space is defined as a set of objects together with the numeric similarity measure
defined on this set. Hence, the main difficulty is not with the similarity measure, but rather with
the structure of the objects (which is now richer than the structure of the numeric feature vectors)
which induces different similarity measures.

5This does not necessarily mean that new tools cannot and should not be developed.
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in the primacy of the similarity measure on which the representations should be
based. The proponents of what one can call a class-centric approach (this group
of researchers includes the author of this thesis) believe the notion of a class is a
central one. The theoretical argument in favour of this or the other approach is
outside the scope of this thesis. The difficulty arises because either approach is
believed to be subsumed by the other. Sometimes in practical applications, as will
be shown later on in this work, frameworks motivated by both of the above consid-
erations can be employed. Below we briefly overview the main tenets of these two
approaches to representation. Before proceeding it should be noted that each of
the approaches leads to entirely (mathematically) different modelling frameworks,
despite the fact that, theoretically at least, the two approaches seem to be related.

Some of the initial ideas of the similarity-based approach appeared in Lev
Goldfarb’s thesis at the end of the 70’s (Goldfarb, 1979), consequently extended
and formalised by him five years later (Goldfarb, 1984, 1985). One of the main
contributions of that work at the time was that it laid the formal foundations of
the study of similarity-based pattern recognition. The main tenet of similarity-
based pattern recognition is that the object representation cannot be taken out of
the context of similarity. It is the similarity measure which induces the modelling
space, rather than the objects themselves. From a conceptual point of view, the use
of dissimilarities between objects instead of objects themselves allows the formation
of a bridge between numeric and symbolic approaches. This is because the notion
of similarity is universal, capturing both structural and numeric features of the
original objects. Hence, for instance, instead of using a feature vector or a string
for representing a certain real-world object, in the similarity-based approach this
object is represented by the vector consisting of similarities between this object and
rest of the objects in the training set. Hence, the similarity-based representation
is essentially numeric. The properties of these modelling spaces and the classifiers
in these spaces are the main subject of study in this area. In the last decade,
the similarity-based approach (which is sometimes called the featureless approach)
started receiving renewed interest in the pattern recognition and machine learning
community. For a recent treatment of this subject, the interested reader is referred
to Bunke et al. (2001); Duin et al. (2004); Edelman (1998); Graepel et al. (1999);
Mottl et al. (2002); Pȩkalska et al. (2004), and others. An excellent study of the
field is provided by Pȩkalska’s recent thesis (Pȩkalska, 2005)6.

Class-centric approaches assert the primacy of structural class representation
over similarity-based representation. There are several reasons for this. One of the
reasons is that similarity-based vector space representations, however well mathe-
matically grounded, still suffer from rigid mathematical structure imposed by the
underlying vector space. Hence, it is argued that the similarity-based approach
cannot produce class representations which are sophisticated enough to approxi-
mate the inherent, essentially morphological, complexity of the real-world classes.
As a result, by adopting a class-centric approach to modelling, one starts with
a structural, usually topological (Section 1.1.4.1), representation. The essential
difference between this approach and the conventional topological approaches to
structural representation is that the class-centric framework has to have certain an-
alytic means of deriving non-trivial structural class representations during the pro-
cess of generalisation. Furthermore, the similarity is induced by the class structure

6Although from a technical point of view there is a difference between the notions of similarity
(proximity) and dissimilarity, in this thesis we use these notions interchangeably. In general, we
assume that the various metrics define similarity measures, i.e. the more similar the objects being
compared, the smaller the measure.
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(in comparison with the similarity-based approach, where the similarity measure is
seen as something external to the framework). The latter assumption is motivated
by experimental evidence from cognitive science. It has been observed that humans
are not only able to identify a concept to which a certain perceived object belongs,
but are also able to justify the latter decision by describing the concept (class) in
terms of its attributes (Abela, 2001).

The approach we undertook in this thesis for structural representation of speech
is class-centric. The following sections are devoted to introduction of the main ideas
of this approach.

1.3.3. Topological Class-Centric Approach to Speech Representation.
In this section we describe the motivation behind the development of a class-centric
approach to representation based on topological principles. The adjective “topolog-
ical” refers to the fact the modelling is (mostly) structural, but it is guided by a
similarity measure. This approach incorporates several techniques described below.

Any attempt at modelling must start somewhere. An obvious point of depar-
ture for any structural representation is the choice of the objects being modelled.
As was mentioned in Section 1.1.4.1, the essence of the structural topological ap-
proach is the choice of the set of objects, together with some similarity measure
defined on those objects. The similarity measure is defined in a way that reflects
the morphological makeup of the objects. When modelling speech, it is clear that
the structure of the objects has to be somehow detected in the data. Without going
into detail (a concrete topological representation of speech “objects” is described
in Chapter 2), convenient units that can be extracted from speech (e.g., as shown
by King and Taylor, 2000) correspond to the atomic units of linguistic analysis —
phonological distinctive features. Hence, instead of feature vectors, a frame-based
topological representation can be based on the symbolic bundles of phonological
distinctive features. Any linguistic object (e.g. phone, syllable) can then be explic-
itly represented in terms of this structure. Next, a similarity measure is defined
on the set of objects. Structural similarity measures usually take into account the
internal atomic structure of the objects being compared. For instance, conventional
transformation distances calculate the number of atomic operations needed for the
objects to become identical.

How does the above object representation relate to a concept of class? An
elegant extension of the above, called the Evolving Transformation System (ETS),
was proposed by Goldfarb in his early papers (Goldfarb, 1990, 1992). The central
idea of the proposed approach (which we denote ETS0) is the notion of transfor-
mation. In its simplest form, a transformation corresponds to the basic operation
employed by the transformation distances mentioned above. One can think about
representation of a certain class of objects as a set of transformations. Initially, class
representation consists of the basic operations only. Since the basic operations are
common to all classes in the training set, such a class representation is not in-
teresting. This “rigid” representation corresponds to the conventional topological
object representation described above. What makes a given class different from the
other classes is the existence (among the objects representing that class) of common
structurally non-trivial attributes, or non-trivial transformations, of discriminating
nature. These (weighted) transformations induce a class-specific similarity measure
which better separates members of this class from all other objects. In ETS0, given
the objects belonging to a class, the goal of the learning phase of generalisation
process is to discover an optimal set of non-trivial weighted transformations using
some discriminating technique. At each stage of the learning, an augmented set
of transformations, discovered using the search guided by the “current” similarity
measure, induces a new class-specific similarity measure. Hence, the learning stage
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can be seen as a sequence of “evolving” topological spaces, where evolving class
representations induce an evolving similarity measure. From the speech modelling
point of view, this allows description of linguistic classes in terms of their non-trivial
structure. This approach is pursued in Chapter 4.

Above we introduced a “rigid” topological approach to structural modelling of
objects, which can be analytically augmented (ETS0) to allow for structural class
representation. From the point of view of similarity measures, the “rigid” approach
corresponds to a global similarity measure for all objects in the training set. The
ETS0 approach results in similarity measures which are class-specific. With either
approach, since the particular structural representation is completely transparent
for the similarity measures, it is possible to embed the symbolic representation into
the corresponding vector space by using the similarity-based techniques mentioned
in Section 1.3.2. This is often desirable because the symbolic spaces are not suited
for visualisation and lack advanced decision-theoretic techniques available in vector
spaces. The embedding techniques, resulting in a similarity-based representation,
are treated in Chapter 3.

1.3.4. Formal Approach to Speech Representation. It must be empha-
sised that ETS0 is not a learning algorithm but rather a model. Modelling structural
class description via transformations that clarify the nature of a similarity measure
is a general idea that does not force any assumptions upon the symbolic objects. For
instance, one can introduce ETS0 ideas into the setting based on strings (Abela,
2001) or trees (Kamat, 1995). From an early stage in the development of the
model, it became clear (Goldfarb, 1992) that the ideas embodied by ETS0 need
to be formalised within a single unifying framework for pattern representation and
recognition. In what follows we give several reasons, “technical” and otherwise, for
mathematical formalisation of the above ideas (more detailed arguments, most of
which are presently outside the scope of this work, are advanced by Goldfarb, 2004
in a recent paper).

The first argument in favour of a formal approach to structural class and object
representation is a general one. It goes without saying that human perception mech-
anisms operate in a rather dynamic environment. The “objects” being perceived in a
certain environment are not static. In many areas of pattern recognition, especially
the ones where modelling of vision and speech is concerned, it is generally agreed
that “static” structural representations do not constitute an accurate reflection of
the reality. In speech modelling, in particular, the above understanding led to the
modelling of speech as a stochastic process (Deller et al., 1993). In this respect, it
is interesting to analyse the notion of a “static” representation without recourse to
mathematical statistics. Our current intuitive understanding is that static repre-
sentations are memory-less. Thus the static view of various perceptual processes
(such as speech, vision and so on) is problematic because it contradicts the very
nature of basic mechanisms of mental representation within humans. This also ex-
plains why statistical approaches have been successful. The mental representations
of a real-word object must somehow encode the “evolutionary” or “developmental”
history of that object. The author thinks of two alternative and very informal ways
to express the latter point: from a perceptual point of view, an object is essentially
a constantly evolving mental process; from an “observation” point of view, the ob-
jects under investigation appear to be constantly changing (“evolving”). Hence,
one of the major motivations behind the formalisation was a desire to introduce
some formal machinery which would allow to integrate a concept of an “object” and
a concept of its formative history in a single mathematical structure. The clas-
sical discrete structures were not developed for the above purposes, hence a new
approach is needed.



1.3. RESEARCH MOTIVATIONS 29

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8 τ10

τ9

τ11 τ13

τ12

Time

object

object

ti

tj

Figure 1.5: Illustration of the concept of formative history. A certain “object” is
being observed with the measurements taken at times ti and tj . The object is shown
as having several possible formative histories consisting of various transformations{
τ
}
, whose structure is ignored for now.

How can one define a formative history of an object? Starting from the earliest
work on structural representation (ETS0), Goldfarb suggested that the formative
history should be seen seen as a sequence of transformations. Moreover, from a
generative point of view, any object can be represented as a sequence (or collection
of various sequences) of constructive transformations. Schematic illustration of the
latter idea is shown in Figure 1.5, where an “object” is shown observed over several
time instances. The object can be though as being formed by a various possible
sequences of transformations

{
τ
}
. Representation of a class of objects can thus

be thought of as a collection of class-specific transformations together with some
generative mechanism for applying them. The fundamental technical difficulty in
accommodating the above ideas within a formal model can be explained by the
fact that conventional symbolic representations based on discrete data structures
such as strings, trees, graphs and so on, cannot be used for the purposes of evolu-
tionary object representation via formative histories. This is partly because when
one examines a certain object, represented by a graph for instance, it is very dif-
ficult to reconstruct a sequence of transformations which constructed it. In other
words, from the grammar point of view, given any object there is an exponential
number of productions which can be used to generate it. In contrast with the later
conventional mechanisms of structural object representation, within a formal “evo-
lutionary” model, the representation of an object is its formative history. Initial
formalisation of the above ideas was attempted by Goldfarb and his colleagues five
years ago in (Goldfarb and Golubitsky, 2001; Goldfarb et al., 2000), which resulted
in a first formal version of ETS model we denote ETS1.

Another important “technical” motivation for the introducing a formal frame-
work for object and class representation can be presented as follows: given a cer-
tain object representation employing conventional structures, in order to implement
ETS0 ideas in this framework one has to employ representation-specific techniques.
In theory, such approaches are rather brittle because by changing certain assump-
tions about the representation it is often the case that the entire suite of algorithms
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developed to support ETS0 in that framework has to be completely changed. As
an example, in this thesis the first chapters rely on a certain arrangement of phono-
logical tiers of distinctive features employing strings as the basic sub-structures.
Changing the representation to employ another variety of distinctive feature theory,
which is based on more complex data structures, like graphs, will involve completely
scrapping the algorithms developed for string-based representation and developing
new ones to support graphs. Hence, rather than focusing on the representational
issues, more often than not, most of the modelling effort is spent on the issues that
are not relevant to representation. Ideally, introduction of a representational for-
malism allows the researcher to focus on the modelling issues: derivation of atomic
units of representation from the data, specification of their particular interaction,
study of the class representation, and so on. The formalism, in turn, supplies for-
mal analytic machinery for achieving the above goals, including the framework for
generalisation. Over the last five years, the development of the ETS formalism
has gradually been moving towards this goal, especially with the appearance of the
most recent versions of the formalism (Goldfarb et al., 2005a, 2004), denoted ETS2

and ETS4. In this thesis, for example, we describe two representations of speech
developed from entirely different perspectives (production and perception-based),
yet employing the same formal mathematical language. Furthermore, experiences
with developing specific applications within ETS have also been instrumental in
driving the development of the formal language itself.

Finally, another important motivation which drove the development of a formal
approach was the desire to model the multi-levelled nature of mental representa-
tions. In very informal terms, any (non-trivial) transformation observed at the
sensory level, becomes a primitive building block of object representation on the
next level of representation. The new level of representation appears with the de-
tection of the first transformation at a current level. Representation of a class, at
any given level, is essentially a collection of transformations. Hence, class repre-
sentation is also hierarchical since any primitive transformation at any given level
can be “opened up” to some non-trivial structure at the previous level. A simplified
two-level representation hierarchy is shown in Figure 1.6. When thinking about
speech communication, our very informal intuition about this process is based on
the multi-level representation hierarchy: the sender of the intended linguistic mes-
sage has some mental multi-level representation which is “collapsed” and encoded
as an acoustic waveform (or some other representation) and transmitted to the
receiver of the message, who tries to “reassemble” the mental representation by
growing it from the encoded message. More precisely, the temporal process of de-
coding the message involves dynamically “updating” the multi-level representation
of the receiver, “growing” it only when necessary.

1.3.5. Brief ETS Literature Overview. In Section 1.3.3 it was mentioned
that the origins of ETS are in the topological class-centric approach. This approach
evolved from pure numeric similarity-based object representations in pattern recog-
nition (Section 1.3.2). As mentioned above, the initial version of ETS, which we
refer to as ETS0, was originally proposed by Goldfarb in the early nineties (Gold-
farb, 1990, 1992). Transformation-based class and object representation was devel-
oped in a string (Goldfarb and Nigam, 1994) and tree-based (Kamat, 1995) pattern
recognition setting. Several position papers, clarifying some of the main assump-
tions of the model, appeared later on (Goldfarb et al., 1995; Goldfarb and Desh-
pande, 1997). The most comprehensive experimental study of ETS0 was recently
completed by Abela (2001), who used this version of ETS to develop a grammat-
ical inference system based on the ideas in (Goldfarb and Nigam, 1994). Several
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Figure 1.6: Simplified illustration of a two-level ETS4 representation. The heavy
dashed line identifies the first level transformation, consisting of atomic (primitive)
transformations. On the next level, this transformation corresponds to a next-level
primitive transformation (reproduced with permission from Goldfarb et al., 2005a).

interesting ideas about the possible application of the model to computer vision
appeared in (Goldfarb et al., 1996).

After several years of gestation, the initial version of formal language, denoted
ETS1, appeared five years ago. Among the features of the ETS1 formalism was
the introduction of a unifying set-theoretic object representation with a support for
formative histories and initial support for multi-level representation (Goldfarb and
Golubitsky, 2001; Goldfarb et al., 2000). The generative mechanism employed by
the model makes use of stochastic Markov processes by attaching numeric weights
to transformations. Recently, Korkin (2003) completed ETS1 work on molecu-
lar representations in chemioinformatics. Golubitsky (2004a) explored the formal
algebraic properties of the model, comparing it to “classical” discrete representa-
tions used in computer science (strings, graphs, etc.). He also provided proof of
the Turing-completeness property of the model for the case when the real world
environment is restricted to strings (Golubitsky, 2004b).

The initial ETS1 version was then significantly modified to better suit the
evolutionary or “dynamic” nature of the representation. A particular emphasis
was put on improving the support for multi-level representation of information
processes. This version of the formalism is denoted ETS2 (Goldfarb et al., 2004).
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It is used in thesis for articulatory representation of speech (Chapter 5). Finally, the
experience with development of several (pilot) representations (including the work
conducted by the author) motivated the introduction of several modification to
ETS2. This (current) revision of the formalism is known as ETS4 (Goldfarb et al.,
2005a). It is used in this thesis as the basis of auditory perception-based speech
representation (Chapter 6). The appearance of three revisions of the formalism in
five years (ETS1, ETS2 and ETS4) can be explained by the novelty of the adopted
approach and general lack of research in formal methods for modelling natural
processes in pattern recognition. Other currently ongoing work in ETS4, which is
relevant to this thesis, includes the development of structural representations for
vision (Gay, 2005). The recent position statement arguing in favour of development
of formal approaches appeared in (Goldfarb, 2004).

1.4. Research Objectives

Based on the above motivations, the main objectives of this thesis can be spelled
out as follows:

Develop a linguistically-well motivated framework for structural class and ob-
ject representation of speech based on topological modelling tools and investigate the
feasibility of such a framework.
Using the topological approach to class and object representation, it is desirable
to design a speech representation framework based on several principles described
next. First, it should be possible to select a certain type of linguistic units (which
in thesis are phonemes) and postulate their structure in terms of more primitive
units (distinctive features) which can be realistically derived from speech. Next, it
is desirable to introduce a similarity measure on object representations. Therefore,
one can test the adequacy of the representation by using symbolic template match-
ing techniques, generalised to operate on speech objects. In addition, it is useful
to demonstrate the techniques for similarity-based transition from the symbolic
modelling spaces to the corresponding vector spaces, where generalisation can be
conducted more efficiently. Finally, it is desirable (with the help of ETS0) to intro-
duce generalisation procedures into the symbolic object representation for deriving
structural class descriptions for various classes of linguistic units being modelled.
The availability of a standard corpus of read speech (Garofolo, 1988; Garofolo et al.,
1993) makes it possible to compare, contrast and experimentally evaluate the above
three techniques.

Design and explore formal articulatory representation of speech.
Investigate the feasibility of constructing a formal representation of speech based
on articulatory (production-based) principles. Based on some theoretical premises
of the theory of articulatory phonology that hypothesises the combinatorial struc-
ture of speech, investigate whether this combinatorial structure of physiological
nature can be expressed within a formal ETS2 framework by mapping the theoret-
ical combinatorial units of analysis to the atomic units of the formal framework.
Design techniques for deriving these atomic units directly (i.e. without recourse to
non-linear mappings) from the speech recordings. Provide analysis of class repre-
sentation within this framework, postulate the formal class description of various
phonemes and experimentally evaluate the adequacy of the class structures on a
corpus of articulatory recordings (Wrench, 2000; Wrench and Hardcastle, 2000).

Investigate the feasibility of constructing a formal representation of speech based
on the auditory principles.
Investigate the fundamental approaches to construction of formal perceptual rep-
resentation of speech based on the auditory principles. Based on the physiological
structure of the auditory cochlear transduction mechanism, provide a selection of



1.5. THESIS ORGANISATION 33

fundamental units of modelling within the ETS4 framework. Devise new and utilise
existing pre-processing techniques for extracting these units from the acoustic data.
Offer a tentative interpretation for a multi-level perceptual representation hierarchy
and provide an interpretation of possible emergence of linguistic classes within this
formal framework.

1.5. Thesis Organisation

The contents of this thesis are organised into two parts. Research presented
in Chapter 2, Chapter 3 and Chapter 4 resulted from the topological approach to
speech representation, motivated in Section 1.3.3. The adjective “topological” refers
to the fact that all of the approaches presented in these chapters involve structural
modelling guided by a similarity measure. To be more precise, these modelling
spaces should more appropriately be called metric spaces because the modelling
involves structures together with similarity measures defined on them. The second
part of this thesis consists of Chapter 5 and Chapter 6, where speech representations
are defined within a formal mathematical framework which is specifically being
developed for the purposes of representing the natural processes (Section 1.3.4).
The conclusions are summarised in Chapter 7 and the future directions of research
are presented. The more detailed outline of each chapter is given below. It is
important to note that the logical sequence of the chapters corresponds to the
evolution of author’s ideas about the structural modelling of speech.

Chapter 2. Phonological Symbolic Metric Spaces:
This chapter introduces linguistically motivated structural object representation to-
gether with the similarity measure defined on objects. We refer to this structural
modelling framework, which corresponds to topological approach of Section 1.1.4,
as phonological metric space. To a certain extent, this representation corresponds
to a symbolic version of the segment-based approach to speech recognition (Sec-
tion 1.2.2), with the main difference that the segments are interpretable. The ob-
jects under investigation correspond to phones (without the loss of modelling power
the objects can be extended to syllables or other larger speech units). We then ex-
plore the possible ways of introducing generalisation into this modelling framework
and experimentally evaluate the discriminatory capabilities of this representation
on a standard corpus of continuous speech.

Chapter 3. Pseudo-Euclidean Embedding of Phonological Metric Spaces:
As a next step further, in this chapter we investigate the similarity-based transition
from the phonological metric space to an equivalent (generally non-Euclidean) vec-
tor space. The equivalency is defined solely on the basis on the structural similarity
measure. This transition results in a similarity-based vector space representation
(Section 1.3.2), where efficient analytical tools are available for learning and clas-
sification. The rationale behind this transition is simple. We investigate whether
it is feasible to focus on the object representation in a structural modelling space
and then transfer the modelling problem into an equivalent vector space domain
where the generalisation can be more efficiently approached. The properties of the
resulting representation are then described, followed by an experimental evaluation.

Chapter 4. Inductive Learning with ETS0:
In this chapter we return to the phonological metric spaces first introduced in Chap-
ter 2 and augment the original modelling framework so that it can also discover class
representation. In essence, this chapter introduces the first (in this thesis) class-
centric structural approach to speech representation (Section 1.3.2). The original
phonological metric space is modified so that the similarity measure defined on the
objects is now not rigid, but dynamic (evolving) and is structurally induced by
the class representations of the speech units (phones) in question. These modelling
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ideas correspond to the main tenets of the ETS0 framework. Categorisation mecha-
nisms in the resulting modelling space are then discussed, followed by experimental
evaluation. The ETS0 approach is compared to related similarity-based approach
presented in Chapter 3.

Chapter 5. Formal Articulatory Representation of Speech with ETS2:
This chapter presents a production-oriented approach to structural speech repre-
sentation within the ETS2 formalism (Section 1.3.4). We present the ETS2 model
and introduce an articulatory ETS2 representation, motivated by the theory of
articulatory phonology. On a technical side, we show how to derive this representa-
tion from continuous articulatory recordings and present several application-specific
simplifying assumptions. The representation of several classes of phones is then ex-
perimentally evaluated on a corpus of articulatory recordings.

Chapter 6. Formal Auditory Representation of Speech with ETS4:
In this chapter we present our preliminary findings about foundations of the struc-
tural auditory speech representation within ETS4 (Section 1.3.4). We open by an
introduction into ETS4. We then outline the motivations behind the proposed au-
ditory approach by briefly describing the major modelling assumptions motivated
by the current knowledge of the physiology of hearing. We then present some com-
putational techniques for deriving the auditory ETS4 representation directly from
the acoustic measurements and discuss (informally) how the linguistic classes can
emerge in the multi-level representational hierarchy supported by the formalism.

Chapter 7. Conclusion and Future Research:
In this chapter we outline findings and experiences with the various approaches
to speech representation explored in this thesis, summarise the contributions, and
present future research directions.

Reading Suggestion. Each chapter of this thesis is reasonably self-contained.
The care was taken to ensure that all the necessary background material for each
chapter is provided in the corresponding preliminary section, following the intro-
duction. The author felt that such a layout is better suited for presenting the
unrelated background theory of various modelling spaces considered in this thesis.

1.6. Publications and Declaration

Some of the material contained in this thesis appeared in reviewed conference
and workshop proceedings during the work on this thesis. More specifically, the
latter include the following: Gutkin and King (2004b) (Chapter 2), Gutkin and
King (2004a) (Chapter 3), Gutkin and King (2005b) (Chapter 4), Gutkin et al.
(2004), Gutkin and Gay (2005b), Gutkin and Gay (2005c), Gutkin and King (2005a)
(Chapter 5). Author has been involved in the development of ETS4 formalism as
a member of Inductive Informatics Group run by Lev Goldfarb. His contribution
to ETS4 is indicated in (Goldfarb et al., 2005a,b, Section 1.5). One paper was
accepted for publication, but withdrawn by the author (Gutkin and Gay, 2005a),
hence not appearing in press.

Apart from where stated otherwise (by acknowledging the work of others at
the appropriate points in the text), none of the material contained in this thesis is
the result of collaborative work. The length of this thesis, including footnotes and
excluding the bibliography and the index, is 64,413 words.
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CHAPTER 2

Phonological Symbolic Metric Spaces

2.1. Introduction

Current automatic speech recognition (ASR) systems are usually based on Hid-
den Markov models (HMMs) of phonemes; speech is modelled as a linear sequence
of these phonemes, like “beads on a string” (Ostendorf, 1999). Phonemes have
no explicit internal structure in these systems beyond the topology of the HMMs
used to model them (usually three emitting states in a simple left-to-right arrange-
ment) (Young, 2001). The accuracy of such systems appears to have reached a
plateau, motivating many researchers to look for alternative approaches. In this
chapter, a novel representation and classification framework based on symbolic
structural principles is presented. The exposition is based on our initial report
in (Gutkin and King, 2004b). The method we propose is motivated by the fact
that a symbolic space is well-suited for capturing and exploiting structural proper-
ties of speech which HMMs (and other models based on similar principles) fail to
capitalise on.

Since speech waveforms are not symbolic, we must make a transformation into
a symbolic representation. At a very low level, frame-based vector quantisation
will do this, but we reject this approach since the symbol set is chosen purely on
acoustic grounds. Other techniques, such as generalised feature extraction based
on structure detectors (Olszewski, 2002) have been proposed recently. Structural
detectors extract some very general (non-linguistic) symbolic information directly
from the signal and provide it as an input to syntactic pattern recognition frame-
works operating on time series data. Such approaches might potentially offer a
natural way of extracting symbolic features and further research is needed to es-
tablish whether they are suitable for Automatic Speech Recognition (ASR) tasks.
We have chosen to make the transition from vector-space to symbolic representation
at a linguistically well-motivated level: phonological features. Phonological features
are a representation of speech which has several attractive properties and are bet-
ter modelling units than conventional phonemes. Furthermore, it has been shown
in (Frankel and King, 2005; King and Taylor, 2000) that recurrent neural networks
can be successfully used to perform accurate phonological feature detection from
speech signals.

Once the fundamental symbolic units of representation are obtained from the
speech signal, the next issue which needs to be addressed is how to model the
objects. It appears that modelling in a symbolic space is inextricably linked with
the fundamental notion of a metric space. Briefly, a metric space is defined as
a collection of objects in some environment together with a dissimilarity measure
defined on these objects. The dissimilarity measure can take several names depend-
ing on the mathematical properties of this function, like metric, pseudo-metric and
others (see Section 2.2). In this chapter, we introduce a mathematical structure
for modelling which we call a phonological metric space. The objects of this space
(phonological templates) are the structural models of the phonemes of speech built
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using symbolic phonological distinctive features. We also define several dissimilar-
ity measures (phonological metrics) which operate on these objects. In particular,
during the formalisation of this new modelling space, we extend several concepts
and algorithms from conventional, string-based, structural pattern recognition to
phonological metric spaces.

Finally, we describe experiments on a standard ASR speech classification task
and compare the results with conventional numeric models. The goal of the ex-
periments was to verify the adequacy of the proposed metric space (object repre-
sentation and the metrics). In addition, we studied the behaviour of the symbolic
metric-based classification and clustering algorithms, when confronted with a large
symbolic dataset.

Overview of the chapter. This chapter is organised as follows. In Section 2.3
we introduce the structural object representation based on phonological feature
structure. We complete the proposal of the phonological metric space in Section 2.4
by introducing the symbolic dissimilarity measures operating on the phonological
objects. Various clustering and classification algorithms for the new metric space
are described in Section 2.5. Section 2.6 describes the experimental setup along
with the discussion of the results. We summarise the chapter in Section 2.7 and
present some future directions of research which will potentially improve our metric
space-based model.

2.2. Preliminaries: Metric Spaces

In this section, we briefly introduce the concept of a metric space, which will be
extensively used in the subsequent developments. The exposition is rather informal
and is based on several sources from general topology (Engelking, 1989; Khamsi
and Kirk, 2001).

A metric space is an axiomatisation of the notion of closeness of points: in a
metric space, to every pair of points corresponds a real number, which we treat as
the distance between them. The fundamental properties of the notion of a distance
are described by a following set of axioms.

Definition 2.1 (Metric Space). A metric space is a pair (M,d) where M is a
set and

d : M ×M → R+

is a mapping of the Cartesian product M ×M into the set of non-negative real
numbers R+ satisfying the following axioms:

(M1) d(x, y) = 0⇔ x = y.
(M2) d(x, y) = d(y, x), ∀x, y ∈M .
(M3) d(x, y) + d(y, z) ≥ d(x, z), ∀x, y, z ∈M .

The set M is called a space, the elements of M are called points, the function d is
called a metric on the set M and the number d(x, y) is called the distance between
x and y. �

Condition (M1) asserts that the distance between two distinct points is positive
and every point has distance zero from itself. Condition (M2) asserts that the
distance is a symmetric function, not dependent on the order of points x and y.
Condition (M3), called triangle inequality states that the sum of two sides of a
triangle, formed by the three points, is not smaller than the third side.

The concept of a metric space derives from a more general concept of a semi-
metric (sometimes also called pre-metric) space, defined below:
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Definition 2.2 (Semimetric Space). A pair (M,d) only satisfying the two
axioms (M1) and (M2) is called a semimetric space. Thus, a semimetric space is a
metric space if it satisfies the triangle inequality (M3). �

An even more general metric space is defined below:

Definition 2.3 (Pseudo-Metric Space). A function d defined on the set M×M ,
assuming non-negative real values, satisfying the condition (M2) and the following
condition

(M1’) d(x, x) = 0, ∀x ∈ X

is called a pseudo-metric on the set X. �

As we can see, the pseudo-metric space is a space satisfying the symmetry
condition (M2). In addition, it relaxes the requirement that the distance between
two different objects has to be non-zero. Condition (M1’) only requires the distance
from any object to itself to be zero.

2.3. Phonological Object Representation

Having briefly introduced the concept of a metric space in the previous section,
we are ready to consider the first core notion which was used in the that definition,
namely the concept of an object. As was mentioned at the beginning of this chapter,
we chose to represent speech on the phonological level in terms of phonemes. The
phonemes, therefore have to be treated as the structured objects of the representa-
tion and our goal in this section is to provide the structural means of description
for the phonemes.

In Section 2.3.1, we briefly describe the atomic structural units used for the
construction of the representation. These units correspond to phonological distinc-
tive features. Detection of the phonological distinctive features in continuous speech
is introduced in Section 2.3.2. Since the outputs of feature detector are not sym-
bolic, we must make a transition to a symbolic representation. This vector space
to symbolic space mapping, provided by the means of quantisation, is described in
Section 2.3.3. Finally, in Section 2.3.4 we introduce the symbolic objects obtained
by the above steps — the phonological feature templates.

2.3.1. Atomic Representational Units: Phonological Features. What
are the atomic units of speech representation ? For numeric models, these units are
provided by the real numbers which form the foundation of vector spaces. Structural
approaches, on the other hand, allow more freedom of choice when it comes to the
atomic units of representation. This freedom allows one to choose units which are
more abstract, and thus more expressive, than the numeric ones.

The atomic units of representation we chose consist of a set phonological dis-
tinctive features. Distinctive features are seen in various phonological theories as
the atomic units fully and economically describing the phonemic inventory of any
given language. In turn, a phonemic inventory (usually consisting of a few dozen
categories) is used to describe the possibly unlimited range of sounds (phones or
segments) encountered in spoken language. Any phoneme is a minimal contrastive
sound unit of a language (two phones are different phonemes if they produce phono-
logical contrast). It is represented as a bundle of simultaneous atomic units, whose
combination of properties makes a phoneme. Moreover, since the distinctive fea-
tures possess well defined semantics, they are considered by many to be the basic
units of linguistic analysis (Jakobson, 1978).

The ideas which led to the establishment of a Distinctive Feature Theory first
appeared in the work of Trubetskoy (1958), Jakobson et al. (1963) and Jakobson and
Halle (1971). The appearance of Transformational Generative Grammar (Chomsky,
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Feature Possible Values

centrality central full nil
continuant continuant noncontinuant
frontback back front
manner vowel fricative approximant

nasal occlusive
phonation voiced unvoiced
place low mid high

labial coronal palatal
corono-dental labio-dental
velar glottal

roundness round non-round
tenseness lax tense

Table 2.1: The multivalued feature system. All features can additionally take the
value ’silence’.

1957), made it possible to formalise the earlier observations within the theory of
Generative Phonology. In addition to providing a compact means of representing
phonemes, distinctive features were shown by Chomsky and Halle (1968) to be an
efficient tool for concisely representing the complex phonological processes, such as
assimilation (for example, the [n] sound in “in” becomes [m] when followed by [b] in
the word “in-between”). The assimilation process which transforms [n] into [m] is
concisely explained by the spreading of one feature — place of articulation — from
the [b] backwards into the [n] (King and Taylor, 2000).

There is no consensus among the abundant phonological feature theories as
to what constitutes the “right” set of distinctive features. Among various feature
systems one can find the binary feature system of Chomsky and Halle (1968), the
Government Phonology primes of Harris (1994), Feature Geometry of Clements and
Hume (1995) and many others.

Despite the differences between various feature systems, there are three common
principles to which they adhere:

• The feature set should be able to characterise all the contrasting segments
in human languages, preferably by use of independent and non-redundant
fundamental units. In particular, this means that the feature set should be
universal, not dependent on a phonemic inventory of a particular language.
• The feature set should be able to concisely and clearly describe the natural

classes. The “naturalness” alludes to the fact that there must be some
universal patterns of phonological processing among humans which are
“natural” and language-independent.
• Transparency with regard to phonetic correlates. This allows the estab-

lishment of phonetic similarity by grouping the sounds by common distinc-
tive features. Hence one can relate the behaviour of phonological processes
to their corresponding phonetic (surface) realisations.

We use one of the most popular feature systems motivated by the work of Lade-
foged (2001): multivalued features. Each of these features takes one of several
possible values — for example, manner of articulation is one of: approximant, frica-
tive, nasal, stop, vowel and silence. The multivalued feature system is shown in
Table 2.1.
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For our experiments, described at the end of this chapter, we used a smaller
subset of the multivalued feature system: front-back, place of articulation, manner
of articulation, roundness and voicing. The motivation for this particular choice of
features is provided in (King and Taylor, 2000).

2.3.2. Detecting Distinctive Features in Continuous Speech. In this
section we briefly outline the mechanism for an automatic detection of phonological
distinctive features in continuous speech. Such a mechanism is necessary because
it facilitates the automatic construction of the final representation. At this point
in the chapter we would like to note that this step during the construction of the
representation is a classifier in itself.

The automatic detection of phonological distinctive features has received sig-
nificant attention in the ASR community. This interest is primarily fuelled by the
apparent limitations of the traditional acoustic approaches to ASR, such as Hid-
den Markov Models (HMMs). In the traditional approach to ASR (see Young, 2001
and Jelinek, 1997 for an overview), speech is usually represented by a linear sequence
of acoustic models, arranged like “beads on a string” (Ostendorf, 1999). Each model
represents a phoneme or short context-dependent sequence of phonemes (this ar-
rangement is due to the fact that words in the lexicon can easily be re-written as
sequences of phonemes). For a critique of this approach to modelling, see Osten-
dorf (1999) and King and Taylor (2000). Among the problematic issues are the
following:

• The models have to take the highly context-dependent nature of phonemes
into account. This is, however, computationally intractable since inclusion
of the context (previous phone, for instance) leads to an exponential ex-
plosion in the number of model parameters to estimate during the learning
stage.
• It is assumed that the sequence of acoustic observations, which are highly

dynamic and nonlinear, can be synchronised with a linear sequence of
phonemes (models).

In order to address these concerns, some researchers have argued for the use
of alternative units for ASR (Ostendorf, 1999). Among the candidates for the pro-
posed alternative units are distinctive phonological features (King and Taylor, 2000;
King et al., 2000). In particular, King and Taylor have shown in (King and Taylor,
2000) that recurrent neural networks can be successfully used to perform accurate
phonological feature detection from speech signals (the details on the performance
of the detector are given later on in this chapter, in Section 2.6.2). This detection
can be viewed as a nonlinear mapping from the acoustic to the phonological space.
We used their methodology in our work and the details of the experimental setup
for detection of multivalued features (Gutkin and King, 2004b) are the same as
those described by Wester (2003).

Let
{
f1, . . . , fNf

}
denote the set of Nf multivalued features. In Section 2.3.1

we mentioned that each multivalued feature fj , 1 ≤ fj ≤ Nf , is not binary, but can
take multiple values (the number of which will be denoted by Mfj

). The neural
networks that recover multivalued features (one neural network for each of the Nf

features) from speech use a 1-of-Mfj
encoding on their output units. Hence there

are Mfj real-valued outputs (ranging from 0 to 1) for each feature fj . The total
number of such values produced by the neural network for each speech frame is

(2.1) N =
Nf∑
j=1

Mfj .
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vowel
fricative
approximant
nasal
occlusive
silence

iy kcl k ix n aa m ix kcl k ah pcl b ae kcl k s pau

vowel
fricative
approximant
nasal
occlusive
silence

iy kcl k ix n aa m ix kcl k ah pcl b ae kcl k s pau

Figure 2.1: Example network output for the words “...economic cutbacks” for the
manner feature of the multivalued feature system. The top plot shows the target
values as derived from the canonical phoneme representation. The bottom plot
shows the output of the neural net. Reproduced with permission from King and
Taylor (2000).

Since the training data (TIMIT corpus of read speech described by Garofolo et al.,
1993) is fully labelled and segmented (by human experts), it is possible to label
each frame in the data with the corresponding phonological feature values. Network
training is achieved by specifying canonical targets (0 or 1) for each labelled frame,
but at runtime the output activation values take continuous values between 0 and
1, and the features change value asynchronously (see Figure 2.1).

Example 2.1. Figure 2.2 shows the phonemes and the syllables (the first two
graphs on the top of the figure) of an utterance “the cat’s meow” expressed by
multivalued distinctive features (the three bottom graphs) automatically recovered
from the TIMIT corpus of read speech by Wester (2003). Manner, voicing and
place of articulation features are shown. The symbols [kcl] and [tcl] are closures
corresponding to stops [k] and [t] while [h#] is a silence marker. As can be seen
from Figure 2.2, the nonlinear mapping from acoustic to phonological space exhibits
asynchrony, with each individual features usually not changing value directly at the
phoneme or syllable boundaries. For example, the devoicing at the onset of “cat’s”
occurs after the left phoneme boundary of [k] (the labels are placed at the start of
segments). B

2.3.3. Transition to Symbolic Space. During run time, the outputs of the
feature detecting neural networks are not binary but continuous (ranging from zero
to one) and can be interpreted as probabilities of certain features being present in
the sound corresponding to the current frame. Since each probability measurement
recovered in this way has a direct linguistic interpretation, we assume that this
numeric measurement corresponds to a certain linguistic fact (e.g. degree of voicing)
and can thus be represented symbolically, turning the neural networks into an
effective structural detector.

For each of the Nf multivalued features it is therefore possible to map the Mfj

continuous activation values of the corresponding neural network into the symbols
using simple quantisation over some finite alphabet Σ, effectively obtaining Mfj

independent time series, which we call string streams. The overall number of distinct
streams obtained using this procedure is N , where N is given by equation (2.1).
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Figure 2.2: Phonemes and syllables of an utterance “the cat’s meow” expressed by
multivalued distinctive features. Manner, voicing and place of articulation features
are shown. The symbols [kcl] and [tcl] are closures corresponding to stops [k] and
[t] while [h#] is a silence marker. This figure has been produced by the software
developed by Wester (2003) for her research.

Note that each vector of N symbols thus obtained corresponds to one speech frame.

Example 2.2. Figure 2.3 shows a simple quantisation process of some contin-
uously valued output into the string over some three symbol quantisation alphabet.
The resulting symbolic stream consists of 10 symbols.

It is important to note that the names of the symbols (high, mid and low)
in Figure 2.3 (and in Figure 2.5 on p. 45) denote the ranges of the quantised
probability values rather than the values of the distinctive phonological feature
place of articulation from Table 2.1 (p. 40). B

2.3.4. Phonological Templates. The speech has now been transformed into
a sequence of vectors of symbols (N symbols for each frame). Given the phonemic
boundaries, the speech can now be seen as a linear sequence of symbolic matrices,
each identifying a phoneme in terms of its distinctive phonological features. We are
now ready to introduce the most fundamental element of the representation — the
objects. In what follows, we shall explain how these objects can be defined via the
symbolic matrices and also discuss the structure of these objects in more detail.

Our phoneme representation system is based on the objects which we call
phonological templates (or simply templates). Each phoneme class P is a set

{
p
}

of one or more templates. Each template p is a realisation of class P , encountered
in the data. It is convenient to represent a template as a matrix of symbols. A
template p of class P , p ∈ P , is shown in a matrix format in Figure 2.4, where tp
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low

mid

high

1.0

0.0

0.3

0.6

Figure 2.3: Example of a quantisation of one output activation value of a neural
network over a three symbol alphabet. The resulting stream consists of 10 symbols.

is the start time, kp is the duration of p in frames and N is the fixed number of
distinctive phonological feature-values given by equation (2.1).

f
tp

1 f
tp+1
1 · · · f

tp+kp−1
1

f
tp

2 f
tp+1
2 · · · f

tp+kp−1
2

· · · · · · · · · · · ·
f

tp

N f
tp+1
N · · · f

tp+kp−1
N

→t

Figure 2.4: Matrix representation of a phonological template p from class P . Du-
ration of phoneme p is given by the number of frames kp.

Example 2.3. Figure 2.5 shows a simple representation for the two-class prob-
lem consisting of [p] and [b] stop consonants (two instances of each), for each of
which two realisations are available. In other words, a class P/p/ of unvoiced bil-
abial stops [p] is represented by two templates p1

/p/ and p2
/p/. A class P/b/ of voiced

bilabial stops [b] is represented by another two templates p1
/b/ and p2

/b/.
For the ease of visualisation only, we have chosen the SPE distinctive feature

system, first introduced by Chomsky and Halle (1968). The reason for doing this
is because the example above is easier to visualise with the SPE feature set. It
is important to note that the template-based representation, which we introduced
above, can represent SPE streams as well as multi-valued feature streams.

Each template consists of three independent distinctive feature streams (over
a three-symbol alphabet) from the SPE features system ([tense], [consonantal] and
[sonorant]) defined in (Chomsky and Halle, 1968). The three symbols can be in-
terpreted as feature being absent from the makeup of the phoneme (low), feature
undergoing a transition (mid) and feature being present (high). B

This representation has a number of attractive features. For example, it ac-
counts for duration. Since the durations of templates vary, even within the set
representing a class (phoneme), templates of various durations can be used for a
given class. Aspects of co-articulation (such as assimilation, described above) can
be accounted for, since the features are represented explicitly and independently.
They can change value anywhere within a given template. Finally, this representa-
tion is amenable to human examination since its components have explicit linguistic
interpretation. One of the shortcomings of this representation is, that at present,
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p1
/p/ p2

/p/

high

mid

low

p2
/b/p1

/b/

Tense

Consonant.

Sonorant

Figure 2.5: Simple three stream template representation of phonemes [p] and [b]
(two instances of each) over a three symbol alphabet. The features [tense], [con-
sonantal] and [sonorant] belong to the SPE (Chomsky and Halle, 1968) feature
set.

we have no way of modelling the feature spreading from one template on to the
next one. This is because each template only has the knowledge of its own speech
frames.

2.4. Phonological Metrics and Metric Space

Having introduced the phonemic templates, which are the structural objects in
our representation, in this section we introduce the second fundamental component
of the representation, without which the representation is not complete — the met-
ric. The metric defined on the phonological templates allows us to introduce the
complete representation — the metric space.

In Section 2.4.1, we define (in general terms) the metric on a set of phonological
templates from the previous section. This allows us to complete the definition of
the phonological metric space for our approach. We conclude the exposition in
Section 2.4.2, where we give a more detailed account of the metric we use in our
approach.

2.4.1. Phonological Metric Space. Once the structural representation is
obtained by means of quantisation of neural network outputs, the next step is to
introduce a similarity measure, defined on phonological templates.

When defining the phonological templates in Section 2.3.4 we mentioned that
each template p from some class P consists of N strings of the same length kp over
a finite alphabet Σ. We called these strings streams.

In Section 2.2, the concept of a metric was defined to be a real-valued mapping
on a set of all objects in the domain under investigation. For our phonological
representation, the set of all objects is given by the set of all phonological templates
which we denote by P. The real-valued mapping on the set P will be denoted
by dP. We proceed by defining a metric space corresponding to our structural
representation:

Definition 2.4 (Phonological Metric Space). A phonological metric space is a
pair (P, dP), where P is a set of all possible templates having N streams and

dP : P× P→ R+

is a mapping of the Cartesian product P × P onto the set of non-negative real
numbers R+, such that

(2.2) dP =
N∑

i=1

di ,

where di can be any chosen string similarity measure, satisfying the metric axioms
from Definition 2.1. �
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Remark 2.1 (Naming Convention). Note that the resulting properties of the
metric space are essentially dictated by the per-stream distance functions di. The
necessary conditions for the satisfaction of metric axioms by the template metric
dP can be violated if di are not metric functions. In such a case, the resulting space
is not a metric space. For the sake of brevity, in this chapter we will continue to
refer to such spaces as metric spaces. �

The following are the important assumptions we make:
• Since it is not clear whether the use of several different metrics di for

defining the template metric dP in equation (2.2) can be justified on lin-
guistic grounds, we prefer to keep the modelling simple and use the same
type of metric for all the streams of any given template, i.e.

(2.3) ∀i ∈ [1, N ] : di = d .

Thus, given any two templates, p and q, the distance between them is
defined by

dP(p, q) =
N∑

i=1

d(sp
i , s

q
i ) ,

where sp
i and sq

i are the two strings representing stream i of p and q.
• Since the metric d, defined in equation (2.3), is common to all the string

streams si in the template p, all the streams have to be defined over a
common alphabet Σ.

2.4.2. String Metrics. In the previous section, we have defined the metric
dP operating on the set of phonological templates P in terms of the constituent
metric d. Since each stream is a string, metric d has to be a string metric. In this
section we introduce the metrics we use in our work.

In general, string metrics are usually defined in terms of edit costs. A string edit
distance, introduces a set of edit operations with costs associated with each edit
operation and defines the distance between the two given strings as a minimum
(possibly weighted) cost sequence of edit operations needed to transfer one string
into another. Algorithms developed for this formalism use either character-based or
block-based operations. In our work we use the more popular character edit distance
algorithms. Several principles underlying the operation of string edit distances are
introduced in Section 2.4.2.1, along with some important definitions.

The first, and by far the most popular, character edit distance algorithm was
proposed by Levenshtein (Levenshtein, 1966; Sankoff and Kruskal, 1983) and im-
proved by Wagner and Fisher who, in their classical paper (Wagner and Fisher,
1974), suggested an algorithm based on dynamic programming which achieves a
time complexity of O(n ·m), where n and m are lengths of the two strings to be
compared. This algorithm has been used for decades in many applications. For
example, in bioinformatics this algorithm was used for measuring the similarity of
DNA and protein sequences (Needleman and Wunsch, 1970; Smith and Waterman,
1981). We briefly introduce this algorithm in Section 2.4.2.2.

An alternative metric, called the normalised edit distance, has been proposed
by Marzal and Vidal (1993). They argued that the normalised edit distance is
better suited for pattern recognition tasks than the classical edit distance. Based
on their findings we decided to use this metric in our work as well. We describe
this algorithm in Section 2.4.2.3.

2.4.2.1. Preliminaries. Given the two strings

A = a1, a2, . . . , an and B = b1, b2, . . . , bm
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over some finite alphabet Σ, the aim is to compute the edit distance between A and
B. An additional symbol, not belonging to an alphabet Σ, is an empty symbol (or
empty string) denoted by ε.

Definition 2.5 (Edit Operation). An edit operation is an ordered pair (ci, cj) 6=
(ε, ε), where ci, cj ∈ Σ ∪

{
ε
}
. String B results from string A via (ci, cj) if

A = S1ciS2 and B = S1cjS2

for some strings S1 and S2 over Σ. The pair (ci, cj) is called a replacement if
ci 6= ε, cj 6= ε, a deletion if cj = ε and an insertion if ci = ε. �

Definition 2.6 (Edit Sequence). A sequence E of edit operations is called an
edit sequence. Let

E = e1, e2, . . . , ek

be an edit sequence. B is said to be derivable from A if there exists a sequence of
strings S0, S1, . . . , Sk such that A = S0, B = Sk and for 1 ≤ i ≤ k, Si results from
Si−1 via ei. In the worst case scenario, B is always derivable from A via a sequence
consisting of n deletions and m insertions. �

Definition 2.7 (Edit Cost Function). A cost function δ is a binary mapping
assigning a non-negative real number to each edit operation (ci, cj). Thus, the cost
of a sequence E of length k is given by

δ(E) =
k∑

i=1

δ(ei) . �

2.4.2.2. Wagner-Fisher Algorithm. Based on the definitions from the previous
section, we can now define the weighted edit distance between the strings A and B:

Definition 2.8. The edit distance δ between the strings A and B is given by

δ(A,B) = min
{

δ(E) | B derives from A via E
}

. �

An efficient algorithm proposed by Wagner and Fisher for calculating the above
weighted edit distance proceeds as follows: Let

A(i, j) = ai, ai+1, . . . , aj and B(i, j) = bi, bi+1, . . . , bj

denote the two substrings of A and B. Also let

Ai = a1, a2, . . . , ai , Bj = b1, b2, . . . , bj , δi,j = δ(Ai, Bj) .

Construct a (n + 1)× (m + 1) matrix

D = (di,j) i ∈ [0, n], j ∈ [0,m] .

The first row and the first column of the matrix D are given by

d0,0 = 0 , d0,j = δ(ε, Bj) =
j∑

k=1

δ(ε, bk) , di,0 = δ(Ai, ε) =
i∑

k=1

δ(ak, ε)

and all the other elements of the matrix D are given by

di,j = δi,j .

Wagner and Fisher (1974) proved the following recursive relation:

Theorem 2.1 (Recursive Relation). At each iteration of the computation,

δi,j = min
(
di−1,j−1 + δ(ai, bj) ,

di−1,j + δ(ai, ε) ,

di,j−1 + δ(ε, bj)
)
,

where i ∈ [1, n], j ∈ [1,m].
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Proof. See (Wagner and Fisher, 1974). �

At the last iteration of the algorithm, the edit distance between the two strings
is given by δ(A,B) = dn,m. The algorithm uses O(n · m) elementary steps and
O(n ·m) space.

An open area of research deals with attempts to lower the worst case quadratic
bound of this algorithm. The algorithm by Masek and Patterson (1980; 1983)
achieves the best known bound of O(m · n/ log n). Additional improvements in
time complexity have been obtained by Cole and Hariharan (1998); Landau and
Vishkin (1986); Myers (1986). However, Masek and Patterson’s worst case bound
has not been surpassed.

2.4.2.3. Normalised Edit Distance. An alternative metric we use is the nor-
malised edit distance proposed by Marzal and Vidal (1993). The normalised edit
distance between the two strings A and B is defined as the minimum quotient be-
tween the sum of weights of all the edit operations required to transform A into B
and the length of the editing sequence corresponding to these operations. Stated
as an optimisation problem (Vidal et al., 1995), the computation of the normalised
edit distance is defined as

δ(A,B) = min
E∈E

δ(E)
|E|

,

where δ(E) is the cost of the editing sequence E from Definition 2.7, |E| is the length
of the editing sequence and E is the set of all possible edit sequences between A
and B.

A straightforward procedure for computing δ(A,B) would require expanding
all the possible editing sequences between A and B and computing the correspond-
ing normalised weights. This approach would require an exponential computing
time. Instead, Marzal and Vidal (1993) proposed the following efficient procedure
employing the construction of the following (n + 1)× (m + 1)× (n + m + 1) matrix
D. Let

D = (di,j,k) i ∈ [0, n], j ∈ [0,m], k ∈ [0, n + m] .

Theorem 2.2 (Recursive Relation). Let n and m be the lengths of the strings
A and B to be compared. Then

∀i, j, k 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ n + m :

(1) If max(i, j) ≤ k ≤ i + j then

di,j,k = min
(
di−1,j,k−1 + δ(ai, ε) ,

di,j−1,k−1 + δ(ε, bj) ,

di−1,j−1,k−1 + δ(ai, bj)
)
;

(2) Otherwise, if k < max(i, j) or k > i + j then di,j,k =∞.

Proof. See (Marzal and Vidal, 1993, Theorem 4.2). �

The other values are calculated as follows:

Theorem 2.3. The following equalities are satisfied for the rest of the entries
of matrix D:

(1) ∀i, 1 ≤ i ≤ n :

di,0,i =
i∑

l=1

δ(al, ε) and ∀k 6= i : di,0,k =∞ ;
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(2) ∀j, 1 ≤ j ≤ m :

d0,j,j =
j∑

l=1

δ(ε, bl) and ∀k 6= j : d0,j,k =∞ .

Proof. See (Marzal and Vidal, 1993, Theorem 4.3). �

Having recursively populated the matrix D using the relations from Theo-
rems 2.2 and 2.3, the normalised edit distance is given by the following equa-
tion (Marzal and Vidal, 1993, Theorem 4.1):

δ(A,B) = min
max(n,m)≤k≤n+m

dn,m,k

k
.

The algorithm described above has a time complexity of O(m · n · (n + m)).
The pseudocode for this algorithm is shown in Figure 2.6.

Normalised Edit Distance(A, B)

1 N← |A|; M← |B|
2 D is an array of dimension (N + 1,M + 1,N + M + 1).
3 D[0, 0, 0]← 0; D[0, 0, 1]←∞;
4 for j ← 1 to M do
5 D[0, j, j − 1]←∞; D[0, j, j + 1]←∞
6 D[0, j, j]← D[0, j − 1, j − 1] + δ(ε, B[j])
7 for i← 1 to N do
8 D[i, 0, i− 1]←∞; D[i, 0, i + 1]←∞
9 D[i, 0, i]← D[i− 1, 0, i− 1] + δ(A[i], ε)

10 for j ← 1 to M do
11 D[i, j, max(i, j)− 1]←∞
12 for k ← max(i, j) to i + j do
13 D[i, j, k]← min

(
D[i− 1, j, k − 1] + δ(A[i], ε),
D[i, j − 1, j − 1] + δ(ε, B[j]),
D[i− 1, j − 1, k − 1] + δ(A[i], B[j])

)
14 D[i, j, i + j + 1]←∞
15 d←∞
16 for k ← N to N + M do
17 d← min

(
d, D[N,M,k]

k

)
18 return d

Figure 2.6: Pseudocode for computing the Normalised Edit Distance (Marzal and
Vidal, 1993) between the two strings A and B.

A faster version of this algorithm was proposed by the same authors in (Vidal
et al., 1995) and further improved by Arslan and Egeciognu (2000) for the cases
when the cost function is uniform (i.e. when the costs are associated with the type
of the operation and do not depend on a particular symbol). The normalised edit
distance was shown to outperform its un-normalised counterpart (regular string
edit distance from the previous section) on several small pattern recognition tasks,
including hand-written digit (Marzal and Vidal, 1993) and chromosome (Mart́inez-
Hinarejos et al., 2003) recognition.
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2.5. Prototype Selection and Classification

Since the phonological metric space (P, dP) under investigation possesses a spe-
cific template-based structure, in this section we generalise several techniques to
operate in the phonological metric space and address the two issues: the efficient
selection of templates by clustering and classification.

For each phoneme (class) in the training and test sets, the set of phonologi-
cal templates derived from the speech signal is usually large. Since the symbolic
metrics operating on the objects in question are much slower than their numeric
counterparts, it is therefore desirable to have a clustering procedure for selecting a
small set of the most typical (representative) members of any given class. In order
to introduce the clustering procedure, we need to properly define the concept of a
mean of a set of phonological templates. In Section 2.5.1 we introduce this notion
via the generalisation of the concept of a mean for the set of strings and provide
two different algorithms for computing the most typical phonological template with
respect to a given set. The clustering procedure is then introduced in Sections 2.5.2
and 2.5.3.

In Section 2.5.4, we address the issue of supervised classification in the phono-
logical metric space and briefly introduce the generalisation of the efficient symbolic
version of the popular k Nearest Neighbour classification rule.

2.5.1. Template Means and Medians. In what follows, we distinguish be-
tween the notions of a mean and a median. The median is an object which belongs
to a supplied set. The mean is an object produced by a non-trivial construction
procedure and does not necessarily belong to a set. The mean can be thought of as
a generalisation of a median. This distinction is necessary to avoid the confusion
between these two notions in the symbolic setting.

2.5.1.1. From String to Template Medians. Given the set of strings and a dis-
tance defined on this set, the most obvious choice for the most typical element is a
median string, which is defined as an element of a set with a minimal sum of (possi-
bly squared) distances to all other elements. Consequently, we define a median for
the set of phonological templates by a trivial generalisation of a notion of median
string as follows:

Definition 2.9 (Median Phonological Template). Given a metric space (P, dP)
and a set P , P ⊂ P, the median phonological template ps is the member of the set
P that is defined as

p = arg min
p∈P

∑
q∈P

dP(p, q) ,

where dP is the template distance from Definition 2.4. �

The time complexity of this algorithm is O(N · |P |2 · L2) where

L = max
p∈P
|p|

is the maximum length (duration) found among all the templates in a set P , |P | is
its cardinality and N is a fixed number of streams in any given template p.

Note, that the notion of a median string breaks down for very small sets. For
example, given a set consisting of only two strings, it is not possible to decide which
one of the two strings is more representative of the set (Mart́inez-Hinarejos et al.,
2003).

2.5.1.2. From String to Template Means. An alternative to string median is
the string mean (Kohonen, 1985). The mean string is a string minimising the sum
of distances to each string of the set, but that does not necessarily itself belong to
the set.
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Definition 2.10 (Mean String). Given a set of strings S over a finite alphabet
Σ and some string metric d defined on this set, the mean (or generalised median)
string of a set S is defined as

s = arg min
x∈Σ∗

∑
y∈S

d(x, y) . �

The search for the mean string is NP-hard and in the worst case scenario, no
efficient algorithm can be devised (de la Higuera and Casacuberta, 2000; Mart́inez-
Hinarejos et al., 2003; Nicolas and Rivals, 2003). However, efficient techniques
for computing an approximation exist (Fischer and Zell, 2000; Kohonen, 1985).
We adopted a greedy algorithm proposed by Casacuberta and de Antonio (1997).
This algorithm is shown in Figure 2.7 (p. 52). The algorithm constructs the mean
string symbol by symbol, making use of the dynamic programming approach for
computing the Levenshtein distance. The time complexity of this algorithm is
O(K2 · |Σ| · |S|), where K is the length of the biggest string in S. This algorithm
has recently been further improved by Mart́inez-Hinarejos et al. (2003).

We treat the streams independently. Hence, given a set of templates P , we can
find N string means independently, one for each of the N sets of streams comprising
the set P . We then define a mean phonological template for a set P by constructing
a template which consists of the discovered N string means.

2.5.2. Clustering Algorithms. Given a phonological metric space (P, dP), a
finite set of templates P ⊂ P and a positive integer k, the goal is to organise (cluster)
the templates (in some optimal or suboptimal way) into a set Q of k clusters based
on their dissimilarity dP. This is often referred to as partitional clustering (Jain
et al., 1999), as opposed to hierarchical clustering that produces a nested series
of partitions based on some dissimilarity-based criterion for merging or splitting
clusters.

Perhaps the most widely used partitional clustering algorithm is k-means (also
known as the basic ISODATA algorithm) (Duda et al., 2001; Jain and Dubes, 1988).
In a vector space (numeric) setting, the basic structure of the k-means algorithm
is as follows:

(1) Initialisation: The traditional approach is to randomly generate k clusters
and determine the cluster centres (centroids) or directly generate k seed
points as cluster centres. The centroid is the point generated by computing
the arithmetic mean for each dimension separately for all the points in the
cluster.

(2) Assign each point to the nearest cluster centre.
(3) Recompute the new cluster centres.
(4) Repeat until some convergence criterion is met (usually, the algorithm is

considered to have converged if the cluster assignments have not changed
from the previous iteration).

Despite maximising inter-cluster (or minimising intra-cluster) variance, the algo-
rithm is suboptimal because it can converge on a local minima of variance. The
main advantages of this algorithm (despite its sub-optimality) are its simplicity
and speed, which allows it to run on large datasets. A special issue, addressed
in the next section, is the issue of the initial cluster assignment. Changing the
initialisation strategy usually affects the final partition.

The algorithm can be generalised to operate in the symbolic space (P, dP) if
instead of the familiar numeric means (vectors), any symbolic equivalents of means
are used. In particular, in our work we used the mean and median templates from
Section 2.5.1 to represent the cluster centroids. In what follows, we refer to this
generalised version of the algorithm as k-medians.
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Approximate Mean String(S)

1 Input: A finite set S of strings over Σ∗.
2 Output: A string over Σ∗.
3 Auxiliary:
4 ∀x ∈ S : Rx[0 . . |x|, 0 . . 1] � score (integer array)
5 ∀x ∈ S : Tx[0 . . |x|, |Σ| � temporary (integer array)
6 E[0 . . Mmax] � (integer array of prefix lengths)
7 M ← ε
8 for x ∈ S do � initialisation
9 Rx[0, 0]← 0

10 for i← 1 to |x| do
11 Rx[i, 0]← i
12 for j ← minx∈S(|x|) to maxx∈S(|x|) do
13 k ← j mod 2; l← (j − 1) mod 2; msym←∞
14 for a ∈ Σ do
15 add← 0
16 for x ∈ S do
17 Tx[0, a]← j; min←∞
18 for i← 1 to |x| do
19 Tx[i, a]← min

(
� string editing

Rx[i, l] + 1,
Tx[i− 1, a] + 1,

Rx[i− 1, l] + δ(x[i], a)
)

20 if min < Tx[i, a] then
21 min← Tx[i, a]
22 add← add + min
23 if msym < add then
24 msym← add; sym← a
25 M ← append(sym, M)
26 E[j]←

∑
x∈S

Tx[|x|, sym]

27 for x ∈ S do
28 for i← 1 to |x| do
29 Rx[i, k]← Tx[i, sym]
30
31 return prefix of M of length arg min

1≤j≤Mmax

(E[j])

Figure 2.7: Pseudocode for computing an Approximate Mean String (Casacuberta
and de Antonio, 1997) for a set of strings S.

It is important to note that by generalising the problem to symbolic spaces,
one is faced with the apparent increase in the computational complexity of the
problem due to the inherent complexity of the modelling space (for example, see NP-
completeness issues with regard to computing the mean template, Section 2.5.1).
As we have seen, however, several computable approximations exist.

2.5.3. Clustering Initialisation Criteria. One of the peculiarities of the
k-medians algorithm is that it is sensitive to the initial assignment of the clusters.
Various assignment strategies result in different final cluster partitions. In this
section we describe the two initialisation techniques we used in our work. The first
is the generalisation of the well-known symbolic version of the MaxMin algorithm.
The second is the initialisation technique we think is more suitable for modelling
the phonological templates - the Duration-based algorithm.
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2.5.3.1. MaxMin Initialisation. In a comprehensive study, Juan and Vidal (2000a)
compared four different initialisation techniques for the k-medians algorithm for
strings and favoured the generalised symbolic version of an efficient initialisation
technique called MaxMin (Tou and Gonzalez, 1974). This initialisation algorithm
iteratively selects one cluster centroid at a time. At each iteration i, 1 < i ≤ k,
the set Q consisting of i − 1 previously chosen centroids is augmented with the
centroid whose distance to its closest representative is maximum (Juan and Vidal,
2000a), i.e.

Qi =

{
rand(P ) if i = 1 ,

Qi−1 ∪
{
qi

}
if i > 1

where the operator rand(P ) selects an arbitrary element of a set P and

qi = arg max
p∈P\Qi−1

min
q∈Qi−1

dP(p, q) .

This algorithm performs approximately n(n−k) distance computations. The pseu-
docode for this algorithm is shown in Figure 2.8 (p. 53).

MaxMin(P, k)

1 Output: Q ⊂ P (Q ∈ P k)
2 Let: n← |P |
3 Auxiliary: D ∈ Rn

4 Q← ∅; D ←∞; q ← rand(P )
5 for i← 1 to k do
6 Q← Q ∪

{
q
}
; m← 0;

7 for p ∈ P \Q do
8 dpq ← dP(p, q)
9 if dpq < Dp then

10 Dp ← dpq

11 if Dp > m then
12 q ← p; m← Dp

13 return Q

Figure 2.8: Pseudocode for the MaxMin initialisation of k-medians clustering algo-
rithm (Juan and Vidal, 2000a) in a phonological metric space (P, dP). The algorithm
performs n(n− k) distance computations.

2.5.3.2. Duration-based Initialisation. An alternative initialisation technique
we investigated uses the duration of the training templates. Given the training
set of size M , the templates are first sorted by duration and the data is then di-
vided into k subsets, each containing M/k training templates with the centroids of
these k subsets chosen as initial centroids.

This initialisation technique tries to account for the (possibly) high variance
in the durations of the templates belonging to a set P to be clustered. Hence, the
clusters are initially grouped according to their duration.

2.5.4. Classification. Perhaps the most popular classification technique is
the k Nearest Neighbour (k-NN) classification rule (Duda et al., 2001). In general,
the k-NN classifiers label an unknown sample with the label of the majority of the
nearest (with a smallest distance) neighbours. One of the most attractive properties
of this algorithm to us seems to be its generality. The k-NN classification rule is
entirely independent of objects in the symbolic space. Classification of the unknown
objects is based solely on the basis of the symbolic space dissimilarity measure.
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Given a phonological metric space (P, dP), a finite set of templates P ⊂ P, a
test template x ∈ P and a positive integer k, the goal is to compute an ordered list
of k-nearest templates P ∗ ∈ P k (and the corresponding distances D∗ ∈ Rk) to the
test template x.

Similar to clustering in symbolic spaces, a crucial issue which needs to be taken
into account is the issue of the computational complexity of the k-NN algorithm
in the symbolic space. For large training and test sets, calculation of dissimilarity
metrics may become computationally prohibitive due to the high complexity of the
symbolic metric at hand. Perhaps the fastest k-NN search algorithm designed to
cope with this problem is the k-Approximating and Eliminating Search Algorithm,
proposed by Juan et al. (1998). Experiments conducted by the them on a chromo-
some recognition task showed that the number of distances computed during the
search phase was very small and tended to be independent of the number of objects
in the training set.

The pseudocode for the k-Approximating and Eliminating Search Algorithm
(k-AESA) operating in a phonological metric space (P, dP) is shown in Figure 2.9
(p. 54). Briefly, the templates in the training set are divided into three sets (Juan
and Vidal, 2000a): selected (S), active (A) and eliminated (E), though only the
set A is maintained by the algorithm. Prototypes in S are those which have al-
ready been selected to compute their distances to the test template and build the
current solution. The rest of the templates are assigned to A or E in accordance to
the following lower bound function for the distance from a candidate (unselected)
template p to the test template:

gS(p) = max
p∈S
|dP(p, p)− dP(p, x)| .

Candidate templates whose associated lower bounds are smaller than the current k
smallest distance are assigned to A, while the others are eliminated from the search
(by including them into E).

k-AESA(P, x, k)

1 Output: P ∗ ∈ P k; D∗ ∈ Rk

2 Let: n← |P |
3 Preprocessing: Compute matrix of inter-template distances Dn×n ∈ Rn×n

4 Auxiliary: A ⊂ P; G ⊂ Rn

5 A← P ; D∗ ←∞; G← 0; p′ ← rand(A)
6 while |A| > 0 do
7 p← p′; dpx ← dP(p, x); A← A \

{
p
}

8 if dpx < D∗
k then

9 P ∗
k ← p; D∗

k ← dpx; Update P ∗ and D∗

10 g∗ ←∞
11 for a ∈ A do
12 Ga ← max(Ga, |Da,p − dpx|)
13 if Ga ≥ D∗

k then
14 A← A \

{
a
}

15 elseif Ga < g∗ then
16 p′ ← a; g∗ ← Ga

17 return P ∗ and D∗

Figure 2.9: Pseudocode for the k-Approximating and Eliminating Search Algorithm
(k-AESA) (Juan and Vidal, 2000b) operating in a phonological metric space (P, dP).
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2.6. Experiments and Discussion

2.6.1. The Database. Our experiments used the TIMIT database (Garofolo,
1988; Garofolo et al., 1993). The TIMIT corpus of read speech is designed to provide
speech data for acoustic-phonetic studies and for the development and evaluation
of automatic speech recognition systems. TIMIT contains broadband recordings of
630 speakers grouped into 8 major dialects of American English, each reading 10
phonetically rich sentences. The TIMIT corpus includes time-aligned orthographic,
phonetic and word transcriptions as well as a 16-bit, 16 kHz speech waveform file for
each utterance. The entire corpus is reliably transcribed at the word and surface
phonetic levels. Test and training subsets, balanced for phonetic and dialectal
coverage, are specified.

The standard training/test data partition is kept, with only the sx and si sen-
tences being used, resulting in 3,696 training utterances from 462 different speakers,
out of which 100 sentences were held out for cross-validation training of neural net-
works. The entire test set of 1,344 utterances from 168 speakers was used for the
classification experiment. None of the test speakers are in the training set, and
hence all the experiments are open and speaker independent. The phoneme set has
been reduced to 39 phonemes as in (Lee and Hon, 1989; Wester, 2003). There are
46,869 phone labels in the test set and 129,162 phonemic labels in the training set,
176,031 labels overall. This experimental setup is similar to the ones in (King and
Taylor, 2000) and (Wester, 2003).

2.6.2. Multivalued Feature Detection. The output of the feature detect-
ing neural networks, which we use in the experiments described in the next sections
of this chapter, was provided by Wester (2003). In this section we briefly mention
some of the details of the feature detecting system she used.

Wester (2003) used five multivalued feature groups (manner, phonation, place,
roundness and frontback) out of eight shown in Table 2.1. The architecture of the
feature detecting networks used by Wester is essentially similar to the one used
in (King and Taylor, 2000; King et al., 2000), with the exception of the number of
hidden (Kh) and output units (Ko) for each feature (see Table 2.2).

Frame duration of 25ms was used, with a frame shift of 10ms. For each 25ms
frame, the feature vector consisted of 12 Mel frequency cepstral coefficients (MFCC)
plus energy. Additional components of the feature vector included delta and accel-
eration (delta-delta) coefficients, forming a feature vector with an overall dimension
of 39. These feature vectors served as input (together with the context frames) to
the neural networks. Overall multivalued feature classification results, reported
by Wester (2003), calculated in terms of the number of correctly classified frames
are shown in the second column of Table 2.2. For more information on the archi-
tecture of the neural networks, the learning control parameters and the validation
strategy, refer to (Wester, 2003).

2.6.3. Derivation of Phonological Templates. In order to derive symbolic
phonological templates, we quantised the neural network output activations using
several different quantisation levels, each inducing a new alphabet Σ. For each
quantisation level, the redundant templates were removed from the resulting sym-
bolic training and test sets. By redundant templates we mean identical templates
which appear in the training and test sets as an artifact of quantisation. Table 2.3
shows the training and test set sizes obtained for several quantisation levels Σ and
the corresponding percentage of the overall number of redundant templates removed
from the training and test sets (with respect to the original 176,031 templates in
the training and test set).
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Feature % Frames Correct Kh Ko

manner 87.0 200 6
phonation 92.9 100 3
place 78.3 300 10
roundness 90.6 100 3
frontback 86.4 100 3

Table 2.2: Neural network architectures (given by number of hidden units Kh and
output units Ko) used by Wester and frame-wise classification results for multival-
ued features she reported (Wester, 2003).

Quantisation Level Training Set Test Set Redundancy (%)

3 107,284 42,061 15.1
5 117,968 42,198 9.0
7 118,433 42,214 8.7
10 124,962 42,540 4.8
15 125,151 42,554 4.7

Table 2.3: Number of templates in the training and test sets for each of the quan-
tisation levels |Σ| (alphabet sizes).

It can be seen from Table 2.3 that the increase in quantisation level leads to an
increase in the number of unique templates in both training and test sets. As the
size of the alphabet increases, the sizes of the symbolic training and test sets are
expected to asymptotically reach the original value of 176,031 templates, with the
measure of redundancy tending towards zero. The larger the size of the alphabet,
however, the larger the “symbolic variance”. As a result, symbolic modelling in
the metric spaces constructed over large alphabets becomes computationally more
expensive. For the experiments described below, we decided to fix the cardinality
of the quantisation alphabet to 10.

We assume that all the constituent streams of each phonological template are
independent, hence we are weighting them all equally. Overall, each template
has N = 25 streams corresponding to five multivalued features (see Table 2.2)
associated with it.

The next issue we need to mention is the weight scheme of the edit costs we use
when computing the weighted Levenshtein (given in Section 2.4.2.2) and normalised
(given in Section 2.4.2.3) edit distances. In general, given the metric space (P, dP),
where the phonological templates are constructed over some finite alphabet Σ, we
use a uniform weight scheme, whereby ∀x, y ∈ Σ each insertion cost δ(ε, x) and each
deletion cost δ(x, ε) is assigned the weight 1/|Σ| and each substitution operation
δ(x, y) is assigned the weight 2/|Σ|. The weights are independent of the respective
alphabet symbols.

2.6.4. Training Set Pruning. In order to reduce the number of templates
in the training sets P for each class of phonemes, we clustered these sets using the
k-median clustering algorithm described in Section 2.5. In order to apply clustering
and classification algorithms in the metric space (P, dP), we needed to generalise
the corresponding crucial concepts, such as the nature of a concept of a mean in
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this metric space. Table 2.4 shows the concepts and algorithms involved in the
clustering in metric space (P, dP), along with the corresponding notation.

Algorithm Type Available Algorithms Notation

Similarity Weighted Levenshtein Edit Distance DL
P

Normalised Edit Distances DN
P

Mean Median Template MS
P

Mean Template MG
P

Clustering k-medians with Duration-based initialisation KD
P

k-medians with MaxMin initialisation KM
P

Table 2.4: The concepts and algorithms involved in the clustering in metric space
(P, dP), along with the corresponding notation. The third column (notation) con-
tains the brief names which we use to refer to the corresponding algorithms.

In order to reduce the size of the data and obtain k templates per each training
set P representing the classes in question, we used two different clustering schemes:
k-medians with Duration-based initialisation (KD

P ) and k-medians with MaxMin
initialisation (KM

P ). The k-median procedure makes use of the concept of mean,
therefore, for each of the clustering strategies we used two different algorithms for
calculating the mean of the set of templates: the median template (MS

P ) and the
mean template MG

P . Moreover, for all of the above algorithms, we made use of two
different similarity measures defined on templates: the weighted Levenshtein (DL

P )
and normalised (DN

P ) edit distances.
Using the above algorithms, we reduced the size of the training set correspond-

ing to the quantisation alphabet with cardinality of 10, which we fixed in the
previous section. This training set consists of 124,962 templates (see Table 2.3).
We chose the training sets for each class to be represented by the following number
of templates: 5, 10, 15, 30, 50 and 100. In what follows, the number of templates
per class will be denoted |P |.

2.6.5. Classification. During the recognition stage, an efficient k-NN AESA
search technique (see Section 2.5.4) was used throughout and simple nearest neigh-
bour (NN) search based on the score of the top candidate (in terms of the smallest
distance to the test template) in the k-best list outperformed the majority voting
schemes.

Classification accuracy for the data obtained using a quantisation level of 10 is
shown in Table 2.5 for various values of |P | (5, 10, 15, 30, 50 and 100), which is
the number of centroids per class. As can be seen from Table 2.5, the schemes us-
ing weighted Levenshtein distance outperform those using normalised edit distance.
The schemes using duration-based initialisation outperform those using MaxMin.
These two findings indicate that accounting for duration is important. Also, the
schemes using median outperform the one using generalised median (mean), sug-
gesting that the construction of the mean of a set of templates (as opposed to
selecting an existing member of the set) is problematic.

The best result of 60.3% obtained in our experiments is lower than the state-of-
the-art phoneme classification results on the TIMIT database (39 class task, core
test set) reported in the literature:
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|P | 5 10 15 30 50 100

MS
P /DL

P /KD
P 54.73 58.41 58.84 59.01 59.61 60.26

MS
P /DN

P /KD
P 47.12 54.07 55.42 56.48 56.92 58.21

MS
P /DL

P /KM
P 49.89 50.62 50.03 50.59 50.74 54.12

MG
P /DL

P /KM
P 45.71 49.72 49.08 49.66 49.84 49.48

Table 2.5: Phoneme classification accuracy (%) for the TIMIT database.

• Zahorian et al. (1997) experimented with binary-pair partitioned (BPP)
neural network classifiers. They reported 77.0% phone classification ac-
curacy.
• Halberstadt and Glass (1997) reported the best phone classification ac-

curacy of 79.0% obtained using the hierarchical techniques for combining
mixture diagonal Gaussian classifiers.
• Clarkson and Moreno (1999) reported the results of several experiments

with Support Vector Machines (SVM). The best classification accuracy
of 77.6% was obtained with the SVM employing fifth degree polynomial
kernel.
• Choueiter and Glass (2005) employ a novel wavelet and filter bank frame-

work specifically designed for phonetic classification. They report the best
accuracy of 77.1%.

2.7. Summary and Potential Improvements

In this chapter we have introduced a linguistically motivated structural ap-
proach to continuous speech recognition based on symbolic representation of dis-
tinctive phonological features. The structures employing phonological distinctive
features are based on templates of strings. We have shown how existing notions and
algorithms over strings can be adapted to our representation by extending them
to operate in a specific metric space corresponding to our problem. We have also
presented the results of phoneme classification experiments.

Whilst the accuracy of the system is currently lower than those reported for
state-of-the-art numeric approaches, like Support Vector Machines (Salomon et al.,
2002) and context-dependent Hidden Markov Models (Young, 1992), we are rea-
sonably optimistic since:

• the structural framework we have used is both intuitive and interpretable;
• the results were obtained using standard algorithms widely used in the

structural pattern recognition community, especially bioinformatics;
• experiments were conducted on a task which is considered to be hard in

the structural pattern recognition community. Most of the algorithms we
employ have previously only been tested on small symbolic datasets;
• the system is currently very simple and there is considerable scope for

improvement.

Potential Improvements. Following is a list of several issues which need to
be improved on, but otherwise are outside the scope of this thesis:

Better modelling of temporal processes: By this we mean improving the mod-
elling power of the framework with respect to the inherent asynchrony of the phono-
logical features, as exhibited by assimilation and co-articulation processes which op-
erate across the phonemic boundaries. To this end, we note that the phonological
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structural representation presented in this chapter can (without loss of generality)
be extended to operate over larger syllabic, rather than phonemic, templates. As
observed by Wester (2003) and Greenberg et al. (2002), syllables are better suited
as units of linguistic analysis for modelling the asynchrony. This extension can be
achieved by syllabifying the lexicon and using the syllabic boundaries during the
derivation of the phonological templates.

Such an extension will increase the sizes of the phonological templates, with
each template now corresponding to a syllable. The computational burden on the
framework will therefore increase. In order to address this concern, we note that
the efficiency of the algorithms presented above can be improved by several means.
In particular, in order to handle larger templates, the constituent streams can be
compressed using the technique of run-length coding. Moreover, efficient similarity
algorithms operating on the run-length coded structures which were developed for
the case of strings (Apostolico et al., 1998; Bunke and Csirik, 1995; Mäkinen et al.,
2003), can be extended to operate over the templates. Such an extension will
include, in particular, the development of the concept of mean for the set of run-
length coded templates.

Better weight schemes: One of the assumptions we made was that the streams
comprising each phonological template are independent of each other, hence having
an equal weight in the metric space dissimilarity measure which was defined as
a sum of individual per-stream dissimilarities. This assumption is too restrictive.
While the streams may be logically independent, they are of differing importance.
For example, place of articulation feature in some circumstances might be more
important than roundness feature. Hence, in order for representation to improve,
the weights need to be introduced which better account for linguistic importance
of this or the other feature. This could potentially be done along the lines of
research suggested by Kondrak (2000). In addition, the optimal weights for the
edit operations could be discovered from the training data at hand, perhaps by
attempting to parametrise the edit distance algorithms to use fewer parameters
(edit costs), along the lines of research suggested by Oommen and Loke (1999).





CHAPTER 3

Pseudo-Euclidean Embedding of Phonological
Metric Spaces

3.1. Introduction

In the previous chapter, we described a classification framework based on
a structural representation of speech. In that structural framework, which we
called phonological metric space, phonemes are modelled as string templates at
a linguistically-well motivated level, making use of the underlying phonological fea-
ture structure.

Structural representations like this, while offering a greater representational
freedom than conventional vector-space approaches, have their shortcomings. The
chief being the fact that the ability to apply a wide range of analytical machinery,
which is available to us in vector spaces, is lost. In some cases there exist sym-
bolic space counterparts of well-known techniques, such as k-nearest neighbours
(discussed in Section 2.5), but their computational complexity is increased by the
absence of the vector space properties. For example, one of the clustering tech-
niques from the previous chapter uses the concept of a mean, which, while trivial
to compute in vector spaces, is considered to be an NP-hard problem when dealing
with the set of strings over a finite alphabet. It is thus not surprising that for
problems such as this, we can only expect rather complex solutions which, from
a computational point of view, are unlikely to match their vector-space counter-
parts. Such analytical limitations of the framework motivated us to consider a
theory which unifies the structural and vector-space approaches for the represen-
tation of complex spoken language data (or other tasks), on one hand providing
the representational convenience of symbolic spaces and on the other allowing us to
use vector space decision-theoretical tools. It is such a theory, originally proposed
by Goldfarb (1979; 1984; 1985) and studied over the years by Duin et al. (2004);
Graepel et al. (1999); Pȩkalska (2005); Pȩkalska et al. (2004) and Haasdonk (2003),
that we consider in this chapter. This chapter is partially based on our previous
work (Gutkin and King, 2004a).

It is the dissimilarity measure which plays a central role in the considered ap-
proach since it has been shown that, given a pseudo-metric space, it is always pos-
sible to construct an isometric mapping onto the corresponding pseudo-Euclidean
vector space. This space is a member of a class of spaces in which the inner products
between vectors are not restricted to be positive. Moreover, in many cases such
a construction cannot be accomplished in a classical Euclidean space (Goldfarb,
1985). A brief exposition into the theory of pseudo-Euclidean spaces is given in
Section 3.2.

In general, representation of patterns via their dissimilarity is an alternative to
direct feature-based representation and by constructing an isometric (i.e. distance-
preserving) embedding of the original pseudo-metric space all the information con-
tained in the training sample is preserved in the vector representation (see Hjaltason
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and Samet, 2003 for an overview). The issues involved in construction of the iso-
metric embedding of the original training set, as well as dimensionality reduction of
the resulting pseudo-Euclidean vector representation, are discussed in Section 3.3.

Once the vector representation of the original phonological metric space is con-
structed in some pseudo-Euclidean space, previously unseen objects from the test
set can be represented in that pseudo-Euclidean space too. This is done by cal-
culating the metric projection of a new object onto the vector space. Different
techniques for achieving this are described in Section 3.4.

Next, we describe the phoneme classification experiments conducted in pseudo-
Euclidean spaces. The pseudo-Euclidean spaces are constructed from the original
structural corpus with the help of the techniques mentioned above. We perform
experiments in dimensionality reduction and evaluate the performance of several
classifiers on small (three phonemes) and full (39 phonemes) classification tasks.
The experiments are discussed in Section 3.5. We conclude the chapter in Sec-
tion 3.6 and present some of the directions for future research.

3.2. Preliminaries: Pseudo-Euclidean Vector Spaces

This section provides a brief introduction to the theory of pseudo-Euclidean vec-
tor spaces, which are the generalisation of the Euclidean spaces. This generalisation
is manifest in the fact that the distance between the vectors in pseudo-Euclidean
space is not necessarily measured by the Pythagorean formula.

The most convenient way to arrive at a concept of generalised distance is by
using the concept of a symmetric bilinear form, introduced in Section 3.2.1. Briefly,
symmetric bilinear form Φ defined on some vector space V , allows one to calcu-
late the generalised inner product between any two vectors in V . By fixing the
symmetric bilinear form Φ of the space V , a pair (V,Φ) completely describes the
dissimilarity properties of the vectors in V . Note the intimate relation of this ap-
proach to topology (Engelking, 1989; Khamsi and Kirk, 2001). Various properties
of vector spaces equipped with symmetric bilinear forms have been studied in the
mathematical literature (Dieudonné, 1960; Gantmacher, 1959; Greub, 1967).

Section 3.2.2 presents a brief overview of the theory of the pseudo-Euclidean
spaces. The pseudo-Euclidean space is a real vector space in which the matrix
of inner products corresponding to the symmetric bilinear form is no longer con-
strained to be positive definite, i.e. the squared norm (defined as an inner product
between the vector and itself) is not constrained to be positive. The theory of
pseudo-Euclidean spaces is reasonably well understood (Greub, 1967, Chapter IX).
We base the following exposition on an excellent self-contained overview provided
by (Goldfarb, 1985, Chapter 3), which contains a detailed treatment of this topic.

3.2.1. Symmetric Bilinear Forms. Let V be a vector space over the field
of real numbers R (in what follows, we will simply refer to V as a real vector space).
One of the fundamental mathematical notions which allows one to define metrics
on the vector spaces (in other words, to “metrise” the vector spaces) is the notion
of a symmetric bilinear form (Gantmacher, 1959), defined below.

Definition 3.1 (Symmetric Bilinear Form). A symmetric bilinear form on V
is a mapping

Φ: V × V → R
that ∀x1, x2, y ∈ V and ∀c ∈ R satisfies the following axioms:

Φ(x1 + x2, y) = Φ(x1, y) + Φ(x2, y)(3.1a)
Φ(cx, y) = cΦ(x, y)(3.1b)
Φ(x, y) = Φ(y, x)(3.1c)
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From the above, we can derive the following property

(3.2) Φ(y, x1 + x2)
(3.1c)
= Φ(x1 + x2, y)

(3.1a)
= Φ(x1, y) + Φ(x2, y) ,

which will be useful in subsequent developments. �

Symmetric bilinear form of the two vectors x, y ∈ V can be seen as a generalised
inner product. For instance, as a consequence of the above definition, the Euclidean
scalar product is defined as a specialised symmetric bilinear form which in addition
to satisfying the above axioms also possesses the following property: for all non-zero
vectors x in V Φ(x, x) > 0.

Perhaps a more intuitive interpretation of symmetric bilinear forms is given by
the notion of the squared distance, given in the following definition.

Definition 3.2 (Squared Distance). Let V be a real vector space with a cor-
responding symmetric bilinear form Φ defined on it. The square of the distance
between vectors x and y of V with respect to Φ is given by

‖x− y‖2 = Φ(x− y, x− y) .

In addition, a squared norm of vector x of V is defined as

‖x‖2 = Φ(x, x) . �

Let integer n be the dimension of the vector space V . Also let x and y be any
two vectors in V n. If one chooses any basis (ai)1≤i≤n of space V , the vectors x and
y can be expressed via this basis as follows:

x =
n∑

i=1

xiai and y =
n∑

i=1

yiai .

Consequently, it follows from axiom (3.1b) of Definition 3.1, that the symmetric
bilinear form Φ(x, y) can be evaluated as

(3.3) Φ(x, y) =
n∑

i=1

n∑
j=1

xiyjΦ(ai, aj) .

In particular, it follows from equation (3.3) that under the fixed basis (ai)1≤i≤n,
the symmetric bilinear form is completely determined by the numbers Φ(ai, aj),
called the coefficients of the symmetric bilinear form Φ with respect to the given
basis. This leads to the following definition:

Definition 3.3 (Matrix of Symmetric Bilinear Form, Gram Matrix). The
square matrix

M(Φ) =
(
Φ(ai, aj)

)
1 ≤ i, j ≤ n

is called the matrix of symmetric bilinear form Φ with respect to the basis (ai)1≤i≤n.
Furthermore, from axiom (3.1b) of Definition 3.1 it follows that the matrix M(Φ)
is symmetric. It can also be seen, that the symmetric bilinear form Φ on the two
vectors x and y could be expressed as

Φ(x, y) = yT M(Φ)x . �

The matrix of symmetric bilinear form M(Φ) with respect to the basis (ai)1≤i≤n

is often referred to as the Gram matrix (Gantmacher, 1959; Greub, 1967). In gen-
eral, matrix M(Φ) completely defines the metric information for the corresponding
vector space V .

Definition 3.4 (Taxonomy of Bilinear Forms). A symmetric bilinear form Φ
on a vector space V n is said to be non-degenerate, if the rank of its matrix with
respect to some basis of V is equal to n, and degenerate otherwise. In addition, Φ
is called:
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positive if it is non-degenerate and ∀x ∈ V Φ(x, x) ≥ 0 ;
negative if it is non-degenerate and ∀x ∈ V Φ(x, x) ≤ 0 ;
indefinite if ∃x, y ∈ V such that Φ(x, x) < 0 and Φ(y, y) > 0 .

�

The positive symmetric bilinear forms are usually called inner (scalar) products,
and the vector spaces with inner products are widely known.

Example 3.1 (Lorentz Form). Perhaps the most well known indefinite sym-
metric bilinear form is the Lorentz form (Greub, 1967) on R4 from the theory of
relativity (Callahan, 2000). It is defined as

(3.4) ΦL(x, y) = x1y1 + x2y2 + x3y3 − cx4y4 ,

where c is the speed of light. B

We will also need the notion of orthogonality in the vector space V , expressed
via the symmetric bilinear forms:

Definition 3.5 (Orthogonality). Vectors x and y of a vector space V with a
symmetric bilinear form Φ on it are orthogonal to each other with respect to Φ, if
Φ(x, y) = 0. �

Finally, we present the following important property of the symmetric bilinear
forms:

Proposition 3.1 (Relation of Symmetric Bilinear to Quadratic Form). The
symmetric bilinear form can alternatively be expressed via squared distances in a
vector space V (this relates the symmetric bilinear form to a notion of quadratic
form (Gantmacher, 1959; Greub, 1967)):

(3.5) Φ(x, y) = 1
2

(
Φ(x, x) + Φ(y, y)− Φ(x− y, x− y)

)
.

Proof. The proof uses the axioms of Definition 3.1 and the corollary (3.2).

Φ(x− y, x− y)
(3.1a)
= Φ(x, x− y) + Φ(−y, x− y)

(3.1b)
= Φ(x, x− y)− Φ(y, x− y)

(3.2)
= Φ(x, x) + Φ(x,−y)− Φ(y, x)− Φ(y,−y)

(3.1b)
= Φ(x, x)− Φ(x, y)− Φ(y, x) + Φ(y, y)

(3.1c)
= Φ(x, x) + Φ(y, y)− 2Φ(x, y) . �

3.2.2. Pseudo-Euclidean Space.

Definition 3.6 (Pseudo-Euclidean Space). Let Φ be the non-degenerate sym-
metric bilinear form on a real vector space V of dimension n. A basis (ei)1≤i≤n of
V is called orthonormal with respect to Φ if the matrix of Φ with respect to it has
the following canonical form

(3.6) M(Φ) =
(

In+×n+ 0
0 −In−×n−

)
,

where In+×n+ and In−×n− denote the identity matrices of dimensions n+ and n−
respectively. The ordered pair of integers (n+, n−), where n+ + n− = n, is called
the signature of the form Φ. The vector space V together with the form Φ is called a
pseudo-Euclidean (or Minkowski) vector space of signature (n+, n−) and is denoted
by R(n+,n−). �
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Given an orthonormal (w.r.t Φ) basis (ei)1≤i≤n of V , the inner product between
the two vectors x, y ∈ V is measured as

〈x, y〉 = Φ(x, y) =
n+∑
i=1

xiyi −
n∑

j=n++1

xjyj , where x =
n∑

i=1

xiei , y =
n∑

i=1

yiei .

The square of the distance between the two vectors in pseudo-Euclidean space is
defined as

‖x− y‖2 = Φ(x− y, x− y) = (x− y)T M(Φ)(x− y) ,

where M(Φ) is the canonical matrix of the symmetric bilinear form given in equa-
tion (3.6).

The pseudo-Euclidean vector space R(n+,n−) can be viewed as consisting of two
non-commensurable Euclidean subspaces Rn+ and Rn− of dimensions n+ and n−,
respectively. If n− = 0, the pseudo-Euclidean space is Euclidean.

Example 3.2 (Minkowski Spacetime). The Lorentz form ΦL is given by equa-
tion (3.4) in Example 3.1. A pseudo-Euclidean space R(3,1) corresponding to a
pair (R4,ΦL) is called Minkowski spacetime in special relativity theory (Pyenson,
1977; Rowe, 2001; Sexl and Urbantke, 2001). This Minkowski space consists of two
non-commensurable subspaces R3 (space vectors) and R1 (time vectors). B

Note that the square distances in pseudo-Euclidean space can be negative and,
in particular, for a class of indefinite symmetric bilinear forms (such as the Lorentz
form) there exist vectors x and y in V such that Φ(x, x) < 0 and Φ(y, y) > 0.
The crucial difference between the Euclidean and pseudo-Euclidean vector spaces,
however, is the existence in the latter of non-zero vectors x, called isotropic, which
are orthogonal to themselves, i.e. such that Φ(x, x) = 0. The set of all such
isotropic vectors in V is called the isotropic cone of Φ and is amenable to geometrical
interpretation. The inside of a cone consists of all vectors whose squared lengths
are negative and the outside consists of the vectors with positive squared lengths,
with the surface of the cone consisting of vectors of squared length zero (Goldfarb,
1985; Greub, 1967).

Example 3.3. Figure 3.1 shows the isotropic cones that partition pseudo-
Euclidean spaces of signatures (1, 1) and (2, 1). A isotropic cone for a pseudo-
Euclidean space of signature (2, 1) is shown on the right-hand side of Figure 3.1.
The symmetric bilinear form corresponding to this space takes the form

Φ(x, y) = x1y1 + x2y2 − x3y3

and the equation for the partition surface of an isotropic cone consisting of isotropic
vectors is given by

‖x‖2 = (x1)2 + (x2)2 − (x3)2 = 0 . B

In the terminology of Greub (1967) adopted from special relativity theory,
the isotropic vectors and isotropic cone correspond to light vectors and light cone,
respectively. In special relativity the isotropic lines describe the trajectories of the
photons in Minkowski spacetime (Callahan, 2000; Rowe, 2001).

Finally, it is desirable to have a method for relating the signature (n+, n−) of
any (not necessarily non-degenerate) symmetric bilinear form Φ to the properties
of the matrix M(Φ). According to the result proved by (Goldfarb, 1985, Theo-
rem 3.12), for every vector space (V,Φ) of dimension n, there exists a basis of V
with respect to which the matrix of Φ is

M(Φ) =

In+×n+ 0 0
0 −In−×n− 0
0 0 0


n×n

,
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x3

x2

x1 Φ(x, x) < 0

Φ(x, x) > 0 Φ(x, x) = 0

x1

x2

Φ(x, x) < 0

Φ(x, x) > 0

Φ(x, x) = 0

R(2,1)R(1,1)

(1) (2)

Figure 3.1: A visualisation of pseudo-Euclidean spaces R(1,1) and R(2,1) partitioned
by the isotropic cones (Goldfarb, 1985).

where the rank of M(Φ), called the rank of Φ, is n+ + n−, where n ≥ n+ + n−.
Consequently, the following properties of Φ can be established via its signature:

Φ is positive if and only if n+ = n
Φ is negative if and only if n− = n
Φ is indefinite if and only if n+ ≥ 1 and n− ≥ 1

3.3. From Metric to Pseudo-Euclidean Space: Isometric Embeddings

In the previous chapter, the phonological metric space was defined (Defini-
tion 2.4 on p. 45) as the set of objects together with the corresponding metric (or
other) measure. With regard to speech, we defined the set of objects to be the set
of structured objects that correspond to phonological templates P. In addition, we
provided several possible metrics dP operating on that set.

Remark 3.1 (Naming Convention). In the previous chapter we referred to the
pair (P, dP) as the metric space, while noting (see Remark 2.1) that the similarity
measure dP does not have to be a metric. In the following discussion, we will rectify
this notational inconvenience by referring to the pair (P, dP) as a pseudo-metric
space. A pseudo-metric is a more general concept than a metric or semimetric,
since on the one hand it is not constrained to obey the triangle inequality axiom
and on the other allows zero distances between distinct objects (see Definition 2.3
in Section 2.2).

Furthermore, let P , where |P | = k, be a subset of a universe of all the phonolog-
ical objects P. Therefore, without loss of generality, when representing the pseudo-
metric space, the similarity measure dP can be replaced by the corresponding sym-
metric k×k matrix DP of pair-wise proximities between the elements of a set P . In
other words, the (phonological) pseudo-metric space is given by a pair (P,DP ). �

The natural question which arises next is how to make the transition to a
vector space representation and what criteria should guide such a transition. In
this section we provide an answer to these questions. In general, given a pseudo-
metric space (P,DP ), the goal is to reduce each of the original structural objects in
P to a point in some abstract vector space where the decisions are to be made based
on the metric information only. It is this information provided by the symmetric
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dissimilarity matrix between the objects of the set P which needs to be preserved by
the embedding into the vector representation space. Hence, the embedding needs to
be distance-preserving or isometric. An alternative, which we do not consider in this
chapter, is to construct a vector space (not necessarily isometry-preserving) based
on dissimilarities, where each original object in pseudo-metric space is represented
in a new space by a |P |-dimensional dissimilarity-based feature vector, the elements
of which specify the distances from the original object to the rest of the objects in
the training set (Duin et al., 2004; Pȩkalska, 2005; Pȩkalska et al., 2004).

Most of the conventional approaches to dissimilarity-based multidimensional
scaling for pattern representation and recognition (Borg and Groenen, 1997; Hérault
et al., 2002; Roth et al., 2003) provide techniques for embedding the original met-
ric spaces into the classical Euclidean vector space. It appears, however, that in
many cases Euclidean space is not flexible enough to accommodate for an isometric
embedding of the original problem and the “minimal” vector space in which such
an isometry is always guaranteed to exist is pseudo-Euclidean (Goldfarb, 1985,
Chapter 4). Because we are primarily interested in isometric transition from the
proposed phonological metric space from the previous chapter to the vector space,
in this chapter we consider a pseudo-Euclidean embedding, which is an efficient
procedure for such a transition (Duin et al., 2004; Goldfarb, 1984, 1985; Laub and
Müller, 2004; Pȩkalska et al., 2004). In Section 3.3.1 we describe one of the possible
algorithms for an isometric pseudo-Euclidean space embedding, which we used in
our work. In addition, we discuss dimensionality reduction which allows us, given
the isometric embedding, to construct reduced vector representation of lower dimen-
sion by retaining the principal uncorrelated axes of the original sample. We provide
a small, yet informative, example running throughout this section (Goldfarb, 1985,
Example 4.1).

Example 3.4 (Impossibility of Euclidean Embedding). Let the pseudo-metric
space (P,DP ) be given by a set P of four objects

{
p1, . . . , p4

}
and the following

dissimilarity matrix DP

(3.7) DP =


0 1 2 1
1 0 1 1
2 1 0 1
1 1 1 0


4×4

.

Note that DP has been generated by a metric because the triangle inequality is
satisfied for all pairs of points. This metric space is constructed by taking the first
three points p1, p2 and p3 on a straight line and then adding the point p4 in such
a way that it is of the equal distance to each of the first three points.

The diagrammatic representation of this metric space (having two potential
configurations) is shown in Figure 3.2. It can be readily verified that the metric
space represented by the dissimilarity matrix of equation (3.7) cannot be isometri-
cally represented in a Euclidean space. We consider two possible configurations:

(1) On one hand, p4 must lie on the intersection of the two spheres of radius
1 with centers at p1 and p3 respectively and the point p2 is the only point
where these two spheres meet. On the other hand, p4 must be at distance
1 from p2.

(2) Here the spheres of the radii 1 with centers at p1 and p3 do not intersect
at any points, despite the fact that they should at both p2 and p4.

Alternatively, one can note that the theorem of Pythagoras is clearly violated by
both configurations (see shaded triangles). The distance between p1 and p4 should
be
√

2 for the first configuration and
√

5
2 for the second. B
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Figure 3.2: A diagrammatic representation of a four-dimensional metric space from
Example 3.4 showing two possible configurations, both of which are impossible in
Euclidean geometry.

3.3.1. Linear Embedding. Perhaps the most important result of (Goldfarb,
1985, Chapter 4) which we need is the existence of an isometric embedding in a
pseudo-Euclidean space, stated in a following definition:

Definition 3.7 (Existence of Isometric Embedding). Given a finite pseudo-
metric space (P,DP ), P =

{
pi

}k

i=1
, there exists an isometric embedding

α : (P,DP )→ R(n+,n−) ,

which is called a vector representation of (P,DP ), such that for any other embedding
of the same pseudo-metric space into a different space R(n′+,n′−), the following
condition

n′+ ≥ n+ and n′− ≥ n−

is true. In other words, the above property implies that vector representation α is
the minimal mapping preserving isometry.

More formally, the notion of isometry can be introduced as follows: Let vi =
α(pi), 1 ≤ i ≤ k. Then for all objects pi and pj in a set P
(3.8)

D2
P (pi, pj) = ‖vi − vj‖2 = Φ(vi − vj , vi − vj) =

n+∑
l=1

(
vl

i − vl
j

)2 −
n∑

l=n++1

(
vl

i − vl
j

)2
,

where Φ is the symmetric bilinear form of signature (n+, n−) corresponding to
R(n+,n−) (see Figure 3.3). �

3.3.1.1. Setting the Scene: Mean and Covariance in Pseudo-Euclidean Space.
In order to introduce the notions of mean and covariance in pseudo-Euclidean space,
we need to consider some system of vectors in that space. In line with Definition 3.7,
assume that there exists an isometric embedding α′ of the pseudo-metric space
(P,DP ) of k objects onto the pseudo-Euclidean space (V ′,Φ). Let some pl ∈ P ,
1 ≤ l ≤ k map to the origin of the representation, i.e. α′(pl) = 0. Then, using
equation (3.5), the inner product between any two vectors xi and xj in V ′ is given
by

(3.9)

Φ(xi, xj)
(3.5)
= 1

2

(
Φ(xi − 0, xi − 0) + Φ(xj − 0, xj − 0) + Φ(xi − xj , xi − xj)

)
=

1
2

(
DP (pi, pl)2 + DP (pj , pl)2 −DP (pi, pj)2

)
.

The above coefficients of the symmetric bilinear form correspond to the matrix
M ′(Φ) = Φ(x, y) of the symmetric bilinear form expressed solely on the basis of
dissimilarities in the original pseudo-metric space. This construction forms the basis



3.3. FROM METRIC TO PSEUDO-EUCLIDEAN SPACE: ISOMETRIC EMBEDDINGS 69

pi

vi

vjpj

α

α

α

α

R(n+,n−)(P,DP )

Figure 3.3: An isometric embedding α : (P,DP )→ R(n+,n−).

of the initial isometric embedding algorithm (not treated here) proposed by (Gold-
farb, 1985, Chapter 4). In particular, it is not difficult to see that the representation
vectors xi forming the basis of the space V ′ satisfy the isometric property (3.8) from
Definition 3.7. Indeed, by using the result of Proposition 3.1, for all xi and xj in
V ′

‖xi − xj‖2 = Φ(xi, xi) + Φ(xj , xj)− 2Φ(xi, xj)

= 1
2

(
DP (pi, pl)2 + DP (pi, pl)2 −DP (pi, pi)2

)
+ 1

2

(
DP (pj , pl)2 + DP (pj , pl)2 −DP (pj , pj)2

)
−

(
DP (pi, pl)2 + DP (pj , pl)2 −DP (pi, pj)2

)
= DP (pi, pj)2 .

The mean vector for the vector representation xi = α(pi) is defined as

x =
1
k

k∑
i=1

xi .

Note that the mean vector x of vector representation V may not necessarily have
any direct physical interpretation in the original pseudo-metric space (P,DP ). In
other words, it is not the case that there exists an object p in P such that α(p) is x.
Hence, during the derivation of the following identities, it is important to make sure
that we do not rely on the existence of such an object in the original pseudo-metric
space.

Using the axioms (3.1a), (3.1b) and the corollary (3.2) from the definition of
symmetric bilinear form Φ, the norm of the mean with respect to Φ can be computed
as

Φ(x, x) = Φ
(

1
k (x1 + x2 + . . . + xk), 1

k (x1 + x2 + . . . + xk)
)

=
1
k2

k∑
i=1

k∑
j=1

Φ(xi, xj)

=
1

2k2

k∑
i=1

k∑
j=1

(
DP (pi, pl)2 + DP (pj , pl)2 −DP (pi, pj)2

)
.
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Then, by using the above identity, the squared distance between a mean vector x
and any vector xi in V ′ can be expressed as follows

‖xi − x‖2 = Φ(xi − x, xi − x) = Φ(xi, xi) + Φ(x, x)− 2Φ(xi, x)

= DP (pi, pl)2 +
1
k2

k∑
i′=1

k∑
j=1

Φ(xi′ , xj)−
2
k

k∑
j=1

Φ(xi, xj)

= DP (pi, pl)2 +
1

2k2

k∑
i′=1

k∑
j=1

(
DP (pi′ , pl)2 + DP (pj , pl)2 −DP (pi′ , pj)2

)
− 1

k

k∑
j=1

(
DP (pi, pl)2 + DP (pj , pl)2 −DP (pi, pj)2

)
=

1
k

k∑
j=1

DP (pi, pj)2 −
1

2k2

k∑
i′=1

k∑
j=1

DP (pi′ , pj)2 .

(3.10)

An important consequence of the above equation (3.10) is that the calculation of
the squared distance from any vector in the representation to the mean vector is
independent of the chosen origin pl.

Finally, we are ready to introduce the notion of the covariance in pseudo-
Euclidean space.

Definition 3.8 (Covariance Matrix). Let R(n+,n−) be some pseudo-Euclidean
space, the vectors of which are generated by the corresponding symmetric bilinear
form Φ of signature (n+, n−) and let

{
α(pi)

}
be the set of k vectors of dimension

n representing some pseudo-metric space (P,DP ). Also, let vector v represent the
mean vector of the vector representation α.

The set of all k vectors translated by the mean vector can be represented by
the n× k matrix A whose ith column is vi − v. Then, the (generalised) covariance
matrix of the pseudo-metric space (P,DP ) with respect to vector representation α
is defined as the following n× n matrix

SP (α) = AAT J =
( k∑

i=1

(vi − v)(vi − v)T
)( In+×n+ 0

0 −In−×n−

)
,

where J is the canonical matrix of symmetric bilinear form Φ in R(n+,n−) from
Definition 3.6. �

The above covariance matrix is more general than its Euclidean counterpart,
because it consists of both negative and positive values. This fact is related to the
non-commensurable properties of the two constituent subspaces of R(n+,n−). More-
over, it has been shown (Goldfarb, 1985, Theorem 5.3) that all the characteristic
values of SP (α) are real numbers. This leads to the embedding algorithm, which is
presented next.

3.3.1.2. Embedding Algorithm. In order to present the final result, we consider
the original embedding α (see Definition 3.7). Unlike the embedding α′, the assump-
tion that representation V corresponding to α contains vectors which coincide with
the origin is relaxed. Instead, we assume that the origin of the space V coincides
with the mean vector v, where the mean vector is not part of the representation set.
Hence, given the pseudo-metric space (P,DP ), the coefficients mi,j of the matrix
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M(Φ) of the symmetric bilinear form are given by

mi,j = Φ(vi, vj)
(3.5)
= 1

2

(
Φ(vi − v, vi − v) + Φ(vj − v, vj − v)− Φ(vi − vj , vi − vj)

)
(3.10)
=

(1
k

k∑
j′=1

DP (pi, pj′)2 −
1

2k2

k∑
i′=1

k∑
j′=1

DP (pi′ , pj′)2
)

+
(1
k

k∑
i′=1

DP (pi′ , pj)2 −
1

2k2

k∑
i′=1

k∑
j′=1

DP (pi′ , pj′)2
)
−DP (pi, pj)2 .

By simplifying the above equation we obtain the following identity

mi,j =
1
2

[
1
k

( k∑
i′=1

DP (pi′ , pj)2 +
k∑

j′=1

DP (pi, pj′)2
)
−

1
k2

( k∑
i′=1

k∑
j′=1

DP (pi′ , pj′)2
)
−DP (pi, pj)2

]
.

(3.11)

The above construction, based on the assumption that the origin of the resulting
space coincides with the mean, has one important implication. In this case, it can
be shown that the non-zero characteristic values of the k×k matrix M(Φ) = (mi,j)
(where mi,j is given by equation (3.11)) of the symmetric bilinear form Φ of
(P,DP ) coincide with those of the covariance matrix SP (α) (see Definition 3.8)
of (P,DP ) (Goldfarb, 1985, Theorem 6.3). Because the covariance matrix rep-
resents a reliable means of analysing the intrinsic dimensionality of the data, we
adopt the following procedure, known as the (main) embedding algorithm (Gold-
farb, 1984, 1985, 1986). It can be seen as a generalised version of conventional
Principal Component Analysis (PCA), described by Duda et al. (2001).

Let (P,DP ) be the pseudo-metric space, where the set P consists of k ob-
jects. We want to construct an isometric vector representation of (P,DP ) in some
pseudo-Euclidean space, the dimensions of which, at this point, are not known.
Construction by the embedding α of a vector representation of (P,DP ) in a finite
dimensional pseudo-Euclidean vector space is achieved by following the steps given
below:

(1) Compute the k×k matrix M(Φ) given by equation (3.11). By performing
an eigen-decomposition of M(Φ), obtain the k × k matrix of the eigen-
vectors E and the k × k diagonal matrix of the eigenvalues F , hence
M(Φ) = EFET . Several robust eigen-decomposition techniques exist. In
this work, we use the QR technique, described in (Golub and Loan, 1983).

The eigenvalues in F correspond to the eigenvalues of the generalised
covariance matrix. Therefore, the number of positive and negative eigen-
values in F , denoted by n+ and n− respectively, determine the dimension
of the pseudo-Euclidean space for our isometric mapping. Hence, the di-
mension of this space is (n+, n−), where n = n+ + n−. The number of
negligible eigenvalues (corresponding to noisy dimensions) of F is usually
small, hence n is usually close to k.

(2) Reorganise F into another k × k diagonal matrix C, which contains first
the positive eigenvalues of M(Φ) in decreasing order, then the magnitudes
of the negative eigenvalues in decreasing order, followed by zeros (if any
are to be found among the eigenvalues of F ). From E, construct the k×k
matrix H of the eigenvectors of M(Φ) corresponding to the eigenvalues of
M(Φ) in C. The matrix M(Φ) is now given by

M(Φ) = HCHT = HC
1
2
(

J
0

)
C

1
2 HT = U

(
J

0

)
UT ,
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where Jn×n is a canonical matrix of Φ from (3.6).
(3) Compute k × k matrix U = HC

1
2 . The first n+ + n− elements of the

i-th row of U define the coordinates of α(pi), of a vector representation
α : (P,DP )→ R(n+,n−) with respect to an orthonormal basis of R(n+,n−).

An important consequence of the above algorithm is that any pseudo-metric space
(P,DP ) can be isometrically represented in a classical Euclidean vector space only if
all the numerically significant characteristic values of the corresponding generalised
covariance matrix (or matrix of symmetric bilinear form) are positive.

Example 3.5 (Isometric Embedding). The metric space, mentioned in Exam-
ple 3.4, was defined on the four objects with the dissimilarity matrix DP given
by equation (3.7). We also mentioned that the isometric embedding could not
be accommodated by Euclidean space. However, an isometric embedding into a
pseudo-Euclidean space is possible and in this example we show how to construct
such an embedding using the embedding algorithm described above.

The matrix of the symmetric bilinear form M(Φ)4×4, calculated using equa-
tion (3.11) is

M(Φ) =


0.94 0.06 −1.06 0.06
0.06 0.19 0.06 −0.31
−1.06 0.06 0.94 0.06
0.06 −0.31 0.06 0.19

 .

The corresponding 4×4 matrices F and E of eigenvalues and eigenvectors of M(Φ)
are

F =


−0.25 0 0 0

0 10−7 0 0
0 0 0.5 0
0 0 0 2

 , E =


0.5 0.5 10−7 0.70
−0.5 0.5 0.70 10−7

0.5 0.5 10−8 −0.70
−0.5 0.5 −0.70 10−8

 .

Since there are two non-negligible positive eigenvalues and one negative one, n+ = 2
and n− = 1. Hence, the metric space can be isometrically represented in R(2,1). By
computing the matrix U (not shown here) and discarding one noisy dimension, the
4× 3 matrix V corresponding to the vector representation of (P,DP ) is given by

V =


v1

v2

v3

v4

 =


α(p1)
α(p2)
α(p3)
α(p4)

 =


1 10−7 0.25

10−7 0.5 −0.25
−1 10−8 0.25

10−8 −0.5 −0.25

 .

The mean vector v of the representation is equal to (10−7, 10−8, 10−7) and, as
expected, is very close to the origin. In addition, the matrix DV (vi, vj) of squared
inter-distances between the vectors α(pi) is given by

D2
V =


0 1 4 1
1 0 0.999999 1
4 0.999999 0 1
1 1 1 0


and hence, the isometry is preserved. The visualisation of V in R(2,1) is shown in
Figure 3.4. B

3.3.2. Dimensionality Reduction. Since the eigenvalues of M(Φ) corre-
spond to the characteristic values of the generalised covariance matrix of the set
{α(pi)}, the reduced vector representation (Goldfarb, 1985)

β : (P,DP )→ R(m+,m−) , m = m+ + m− < n
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Figure 3.4: Minimal isometric embedding β of a metric space from Example 3.4
into a pseudo-Euclidean space R(2,1). Vector v′0 (not part of the representation)
corresponds to the origin.

can be constructed from α by performing the following mapping

(3.12) γ : R(n+,n−) → R(m+,m−) ,

which is an orthogonal projection of the exact representation α on the subspace
spanned by the corresponding principal axes of the covariance matrix.

This is accomplished by removing the axes corresponding to small magnitudes
of the eigenvalues |ci| of C and retaining the eigenvalues corresponding to principal
uncorrelated axes. If the removed eigenvalues are small, the resulting configura-
tion β = γ ◦ α possesses the same isometric properties as α since the orthogonal
projection γ introduces only an insignificant perturbation to the original k× k dis-
similarity matrix (DP (pi, pj))i,j . Pictorial representation of the above mappings β
and γ is shown in Figure 3.5.

The vector representation constructed above by means of linear embedding α
approximates the original inter distances between the objects exactly (Goldfarb,
1984, 1985). The intrinsic dimensionality of the data, however, might be much
smaller and in practice, construction of the reduced vector representation using
mapping β often removes the redundant and noisy dimensions from the original
data. With the covariance matrix one has complete control over the dimensionality
of the vector representation. Given a small positive threshold ε, one can remove all
the axes whose respective eigenvalues c in the covariance matrix C are smaller (in
magnitude) than ε.

The approach usually taken for dimensionality reduction is iterative, where
one starts with the original dimension (n+, n−) of the embedding α and iteratively
removes the dimensions corresponding to ci which are considered to be correlated
according to the criterion |ci| < ε, until no such dimensions are left (Goldfarb, 1985,
1986; Pȩkalska and Duin, 2002).

Given the reduced vector representation consisting of k vectors vi = β(pi) in
R(m+,m−), the degree of how well the resulting configuration preserves the isometry
can be expressed by a sum of squares error function (Goldfarb, 1986; Pȩkalska et al.,
2002):

(3.13) ED
β = (

∑
i<j

Φβ(vi, vj)2)−1
∑
i<j

(DP (pi, pj)2 − Φβ(vi, vj))2 ,
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Figure 3.5: Reduced vector representation β = α ◦ γ obtained by performing an
orthogonal projection γ of the embedding α.

where Φβ is the symmetric bilinear form of the resulting pseudo-Euclidean space
R(m+,m−). We refer to this measure as a representation error. An additional
measure, which is useful when the iterative mode of dimensionality reduction is
adopted, is the magnitude EM

β of the eigenvalue removed at each step during the
construction of the reduced representation. Obviously these two error measures
are related: the bigger the magnitude of the removed eigenvalue, the bigger the
increase in the representation error ED

β , given by equation (3.13).

Example 3.6 (Metric “Line” in Pseudo-Euclidean Space). This example (Gold-
farb, 1985, Example 4.2) shows the construction of the reduced vector representa-
tion for an isometric embedding of a pseudo-metric space shown on the left-hand
side of Figure 3.6, where a set P consists of eight objects and the dissimilarity
matrix DP is given by

(3.14) DP =



0 1 2 1 4 5 6 3
1 0 1 1 3 4 5 2
2 1 0 1 2 3 4 1
1 1 1 0 1 1 1 1
4 3 2 1 0 1 2 1
5 4 3 1 1 0 1 2
6 5 4 1 2 1 0 3
3 2 1 1 1 2 3 0


8×8

.

The projection β is shown on the right-hand side of the figure (the representa-
tion was translated by the vector β(p4). Hence, v′4 corresponds to the origin). It
was obtained by first computing the isometric embedding α into an 8-dimensional
pseudo-Euclidean space R(5,3). The representation error ED

β between (P,DP ) and
α is close to 10−13. Next, by setting the eigenvalue threshold ε to 10−6, we obtained
the projection β into a 3-dimensional pseudo-Euclidean space R(2,1) with the rep-
resentation error of 10−12. An attempt to reduce this space by one dimension (by
removing the eigenvalue ED

β = 1.78 bigger than ε) results in the two-dimensional
pseudo-Euclidean space R(1,1) with a huge increase in the vector representation er-
ror (representation error in R(1,1) is 0.013). Hence, we conclude that the intrinsic
dimensionality of the pseudo-metric space (P,DP ) in question is 3.
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Figure 3.6: Reduced representation β of a metric space from Example 3.6 in a
pseudo-Euclidean space R(2,1). Vector v′4 (part of the vector representation) corre-
sponds to the origin.

The projection in Figure 3.6 has one interesting property: all points lie on
a curve which could be called a “metric line” (Goldfarb, 1985). For every three
consecutive points v′i, v′j and v′k which belong to it,

‖v′i − v′j‖+ ‖v′j − v′k‖ = ‖v′i − v′k‖ ,

a property which in Euclidean space is only satisfied if the points belong to the
same line. B

3.4. Projection of Unseen Objects

Let q be an object which did not participate in the construction of the reduced
vector representation β(pi) ∈ R(m+,m−) of the training set P =

{
pi

}
1≤i<k

. In
other words, q is in some set Q such that P ∩ Q = ∅. The question that needs to
be addressed next is how to represent this new object in the constructed pseudo-
Euclidean space R(m+,m−). A procedure whereby q is added to the set P and the
new configuration is obtained by re-embedding anew for each q ∈ Q is obviously
unacceptable for computational reasons.

A more feasible technique, which alleviates the above shortcoming, is to use
the method of orthogonal projection. Expressed informally, this idea is as fol-
lows (Goldfarb, 1984, 1985): we assume that an isometric embedding α maps an
object q onto some point α(q) in R(n+,n−). Obviously, α(q) is not among the k
points α(pi) of a set comprising vector representation of a training set (P,DP ).
Given this “phantom” α(q) in R(n+,n−), it is possible to obtain its projection onto
the reduced vector representation space R(m+,m−) (a subspace of R(n+,n−)) by using
only m + 1 distance computations in (P,DP ).

In Section 3.3.1.1 it was mentioned that if we are given a set of k vectors vi in
a pseudo-metric space V corresponding to (P,DP ) and among these vectors there
exists a vector p0 such that its corresponding vector representation v0 is zero, then
the inner product between any two vectors vi and vj is given by equation (3.9) as:

Φ(vi, vj) = 1
2

(
DP (pi, p0)2 + DP (pj , p0)2 −DP (pi, pj)2

)
.

Based on the above observation, the basic idea is to somehow find the projection
of q by computing the distance DP (q, p0) between q and the object representing
the origin, and m distances DP (q, pi) between q and the m objects representing
the basis of the reduced space R(m+,m−). In Sections 3.4.1–3.4.2 we introduce two
techniques for achieving this. The search for the m basis vectors of the reduced
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space R(m+,m−), chosen among k vectors representing (P,DP ), is a non-trivial task
described in Section 3.4.3.

3.4.1. Basic Metric Projection. We assume that the training procedure
resulted in the construction of both complete and reduced representations α and
β of the k vectors from the training set P in R(n+,n−) and R(m+,m−), respectively.
Basic metric projection

δ : (P,DP )→ R(m+,m−)

of a new object q onto R(m+,m−) proceeds as follows:
(1) Among k vectors vi = β(pi), choose a vector v0 = β(p0) which would

represent the origin. In this work, p0 is chosen from P as the object
whose average distance to the rest of the objects in the training set is
minimal.

(2) Perform a parallel translation

τ : R(m+,m−) → R(m+,m−) , τ(vi) = vi − v0

of the k vectors vi by v0, hence τ(v0) = 0.
(3) Among k − 1 vectors τ(vi) (the origin excluded) choose the basis

uj = τ(vj)1≤j≤m

of R(m+,m−) (see Section 3.4.3). In Definition 3.3 we mentioned that m
vectors uj of the basis completely define R(m+,m−) via the corresponding
m×m Gram matrix

(3.15) G =
(
Φβ(ui, uj)

)
0 ≤ i, j ≤ m ,

where Φβ is a symmetric bilinear form of R(m+,m−).
(4) Orthogonal projection δ(q) of a new object q is defined by m+1 distances

DP (q, p0), DP (q, pi)1≤i≤m as

δ(q) = Um×mG−1
m×mbm×1 ,

where columns of U are the coordinate columns of m vectors ui and b is
a vector whose ith coordinate is given by

(3.16) bi =
1
2
[
DP (q, p0)2 + DP (pi, p0)2 −DP (q, pi)2

]
1≤i≤m

.

Details of the derivation of the formulae in this step, closely related to
the classical Gram orthogonal projection (Gantmacher, 1959, pp. 227–
229), are given in (Goldfarb, 1985, Sections 3.3 and 7.2). Diagrammatic
representation of the above algorithm is shown in Figure 3.7.

Since B = UG−1 can be precomputed during the training stage, the only online
computations involved are those of b and the product Bb in step (4). The rest of
the computations in steps (1)-(3) are performed offline.

The Gram matrix G might be ill-conditioned, especially for large dimensions.
Therefore, in this work we avoid calculating the direct inverse using the LU decom-
position, but rather employ the Moore-Penrose pseudoinverse obtained using the
Single Value Decomposition (SVD) technique (Albert, 1972; Laub, 2004).

3.4.2. Corrected Metric Projection. The reduced vector representation
β gives an approximation of the original pseudo-metric space (P,DP ). Hence, the
Gram matrix G for δ(pi) in R(m+,m−) in equation (3.15) differs from the exact Gram
matrix for the α(pi) in R(n+,n−), while the calculations in (3.16) are based on the
precise distances. In other words, the basic metric projection technique wrongly
assumes that R(m+,m−), given by the Gram matrix expressed via the symmetric
bilinear form Φβ , fully preserves the isometry.
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Figure 3.7: Basic metric projection δ of an unseen object q onto the reduced vector
representation space R(m+,m−). The chosen basis vectors are represented by the
hollow circles.

In order to avoid the perturbation above, an alternative construction called
corrected metric projection, referred to as δC ,

δC : (P,DP )→ R(m+,m−)

is suggested in (Goldfarb, 1986). Informally, instead of choosing the m basis vectors
of dimension m out of k translated vectors β(pi) in R(m+,m−), a better idea is to
choose the m basis vectors of dimension n out of k translated vectors α(pi) in
R(n+,n−). Since α is an isometric mapping, the m×m Gram matrix for the newly
chosen basis of R(n+,n−) will employ the symmetric bilinear form Φα that preserves
the original inter-object distances exactly.

More formally, this procedure is expressed as follows:
(1) Choose an origin v0 among the k vectors vi = α(pi) spanning R(n+,n−).
(2) Perform a parallel translation

τ : R(n+,n−) → R(n+,n−) , τ(vi) = vi − v0

of the k vectors vi by v0, hence τ(v0) = 0.
(3) Among the k translated vectors choose m n-dimensional vectors

uj = τ(vj)1≤j≤m

in such a way that the signature of the m×m corresponding Gram matrix
is (m+,m−).

Here we would like to draw attention to the fact that unlike the corre-
sponding step (2) of basic metric projection, m vectors uj are not chosen
to be the basis of R(n+,n−) simply because m < n.

Furthermore, unlike the basic metric projection, the coefficients of
the m × m Gram matrix G′ are given here by the inner product Φα in
R(n+,n−).

(4) Perform an orthogonal projection δ′(q) of a new object q onto R(n+,n−)

(note the difference with the corresponding step in the construction of
basic metric projection) as

δ′(q) = Un×mG−1
m×mbm×1 ,



78 3. PSEUDO-EUCLIDEAN EMBEDDING OF PHONOLOGICAL METRIC SPACES

R(m+,m−)

R(n+,n−)δ′

γγuj

τ(α(pi))

δ′ δ′(pi)
δ′(q)

δC(q) δC(pi)

τ(α(q))

Figure 3.8: Corrected metric projection δC of an unseen object q onto the reduced
vector representation space R(m+,m−). The chosen basis vectors in R(n+,n−) are
represented by the hollow circles.

where columns of U are the coordinate columns of m vectors ui and b is
given by equation 3.16.

(5) Finally, a corrected metric projection δC(q) of an object q is computed by
applying the orthogonal projection

(3.17) γ : R(n+,n−) → R(m+,m−)

(defined in Section 3.3.2) to δ′(q) from the previous step. The above
corrected metric projection procedure is depicted in Figure 3.8.

An additional important step, performed offline, is called the correction of the
vector representation in R(m+,m−). This step is not present in the construction of
the basic metric projection. The idea is to apply the above steps (3) and (4) to all
the vectors in the training set P . In other words, we apply the corrected metric
projection δC to all of the k objects pi ∈ P . This is essentially an orthogonal
projection of all the k vectors τ(α(pi)) onto the subspace of R(n+,n−) spanned by
m basis vectors uj and therefore isomorphic to R(m+,m−).

The following remark highlights a very important property of all the construc-
tions (embedding, reduced representation and two metric projections) presented up
to this point. This property affects the construction of decision surfaces (sometimes
known as separating hyperplanes (Greub, 1967)) in pseudo-Euclidean spaces (Gold-
farb, 1985, Section 7.3):

Remark 3.2 (Decision Surfaces). Let R(m+,m−) be the the pseudo-Euclidean
vector space in which the problem is represented by the vectors v1, . . . , vm. Select
any pair of vectors vi and vj . Let U denote the hyperplane in R(m+,m−) which is
orthogonal to the segment si,j connecting vi and vj . Also let v̂ be the the vector
in R(m+,m−) normal to the plane U . Since the normal vector v̂ is parallel to si,j ,
‖v̂‖ ≥ 0.

In particular, a positive norm implies that the squared distances (w.r.t. corre-
sponding symmetric bilinear form) between all the vectors representing the training
data, as well as the projections of unseen objects, are positive. Furthermore, in most
of the cases, classical decision surface algorithms for Euclidean spaces can safely be
used. In some cases, however, the decision algorithms make implicit assumptions
about the geometry of the underlying space. Linear support vector classifiers, for
instance, require the form of the dissimilarity matrix between the objects to be
positive definite (Schölkopf and Smola, 2001). In such cases the algorithms have to
be generalised to operate in pseudo-Euclidean spaces.
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An alternative is to treat the resulting pseudo-Euclidean space as a regular
Euclidean vector space with a positive definite matrix of symmetric bilinear form.
If such a simplifying assumption is made any Euclidean-space classifier can be used
(we treat this case in more detail in Section 3.5.1.3). �

3.4.3. Selecting the Basis for Metric Projections. For both metric pro-
jection methods, δ and δC , the m basis vectors spanning R(m+,m−) are chosen in
such a way as to minimise the average projection error between the projection of
the entire training set (obtained with δ or δC) and the original vector representation
of a pseudo-metric space (P,DP ) obtained by the mappings α or β.

Definition 3.9 (Projection Error). Let v̂ ∈ R(m+,m−) be the projection of a
vector v ∈ R(n+,n−) onto the subspace R(m+,m−) of R(n+,n−). The projection error
between two vectors v and v̂ is defined as the squared distance between them (Gold-
farb, 1985), i.e. as

(3.18) Φ(v − v̂, v − v̂) = ‖v − v̂‖2 = DP (p, p0)2 − bG−1bT ,

where p0 is the selected origin, b is defined in (3.16) and G is the Gram matrix w.r.t
the basis. �

In what follows, we assume that the vector representation in R(m+,m−) is given
by the k×m matrix U , whose rows are the vectors representing the objects from the
original pseudometric space. We next introduce two approaches to the selection of
the optimal basis. The first approach to basis selection, which we refer to as regular,
was suggested in (Goldfarb, 1986; Pȩkalska, 2005; Pȩkalska et al., 2002). We also
present an alternative construction, called class-based selection, designed by us to
address some of the potential problems with the first approach.

3.4.3.1. Regular Basis Selection. The search for the optimal subset Ur of m ba-
sis vectors among k vectors comprising the representation U is an iterative process.
Assume the algorithm is currently at step l. At the previous step, l − 1 objects
have been selected as the basis U l−1

r forming a subspace of R(m+,m−). The next
candidate to be added to the basis is chosen from the set U \ U l−1

r as the one
minimising the average error between the resulting projection of all the vectors in
U onto R(l+,l−) (given by equation (3.18) where both G and b are calculated w.r.t
candidate set U l

r) and the original vector representation.
3.4.3.2. Class-based Basis Selection. Note that in the regular approach, de-

scribed above, at each step the class label of the candidate vector is ignored. This
often results in uneven representation of classes within the basis of the reduced
space. In order to verify how taking into account the class labels affects the classi-
fication performance, we implemented a novel alternative basis selection approach.
This approach selects the basis of the reduced space in such a way that the projec-
tion error is kept to minimum, while making sure that the vectors comprising the
basis are well-balanced in terms of class representation.

Informally, this method operates as follows: Assume that the set U is subdi-
vided into N classes, i.e. U = C1 ∪C2 . . .∪CN . The algorithm proceeds in exactly
the same fashion as its regular version but with one important distinction. At
iteration l, in addition to keeping track of the number of vectors l − 1 currently
selected as the basis, we also keep the identity i− 1 of the class Ci−1 to which the
last selected vector belongs. The next lst vector is chosen not from the entire set
U \U l−1

r , but rather from the next class Ci \Cl−1
i , where Cl−1

i is the set of vectors
from class Ci which already reside in the basis at iteration l.
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3.5. Experiments and Discussion

In this section we present the experimental results of a phone classification task
on the data represented in the pseudo-Euclidean domain. The original symbolic
data consists of phonological feature templates derived from the TIMIT database
of read speech (Garofolo, 1988; Garofolo et al., 1993). Phonological feature tem-
plates, which make up a phonological metric space, were described in detail in
Chapter 2. The details of the TIMIT corpus, as well as the procedures for deriving
the phonological templates from speech are given in Section 2.6.

Briefly, our phonological metric space consists of two sets — one for training
and one for testing, with 176,031 phone tokens from 39 classes. In Section 2.6,
we described the classification results obtained on this task in the symbolic metric
space, which was defined over a set of phonological templates. In that chapter,
various symbolic metric algorithms were evaluated on several quantised datasets
(corresponding to several pseudo-metric spaces, one for each quantisation level)
obtained from TIMIT. The pseudo-metric space (P,DP ) we have chosen in this
chapter as the basis for our experiments, corresponds to the phonological metric
space of Section 2.6 for which the best classification results were obtained. The
details of (P,DP ) are as follows:

• The set P corresponds to the set of phonological templates derived from
the TIMIT data using a symbolic quantisation level of 10. The symbolic
corpus corresponding to this quantisation level consists of 124,962 tem-
plates in the training set and 42,540 templates in the test set.
• The similarity function DP , operating on the phonological templates from

the set P , is the weighted Levenshtein distance.
• The clustering technique is k-medians, employing phonological set median

(rather than generalised median) and duration-based initialisation.

Since the above dataset is large, for the experiments described below we have
adopted the following strategy: in order to get a better idea of the performance
of the classification algorithms in the pseudo-Euclidean space constructed from
(P,DP ), we first focus on a smaller 3-class task. The classes used in this task
belong to three different phonological categories and are a priori known to be
reasonably well separable, according to the linguistic evidence (Ladefoged, 2001).
This allowed us to test a wider range of the classifiers, the results of which are
otherwise difficult to interpret on a larger 39-class task. Experiments on a 3-class
problem are described in Section 3.5.1. In order to compare the performance of the
classifiers in the original symbolic space (Section 2.6) and the pseudo-Euclidean
space, in Section 3.5.2 we describe the results of the experiments on a full 39-class
task.

3.5.1. Three-class Problem. The first set of experiments focuses on classi-
fication of three classes of phonemes from three different phonological categories.
The three classes under investigation consist of one vowel [aw] (low back round)
and two consonants [b] (voiced bilabial stop) and [z] (voiced alveolar fricative). The
original training set for these three classes consists of 6,629 unique symbolic phono-
logical templates. The entire test set for the three classes of phones, consisting of
2,423 unique phonological templates, was used in this experiment.

Since the matrix (DP ) of pseudo-metric space interdistances for such a set is
rather large and can cause numerical stability problems for matrix decomposition
algorithms, we reduced the dimensionality of the training set to 100 phonological
templates per class, using the clustering procedure in the original symbolic space
(P,DP ). The algorithmic setup for the symbolic clustering is described above.
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Figure 3.9: Corrected metric projection δC of the training (3.9a) and test (3.9b)
sets for the three-class problem.

3.5.1.1. Visualisation. In order to obtain the visualisation of the three-class
problem, we first constructed an isometric embedding α (see Section 3.3.1) for the
pseudo-metric space (P,DP ) consisting of 300 objects. The resulting isometric
pseudo-Euclidean space is

(3.19) R(143,156) , where n = 299 .

Obviously, this space is highly pseudo-Euclidean, which means that the three-class
problem can not be isometrically represented by any conventional Euclidean vector
space. Next, we constructed a corrected metric projection δC (see Section 3.4.2)
of the entire training (300 vectors) and test sets (2,423 vectors) onto a pseudo-
Euclidean space of the same dimension. This step performs the calibration of the
training and test sets. The resulting projections, visualised by the three principal
axes, are shown in Figure 3.9 (p. 81).

The visualisation of the three principal axes of the corrected metric projection
appears to confirm the initial hypothesis that the chosen metric is adequate for
discriminating between the classes in question and that some reasonably simple
linear decision surfaces can be constructed in the resulting vector representation
space.

3.5.1.2. Dimensionality Reduction. The vector representation constructed above
by means of linear embedding α approximates the original interdistances between
the patterns exactly (Goldfarb, 1985). Recall from the discussion in Section 3.3.2,
that the intrinsic dimensionality of the data might be much smaller and in practice,
construction of the reduced vector representation using mapping β often removes
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the redundant and noisy dimensions from the original representation (Goldfarb,
1985, 1986; Pȩkalska et al., 2002).

Let m be the dimension of the reduced vector representation β. The degree
of how well the resulting configuration preserves the isometry can be expressed by
three different measures:

• The sum of squares error function ED
β between the original isometric rep-

resentation and the reduced one, which is given by equation (3.13) from
Section 3.3.2.
• The magnitude of the eigenvalue EM

β removed at each step of the con-
struction of the reduced representation, described in Section 3.3.2.
• The average class separability measure Dβ , which is calculated as follows:

Let P be the training set divided into N classes Pl, P = P1 ∪P2 . . .∪PN .
The squared average within-class distance for a class Pl is given by

DW (Pl)2 =
2

|Pl|(|Pl| − 1)

|Pl|∑
i=1

|Pl|∑
j=i+1

‖β(pli)− β(plj )‖2 .

The squared average between-class distance for a pair of classes Pk and Pl

is given by

DB(Pk, Pl)2 =
1

|Pk||Pl|

|Pk|∑
i=1

|Pl|∑
j=1

‖β(pki
)− β(plj )‖2 .

The average class separability is then defined as

Dβ =
1

(N − 1)(N − 2)

N∑
i=1

N∑
j=i+1

√
|DB(Pi, Pj)2|√

|DW (Pi)2|+
√
|DW (Pj)2|

.

Given the original isometric representation α of 300 training objects, we con-
ducted dimensionality reduction experiments in order to study the behaviour of
pseudo-Euclidean spaces of smaller dimensionality. The representation error mea-
sures ED

β , EM
β and Dβ (the first two measures are plotted using log scale) are

shown in Figure 3.10 (p. 83) against the dimension m of the corresponding reduced
pseudo-Euclidean space. The upper bound on the reduced dimension was chosen
to be 150.

We also performed an analysis of the eigenvalues removed during the reduction
of dimensionality and established that for all dimensions m bigger than 9, the
reduced space is strictly pseudo-Euclidean.

3.5.1.3. Classification. In order to evaluate the performance of various clas-
sifiers constructed in pseudo-Euclidean space, we conducted several classification
experiments on a three-class task described above. The baseline setup was chosen
to correspond to the symbolic methods which perform the best on the three-class
problem in the original phonological metric space (P,DP ). The best performing
symbolic classifier (which performs the best on both the small and full class prob-
lems) is the k-NN AESA search (see Section 2.6) based on the score of the top
candidate (in terms of the smallest distance to the test token) in the k-best list, i.e.
k = 1. This was found to outperform all the majority voting schemes. The classi-
fication error obtained with 1-NN AESA (for the setup described above, with the
training set of 300 templates and full test set of 2,423 templates) is 0.9%.

In Remark 3.2 in Section 3.4.2, an important property of the pseudo-Euclidean
vector space representation was stated. According to this property, the squared
lengths of the segments connecting all the vectors representing the training and
test objects are non-negative. This allows one to use extensions of classical decision



3.5. EXPERIMENTS AND DISCUSSION 83

1e-30

1e-25

1e-20

1e-15

1e-10

1e-05

1

50 100 150 200 250 300

lo
g(

E
D β

)

Dimension (m)

(a) Log of the representation error ED
β .

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

0.01

1

100

10000

50 100 150 200 250 300

lo
g(

E
M β

)

Dimension (m)

(b) Log of the magnitude of removed eigenvalue EM
β .

580

600

620

640

660

680

700

720

740

760

780

800

0 50 100 150 200 250 300

D
β

Dimension (m)

(c) Average class separability Dβ .

Figure 3.10: Dimensionality reduction for the three class problem: Error measures
as functions of the reduced dimension m of R(m+,m−).
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algorithms available in Euclidean spaces. In addition, some of the classification
rules, like k-NN, are universal and apply to symbolic spaces too. Following are the
classifiers we used in the experiments:

kNN Perhaps the simplest classifier one can use in the pseudo-Euclidean space
is based on the k Nearest Neighbour (k-NN). Goldfarb (1985) showed that
the k Nearest Neighbour rule is suitable for any vector space (including
the pseudo-Euclidean) provided that the similarity between the vectors is
expressed with the help of the inner product (symmetric bilinear form) cor-
responding to that space. We extended the efficient k-Approximating and
Eliminating Search Algorithm (k-NN AESA), described in Section 2.5.4,
to operate in pseudo-Euclidean spaces by changing the specification of
the algorithm to operate on squared distances in pseudo-Euclidean space,
rather than on Euclidean distances. The k-NN AESA search in pseudo-
Euclidean spaces is hereafter referred to as kNN .

LDS Given the reduced vector representation and noticing that the metric is
nearly linearly separating the classes in question, we proceed by con-
structing a simple linear decision surface by using a feed-forward neural
network without any hidden units, hereafter referred to as a LDS . The
feed-forward neural network has a simple architecture. It performs 1-of-3
classification. The number of input (activation) units is equal to the di-
mension m of the feature vectors in R(m+,m−). There are 3 output (target)
units. Each input unit is mapped to all three output units. The NICO ar-
tificial neural network toolkit was used as implementation (Ström, 1996).

SVM An additional classifier we use is the Support Vector Machine (Cortes
and Vapnik, 1995; Schölkopf and Smola, 2001; Vapnik, 1998). The basic
training principle behind the SVM is finding the optimal linear hyper-
plane such that the expected classification error for unseen test samples is
minimised. According to the structural risk minimisation inductive prin-
ciple (Burges, 1998; Vapnik, 1998), a function that classifies the training
data accurately and which belongs to a set of functions with the lowest VC
dimension (Burges, 1998; Cortes and Vapnik, 1995) will generalise best re-
gardless of the dimensionality of the input space. Based on this principle,
a linear SVM uses a systematic approach to find a linear function with the
lowest VC dimension. For linearly non-separable data, SVMs can (non-
linearly) map the input to a high dimensional feature space where a linear
hyperplane can be found.

Given a labelled set of N training samples (xi, yi), where each vector
xi is assigned a class membership criteria yi ∈

{
+1,−1

}
, the SVM clas-

sifier finds the optimal hyperplane that correctly separates (classifies) the
largest fraction of vectors while maximising the distance of either class
from the hyperplane (the margin). Maximising the margin distance is
equivalent to minimising the VC dimension in constructing an optimal
hyperplane. Computing the best hyperplane is posed as a constrained op-
timisation problem and solved using quadratic programming techniques.
The discriminant hyperplane is defined by the level set of

f(x) =
N∑

i=1

yiαik(x, xi) + b ,

where k(·, ·) is a kernel function and the sign of f(x) determines the mem-
bership of x. Constructing an optimal hyperplane is equivalent to finding
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all the nonzero αi. Any vector xi that corresponds to a nonzero αi is a
support vector (SV) of the optimal hyperplane.

In his work, Graepel (1999) made the first attempt to use support
vector classifiers on a non-Euclidean data1. He found out that when the
vector space in question is pseudo-Euclidean, the constrained optimisation
can not be performed meaningfully if the N×N matrix of the kernel values

K =
(
k(xi, xj)

)
, 1 ≤ i, j ≤ N

corresponding to the training data is not positive definite. In the simplest
scenario, this can be demonstrated on a linear SVM classifier. In this case,
the kernel function is specified by the squared pseudo-Euclidean distances
between the points in the training set, giving rise to K which corresponds
to the pseudo-Euclidean dissimilarity matrix which is often not positive
definite (in our task, since the modelling space has a very strong negative
component according to equation (3.19), this matrix is indefinite). As the
result, the optimisation problem is ill posed: it is still quadratic, but not
convex.

Two workarounds have been proposed by Graepel et al. (1999) and
Pekalska et al. (2005; 2002). Both of these methods essentially disregard
the geometry of pseudo-Euclidean space and either perform classification
in R(m+,m−) assuming it is a Euclidean space Rm++m− or perform all
the projections on the real part Rm+ of the space only. In other words,
all the inner product computations performed by the kernel functions are
computed in a Euclidean space. This technique performed well in the
reported experiments.

In our experiments, we follow the approach taken by Pȩkalska et al.
(2002) and perform all the computations in R(m+,m−) using the Euclidean,
rather than pseudo-Euclidean, inner products. We used the SVMtorch
toolkit as the implementation (Collobert and Bengio, 2000, 2001). Here-
after, we refer to this classifier as SVM .

First, we constructed isometric embedding α (Section 3.3.1) of a full training
set of 300 patterns. Next we constructed reduced representations of α with the
dimension of the biggest reduced representation corresponding to 150. The motiva-
tion behind chosing the latter value is to use less than 50% of the original training
data.

Next, four classification experiments were conducted with each of the classifiers
described above and the results were compared to the best classification error of
0.9% obtained in the pseudo-metric space with 1-NN AESA. For each of the clas-
sifiers and each of 150 dimensions m, characterising the reduced pseudo-Euclidean
space, we performed the experiments with the following four possible configurations:

• Two different reduced vector representations are constructed using regu-
lar (or basic) δ (denoted by subscript R) and corrected δC (denoted by
subscript C) metric projections (Section 3.4).
• During the construction of each of the reduced vector representations,

two different approaches to the basis selection of the reduced vector space
R(m+,m−) were employed: regular (denoted by superscript R) and novel
class-based (denoted by superscript C) basis selection techniques (Sec-
tion 3.4.3).

Best classification results (chosen from reduced dimensions of m ≤ 150) for each of
the resulting configurations, along with the corresponding dimension m for which
the results were obtained, are shown in Table 3.1.

1The data for which symmetric bilinear form is not positive definite (Section 3.2.1).
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Classifier Projection Basis Selection Notation Dimension Error (%)

kNN AESA Regular Regular kNN R
R 85 2.8

Corrected Regular kNN R
C 73 2.4

Regular Class-based kNN C
R 63 1.1

Corrected Class-based kNN C
C 50 1.0

LDS Regular Regular LDSR
R 39 0.7

Corrected Regular LDSR
C 144 0.6

Regular Class-based LDSC
R 33 0.6

Corrected Class-based LDSC
C 130 0.5

SVM Regular Regular SVM R
R 48 0.3

Corrected Regular SVM R
C 54 0.5

Regular Class-based SVM C
R 92 0.4

Corrected Class-based SVM C
C 87 0.5

Table 3.1: Various types of classifiers used in the experiments on different types of
pseudo-Euclidean representations and the corresponding best error rates.

For kNN classifiers, simple nearest neighbour 1-NN search based on the score
of the top candidate (in terms of the smallest distance to the test pattern) in the
k-best list outperformed the majority voting schemes. Interestingly enough, the
same situation was encountered for the symbolic version of k-NN AESA.

We first compare the performance of the neural networks to the performance of
1-NN search. As can be seen from Table 3.1, feed-forward neural networks (LDS )
consistently outperform k-NN search in both pseudo-metric and pseudo-Euclidean
spaces. In addition, the use of class labels for the construction of the reduced
vector representation during the training stage, improves the performance of all the
LDS and kNN models used in this experiment. The 1-NN classifier in the reduced
pseudo-Euclidean space does not seem to handle perturbations introduced by the
dimensionality reduction as well as the neural networks. Its error rate, however,
comes close to its symbolic counterpart by only using around 17% (50 out of 300
patterns) of the original training data. The best performing neural network model
achieved 0.5% error, which is an improvement over the best pseudo-Euclidean 1-NN
result of 1.0% and symbolic 1-NN result of 0.9%.

We next turn to analysing the performance of the linear support vector classi-
fiers (SVM ), noticing that they too consistently outperform 1-NN search in both
pseudo-Euclidean and original pseudometric spaces. These findings are in line with
the previously reported observations by Graepel et al. (1999); Pȩkalska and Duin
(2002); Pȩkalska et al. (2002). As can be seen from Table 3.1, all the four con-
figurations of the linear support classifiers perform as well or better than their
corresponding neural network counterparts, with the best LDS errors correspond-
ing to the worst SVM ones. Interestingly enough, with the linear support classifiers,
regular basis selection algorithm performs better than its class-based counterpart,
on both spaces obtained by basic and corrected metric projections. This could be
explained by the fact that the ratio between the number of objects per class and
the overall number of classes for this task is reasonably high. Hence, the classes
are represented reasonably fairly in the chosen basis. Fair representation of classes
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becomes more of an issue when the task is sparse, i.e. when there are too many
classes and too few objects to represent them. Therefore, we expect the class-based
technique for basis selection to perform better in sparse environments.

The overall best error of 0.3% was obtained by the linear support classifier in
the reduced pseudo-Euclidean space of dimension 48, which was constructed using
basic metric projection and the basis of the reduced space was selected using the
regular technique.

3.5.2. Full Problem. At the beginning of the experimental section it was
mentioned that the symbolic dataset P we operate on corresponds to the set of
phonological templates derived from the TIMIT data using a symbolic quantisation
level of 10. The symbolic corpus corresponding to this quantisation level consists
of 124,962 templates in the training set and 42,540 templates in the test set. The
full-class task consists of evaluating the performance of vector space representation
of 39 phonetic classes.

Obviously, the training set is too big to allow for the construction of a vector
representation. Hence, in our experiments we make use of smaller datasets which
were obtained by the symbolic clustering of the original training set. Each reduced
training set has a different number of prototypes per class, from 5 up to 100 (see
Section 2.6 for details). The specific symbolic algorithms we used for computations
in pseudometric space (P,DP ) are the same as the ones used in a three-class prob-
lem described in Section 3.5.1. Experiments were then conducted for each of the
datasets separately.

Unlike the experiments described for the three-class task, the aim of the ex-
periments we conducted on the full class task was different. The primary goal was
to test how well the pseudo-Euclidean counterpart of the symbolic k-NN AESA
performs in the vector space constructed by an isometric (or close to isometric)
embedding. This is different from the experiments in the previous section, where
we tested the performance in significantly reduced vector spaces.

Clearly, an analysis similar to that performed for the small problem is still
possible. For instance, Figure 3.11 (p. 88) shows the representation error measures
ED

β and EM
β (plotted using log scale) against the dimension m of the corresponding

reduced pseudo-Euclidean space. The original space corresponds to the training set
of 190 objects, with 5 prototypes per class. For dimensions m higher than 10, the
spaces are strictly pseudo-Euclidean.

For each of the training sets Pi with numbers of prototypes per class equal to
5, 10, 15, 20, 25, 30, 40, 45, 50, 60, 70, 80, 90 and 100, we performed the following
processing steps given the corresponding pseudo-metric space (Pi, DP ):

• Determine the dimension n of the corresponding pseudo-Euclidean space
corresponding to the generalised covariance matrix where all the relatively
small eigenvalues (less than 10−4 in magnitude) are removed. For all
cases, the number of removed eigenvalues corresponded to three to five
eigenvalues. The resulting space R(n+,n−) is nearly isometric, with the
representation error being small.
• Given R(n+,n−), construct two reduced vector representations in R(m+,m−)

(using basic δ and corrected δC projections of the training and test sets)
without drastically reducing the space, i.e. m is close to n. In our experi-
ments, m = n− 1. We employed the class-based basis selection technique
for both projections.

In order to assess the performance of the vector-space version of k-NN AESA
search and compare it to the symbolic counterpart, classification experiments were
conducted against the full test set of 42,540 pseudo-Euclidean space vectors. In the
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Figure 3.11: Dimensionality reduction for the full problem: Error measures as
functions of the reduced dimension m of R(m+,m−). The set consists of 190 objects,
5 objects per class.

original experiments conducted in pseudometric space (Section 2.6.5 on p. 57), the
simple nearest neighbour (NN) search based on the score of the top candidate (in
terms of the smallest distance to the test template) in the k-best list outperformed
the majority voting schemes (i.e. optimal k was found to be 1). Therefore we
decided to use the same value of the search parameter k for k-NN AESA search in
pseudo-Euclidean vector spaces.

Figure 3.12 (p. 89) shows the performance of 1-NN AESA with vector represen-
tations of training and test sets constructed using basic δ and corrected δC metric
projections. An additional curve shows the performance of the corresponding 1-NN
AESA search in the symbolic pseudometric space. The accuracy curves are shown
with respect to the number of prototypes per class in the respective training sets.
If, for example, the number of prototypes per class is 50, then the vector space rep-
resentation of the training set (obtained with either corrected or basic projection)
consists of 1950 vectors.

For both basic δ and corrected δC constructions, the results of k-NN AESA
in pseudo-Euclidean space appear to consistently outperform the pseudo-metric
counterpart for all the dimensions corresponding to number of prototypes per class
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Figure 3.12: Classification accuracy (%) for the full-class problem. Performance of
1-NN AESA with vector representations constructed using basic δ and corrected
δC metric projections is shown together with the performance of the corresponding
1-NN AESA search in the symbolic pseudometric space. The accuracy curves are
shown with respect to the number of prototypes in each class.

of up to 50. This is an indication that vector representations seem to be more
robust in the sparse environment. Performance of k-NN AESA in a regular space
deteriorates slightly from there on, while the k-NN AESA in a corrected vector
space constructed by δC continues to outperform both the pseudo-metric symbolic
variant and the basic vector space version constructed by δ.

The best results were obtained for 100 prototypes per class: 60.26% accuracy
for 1-NN AESA on regular metric projection and 60.31% accuracy for 1-NN AESA
on the corrected one. This is similar to the best result of 60.26% obtained in the
pseudo-metric space.

3.6. Summary and Potential Improvements

In this chapter we examined construction of pseudo-Euclidean embeddings of
finite pseudo-metric spaces representing speech. Having introduced a specific struc-
tural representation, described in Chapter 2, we performed a dissimilarity-based
transition to a more analytically developed vector space representation, which for
our particular task is pseudo-Euclidean. This pseudo-Euclidean vector space pre-
serves the isometric properties of the original symbolic phonological metric space.
We used the resulting space to experiment with the more efficient vector-space
counterparts of the symbolic classifiers, perform data analysis and construct lin-
ear decision surfaces (which are otherwise unavailable to us in symbolic spaces)
for multi-class problems. On the theoretical side, we explored several metric pro-
jection and basis selection algorithms. In particular, in Section 3.4.2 we focused
on the corrected metric projection technique proposed by Goldfarb (1986), which
otherwise is not treated in his earlier monograph (Goldfarb, 1985). We also suggest
a new algorithm for optimal basis selection of the reduced pseudo-Euclidean spaces
which, in some cases, outperforms the classical approach.

When the original (pseudo) metric separates the classes reasonably well (as
is the case with a three-class TIMIT problem, which was examined first), a wide
array of linear (and otherwise) hyperspace classifiers consistently outperform both
the symbolic algorithms and the numeric counterparts of the symbolic algorithms
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based on the Nearest Neighbour rule. These findings agree with the results of
the other dissimilarity-based vector space representation experiments previously
reported in the theoretical pattern recognition literature (Duin et al., 2004; Graepel
et al., 1999; Pȩkalska, 2005; Pȩkalska and Duin, 2002; Pȩkalska et al., 2002).

We also conducted full classification experiments on the 39-class TIMIT task
in order to verify the hypothesis that better results can be obtained with the gen-
eralised version of the k Nearest Neighbour AESA search in the constructed iso-
metric pseudo-Euclidean spaces. We confirmed this hypothesis, obtaining a small
improvement in 1-NN AESA search (in a space constructed using the corrected
metric projection) over its symbolic counterpart. Overall, the results of the exper-
iments on a full task are very close (and in most cases superior, especially when
the corrected metric projection technique was used) to the results in the original
pseudo-metric space.

Potential Improvements. Since the future directions of our research will
include more structurally complex and hence less computationally efficient repre-
sentations of spoken language, such as graphs (Bird and Liberman, 2001), reliable
construction of robust pseudo-Euclidean space representations of the pseudo-metric
spaces in question seems to us to be of paramount importance. The theory of dis-
similarity representations, pioneered by Goldfarb (1979; 1984; 1985), is becoming
more popular (Bicego et al., 2004; Duin and Pȩkalska, 2005; Duin et al., 2004;
Pȩkalska, 2005). Several important open problems, however, remain unresolved.
Here, we briefly enumerate some of the more important ones, which are of direct
relevance to us:

Clustering in pseudo-Euclidean vector space: In our experiments, we used the
phonological template datasets which were pre-clustered in the original pseudo-
metric space (P,DP ) using symbolic techniques. We believe that this is definitely
suboptimal since better clustering algorithms are available in numeric vector spaces.
For instance, the concept of a mean of a set is naturally supported by the underlying
vector space and can be computed in a negligible amount of time. The same applies
to other analytical machinery, like multivariate analysis which is simply missing in
the symbolic spaces.

The reason why no clustering was attempted directly in pseudo-Euclidean space
is connected with the complexity of the overall task. Recall that the structural
training set of phonological templates corresponding to TIMIT has 124,962 objects.
In order to perform reasonable analysis of the covariance of this training data, the
naive approach is to embed the entire training dataset into the pseudo-Euclidean
space, which of course is not computationally tractable. Note that most of the
datasets reported in the literature are numeric and therefore can be efficiently pre-
clustered. In addition, these datasets have a significantly lower complexity than
TIMIT (in terms of the number classes under investigation and their separability),
hence the issue of handling large datasets may have not been crucial.

Briefly, in order to better tackle the issue of more efficient reduction of the
training data, we will need to devise hybrid techniques which somehow operate in
both pseudo-metric space (defined by dissimilarities only) and pseudo-Euclidean
(numeric) space by assembling the candidate clusters iteratively and assessing the
measure of their goodness in pseudo-Euclidean spaces. One of the concepts which
may potentially help us to gain more insights into this process is the concept of
pseudo-metric decision trees suggested by Goldfarb (1986). Although this concept
might not be directly useful, the idea that the dissimilarity-space can be hierarchi-
cally split into several subspaces, each of which is optimised separately, can guide
the development of new clustering algorithms for large dissimilarity-based datasets.
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Mathematically justified classifiers: Despite the fact that linear support vector
classifiers performed well on a reasonably separable three-class task, there seems to
be a problem with the approach we followed. The experiments on the three-class
task were based on discarding (or distorting) the geometry of the pseudo-Euclidean
space, essentially turning it into Euclidean, similar to the assumptions described
by Graepel et al. (1999) and Pȩkalska et al. (2002). In other words, in latter works
the authors constructed the classifiers based on the Euclidean assumptions (the pos-
itive definite form of the space’s matrix of symmetric bilinear form), treating the
original pseudo-Euclidean space R(n+,n−) as a regular euclidean space Rn, where
where n = n+ + n−. Recently Haasdonk (2003) and Haasdonk and Bahlmann
(2004) attempted to arrive at a different formulation of the learning problem where
the classifier is generalised to operate in a pseudo-Euclidean setting. In particu-
lar, Haasdonk (2003) offers a theoretical analysis of the performance of support
vector machines in terms of convex hulls in pseudo-Euclidean space and proposes
a new algorithm for discovering the optimal hyperplane with support vector clas-
sifiers in that space. Unfortunately, at present we are not aware of any reports of
experimentation with this variety of support vector classifiers.





CHAPTER 4

Inductive Learning with ETS0

4.1. Introduction

So far we have discussed two techniques for modelling speech. In Chapter 2
and in (Gutkin and King, 2004b) we presented a symbolic template-based repre-
sentation of speech based on phonological distinctive features. As we saw, the chief
benefit of that representation is that it is amenable to linguistic analysis. Further-
more, we showed how to derive it from real speech data and conduct classification.
One of the main drawbacks of the approach presented is that the set of analyti-
cal tools available for modelling in symbolic spaces (in our case corresponding to
the phonological pseudo-metric space) is quite restricted when compared to the
wide array of techniques that conventional vector spaces offer. In addition, we did
not discuss the possible ways of learning in the phonological pseudo-metric spaces,
apart from mentioning (very briefly) in Section 2.7 the possibility of optimising the
numeric weights on the similarity measures defined in those spaces.

In Chapter 3, which followed, and in (Gutkin and King, 2004a), we discussed
the numeric framework based on dissimilarities, which allows for flexible integration
of the above symbolic representation with vector spaces. We also mentioned that
the main motivation for this integration was a need to find a class of vector spaces
(which turned out to be pseudo-Euclidean) which optimally represented the phono-
logical pseudo-metric space at hand. The optimality criterion for the transition
from the symbolic to vector space was naturally defined to preserve the dissimilar-
ities between the objects in the original symbolic and target vector spaces. Once
this transition was accomplished, the chief benefit of the vector spaces — availabil-
ity in these spaces of several efficient learning and classification techniques (like
neural networks and support vector machines) — could be utilised. Two problems
can easily be identified with this approach, however. First of all, once the repre-
sentation is transferred to (any) vector space, the linguistically expressive power of
the original symbolic representation is lost, since the new representation is numeric.
In addition, since the transition is purely dissimilarity-based, there is not enough
information to perform an inverse mapping back to the symbolic space1. Unfortu-
nately, this one-way transition is a limitation of all multi-dimensional scaling and
embedding approaches. Thus, it appears that the original hopes for impending uni-
fication of the symbolic and numeric approaches to pattern recognition (Goldfarb,
1984), following the introduction of the theory of the isometric pseudo-Euclidean
space embeddings, were rather premature.

Coming back to the discussion of symbolic spaces and phonological pseudo-
metric space in particular, we are now in a position to consider the issue of learning
in the symbolic environment which has been tacitly omitted from the exposition up
until now. Earlier in this thesis we mentioned that the main analytical tool of the
symbolic space, namely the dissimilarity measure, possesses a numeric component

1 Having learnt a class representation in a dissimilarity space, one may, perhaps näively, hope
to somehow perform an inverse mapping back to the symbolic space, where this class information
can be interpreted better.

93
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which is expressed in terms of weights defined on the associated edit operations
(see Section 2.4). We also mentioned that one could attempt to define learning in
the phonological pseudo-metric space in terms of the optimisation of the numeric
weights of the corresponding dissimilarity measure. Such an optimisation, however,
is not attractive. On the one hand it does not provide us with any means of dis-
covering interesting symbolic information. On the other, it forces one to remain in
the symbolic modelling space, preventing access to the sophisticated vector space
machinery, which otherwise is available if one decides to do all the optimisation
in the corresponding vector space. Hence, we believe that if the aim of the learn-
ing is pure weight optimisation, it is more advantageous to transfer the problem
to a pseudo-Euclidean domain using the techniques covered in Chapter 3 (or em-
ploy any other alternative dissimilarity-based transition, along the lines suggested
by Pȩkalska, 2005) and use more powerful tools for learning and classification in
these spaces. This was our main consideration for omission of the learning process
in the symbolic spaces from the discussion.

In this chapter, we address the issue of learning in the phonological pseudo-
metric spaces. The particular approach we pursue and some of the experimental
results were previously reported by us in (Gutkin and King, 2005b). Informally,
we can approach the learning problem by spelling out the following requirements,
which are the main objectives of the work we describe in this chapter:

• The phonological representation defined in Chapter 2 does not provide us
with any means of class description. In the rest of this chapter, we will
refer to such representations as “rigid”. Normalised edit distance between
the phonological templates, for instance, does not furnish us with any
understanding of the structural makeup of the particular class of phones
in question. Therefore, we would like the phonological representation to
provide us with the means of encoding the compositional makeup of the
phonological classes being modelled.
• Moreover, even if we learn the optimal weights for the dissimilarity mea-

sures from the training data (thus achieving better separation between the
classes), we would still not be able to learn anything about what makes
the phones structurally different. Hence, we would also like to have the
means of learning the structural class descriptions from the data.

Since we are dealing with real speech classes, which do not have any closed form
description (expressed in terms of some syntactic grammar, for instance), out of
necessity learning model has to combine in itself both structural and numeric com-
ponents. The numeric component is needed to ensure that some optimisation ob-
jectives are met. In fact, syntactic (i.e. grammar-based) approaches to pattern
recognition have been repeatedly criticised precisely because most real world learn-
ing problems cannot be described by a purely syntactic grammatical approach (see,
for example, remarks by Watanabe (1985), Tanaka (1995) and Pavlidis (2003)).
Although the model we consider in this chapter is different from the syntactic
grammar-based approaches (as will be shown below), we nevertheless take these
remarks into account.

The above requirements can be more formally cast as the following Inductive
Learning problem (Abela, 2001; Goldfarb and Nigam, 1994):

Definition 4.1 (Inductive Learning Problem). Given a finite set C+ of positive
training objects that belong to a (possibly infinite) set C (concept) to be learnt and
a finite set C− of negative training objects that do not belong to the concept C,
automatically construct a class representation for C based on negative and positive
training objects and, as a consequence, to recognise if a new element belongs to C.

The structure of a class is taken to be:
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(1) The symbolic features2 that make the objects of the same class similar to
each other and/or different from other objects outside the class.

(2) The emergent combinatorial interrelationships among these features.
The inductive learning process would then involve the discovery and encoding of the
structure of the class allowing one to abstract (generalise) and associate meaning
with the set of objects. In the subsequent recognition stage, the induced dissimi-
larity measure is used to compare a new object to some fixed and reduced set of
objects from C+. �

The Evolving Transformation System (ETS0) formalism has been initially de-
veloped by Goldfarb (1990; 1992) to address the above requirements3. In particular,
ETS0 has been successfully used by Abela (2001) in a grammatical inference setting
and was the basis for the inductive mathematical model of human vision proposed
by Goldfarb et al. (1996). It should be noted that ETS0 is not an algorithm, but
rather a model, providing formal guidelines which specify how to address the in-
ductive learning problem posed above given any symbolic pseudo-metric domain.
For our task, where the objects we model are the phonological feature templates,
we augment (using the ETS0 model) the existing phonological pseudo-metric space
representation (specified in Chapter 2) in such a way as to meet the objectives of
the inductive learning problem.

One of the central ideas of the ETS0 formalism is that the similarity measure
plays the critical role in the definition of a class (Goldfarb, 1992) via capturing the
compositional makeup of objects. Learning in ETS0 essentially reduces to finding
a distance function (defined in terms of a set of weighted transformations) that
achieves some degree of class separation by minimising the distance between the
objects in the positive training set C+ while at the same time making sure that
the distance between the objects in C+ and the objects in the negative training
set C− is always greater than some non-zero positive threshold. An ETS0 learning
algorithm achieves this by iteratively modifying the distance function in order to
achieve the above objectives, hence we can call this distance function an evolving
dissimilarity measure. Representation of a class C in ETS0 is thus defined in
terms of a set of some prototype objects belonging to C+ and the non-empty
set of non-trivial structural transformations. These transformations, discovered
during learning, play the role of the structural features providing the makeup of
the class C. The classification procedures, described in Chapter 2, that employ the
evolving dissimilarity measures can be used as usual. The only difference is that
the dissimilarity measure is now conceptually more interesting.

In this chapter, we describe the learning algorithms defined in the phonological
pseudo-metric space we use, along with several optimisation criteria. The learning
procedure allows one to discover linguistically meaningful compositional makeup of
various classes of the phonemes under investigation. In addition, we describe ex-
periments which were conducted to verify the hypothesis that the phonological rep-
resentation which is designed according to the principles outlined in Definition 4.1
results in the improved phoneme classification performance.

Overview of the chapter. The necessary background material which can be
helpful to better understand the basic motivation behind the development of the
ETS0 model (Goldfarb, 1990), as well as generalisations of some important notions

2We refer to this notion in pattern recognition terms. It is not to be confused with distinctive
phonological features from Chapter 2.

3The subscript 0 refers to the initial version of the formalism, which has undergone significant
development since its inception. The newer versions of the formalism, however, are not suited to
the phonological pseudo-metric space modelling we consider here. They are described in the
following chapters.
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from Chapter 2, is presented in Section 4.2. Next, we introduce the ETS0 model
in a general setting in Section 4.3. This section continues to provide a running
example of a toy phonological representation that was first introduced in Exam-
ple 2.3. Section 4.4 describes the experimental setup (compatible with the setup
of the experiments reported in Chapters 2 and 3) along with the discussion of the
results, which are compared against the results reported in the previous chapters.
We summarise the chapter in Section 4.5 and present some future directions of
research which will potentially improve the learning algorithms presented in this
chapter.

4.2. Preliminaries: Objects, Transformations and Metrics

This section is setting the scene (rather informally) for subsequent develop-
ments. Let S represent the set of homogeneously structured objects. For example,
S may be a collection of rooted binary trees or strings. In his paper, Goldfarb
(1990) suggested to represent the objects in S by graphs. He showed how using
graphs allows one to treat various types of objects using a single underlying formal
structure without loss of generality. Given any object s in S, its structural repre-
sentation as a graph can be considered as whole, while any fragment (sub-graph)
of this representation can be seen as part. Next, Goldfarb (1990) showed how the
concept of structural dependencies between the objects in S can be elaborated by
introducing transformations on the objects. Informally, the transformation oper-
ation allows to modify the structure of an object s in S by replacing, deleting or
substituting any of its parts, obtaining a new object s′.

The concept of transformation allows to introduce the notion of similarity on
homogeneously structured objects. The notion of similarity, in turn, allows the def-
inition of non-parametric and parametric distances between the structural objects.
These issues are treated in Section 4.2.1, where the exposition is based on (Goldfarb,
1990, 1992).

In Section 4.2.2 we describe the weighted string edit distance algorithm which
employs arbitrary string transformations (not confined to trivial single-character
operations). This algorithm has been developed by the author and is extensively
used in our representation, which, being a generalisation of the framework described
in Chapter 2, is based on string templates.

4.2.1. Structural Dissimilarity Measures. Given the two objects s1 and
s2 belonging to some set S, it is reasonable to assume that either s1 can be trans-
formed into s2 or vice versa. In particular, given the above notion of the structural
transformation, it is possible to introduce the notion of similarity between the two
structural objects via the transformation concept (Goldfarb, 1990):

Definition 4.2 (Similarity). Let O denote the universe of possible transfor-
mation operations defined on structural objects in S. Object s1 ∈ S is similar to
object s2 ∈ S if there exists a finite sequence (chain) of m transformation operations
O′ =

{
o1, o2, . . . , om

}
⊆ O such that when applied to s1 it results in s2. �

Goldfarb (1990) showed that any sequence of operations that transforms one
object into another is reversible, which means that this sequence can be reversed
by reversing each of the constituent transformation operations. In addition, he
introduced the notion of completeness for a set of transformations O defined on a
set of objects S. A set O of transformations is complete for the set S, if any pair
of objects s1, s2 ∈ S are similar.

For most of the classes of structures (vectors, strings, trees, etc.) one can always
choose the set of appropriate “insertion-deletion” operations which make the set of
operations complete. Perhaps the most obvious example are the strings over some
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finite alphabet. Any string can be obtained from another by applying a sequence of
insertion and deletion single-character transformations. If, on the other hand, one
restricts the set of transformations to only include the insertion operations, then
the completeness criterion is violated.

Given the notion of similarity between the two objects, there is a natural way of
introducing a metric on the set of objects S. The metric measure is defined via the
set of the transformations O, turning the pair (S, O) into a metric space (Goldfarb,
1990):

Definition 4.3 (Intrinsic Distance). Let O denote the set of transformations
which are complete over the set of objects S. The (structural) intrinsic distance
between any two similar objects s1, s2 ∈ S in (S, O) is the function ∆O defined on
S as

∆O : S × S → N, N =
{
0, 1, 2, . . .

}
,

where ∆O is the minimum number of transformation operations necessary to trans-
form s1 into s2. �

The adjective “intrinsic” in the above definition, coined by Goldfarb (1990),
refers to the fact that the distance function ∆ does not reflect any empirical (sta-
tistical) knowledge about the transformation operations. Such knowledge can only
be acquired within the learning framework, which is introduced later on in this
chapter. A possible intrinsic distance function for the class of strings over a finite
alphabet (which, as we have seen above, is complete under insertion and deletion
single-character transformations) is a Levenshtein edit distance (Levenshtein, 1966;
Sankoff and Kruskal, 1983).

The flexibility of the intrinsic distance function can be improved by allowing
different transformation operations to have different weights associated with them.
These weights, for instance, may express some a priori domain-specific knowledge
about the transformations involved. For example, we can consider some of the
transformations to be more important than others by assigning to them larger
weights. This particular distance function is called the parametric distance, defined
below (Goldfarb, 1990, 1992):

Definition 4.4 (Parametric Distance). Let S be the set of structural objects
and O the set of m transformation operations defined on the objects in S. Para-
metric distance function

∆ω : S × S → R+

defined for the pair (S, O) is obtained from the intrinsic distance function ∆ as
follows:

• Each of the m transformation operations oi in O is assigned a correspond-
ing weight ωi, which is a non-negative real number.
• For any pair of objects s1 and s2 in S let

g =
{
(og

1, ω
g
1), (og

2, ω
g
2), . . . , (og

k, ωg
k)

}
denote a sequence of k operations together with their corresponding weights
required to transform s1 into s2. Also, let G denote the set of all such
transformation sequences between s1 and s2.
• The distance between any pair of objects s1 and s2 in S is defined as

(4.1) ∆ω(s1, s2) = min
g∈G

|g|∑
i=1

ωg
i ,

where the minimum is taken over the set of all possible sequences of op-
erations G transforming s1 into s2. �
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The above definition can be seen as a generalisation of the weighted edit dis-
tance for strings, which we discussed in Section 2.4.2 of Chapter 2. As noted by
Abela (2001), the above definition of the parametric distance can be made even
more general by allowing the individual structural transformations to be assigned
real multi-dimensional vectors of weights, rather than single weights. This is po-
tentially useful if one wants to use semantically different numeric parameters (such
as similarity cost, penalty and deletion cost) for each individual transformation. In
addition, instead of computing the parametric distance as an optimal cost sequence
using the sum in equation (4.1), some other criterion φ can be potentially chosen.
In other words, one can perform a different optimisation

∆ω(s1, s2) = min
g∈G

φ(ωg) ,

where ωg is the weight vector corresponding to the transformation sequence g. The
two modifications discussed above are outside the scope of this chapter, however.

Given the above notions of a structural object representation, transformations
and the similarity measures, the Evolving Transformation System model is finally
introduced in Section 4.3. As we shall see, the ETS0 representation we consider is a
generalisation of the phonological metric spaces which were discussed in Chapter 2.
In the discussion above we mentioned that the set of operations needed for trans-
forming the structural objects into each other is not confined to trivial operations
only. Thus the notion of intrinsic distance from Definition 4.3 is not as simple as
it may seem.

Before proceeding with the exposition of ETS0, in the next section we introduce
the intrinsic distance function which has been developed by us for distinctive feature
streams (modelled as strings) from the phonological representation in Chapter 2.

4.2.2. Block Edit Distances on Strings. Block edit distances are recent
alternatives to character edit distances. Such distances introduce block-based edit
operations in addition to the character-based ones and can be described in terms
of the minimum number of single character and block edit operations required to
transform one string into another. In this work, we developed a block edit distance
algorithm which can be seen as a generalisation of a classical (weighted) Levenshtein
edit distance. This distance function is useful to us because it allows computation
of dissimilarities on strings that use an arbitrary set of string transformations. As
we shall see in Section 4.3, the non-trivial blocks play the role of the features (in
a sense of Definition 4.1) that are discovered during the learning in phonological
ETS0 representation.

The conventional counterparts of the block distances were discussed in Sec-
tion 2.4.2, which also introduced the necessary notation which is followed in the
exposition below.

4.2.2.1. Generalised String Edit Problem. Similar to the single-character based
metrics of Section 2.4.2.1, given the two strings

A = a1, a2, . . . , an and B = b1, b2, . . . , bm

over some finite alphabet Σ, the aim is to compute the edit distance between A
and B. An additional symbol, not belonging to an alphabet Σ, is an empty string
denoted by ε. By a block we mean a (possibly empty) string over Σ. We next
generalise the concept of an edit operation, originally given in Definition 2.5.

Definition 4.5 (Block Edit Operation). An edit operation e is an ordered
non-empty pair (Fi, Fj), where Fi and Fj are the blocks over Σ. Note that the pair
is non-empty, hence at least one block in the pair has to differ from ε.
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String B results from string A via (Fi, Fj) if

A = S1FiS2 and B = S1FjS2

for some strings S1 and S2 over Σ. The pair (Fi, Fj) is called a replacement if
Fi 6= ε and Fj 6= ε, a deletion if Fj = ε and an insertion if Fi = ε. �

Let
I =

{
(Fi, Fj)

}
, |Fi| > 1 and/or |Fj | > 1

denote the set of non-trivial blocks, which in practice is supplied as an input to the
algorithm. Let F denote the set of block operations. Hence, the set of all trivial
operations is given by F \ I. In the case when the set I is empty, the problem
reduces to the conventional string edit distance considered in Section 2.4.2. Next,
the notions of an edit sequence (Definition 2.6) and a cost function (Definition 2.7)
can be generalised to the block edit problem:

Definition 4.6 (Block Edit Sequence). A sequence E of block edit operations
is called a block edit sequence. Let

E = e1, e2, . . . , ek

be an edit sequence. B is said to be derivable from A if there exists a sequence of
strings S0, S1, . . . , Sk such that A = S0, B = Sk and for 1 ≤ i ≤ k, Si results from
Si−1 via ei. B is always derivable from A via a sequence consisting of n trivial
deletion and m trivial insertion operations. �

Definition 4.7 (Block Edit Cost Function). A cost function δ is a binary
mapping assigning a non-negative real number to each block edit operation (Fi, Fj).
Thus, the cost of a sequence E of length k is given by

δ(E) =
k∑

i=1

δ(ei) . �

4.2.2.2. Generalised Wagner-Fisher Algorithm. In order to compute a classi-
cal weighted Levenshtein distance between the two strings one can use an efficient
Wagner-Fisher algorithm (Section 2.4.2.2). We modified this algorithm in a rea-
sonably straightforward way to address the generalised weighted Levenshtein case.
This novel algorithm, which we call the Generalised Wagner-Fisher Algorithm, em-
ploys a simple dynamic programming approach based on its classical version and is
described below.

Let
Ai,j = ai, ai+1, . . . , aj and Bi,j = bi, bi+1, . . . , bj .

denote two substrings of A and B, respectively. Also let

Ai = a1, a2, . . . , ai , Bj = b1, b2, . . . , bj , δi,j = δ(Ai, Bj) .

Construct a (n + 1)× (m + 1) matrix

D = (di,j) i ∈ [0, n], j ∈ [0,m] .

Initially d0,0 = 0, the first column is given by

di,0 = δ(Ai, ε) = min
e∈F

{
di−k,0 + δ(e) | e = (Ai−k,i, ε), 1 ≤ k ≤ i

}
and the first row by

d0,j = δ(ε, Bj) = min
e∈F

{
d0,j−k + δ(e) | e = (ε, Bj−k,j), 1 ≤ k ≤ j

}
.

For the rest of the elements,
di,j = δi,j ,
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where δi,j is calculated using the following recursive relation that can be seen as
the generalisation of Wagner and Fisher’s result (Wagner and Fisher, 1974):

di,j = min
e∈F

 { di−k,j + δ(e) | e = (Ai−k,i, ε) , 1 ≤ k ≤ i } ,
{ di,j−k + δ(e) | e = (ε, Bj−k,j) , 1 ≤ k ≤ j } ,
{ di−p,j−q + δ(e) | e = (Ai−p,i, Bj−q,j) , 1 ≤ p ≤ i , 1 ≤ q ≤ j }

for i ∈ [1, n] and j ∈ [1,m]. The resulting block edit distance δ(A,B) is stored in
dn,m.

The algorithm is slower than its basic single-character based version because
of the additional iteration over the set of operations and extensive string matching.
It uses O(n ·m · l) elementary steps, where l = |F | is the cardinality of the set of
block and character operations.

One can improve the string matching performance by the use of suffix trees (Gus-
field, 1997). The overall time complexity of the algorithm could be further reduced
by applying the t-blocks method as used by Masek and Peterson (1980; 1983) in
their research aimed at speeding up the classical weighted Levenshtein distance.
The t-blocks is a speedup technique for dynamic programming (known as the Four-
Russians Method) first suggested by Arlazarov et al. (1970). It uses t-blocks (t by
t squares in the dynamic programming table) rather than single cells at each step
of the Wagner-Fisher algorithm.

4.3. Evolving Transformation Systems (ETS0) Model

In this section we introduce the core components of the Evolving Transforma-
tion System (ETS0) model. The basic structure of the model is provided by the
transformation system, described in Section 4.3.1, which can be seen as a certain
generalisation of the notion of the pseudo-metric space in which there is more em-
phasis on the structure of the objects in the domain. Next, we outline (rather
informally) the learning process which in ETS0 is seen as sequential optimisation
of the transformation system structures. This is covered in Sections 4.3.2–4.3.3.
Finally, the goal of the learning process is the discovery of inductive class structure,
described in Section 4.3.4.

It is important to note that the algorithmic parts of this section are primarily
based on previously reported ETS0 findings, which have been described with varying
degree of detail by Goldfarb (1990, 1992); Goldfarb et al. (1995); Goldfarb and
Deshpande (1997); Goldfarb et al. (1996); Goldfarb and Nigam (1994), Kamat
(1995) and Abela (2001).

4.3.1. Transformation System. Given the notion from the previous sec-
tion, the concept of transformation system can be introduced in a straightforward
manner (Abela, 2001; Goldfarb, 1990, 1992; Goldfarb et al., 1996):

Definition 4.8 (Transformation System). A transformation system (TS) is a
3-tuple T = (S, O, D), where

• S is a set of structural objects of the representation;
• O is a finite set of m substitution operations for transforming the objects

in S satisfying the following two trivial properties: all the operations in
O are reversible and O is complete (Section 4.2.1);
• The set D =

{
∆ω

}
is a family of parametric distance functions defined

on (S, O) (parametric distance functions are given in Definition 4.4).
The number of possible parametric distance functions in D is essentially dictated
by the weighting scheme Ω, which is a set of all the possible weight vectors ω of
dimension m (corresponding to m transformations in O) which possess the following
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property:

∀ω ∈ Ω:
m∑

i=1

ωi = 1 . �

We can refer to D as a family of competing distance functions. The set of
transformations O is complete, therefore for any pair of objects s1 and s2 there exists
at least one sequence of transformations which will transform s1 into s2. In practice,
one usually finds such a sequence together with the appropriate weight vector ω in
Ω which minimises ∆ω(s1, s2). Hence the use of the adjective “competing” above.

In Section 2.4 we defined the phonological metric space — the distinctive
feature-based speech representation. The phonological metric space is defined as
the set of all phonological templates in the domain, denoted P, together with a
real-valued mapping dP defined on this set P (Definition 2.4). As we saw in Chap-
ters 2 and 3, this real-valued mapping can be metric, semimetric or pseudo-metric.
Below, we propose to interpret this phonological representation as a transformation
system:

Definition 4.9 (Phonological Transformation System). A phonological trans-
formation system is a 3-tuple TP = (P, OP, DP), where P is the set of all phonological
templates from Definition 2.4, OP is the set of all possible distinct transformations
which transform any pair of templates from P into each other and DP is a family of
distance functions on the set of phonological templates from Definition 4.8, which
is defined via OP. �

Note that this extension is straightforward, since all dissimilarity measures on
phonological templates we considered in the phonological metric space (see Sec-
tion 2.4) possess one important property which eases the transition: all the metrics
we considered are defined in terms of transformations. The only conceptual differ-
ences are the following:

• The set of transformations OP is not restricted to the single-character op-
erations. Hence, the phonological metrics dP can be defined in structurally
more interesting ways.
• The introduction of a general requirement on the weighting scheme of the

distance functions dP which belong to the parametric family DP.
More importantly, instead of one phonological metric space, we now have a col-
lection of phonological metric spaces. In other words, phonological transformation
system TP can be represented as a following set

TP =
{
P, OP,∆ω

P
}

, ω ∈ Ω

where different metrics ∆ω
P correspond to different weighting schemes in Ω.

The similarity measure dP between any two phonological templates p1 and p2

(each consisting of N distinctive feature streams) is expressed in terms of a lin-
ear combination of N per-stream similarity measures di, 1 ≤ i ≤ N . Since the
streams (modelled as strings) are independent of each other, so are the sequences
of transformations which transform them. Hence, one can define the weighting
scheme on these transformations to be stream-specific. The phonological transfor-
mation system TP can therefore be seen as a set of N independent distinctive feature
transformation systems T i, 1 ≤ i ≤ N , one for each stream.

Example 4.1. Figure 4.1 (p. 102) shows the three stream-specific phonological
transformation systems corresponding to a toy phonological template representation
of the two phonemes [p] and [b] from Example 2.3 (Figure 2.5). Two instances
of each phoneme are shown in the figure. The first transformation system (T 1)
corresponds to the [consonantal] stream, the second (T 2) to the [sonorant] and the
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Tense

Consonant.

p1
/p/ p2

/p/ p2
/b/p1

/b/

Sonorant

Consonant. Sonorant Tense

T 2T 1 T 3

mid

low

high

mid

low

high

mid

low

high

mid

low

Figure 4.1: Stream-specific phonological transformation systems T 1, T 2 and T 3

corresponding to the phonological SPE template representation from Example 2.3
shown in Figure 2.5. For each transformation system, the corresponding sets of
objects and single-character transformations are shown. The weighting scheme is
not shown.

third (T 3) to the [tense] stream. The transformation system-specific weights are not
shown. Each transformation system is a string transformation system employing
its own objects, transformations and parametric distance functions.

The set of objects S1 in T 1 transformation system, for example, consists of four
instances of [consonantal] stream encountered in the four templates shown on top
of the figure. The set of transformations O1 in T 1 consists of three single character
operations. The weighting scheme Ω1 corresponding to O1 may assign an equal
normalised weight 1

3 to each of the transformations. B

4.3.1.1. Learning in the Transformation System. The inductive learning prob-
lem was postulated in Definition 4.1. Suppose that during the learning stage the
amount of information available to the system is restricted to a finite set of labelled
phonological templates from each of the M disjoint classes given by

C =
{
C1, C2, . . . , CM

}
= C+ ∪ C− ,

where
Ci =

{
pi
1, p

i
2, . . . , p

i
ki

}
is a set of ki training templates representing some class. We refer to the set C
as the global training set. Suppose that a class to be learnt is Ci, i.e. it is a class
of positive objects C+. Then the set of negative training objects C− is given by
C \ C+.

Let C+ and C− be the sets of positive and negative training templates from
some finite labelled set. In Definition 4.8 it was mentioned that the set of transfor-
mations O corresponding to T is fixed. Therefore the only possible way of learning
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Figure 4.2: Depiction of the learning process within ETS0. The domain is repre-
sented by the positive C+ (black circles) and negative C− (black squares) training
sets, shown on the left-hand side of the figure. During learning, the members of
C+ move closer to each other (shown in the middle of the figure), until they all
end up in a small neighbourhood (shown shaded on the right-hand side of the fig-
ure). In order to define this neighbourhood, one selects any member of a positive
training set as a centroid (shown as a white circle). For a transformation system
the learning is numeric while for the evolving transformation system the learning
process combines both structural and numeric components.

in transformation systems is numeric. The learning is performed by finding some op-
timal weighting scheme ω̂ corresponding to the transformations O. This is achieved
by optimising the weight function f(ω) of the following form:

f : Rm → R ,

where m is the number of operations in O. In all the studies which address the issue
of learning in transformation systems (Abela, 2001; Goldfarb, 1990; Goldfarb et al.,
1995; Goldfarb and Nigam, 1994), the following generic (numeric) optimisation
criterion is used:

(4.2) max
ω∈Ω

f(ω) = max
ω∈Ω

β(ω)
ε + α(ω)

.

In the equation above, β(ω) is the degree of separation between the positive and
negative training sets C+ and C−, α(ω) is the degree of separation between the
positive training objects in C+ and ε is a small positive constant to prevent the
overflow condition when the values of α(ω) approach zero. Both α(ω) and β(ω) are
defined in terms of parametric distance function ∆ω. The optimisation function
f(ω) combines in itself both the measure of compactness of C+, as well as the
measure of separation of C+ from C−, following from the simultaneous minimisation
of function α and maximisation of function β.

Hence, the learning in a transformation system reduces to finding a distance
function ∆ω̂ (parametrised by the weight scheme ω̂) that achieves some satisfactory
class separation. In other words, a measure such that at the end of the learning
process there is a high degree of proximity between the objects in C+ (the distance
between the objects is close to zero), while the distance between the objects in C+

and C− is non-zero. Thus, at each iteration of the learning algorithm, the candidate
weight scheme brings the objects in C+ closer to each other, while maintaining some
reasonable distance between them and the objects in C−. The learning stops when
all the members of C+ are in some small neighbourhood δ. This process in depicted
in Figure 4.2. Once the learning is complete, the set of all templates P that belong
to a concept C represented by C+ can be defined to be{

p ∈ P |∆ω̂(p, p̂) < δ
}

,
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ω3

ω2 ω1

(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

Figure 4.3: A two-dimensional unit simplex in the three dimensional parametric
space Ω.

where p̂ ∈ P is an object in the δ-neighbourhood chosen as a centroid (or attractor,
according to Abela, 2001).

The result of the optimisation process is the set of optimal vector weights

ω̂ = arg max
ω∈Ω

f(ω)

that generates the most distinctive metric configuration for the class within the
global training set. The space of all the possible parameter sets Ω can be described
by the (m − 1)-dimensional unit simplex in Rm, given by (Abela, 2001; Goldfarb,
1990; Goldfarb et al., 1996)

Ω =
{

ω =
(
ω1, ω2, . . . , ωm

)
|ωi ≥ 0,

m∑
i=1

ωi = 1
}

.

Figure 4.3 shows a two dimensional unit simplex in the three dimensional parametric
space Ω. In order the search for an optimal solution in the parameter space Ω,
one can use the two nonlinear function optimisation techniques briefly outlined in
Section 4.3.1.2. The exhaustive search for the optimal parameter set on the entire
simplex is usually computationally very expensive. Therefore, in practice (as we
shall see in Section 4.3.2), it is often sufficient to evaluate f at the m vertices of
the simplex (and possibly the m corresponding midpoints on the edges connecting
the vertices).

4.3.1.2. Simplex Method for Functional Optimisation. While there are many
techniques for optimising nonlinear functions (Jacoby et al., 1972), the most com-
mon strategy used for unconstrained optimisation and the quickest to converge is
the simplex method.4. Simplex search, formulated by Nelder and Mead (1965), is a
direct search method in that search is guided by evaluating the target function with
various combinations of values of the free parameters Ω in the function. The deriv-
ative information is not used. The Nelder-Mead simplex method moves a geometric
shape, called a simplex, through the search space using a set of well-defined trans-
formation operations called reflection, expansion and contraction (Walters et al.,
1991). Each operation moves one or more of the vertices of the simplex so as to

4 The simplex method for functional optimisation and the Dantzig simplex method for linear
programming (Lange, 1968, Chapter 10) both use the geometrical concept of a simplex. The two
algorithms are unrelated, however. The comparison of simplex direct search method to the various
gradient descent-based methods used in neural networks (such as back-propagation algorithm) is
outside the scope of this thesis.



4.3. EVOLVING TRANSFORMATION SYSTEMS (ETS0) MODEL 105

relocate the volume of the simplex closer to the optimal value of the target opti-
mum. No general convergence properties of the simplex search strategy have been
proved, but some limited proofs of convergence are known (Lagarias et al., 1998;
McKinnon, 1998). Some remedies for detection of non-optimality were proposed by
Kelley (Kelley, 1999). An alternative to the Nelder-Mead method is to use the gen-
erally slower, but more robust, Powell method. The Powell technique is a direction
set method which employs Brent one-dimensional search in each direction (Press
et al., 1986). Similar to the Nelder and Mead approach, choice of successive di-
rections by the Powell technique does not require the calculation of a gradient.

All of the above mentioned numeric optimisation techniques have been pre-
viously explored by the author in his master’s thesis in the context of statistical
language modelling (Gutkin, 2000).

4.3.2. Evolving Transformation System. Goldfarb (1990) observed that
when the set O of transformations is not sufficient to achieve a complete separa-
tion of C+ and C−, the structure of the model could be altered to allow for the
modification of the set O. This is achieved by adding some new transformation
operations. Each new transformation represents a composition of several initial
operations. Modification of the transformation set leads to a new transformation
system. Addition of the operations has the effect of changing the geometry of the
distributions of object classes in the corresponding environment: new shorter tran-
sition paths are generated between some pairs of objects in the structural object
set S.

This leads to the central concept of the ETS0 model — the mathematical struc-
ture called the evolving transformation system, which is constructed as a sequence
of transformation systems (Goldfarb, 1990, 1992; Goldfarb et al., 1996; Goldfarb
and Nigam, 1994):

Definition 4.10 (Evolving Transformation System). An Evolving Transforma-
tion System (ETS) is a sequence of transformation systems (given in Definition 4.8)
that share a set S of structural objects. Each transformation system is given by

Ti =
(
S, Oi, Di

)
,

where each set of operations Oi, except O0, is obtained from Oi−1 by adding to it
one of several operations that are constructed from the operations in Oi−1 with the
help of a small fixed set R of composition rules. Each rule r ∈ R specifies how to
(systematically) construct the corresponding new operation from its operands. �

From the above definition it follows that at the stage t of the structural com-
ponent of the learning process

O0 ⊆ O1 ⊆ . . . ⊆ Ot .

Furthermore, for all steps 0 ≤ i ≤ t− 1

∀s1, s2 ∈ S, ∀∆ω1 ∈ Di ∃∆ω2 ∈ Di+1 : ∆ω1(s1, s2) ≤ ∆ω2(s1, s2) ,

where ω1 ∈ Ωi, ω2 ∈ Ωi+1. The dimensions of the simplex Ωi are smaller than the
dimensions of simplex Ωi+1, in other words

Ω0 ⊂ Ω1 ⊂ . . . ⊂ Ωt .

Each stage i, therefore induces a new topology represented by Ωi (addition of a new
transformation resulting in the growth of the simplex is depicted in Figure 4.4).

In other words, the numeric optimisation process described in the previous sec-
tion by equation (4.2), becomes an inner loop within the general inductive learning
process (outlined next in Section 4.3.3) that proceeds by constructing a sequence of
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ω3

ω2 ω1

(0, 0, 1)

(1, 0, 0)(0, 1, 0)

ω4

Figure 4.4: A two-dimensional unit simplex in the three dimensional parametric
space Ωi (from Figure 4.3) is grown by one dimension, turning it into a three
dimensional simplex in a four dimensional parametric space Ωi+1.

transformations
{
Oi

}
in such a way that, for each sequentially obtained transfor-

mation system Ti = (S, Oi, Di), the inter-distances in C+ expressed by αDi shrink
to zero while the corresponding distance βDi between C+ and C− remains non-zero.
At each step, a more optimal family of distances is induced (both numerically and
structurally) by a modified set of transformations. Pictorially, this process can be
represented in exactly the same way as for the pure numeric optimisation, shown
in Figure 4.2.

4.3.3. Learning in Evolving Transformation System. In general, the
learning algorithm is supplied three sets. The first two are the set S of structural
objects and the set of trivial structural transformations O0 which operate on these
objects. By trivial structural transformations we essentially mean the transforma-
tions expressing some a priori knowledge of the structural objects in the domain
S. For the class of strings over a finite alphabet, the set of trivial structural trans-
formations O0 may consist of single-character edit operations (Section 4.2.1). In
addition, we are given some default numeric weight vector ω0 (which, together with
O0 induces the parametric family of distance functions D0 over a unit simplex)
whose components correspond to the transformation operations in O0. These three
parameters define the initial transformation system T0.

In the previous section we mentioned that the learning process within ETS0

essentially employs two sub-processes — the optimisation sub-process and the trans-
formation construction sub-process. The transformation construction sub-process,
which can be seen as the structural component, is nested within the optimisation
sub-process, which is seen as the numeric component. Both the sub-processes can
be implemented as loops. At each iteration i through the optimisation loop, the
goal of the learning is to find a new transformation system Ti, which is more opti-
mal (in terms of the optimisation of f from equation (4.2) over the unit simplex)
than the current one.

At the beginning of each iteration, the optimisation loop attempts to locate
an optimal weighting scheme ωi for the current set of transformations. The trans-
formation construction sub-process is invoked next. It iteratively constructs new
candidate sets of transformations Oj

i out of the current ones Oi−1 using the the
composition rules R (see Definition 4.10). Out of these new sets of transforma-
tions, the most optimal one (in terms of f) is chosen as the current set Oi. The
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algorithm then continues to the next iteration. The learning stops when the overall
optimisation criterion is satisfied, i.e. when f exceeds some supplied threshold τ .
At the end of the learning, the resulting transformation system T̂ represents the
most optimal configuration (the interpretation of the end-result of the learning is
given in Section 4.3.4). The above basic architecture is schematically represented
in Figure 4.5.

Learn(S, O0, D0, τ)

1 T0 ← (S, O0, D0)
2 Choose a default weight scheme ω0 ∈ D0.
3 i← 0
4 while f(ωi) < τ do
5 Optimise f(ωi) over unit simplex Ωi obtaining ωi+1.
6 Di+1 ←

{
ωi+1

}
.

7 for all possible rules r ∈ R do
8 Construct candidate sets.
9 Find the most optimal (in terms of f(ωi+1)) set Ôr

i .
10 Oi+1 ← Ôr

i

11 Ti+1 ← (S, Oi+1, Di+1)
12 i← i + 1

13 T̂ ← Ti

14 return T̂

Figure 4.5: The general architecture for learning within ETS0 (Goldfarb and Nigam,
1994).

In the discussion in Section 4.3.1.1, the objective of optimisation has been
specified as the maximisation, given by equation (4.2), of the following function:

(4.3) f(ω) =
β(ω)

ε + α(ω)
,

where β(ω) and α(ω) are the measures of within-class proximity of C+ and inter-
class separation between C+ and C−, respectively. These measures can be defined
in several possible ways. In this work, we essentially follow the recommendations
of Goldfarb (1990; 1992) and Abela (2001) and use the following measures:

Let C+ be the set of n positive instances and C− be the set of m negative
instances of a concept C to be learnt. The set of structural objects S is thus
represented as C+ ∪ C−. The measure of within-class proximity α(ω) for C+ is
given by the average within-class distance computed over all possible pairs (si, sj)
in C+ as (Abela, 2001; Goldfarb, 1990):

(4.4) α(ω) =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

∆ω(si, sj) , where (si, sj) ∈ C+ .

The measure of separability β(ω) between the two classes C+ and C− is com-
puted as average interclass distance over all pairs of objects (si, sj) as (Abela, 2001;
Goldfarb, 1990):

(4.5) β(ω) =
1

nm

n∑
i=1

m∑
j=1

∆ω(si, sj) , where (si, sj) : si ∈ C+ , sj ∈ C− .
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Alternatively, the separability measure can be computed as the minimum distance
taken over all the pairs of objects in the two sets (Abela, 2001; Goldfarb, 1990):

(4.6) β(ω) = min
{
∆ω(si, sj) | si ∈ C+, sj ∈ C−}

.

In his grammatical inference application called Valetta, Abela (2001) proposed a
variation of the above scheme that makes use of a smaller subset Ĉ− of the objects
in C− instead of C− in the equations above. Abela (2001) argues that this is done
in order to reduce the amount of noise in the negative training set. The subset Ĉ−

consists of 10% of the closest objects in C−, which helps to remove noisy outliers,
which otherwise may corrupt the quality of the measure given in equation (4.6).
It should be noted that for pattern recognition applications, like our phonological
representation, training set pruning is usually accomplished with the help of the
clustering pre-processing step (see Chapter 2). Therefore we assume that the set
C− has already been reduced appropriately.

Both measures α(ω) and β(ω) require a polynomial number of distance compu-
tations. More precisely, to compute α(ω) one needs n(n−1) distance computations,
where n is the size of C+. The calculation of β(ω) takes nm computations, where
m is the size of C+.

In Section 4.3.1 we mentioned that the phonological transformation system
(constructed from the distinctive feature-based phonological representation) con-
sists of N stream-specific transformation systems, where N is the number of streams
(strings over some finite quantisation alphabet), as shown in example Figure 4.1.
We mentioned that the numeric (weight) optimisation process in the phonological
transformation system reduces to N independent optimisations (the stream inde-
pendence assumption discussed in Section 2.4.1). For the inductive discovery of
the optimal phonological transformation system, the above numeric optimisation
can be extended to also handle the transformation construction sub-process. We
conduct the learning process in the phonological evolving transformation system by
performing by N separate optimisations, one per-stream. This raises the following
two important points regarding the learning process:

• The learning is conducted on the set of phonological templates P, which
can be decomposed into N sets of distinctive feature streams Si, 0 ≤
i ≤ N . The goal of each of the N sub-optimisations is to obtain an op-
timal stream-specific transformation system T̂ S

i , where the optimisation
criterion is template, rather than stream, specific. In other words, within
the basic architecture of the learning algorithm from Figure 4.5, f is cal-
culated on the candidate sets of templates, rather than streams. This
ensures the learning satisfies the optimisation criteria in the global space
P, while making use of the independence assumption to simplify learning
in the structural sub-process.
• Since from a structural point of view, learning within the phonological

template space reduces to learning within the stream-specific (i.e. string)
space, we need to explicitly specify the learning algorithm operating on
the String Transformation Systems.

Below, we next address the above issues by describing both the numeric and the
structural learning components in more detail.

4.3.3.1. Inductive Learning in String Transformation System. In this section a
learning algorithm for a string transformation system is presented. The algorithm
is a realisation of the formal discussion of learning in ETS0 presented above. It is
a modification of the grammatical inference algorithm initially proposed for ETS0

by Goldfarb, Santoso and Nigam (1996; 1994).
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Let C+ and C− be the respective positive and negative training sets consisting
of strings over some finite alphabet Σ. In our representation, these sets represent
distinctive feature streams. From Example 4.1, for instance, the set C+ may repre-
sent all the examples of [sonorant] stream in all the instances of the phonemic class
[p], while the negative samples C− represent all the instances of [sonorant] stream
in the phonemic class [b].

(1) Initialisation:
• We are given the set of complete transformation operations O0 over Σ,

which consists of single character edit operations. Let m0 (m0 = |Σ|) be
the number of transformations in O0.
• We are given the set of composition rules R, consisting of m0 single charac-

ter rules. This set allows, at any given step t of an algorithm, to construct
new transformations from the existing transformations by concatenating
a single character r from R to the left and right-hand sides of the trans-
formations in Ot.
• We are also given the weight vector ω0 ∈ Ω0 corresponding to the set O0.

This vector is normalised, i.e. ω0 =
{
1/m0, 1/m0, . . . , 1/m0

}
.

• The algorithm used throughout the learning for computing the distances
between the various instances of the streams is the Generalised Wagner-
Fisher technique described in Section 4.2.2.2.

The algorithm consists of two parts, the outer and inner loops (as shown in
Figure 4.5). In general, at each step of an outer loop, an inner loop yielding a new
transformation system is executed. The structure of outer loop, corresponding to
step (4) of an algorithm in Figure 4.5, is described below:

(2) Outer Loop (Simplex Optimisation): At step t, the current configura-
tion is represented by the transformation system Tt = (S, Ot,Ωt). The optimisation
criterion at this step is represented by the function

ft(ω) =
β∆t

(ω)
ε + α∆t(ω)

,

where ∆t(ω) is induced by the current set Ot of transformations.
(2.1) Compute the value of ft for the “centre” of the simplex Ωt defined by

ωt =
{
1/m, 1/m, . . . , 1/m, 0, 0, . . . , 0

}
.

The first m0 values of the weight vector correspond to trivial single symbol
transformations and are equal to 1/m. The last mt−m0 values correspond
to newly discovered transformations and are set to 0 5.

(2.2) If the value of ft reached the maximum τ or if it cannot be increased
further (compared to the previous value of ft−1), stop and return Tt as
the result. Otherwise, proceed to the next step.

(2.3) Perform structural optimisation in an inner loop, which is specified in step
(3). This step is called the optimal transformation construction. Optimal
transformation construction results in a new transformation system Tt+1

which has mt+1−mt new transformation operations. These new transfor-
mations are supposed to improve ft. Finally, update t to t + 1 and return
to the step (2.1).

It is an inner loop, discussed next, which ensures that the new pseudo-metric space
learnt at stage t and the corresponding transformation system improve the current
value of ft:

5Hence, the point ωt does not quite correspond to the centre of the simplex.
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(3) Optimal Transformation Construction: The current iteration is given
by t and the current set of transformations is Ot.

(3.1) Compute the values of ft at those vertices of weight simplex Ωt that
correspond to the m0 trivial one symbol transformations. In other words,
the set of vertices, for which the values of ft are computed, consists of the
following m0 vectors ωi of dimension mt

ωi = (ω1
i , ω2

i , . . . , ωm0
i , 0, 0, . . . , 0) , 1 ≤ i ≤ m0 ,

where ωk
i = 1 for k = i and ωk

i = 0 for k 6= i. Obviously, each vector ωi

corresponds to a trivial transformation o0
i in the initial transformation set

O0.
(3.2) Promote to the next stage the set O∗

0 ∈ O0 of all transformations for which
the value of ft(ωi) is maximal (the construction of weight vectors ωi is
given above).

(3.3) Form the set U2 of all possible two-symbol candidate transformations from
the one-symbol transformations o0

i ∈ O∗
0 promoted in the previous step.

This is achieved by employing left and right concatenation of the single
character rules r from the set R.

This step spawns the search for candidate expanded operations, which
starts in the next step. Initialise the current iteration counter l to l = 2
and let Ul be the initial set of non-trivial candidate transformations of
length 2, constructed above. For each candidate ui

l ∈ Ul, an ancestor
anc(ui

l) is defined as the corresponding candidate uj
l−1 of length l− 1 out

of which ui
l was constructed.

(3.4) For each of the candidate transformations ui
l in Fl, each of length l, check

whether this transformation is present as a substring in C+. If it is present,
add it to the set U ′

l of candidate transformations which passed the match-
ing test and proceed to the next step. Otherwise, if l > 2, add the ancestor
anc(ui

l) of ui
l to the set of current operations Ot and finish the stage (3)

(Optimal Transformation Construction).
(3.5) Let K be the number of the transformations promoted in the previous

step. Add each of the K promoted transformations ui
l in U ′

l (K = |U ′
l |),

one at a time, to the current set of transformations Ot, obtaining K
augmented sets Oi

t. All these sets are of the size mt + 1. For each of
the K sets Oi

t, compute the value of ft+1 at the “centre” ωi
t+1 of the

corresponding candidate simplex Ωi
t+1, which is given by the (mt + 1)-

dimensional vector whose first m0 values are equal to 1/m0, and the rest
are zero.

(3.6) Promote all the transformations ui
l for which the corresponding values of

ft+1(ωi
t+1), computed above, are minimum.

(3.7) On the basis of the l-symbol transformations promoted in the previous
step, form the set Ul+1 of candidate l + 1-symbol transformations, em-
ploying the composition rules from R (left and right concatenation). Set
l to l + 1 and return to step (3.4).

4.3.4. Inductive Class Representation. In view of the above, the goal of
the inductive learning problem stated in Definition 4.1 has been specified more
concretely in (Goldfarb, 1990, 1992; Goldfarb and Nigam, 1994):

Definition 4.11 (Inductive Class Representation). The inductive class repre-
sentation or inductive generalisation is defined as a 3-tuple

(4.7) Π =
(
Ĉ+, Ô, Ω̂

)
,
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where Ĉ+ is a subset of C+, Ô is the final set of transformations at the end of the
learning process, and Ω̂ ⊆ Ω is a set of optimal weight vectors {ω̂} corresponding
to the final transformation system. �

The elements of Ĉ+ act as reference patterns for defining the class. Conse-
quently, a new input pattern is always compared with these reference patterns
using the parametric family of distance functions {∆ω̂} induced by Ω̂. The set Ô
is necessary since the concept of a distance can be defined properly only in terms
of these operations.

Example 4.2. Figure 4.6 shows the non-trivial stream-specific transformations
discovered during the learning process for the two-class phone problem, treated in
Examples 2.3 (Figure 2.5) and 4.1 (Figure 4.1).

These operations (the corresponding optimal sets of weights Ω̂/p/ and Ω̂/b/ are
not shown) together with the trivial one-symbol transformations form the opti-
mal set of transformations for each class. Together with the corresponding sets of
reference objects Ĉ+

/p/ and Ĉ+
/b/, the three-tuples

Π/p/ =
(

Ĉ+
/p/, Ô/p/, Ω̂/p/

)
and Π/b/ =

(
Ĉ+

/b/, Ô/b/, Ω̂/b/

)
provide inductive class representations for the two classes in question.

It is important to mention that each set of reference objects (Ĉ+
/p/ and Ĉ+

/b/)
consists of one template only. This template is arbitrarily chosen from the cor-
responding set. This is because, in this particular example, the discovered trans-
formations induce perfect separation between the two classes. The within-class
distance for C+

/p/ (which contains two templates) induced by Ô/p/ is zero (while
the corresponding distance to C+

/b/ is non-zero). Hence, we can choose a single ob-
ject as a compact representation of C+

/p/, without loss of generality. The situation
is analogous with C+

/b/.
Hence, not all the transformations found in the optimal transformation set Ô

are necessarily found in the corresponding set of reference patterns. For instance,
the first three-character transformation for the [tense] stream, shown in Figure 4.6,
which corresponds to Ô/p/, is not found in the corresponding reference set Ĉ+

/p/

containing the pattern p1
/p/. It is, however, part of the training data and is found

in pattern p2
/p/ (Figure 4.1 on p. 102). Therefore, we conclude this example by the

following important observation: transformations comprising an optimal transfor-
mation set are fragments of training examples which are always found in the original
training set. They, however, are not always found in the set of reference objects
chosen as class representation, because the size of this set is usually significantly
smaller. B

The inductive representation considered above is meaningful, in the sense that
it is able to capture certain consonantal properties of the phonemes [p] and [b]. For
example, from this toy representation we can learn the main difference (within the
postulated three-stream representation) between the two classes, namely different
behaviour of the [tense] feature. In general, tense sounds are produced with a de-
liberate, accurate, maximally distinct gesture that involves considerable muscular
effort; non-tense sounds are produced rapidly and somewhat indistinctly (Giegerich,
1992). In Figure 4.6, transformations corresponding to the [tense] stream capture
the fact that within the available examples of [p], this feature is either high or in
the process of gradually changing (fluctuating) around the high values, whereas for
the examples of [b], the process is opposite. This coincides with the assumption
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Consonant.

Sonorant

Tense

Tense

Consonant.

Sonorant

Π/p/ Π/b/

high

mid

low

Ĉ+
/b/

= {p1
/b/}

Ô/p/ Ô/b/

Ĉ+
/p/

= {p1
/p/}

Figure 4.6: Discovered per-stream feature transformations (Ô/p/ and Ô/b/) (corre-
sponding to the representation in Figure 2.5 on p. 45 and Figure 4.1 on p. 102) and
the resulting class representations Π/p/ and Π/b/.

of phonological contrast between [p] and [b] phones within the SPE feature sys-
tem (Chomsky and Halle, 1968). In addition, the transformations capture certain
asynchronies in the process of sound changes. The first transformation correspond-
ing to the [consonantal] stream for the class [p] indicates the change from low to
high which most probably means that one (or both) of the examples were derived
from the context in which they were preceded by a vowel or consonantal sounds
from [w] or [j] classes.

In Chapter 2 we mentioned that each phonological template p belonging to
the pseudo-metric space P consists of N distinctive feature streams. In our repre-
sentation, we use N equal to 25 for representing five multivalued feature streams
(Section 2.4.1). In the discussion of the learning algorithm for ETS0 we also men-
tioned that for each of the classes of the phonemes, the learning reduces to N
independent optimisations of the per-stream transformation systems. Each partic-
ular stream pj

i (1 ≤ i ≤ N) from a class Cj is optimised against the streams of the
same type pk

i belonging to all other classes (k 6= j). Thus, for each of the classes
Cj in the domain, the end result of the learning process essentially consists of N
per-stream inductive class representations Πj

i (1 ≤ i ≤ N), which are the structures
from Definition 4.11. Each stream-specific inductive class structure Πj

i induces its
own metric ∆Πj

i
. Hence, we can define the phonological inductive class structure

Πj for a class Cj as the collection of N stream-specific structures

Πj =
{
Πj

1,Π
j
2, . . . ,Π

j
N

}
.

For the symbolic space of phonological templates, the distance between any pro-
totype template pj in Πj , which defines the class Cj , and an unknown template
p is given as a linear combination of the individual metrics induced by different
constituent streams. In other words,

∆j(pj , p) =
N∑

i=1

∆j
i (p

j
i , pi) .

4.4. Experiments and Discussion

In this section we present the experimental results of a phoneme classification
task on the structural data corresponding to the phonological templates, derived
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from the TIMIT database of read speech. The experimental setup mirrors the
one described in detail in Section 2.6 of Chapter 2, where we also mention the
construction of the phonemic templates from real speech and reduction of the size
of the training set.

Similar to the strategy adopted for the experiments in pseudo-Euclidean spaces
(Chapter 3), we split the experiments into two parts. In order to get a better idea
of the performance of the learning and classification within ETS0, we first focus on
a smaller 3-class task, where the classes are a priori reasonably separable. Since
this task is small, it allows us to analyse the performance of the learning algorithm
in more detail. Experiments on a 3-class problem are described in Section 4.4.1. In
order to compare the performance of the classifiers in the original symbolic space
(Section 2.6) and the new pseudo-metric spaces induced by ETS0 on a standard
full-class TIMIT task, in Section 4.4.2 we describe the results of experiments in-
volving 39 classes of phonemes. We also compare the performance of the system
constructed using ETS0 with the performance of the baseline symbolic algorithms
from Chapter 2 and the vector space algorithms from Chapter 3, obtained on both
tasks.

For both the three class and the full tasks, the learning essentially consists
of one-against-all optimisation of each of the classes in the training set against all
others. The structure of the resulting class-specific metrics, obtained in ETS0 space,
is given in Section 4.3.4. During the classification stage, we use the extension of the
k-NN AESA search (described in Chapter 2) that makes use of the metrics obtained
at the end of the learning in ETS0. The baseline corresponds to the performance
of the k-NN AESA search in a “rigid” pseudo-metric space described in Chapter 2.
The best results (on the full 39-class task) were obtained in the following optimal
settings:

• The set P corresponds to the set of phonological templates derived from
the TIMIT data using a symbolic quantisation level of 10. The symbolic
corpus corresponding to this quantisation level consists of 124,962 tem-
plates in the training set and 42,540 templates in the test set.
• The similarity function DP , operating on the phonological templates from

the set P , corresponds to the weighted Levenshtein distance.
• The clustering technique is the k-medians, employing phonological set me-

dian (rather than generalised median) and duration-based initialisation.

This is the same baseline used by the experiments in pseudo-Euclidean vector spaces
described in Section 3.5. The stopping criterion τ employed by the ETS0 learn-
ing algorithms (Figure 4.5) was chosen to be 10−8 throughout the experiments
described below.

4.4.1. Three-class Problem. Similar to the experimental setup described in
Section 3.5.1, the first set of experiments focuses on classification of three classes of
phonemes from three different phonological categories which are a priori known to
be reasonably separable (Ladefoged, 2001). The three classes under investigation
consist of one vowel [aw] (low back round) and two consonants [b] (voiced bilabial
stop) and [z] (voiced alveolar fricative). The original training set for these three
classes consists of 6,629 unique symbolic phonological templates. The entire test set
for the three classes of phones, consisting of 2,423 unique phonological templates,
was used in this experiment.

First, the baseline for the three-class problem was created by breaking down
the training set into a smaller subset using the best performing dimensionality
reduction technique. This corresponds to k-medians, employing phonological set
median and duration-based initialisation. Six training datasets were created, for
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which the number of examples per class |P | is 5, 10, 15, 30, 50 and 100 (shown in the
first column of Table 4.1). In order to obtain the baseline classification results, we
conducted classification experiments on the full test set of 2,423 templates, using
each of the training datasets above. The classification rule we used corresponds
to the best performing classification technique from Chapter 2: the k-NN AESA
search (employing weighted Levenshtein distance with normalised weights) with the
size of the k-best list of 1. The performance of the baseline models (in terms of
classification error) is shown in the second column of Table 4.1.

In order to compare the performance of the baseline algorithms with the per-
formance of the learning algorithms we use in ETS0 framework (Section 4.3.3), ad-
ditional experiments were conducted for each of the six datasets. In Section 4.3.1.1
we mentioned that the objective of the learning is specified as the maximisation
(equation (4.2)) of the function f given in equation (4.3). Function f is defined
as the ratio between the inter-class separation measure β and the the within-class
proximity measure α plus some small constant ε to prevent the overflow. We also
mentioned two potential ways of computing the separability measure β: as an av-
erage inter-class distance (given in equation (4.5)) or as the minimum inter-class
distance (given in equation (4.6)). Hence, it is possible to choose among the two
functions to optimise: fr (where the superscript r stands for regular) and fm

(where m stands for minimum), corresponding to the average and minimum inter-
class distances respectively.

The results (in terms of classification error) for the models trained using these
criteria are shown in columns three and four of Table 4.1. The algorithms are
denoted Lr

ETS0
and Lm

ETS0
, respectively.

|P | k-NN AESA Lr
ETS0

Lm
ETS0

5 1.5 1.0 2.1
10 1.4 1.6 2.0
15 1.3 1.7 1.9
30 1.0 1.0 1.3
50 1.0 0.8 1.8
100 0.9 0.9 1.4

Table 4.1: Three-class task: Performance of the k-NN AESA symbolic search in the
spaces constructed by ETS0 learning algorithms (Lr

ETS0
and Lm

ETS0
) and the “rigid”

metric space baseline from Chapter 2. Best classification errors (%) are shown in
bold.

Performance of the k-NN AESA search in the symbolic space constructed using
the learning algorithm Lr

ETS0
, employing the optimisation criterion fr given by

fr(ω) =
βr(ω)

ε + α(ω)
,

is analysed first. It performs the same or better than the baseline on four out of
six datasets from Table 4.1. In particular, using this learning strategy we obtained
the best result of 0.8% classification error among all the experiments conducted
with symbolic models on the three class task. When compared to the best results
obtained on the same task in the pseudo-Euclidean vector space, the k-NN AESA
search in the symbolic space obtained with Lr

ETS0
outperforms its numeric coun-

terpart in all the pseudo-Euclidean spaces shown in Table 3.1. In the experiments
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Figure 4.7: The measures of the average within-class distance, the average inter-
class distance and their ratio, shown during the Lr

ETS0
learning in one of the streams

of phoneme [aw] (f∆i = fr
∆i

).

described in Section 3.5.1, the best k-NN AESA classification error of 1% was ob-
tained for the space constructed using the class-based corrected metric projection.
Comparing this result to the other numeric models in pseudo-Euclidean vector space
(neural networks and support vectors shown in Table 3.1), the performance of the
search in the symbolic space constructed by Lr

ETS0
is consistently worse.

The k-NN AESA search in the symbolic space constructed using the learning
algorithm Lm

ETS0
, employing the optimisation criterion fm given by

fm(ω) =
βm(ω)

ε + α(ω)
,

appears to perform worse than both the baseline model and the model employing the
Lr

ETS0
learning criterion. With the Lm

ETS0
model, the best obtained classification

error is 1.3%. The model outperforms the k-NN AESA search in the pseudo-
Euclidean spaces constructed using the regular basis selection technique (denoted
kNNR

R and kNNR
C in Table 3.1). Overall, however, the performance of this model is

not satisfactory because it performs consistently worse than other symbolic models.
The reason why Lr

ETS0
learning, based on the average inter-class distance, out-

performs the Lm
ETS0

, based on the minimum distance, becomes clearer if we investi-
gate the values of the corresponding functions fr and fm during the optimisation
process. For Lr

ETS0
, the measures of the average within-class distance, the average

inter-class distance and the inverse of the corresponding fr are shown in Figure 4.7.
These curves correspond to the learning process in one of the streams of [aw]. As
can be seen from Figure 4.7, the learning converges in 49 steps, obtaining α = 0,
which is the most optimal within-class configuration. In this particular case, all
the streams of this type belonging to [aw] can be generated from any other stream
using the discovered non-trivial transformations (with zero weights) only. This
is because single character transformations, whose weights are non-zero, do not
contribute to the overall within-class distance measure since non-trivial transfor-
mations are preferred6. The average inter-class distance β decays more slowly and

6An interesting interpretation of this fact (due to Abela, 2001) is that the single character
transformations represent uncertainty (or “noise”). By bringing the within-class distance to zero,
we essentially remove the noise from the class.
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stays non-zero when the learning process completes. This is an indication that the
original expectations of simultaneous minimisation of within-class and maximisa-
tion of between-class distances were rather premature. The discovered transforma-
tions do not increase the separation between the classes. We do not think that this
issue is very problematic because our minimal expectation that the between-class
distance should be non-zero is fulfilled.

For Lm
ETS0

, the measures of the average within-class distance, the minimum
inter-class distance and the inverse of the corresponding fm are shown in the two
subfigures of Figure 4.8. Two different scenarios encountered during the learning
of two distinct streams of [b] are shown in Figures 4.8a an 4.8b. The first scenario
from Figure 4.8a corresponds to the expected functioning of the learning process
that converges in 10 steps. The overall behaviour of the system is similar to that
corresponding to the case of Lr

ETS0
, with both the average within-class distance α

and f−1 decaying until the convergence criterion is met. The curve corresponding
to the minimal inter-class distance β reaches a steady state before the system
converges.

The second scenario (shown in Figure 4.8b) corresponds to the problematic
case when there exists some overlap between the positive and negative datasets.
Despite the fact that the classes of phonemes are reasonably separable, the classes
of streams need not be. In such a case, the minimal inter-class distance remains
0 throughout the learning, which affects the overall optimisation criterion fm (the
inverse of fm is shown in Figure 4.8b as a 1

8 fraction of the decimal log scale).
Despite the fact the learning process converges in 13 steps, obtaining an optimal
within-class configuration, it does not achieve an adequate separation between the
given class and the rest simply because of the presence of overlapping outliers which
are shared between the two classes and “corrupt” the between-class separability
measure β. Essentially, this case can be seen as a one-class learning scenario, where
the set of negative samples is empty. We hypothesise that such cases cause the
overall quality of the Lm

ETS0
learning to deteriorate and are the cause of the inferior

performance.
The average number of transformations (excluding the ones of length one) per

class (NETS0) and the average transformation length (FETS0) discovered by the
Lr

ETS0
and Lm

ETS0
learning algorithms are shown in Table 4.2. Both learning strate-

gies prefer shorter transformations (given by F
r

ETS0
and F

m

ETS0
). This is because

of the nature of the composition rules which construct candidate operations by left
and right concatenation of single symbols. It also appears that on average, the
Lm

ETS0
strategy discovers more transformations per class, which are also slightly

more compact than the transformations discovered by Lr
ETS0

. Both the N
r

ETS0
and

N
m

ETS0
refer to the average number of transformations per class of templates. They

have to be divided by the number of streams (25) to obtain the average number of
transformations discovered per-stream for each class (S

r

ETS0
and S

m

ETS0
).

4.4.2. Full Problem. The symbolic database consists of 124,962 templates
in the training set and 42,540 templates in the test set. The full-class task consists
of evaluating the performance of ETS0 models of 39 phonetic classes against 42,540
phonological templates representing the test objects. Similar to the clustering setup
described in the previous section and Section 2.6, the training dataset is divided
into the smaller sets of 5, 10, 15, 30, 50 and 100 objects per class.

Phoneme classification experiments were conducted on the full 39-class task
using the ETS0 models constructed by the Lr

ETS0
and Lm

ETS0
learning algorithms.

The results, shown in Table 4.3, are then compared to the results of the symbolic
baseline algorithms (Table 2.5) which we evaluated in Chapter 2.
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Figure 4.8: The measures of the average within-class distance, the minimum inter-
class distance and their ratio, shown during the Lm

ETS0
learning in two different

streams of phoneme [b]. Normal (Figure 4.8a) and problematic (Figure 4.8b) situ-
ations are shown. In Figure 4.8b, f−1 is shown on a log scale (f∆i = fm

∆i
).

Similar to the three-class experiments described in the previous section, the
k-NN AESA search in the symbolic space constructed using the learning algorithm
Lr

ETS0
, which employs the average inter-class distance criterion, appears to outper-

form the search in the symbolic space constructed with Lm
ETS0

. The best result
obtained with the Lr

ETS0
model is 54.2% accuracy, compared to the 52.3% accu-

racy obtained with Lm
ETS0

. From this result and the result obtained for the smaller
task, we can conclude that the optimisation criterion employing the average inter-
distance rather than minimum inter-distance, is preferable for learning within the
phonological ETS0 representation under investigation.

Both models appear to consistently outperform only one of the baseline models
shown in Table 2.5, which corresponds to the setup employing the combination of
weighted Levenshtein metric, mean templates and MaxMin clustering initialisation
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|P | N
r

ETS0
F

r

ETS0
S

r

ETS0
N

m

ETS0
F

m

ETS0
S

m

ETS0

5 99 3 4 87 3 3
10 152 3 6 139 3 5
15 230 3 9 199 3 8
30 382 4 15 310 3 12
50 523 5 21 498 4 20
100 684 5 27 643 4 26

Table 4.2: Three-class task: Average number of transformations (excluding trans-
formations of length one) per class (NETS0), the average transformation length
(FETS0) and average number of transformations per stream (SETS0) discovered
by the Lr

ETS0
and Lm

ETS0
learning algorithms. These values are training dataset-

specific.

|P | Lr
ETS0

Lm
ETS0

5 50.6 48.2
10 52.8 49.9
15 53.1 52.3
30 54.2 52.1
50 52.7 52.3
100 51.9 51.4

Table 4.3: Full task: Performance of the k-NN AESA symbolic search in the spaces
constructed by ETS0 learning algorithms (Lr

ETS0
and Lm

ETS0
) and the “rigid” metric

space baseline from Chapter 2. Best classification accuracies (%) are shown in bold.

(MG
P /DL

P /KM
P ). Furthermore, the best result of 54.2% obtained with Lr

ETS0
is

better than the result of 54.12% obtained with the baseline model corresponding
to the combination of weighted Levenshtein metric, median templates and MaxMin
clustering initialisation (MS

P /DL
P /KM

P ).
The other two baseline models considered in Chapter 2, consistently outperform

both the Lr
ETS0

and the Lm
ETS0

models. In particular, we were unable to surpass
(on any of the datasets considered above) the best performing (60.3%) symbolic
baseline model which corresponds to the combination of weighted Levenshtein met-
ric, median templates and duration-based clustering initialisation criterion. We
hypothesise that the reason for this unsatisfactory performance of the Lr

ETS0
and

Lm
ETS0

models on the full-class task has to do with the properties of the resulting dis-
tance function induced during the learning. In order to ascertain this, we conducted
the following experiment: Given the test set of 42,540 phonological templates, we
performed 4,836,564 tests of the triangle inequality. The metric we evaluated was
induced by the Lr

ETS0
algorithm on the dataset corresponding to 15 templates per

class. The percentage of violations of the triangle inequality in this experiment was
0.03%, which corresponds to 1,196 failed tests. Though this number is small, it
nevertheless shows the semimetric nature of the resulting distance function. This
semimetric property, in turn, influences the quality of the k-NN AESA search,
which is based on the distance computations only. An additional problem which
may arise is the discovery of the “wrong” transformations during the learning. This
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is because the same semimetric distance functions are used during the learning for
the computation of class separability and proximity measures.

4.5. Summary and Potential Improvements

In this chapter we showed how to inductively approach the issue of structural
learning within the symbolic phonological metric spaces. By the adjective “induc-
tive” we mean the formulation of the learning problem in such a way that the goal
of the learning is the discovery of the non-trivial structural transformations which
make the instances of the phonemes in each of the classes similar to each other. We
approached this problem using ideas from ETS0 framework, which was specifically
developed to address these needs. The central idea of this approach is the discov-
ery (during the learning) of the optimal structural transformations which induce
a new and more optimal metric space, where (at least in theory) the classifica-
tion should be easier since the discovered structural transformations, participating
in this new metric, lead to the better class separation. The main attraction of
this approach, however, is in the representational power it affords: discovering the
structural (and hence fully interpretable) transformations that make the phonemes
different and/or similar is linguistically more meaningful than performing a purely
numeric optimisation. We believe that the emphasis on the structural class rep-
resentation of linguistic phenomena will facilitate the development of the speech
recognition field, since the recognition problem cannot be adequately approached
without a meaningful representation.

We believe that ours is the first attempt in pattern recognition to address
the issue of ETS0 structural learning on a large (for structural models) real-world
database. Previous research (Goldfarb, 1990; Goldfarb and Deshpande, 1997; Gold-
farb et al., 1996; Goldfarb and Nigam, 1994) was theory oriented and focused on
small-scale pattern classification experiments. The only (major) previous practi-
cal application of the framework is in the field of grammatical inference (Abela,
2001), which is obviously very different from the phonological representation and
classification problem we are addressing.

Therefore, the linguistic attractiveness of the ETS0 framework we considered
in this chapter comes at a cost. Despite the fact that we were able to show improve-
ments in phoneme classification on a small task, the performance of the system on
a full task does not match the original expectations. This can be explained by the
fact that, compared to the structurally “rigid” approaches we discussed in Chap-
ter 2, there are many more factors in play when one considers structural learning
and optimisation. Below, we discuss several areas of research we expect would
lead to significant improvements in the modelling power and classification of the
framework considered in this chapter.

Potential Improvements. There are several ways of improving the algo-
rithms of the ETS0 framework described in this chapter:

• In the discussion in Section 4.4, we mentioned that the optimisation cri-
teria (especially the ones incorporating the minimum inter-class distance
measure) are not very robust in the presence of the noise. The learning
algorithm was primarily developed for the grammatical inference problem,
where the classes are some formal languages generated by distinct gram-
mars. These problems are usually much less “noisy” than the pattern
recognition ones. Hence, we may need to look for better proximity and
class-separability measures α and β to use in the optimisation function f
(given by equation (4.3)).



120 4. INDUCTIVE LEARNING WITH ETS0

• Although the learning algorithm already incorporates some of the changes
we intended to make (such as more robust stopping criteria than those
specified in Abela, 2001; Goldfarb and Nigam, 1994), more work is needed
in order to investigate the behaviour of the simplex optimisation. In
particular, we observed several cases of convergence of f to non-stationary
points (see Section 4.3.1.2). There are several possible remedies to rectify
this situation (though they will make the learning process slower):

– Evaluate the simplex at additional points (not only at the vertices).
This will allow us to tune the weights better.

– The Powell method of non-linear optimisation is more robust than
the simplex method of Nelder and Mead. Hence, better estimates
can be obtained with it.

– Using either Nelder & Mead or Powell techniques, it is possible to
conduct an exhaustive search for the optimal transformation weights.
This might give an optimal solution, though computationally it is
totally intractable.

• Better dimensionality reduction techniques will be considered. The clus-
tering setup resulted in the number of overlaps between several classes
under investigation. This is because the clustering algorithms, described
in Chapter 2, did not take into the account the need for class separation.
• In the previous section we mentioned that the semimetric properties of the

distance functions employing the non-trivial transformations may corrupt
the quality of the learning and classification procedures. This was first
observed by Abela (2001), who suggested the use of normal forms as a
remedy. Briefly, given a string and a set of transformations, a normal
form of a string is another string with all the occurrences of the supplied
transformations removed from it. This can be extended to normal forms
of phonological templates in a straightforward way. The calculation of
a normal form, however, is a non-trivial procedure. In general, given a
string and a set of transformations, there would be several normal forms
corresponding to a string (one for each distinct sequence of the removed
substrings) and the algorithm will have to choose the most optimal one.

During the learning and classification processes, once the training and
test sets are reduced to their normal forms using the currently discovered
transformations, the induced metric is not needed anymore and one can
use the regular weighted Levenshtein distance which possesses the desired
metric properties. This is because the non-trivial transformations are not
present in the sets of positive and negative samples.

Incorporation of this procedure into the learning algorithm described
in Section 4.3.3.1 is a non-trivial task. Ideally, one would need to re-
duce the sets of positive and negative objects every time the new candi-
date transformations are found. To every candidate transformation found,
there would correspond its own copy of the training and test sets. Though
the actual computation of the distances between any two objects will be-
come much faster, the overall computation complexity may increase be-
cause of the additional requirements of the reduction process.



Part 2

Structural Representation
Formalisms





CHAPTER 5

Formal Articulatory Representation of Speech
with ETS2

5.1. Introduction

In the first part of this thesis we described the structural representation of
speech built around the concept of distinctive phonological features. We intro-
duced the representation in Chapter 2. In the same chapter, as well as in Chapter 3
and Chapter 4, we focused on the classification and learning techniques in various
symbolic and numeric spaces corresponding to this representation. The main the-
oretical difficulty which we encountered is the fact that distinctive phonological
features are difficult to extract directly from speech without resorting to the use of
numeric models (such as neural networks) which are able to perform the non-linear
mapping between the acoustics and distinctive feature “space”. While such a map-
ping is definitely desirable for the numeric approaches to speech modelling, it is
nevertheless quite problematic from the point of view of structural modelling. This
is because the main attraction of the symbolic approaches is their ability to rep-
resent (and discover) the structure of the process being modelled. As an example,
consider the multivalued feature describing the manner of articulation. We can re-
cover its values, e.g. fricative, from the acoustic stream using some numeric model.
In the process, however, we loose all the original information (present in the data)
which might have given us structural clues as to what is a fricative. We partially
addressed this issue in Chapter 4, were the ETS0 approach was presented. The
adverb “partially” refers to the fact that while we focused on the discovery of struc-
tural features, the data on which we operated was in the distinctive phonological
feature space, rather than original space.

Given the above observations, the question we address in this chapter is the
following: Is there a conceptually simple way of constructing a richer structural
representation directly from the data?

First of all, we observe that basing a structural representation on distinctive
phonological features may not be the best of options, since these units are too
abstract and thus are difficult to extract from the real data directly. There is a
better alternative to distinctive phonological features. This alternative is offered
by the theory of articulatory phonology (Browman and Goldstein, 1992). In artic-
ulatory phonology, vocal tract action during speech production is decomposed into
discrete, re-combinable atomic units (Browman and Goldstein, 1989). The central
idea is that, while the observed products of articulation (articulatory and/or acous-
tic measurements) are continuous and context-dependent, the physiological actions
which regulate the motion of the articulators are discrete and context-independent.
These atomic actions, known as gestures, are hypothesised to combine in different
ways to form the vast array of words that constitute the vocabularies of human lan-
guages (Stevens, 1989; Studdert-Kennedy and Goldstein, 2003). This combinatorial
outlook on speech places it in the same context as other natural systems (for in-
stance, combinations of gestures are similar to molecular compounds in chemistry).
Compared to traditional approaches — such as distinctive phonological features —

123
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the gestural approach is more physiologically concrete and offers a compact means
of representing the truly asynchronous nature of speech, allowing for better inter-
pretations of all-pervasive complex phonological phenomena (such as assimilation).

Second, we propose a richer structural representation of speech built around the
above articulatory gestures. The representation is based on the Evolving Transfor-
mation System (ETS2) formalism, outlined by Goldfarb et al. (2004). Taking into
account the limitations of the original version (ETS0), ETS2 has been specifically
proposed as a radically new formal framework for the structural representation of
“natural” processes. As observed by Abler (1989), these processes, which are studied
in natural sciences (such as evolutionary biology, organic chemistry and physiology)
share some important combinatorial properties. In the articulatory representation
we propose in this chapter, the natural process we model is the physiological pro-
cess of articulation, which is captured by the fundamental concepts of the ETS2

formalism. In particular, the discrete articulatory gestures are represented by the
atomic units of the ETS2 formalism, while non-trivial combintations of these ges-
tures are represented as formal structures encoding the “formative history” of the
corresponding objects. As will become evident from the discussion in this chapter,
the articulatory representation is richer, both semantically and syntactically, than
its distinctive feature-based counterpart.

Third, we note that the articulatory gestures can be extracted from the data.
Since our aim is to work directly with the data, the (unstructured numeric) mea-
surements need to be articulatory. In practice, some of the gestures can be detected
from multiple measurement sources. For example, vibration of the vocal folds can be
detected from both the laryngeal pressure waveform and the corresponding acous-
tic recording. The purely quantitative approach to automatic derivation of gestural
structures from articulatory speech data has been studied in detail by Jung (1993;
1996), who proposed using a derived numeric representation of the gestural struc-
ture both as alternative units for continuous speech recognition and as a compact
representation of the acoustic waveforms. An alternative (qualitative) approach, ad-
vocating the use of automatically derived gestures as the generic qualitative units
for any structural (e.g. hypergraph-based) representation of continuous speech, has
been proposed by us in (Gutkin and King, 2005a). In this chapter, the latter ap-
proach was used for detection of the articulatory gestures in the continuous speech
data and automatic derivation of gestural structures for ETS2 representation. We
previously reported various features of ETS2 articulatory representation in (Gutkin
et al., 2004; Gutkin and Gay, 2005b,c).

Finally, it is important to note that in this chapter we focus on representa-
tion. The issue of learning within ETS2 is omitted from the discussion because the
learning algorithm (described in Goldfarb et al., 2004, Part III) needs more work
to be usable in practical pattern recognition applications (please refer to the end
of this chapter, where on p. 159 more information is provided). Therefore, in this
chapter we deal with the classification of the class structures which are a priori pos-
tulated based on the linguistic evidence. The implementation of ETS2 algorithm is
available and was used by us to perform some learning experiments, which largely
confirmed our hypotheses with regard to phonemic class structures. However, sev-
eral problematic issues with the algorithm have prevented us from presenting the
algorithm and describing those experiments here or in a separate chapter.

Overview of the chapter. The core elements of the ETS2 formalism are in-
troduced in Section 5.2. The ETS2 articulatory representation is then described
in Section 5.3, where we present some basic modelling ideas and describe the al-
gorithms for automatically deriving the representation from the articulatory data.
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Experiments aimed at verifying the adequacy of the proposed representation are de-
scribed in Section 5.4, which also discusses the results. We summarise the chapter in
Section 5.5, describing the potential benefits of this approach and presenting some
directions of future research aimed at improving the articulatory representation.

5.2. Preliminaries: The ETS2 Representation Formalism

In this section we introduce the core elements of the ETS2 model. In what
follows, we essentially follow the white paper (Goldfarb et al., 2004). However,
bearing in mind the subsequent developments (Gutkin et al., 2004; Gutkin and
Gay, 2005b,c), which are described in the rest of this chapter, we took the decision
not to go into unnecessary (for our representation) detail. The representation-
specific interpretation of the concepts we introduce in this section will be given
further on in Section 5.3.

5.2.1. Primitive Transformations. In this section we introduce the basic
representational units of the formalism — the primitive transformations and sites,
as defined in (Goldfarb et al., 2004, Section 3). Informally, an ETS2 primitive
transformation is a unit of temporal structure (primitive event) of some natural
process. This event operates on ETS2 sites, which are the smallest unstructured
representational units within a process. The primitive transformation can be seen
to transform its set of “initial” sites into its set of “terminal” sites.

Notation 5.1. For a linearly ordered set A = 〈A,<〉, the set obtained by
discarding the linear order in A will be denoted

]A[ def= A . �

Definition 5.1 (Original Primitive, Site Type and Site Label). Let

Π̂ =
{
π̂1, π̂2, . . . , π̂n

}
be a small finite set of names of primitives. Also let SL be a finite set of site labels
(or simply sites) and ST a finite set of site types. Moreover, ∀ π̂i ∈ Π̂, we are
given a triple

π̊i = 〈π̂i, INITi,TERMi〉

called an original primitive transformation, or simply original primitive, where
INITi and TERMi are (small) finite, possibly empty, linearly ordered sets of site
labels, of cardinalities k and l, respectively. For these two sets the following is true:

k + l 6= 0 , ]INITi[ ⊆ SL and ]TERMi[ ⊆ SL .

We denote by Π̊ the finite set comprised of π̊i, 1 ≤ i ≤ n, and call it the set of
original primitives. Finally, we are also given a site type mapping

TYPE : SL→ ST ,

which assigns a site type to each site label. �

A site type encapsulates the inherent structural or qualitative character of a
site, while site labels are merely temporary, interchangeable names. A site type
specifies the kinds of allowable “interactions” of this site with the sites of other
primitives. In Section 5.2.2, this point will be explained more formally and the
relation between the sites and site types will become clearer.
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Figure 5.1: Pictorial illustration of four original primitives (reproduced with per-
mission from Goldfarb et al., 2004). Identical initial and terminal label may identify
the same object on which this primitive transformation operates. Alternatively, this
may be interpreted as a certain event (represented by a primitive) which occurred
in a certain object’s (represented by a fixed label) history.

Notation 5.2. For an original primitive π̊i, the following concepts and no-
tations will be useful:

Init (̊πi)
def= ]INITi[ is the set of initial sites of π̊i

Term (̊πi)
def= ]TERMi[ is the set of terminal sites of π̊i

Sites (̊πi)
def= ]INITi[ ∪ ]TERMi[ is the set of all sites of π̊i

π̊i(k) is the k-th initial site of π̊i

π̊i(l) is the l-th terminal site of π̊i .

�

Pictorially, it is convenient to represent an original primitive

π̊i = 〈π̂i, INITi,TERMi〉
as a convex shape. The initial sites are marked as points on its top, and the terminal
sites are marked on its bottom. We will use numbers as labels for the sites, with
the left-to-right ordering of the sites on the top and bottom corresponding to the
linear orderings in INITi and TERMi, respectively.

Example 5.1 (Original Primitives). Four original primitives

π̊1 =
〈
π̂1, 〈1〉, 〈1, 2〉

〉
, π̊2 =

〈
π̂2, 〈1, 2〉, 〈2, 3〉

〉
,

π̊3 =
〈
π̂2, 〈1, 2〉, 〈2〉

〉
and π̊2 =

〈
π̂2, ∅, 〈1, 2, 3〉

〉
are shown in Figure 5.1. The natural numbers are used as labels incidentally, and
only for convenience. Also note that the ̂ symbols are dropped in this and all
subsequent figures, and site types are not indicated.

In addition, alternative notation will be used in the concrete examples. Instead
of

〈
π̂i, 〈. . .〉, 〈. . .〉

〉
, the following short notation π̂i[ . . . | . . . ] will be used (as in

Example 5.2). B

Definition 5.2 (Site Relabelling). A site relabelling F is an injective mapping

F : L→ SL , where L ⊂ SL ,

which preserves site types. In other words,

∀l ∈ L TYPE (l) = TYPE (F (l)) . �

The notion of site relabelling is crucial for introducing the concept of primitive
transformations, which follows.

Definition 5.3 (Primitive). For an original primitive π̊i = 〈π̂i, INITi,TERMi〉,
and a site relabelling of an original primitive

f : Sites (̊πi)→ SL ,
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Figure 5.2: Pictorial illustration of four primitives (reproduced with permission
from Goldfarb et al., 2004).

Figure 5.3: Pictorial illustration of two class primitives (reproduced with permission
from Goldfarb et al., 2004).

primitive transformation, or simply primitive, is defined as

π̊i{f } = 〈π̂i, f(INITi), f(TERMi)〉 ,

where the linear orders on f(INITi) and f(TERMi) are induced by those in INITi

and TERMi, respectively. Correspondingly, the set of structurally identical primi-
tives is defined as

Πi
def=

{
π̊i{f } | f is an original primitive site relabelling

}
and the set of all primitives is given by

Π def=
n⋃

i=1

Πi .

Primitives πi, πj ∈ Π are structurally identical if there exists a primitive site
relabelling

f : Sites (πi)→ SL such that πj = πi{f } .

The corresponding equivalence class Πj will be called class primitive and denoted
[πj ]. �

Example 5.2 (Primitives and Class Primitives). Figure 5.2 shows primitives

π̂1[ 5 | 5, 3 ] , π̂2[ 3, 4 | 4, 6 ] , π̂2[ 1, 2 | 2, 3 ] and π̂2[ 4, 3 | 3, 5 ] .

Note that the last three primitives are instances of the same class primitive [π2].
The notion of site labels allows one to differentiate between various instances of the
same class primitive. By introducing the notion of site relabelling these instances
can be related to the same class of primitives if they are structurally identical under
the given relabelling (Definition 5.2).

The two class primitives (unrelated to the primitives in Figure 5.2) are shown
in Figure 5.3. The circle and the square denote two distinct site types. This implies
that letters

{
a, b

}
and

{
x, y

}
are the names of the variables that are allowed to

vary over non-overlapping sets of numeric labels. B
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Remark 5.1 (Note on relabellings). From this point onwards, we omit the no-
tion of the relabelling from the discussion for the sake of brevity. In general, all the
structural concepts introduced in the next sections formally allow for relabellings
introduced on their constituent sets of sites. Since in our representation (which
will be discussed further on in Section 5.3) the interactions between the sites are
formally quite simple and can be expressed by the identity mapping, we decided
not to over-burden the exposition here.

5.2.2. Instances of Structural History. An ETS2 struct is a temporally-
ordered sequence of connected primitives capturing an instance of a “structural
history” of the corresponding process or object. The structs were defined in (Gold-
farb et al., 2004, Section 4). The definition of a struct can be seen as a structural
generalisation of the inductive process of construction of natural numbers, proposed
by Giuseppe Peano (Landau, 1951).

Definition 5.4 (Struct). The set Σ of instances of structural history, or sim-
ply structs, is defined inductively follows: For each σ ∈ Σ, three sets — Init (σ),
Term (σ), and Sites (σ) of initial sites, terminal sites, and all sites of the struct σ
— are inductively constructed:

• θ is the null struct whose sets of sites are

Init (θ) = Term (θ) = Sites (θ) def= ∅
• Assuming that σ ∈ Σ has been constructed, and given π ∈ Π satisfying

(5.1) Sites (σ) ∩ Sites (π) = Term (σ) ∩ Init (π) ,

the expression
σ a π

signifies the new struct σπ, called the continuation of struct σ by primitive
π. The sets of sites of σπ are constructed as follows:

Init (σπ) def= Init (σ) ∪ [Init (π) \ Term (σ)](5.2)

Term (σπ) def= Term (π) ∪ [Term (σ) \ Init (π)](5.3)

Sites (σπ) def= Sites (σ) ∪ Sites (π) .(5.4)

The operation a is called the continue operation. The struct σ is specified by the
following expression encapsulating its construction process

σ = [π1 a π2 a · · · a πt] .

The order relationship between the indices in the above expression corresponds to
the constructive order of the relevant continue operations. It is assumed that this
expression is valid for t = 0 and, in this case, denotes θ. �

For the above construction of σ a π, the continuation operation a can be
depicted and thought of as an attachment of the identical sites in Term (σ) and
Init (π). In particular, primitive π is attached to primitive πi if, when actually
constructing σ a π, at least one initial site of π was attached to one terminal site
of πi.

Example 5.3 (Struct). Two structs, where the set of original primitives in-
cludes π̊1, π̊2, π̊3, π̊4, π̊5 are shown in Figure 5.4. The vertical order of primitives
corresponds to the constructive (temporal) order of the relevant continue opera-
tions. B

The following definition introduces the formal procedure for composing several
instances of structural histories:
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Figure 5.4: Two instances of structural history (structs) (reproduced with permis-
sion from Goldfarb et al., 2004). Structs can be informally interpreted as evolving
sequences of events (primitive transformations) sharing some attributes (sites). The
application-specific interpretation of structural histories is provided later on in this
chapter in Section 5.3.

Definition 5.5 (Struct Composition). Let α and β be structs such that

Init (β) ⊆ Term (α) .

If the following inductive construction procedure, denoted by / , can be completed

for β = θ : α / θ
def= α ;

for β = γ a π : α / (γ a π) def= (α / γ) a π

then the resulting struct
α / β

is called the composition of α and β and we say that β is composable with α. �

Lemma 5.1. The sets of sites for the composition of two structs α and β are
given by

Init (α / β) = Init (α) ∪
[
Init (β) \ Term (α)

]
Term (α / β) =

[
Term (α) \ Init (β)

]
∪ Term (β)

Sites (α / β) = Sites (α) ∪ Sites (β) .

Note that not every two structs satisfying Init (β) ⊆ Term (α) are composable,
as demonstrated by the following example.

Example 5.4 (Struct Composition). Two structs (α and β) and their composi-
tion (α / β) are shown in Figure 5.5. Note that β / α is not a legal composition. B

5.2.3. Extructs. Before describing the central concepts of the model in the
next section, in this section we introduce an important auxiliary notion of an ex-
truct, as defined in (Goldfarb et al., 2004, Section 5). Given a certain instance of
structural history of some process under investigation, it is often desirable to be
able to examine some recent fragment of this structure. This is especially useful
if one is expecting a certain (non-trivial) event to appear in the structure. The
expected appearance of this event is signalled by the presence in the struct of some
structure (context) which is described by an extruct (this will become clearer in
Section 5.2.4).
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Figure 5.5: Two structs (α and β) and their composition α / β (reproduced with
permission from Goldfarb et al., 2004).

Figure 5.6: A simple struct (left) and the corresponding attachment graph (right)
(reproduced with permission from Goldfarb et al., 2004).

Definition 5.6 (Attachment Graph). The attachment graph for struct

σ = [π1 a π2 a · · · a πt]

is defined as the following directed graph:

Gσ = 〈Vσ, Eσ〉 ,

where
Vσ =

{
v1, v2, · · · , vt

}
, vi corresponds to πi

and 〈vi, vj〉 ∈ Eσ if in the inductive construction of σ, πj was attached to πi. �

The concept of attachment graph is a simplified partial encapsulation of the
notion of a struct. Multiple attachments between any pair of primitives are recorded
as a single edge, as demonstrated in Figure 5.6. Next, we define a concept of an
interfaced struct. Informally, an interfaced struct is pair consisting of a struct and
some subset of its terminal sites.
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Figure 5.7: Some of the possible extructs corresponding to the struct shown in
Figure 5.6 (reproduced with permission from Goldfarb et al., 2004).

Definition 5.7 (Interfaced Struct). An interfaced struct is a pair 〈σ, Iface 〉,
where σ is a struct

σ = [π1 a π2 a · · · a πt]

and Iface is a subset of Term (σ) called the set of interface sites. For each primitive
πi in the above σ, 1 ≤ i ≤ t, a constituent of 〈σ, Iface 〉 is the following 4-tuple

ei
σ

def= 〈πi,DISi,DTSi, ISi〉 ,

where
• DISi is the set of detached initial sites, DISi ⊆ Init (πi), consisting of those

initial sites that are not attached to any other primitive;
• DTSi is the set of detached terminal sites, DTSi ⊆ Term (πi) \ Iface , con-

sisting of those terminal sites that are not attached to any other primitive;
• ISi is the set of interfaced sites, ISi ⊆ Term (πi)∩Iface , consisting of those

terminal sites that are not attached to any other primitive. �

Definition 5.8 (Extruct (Informal Definition)). Informally, an extruct is a
3-tuple

εσ
def= 〈σ, Iface ,E〉 ,

where σ and Iface form an interface struct (Definition 5.7) and the set E consists
of those constituents ei

σ of 〈σ, Iface 〉 whose sites attach (directly or indirectly) to
primitives with the interface sites. �

For more details on construction procedure for the set E above, refer to (Gold-
farb et al., 2004, Section 5). In general, each interface struct has multiple corre-
sponding extructs, the incremental construction of which involves bottom-up tra-
versal of the struct and the corresponding attachment graph.

Example 5.5 (Extruct). Figure 5.7 shows some of the possible extructs for an
interfaced struct 〈σ, Iface 〉 corresponding to an actual struct σ shown in Figure 5.6.
Heavy lines identify interface sites, crosses identify detached initial and terminal
sites. B
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Figure 5.8: An example of a transform whose context corresponds to one of the
extructs shown in Figure 5.7. The right hand side depicts the “assembled” transform
corresponding to a more appropriate interpretation/understanding of the transform
(reproduced with permission from Goldfarb et al., 2004).

5.2.4. Transformations and Supertransformations. In this section we
introduce the central structural units of the model: the transform and the super-
transform (Goldfarb et al., 2004, Section 6). Informally, it is useful to think of
every struct (Section 5.2.2) as being formed (generated) by a series of non-trivial
structural units — transformations.

Definition 5.9 (Transform). A transformation, or simply transform, is a pair

τ = 〈ε, β〉 ,
where extruct ε = 〈Iface ,E〉 and struct β satisfy

Iface = Init (β) = Sites (ε) ∩ Sites (β) .

We call ε the context of transform τ , denoted cntx(τ), and β the body of transform
τ , denoted body(τ). The set of all sites of transform τ is defined as

Sites (τ) def= Sites (ε) ∪ Sites (β) . �

Example 5.6 (Transform). Figure 5.8 shows a simple transformation whose
context corresponds to one of the extructs shown in Figure 5.7. B

Since every struct can be seen as representing some non-trivial object or event in
the application domain, it clearly belongs to some class of objects or events. Hence,
in theory one can describe the class structure by enumerating all the structs (sam-
ples of that class) in the domain. There is a better option, however. Rather than
using structs in the class description, it is more economical to use the transforms
which generate these structs. This observation leads to the notion of supertrans-
form, which can be seen as a generalisation of a transformation concept.

Definition 5.10 (Supertransform). A supertransformation, or simply super-
transform, is a pair

τ
def= 〈E,B〉 ,

where

E =
{
ε1, ε2, · · · , εp

}
εi = 〈Iface i,Ei〉, B =

{
β1, β2, · · · , βq

}
,
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Figure 5.9: Visualisation of a supertransform. Note that all contexts have the same
interface sites and all bodies have the same initial and terminal sites (reproduced
with permission from Goldfarb et al., 2004).

if the following conditions hold

∀ i, j, k
Init (βi) = Init (βj) = Iface k = Sites (εk) ∩ Sites (βi)

Term (βi) = Term (βj) .

The constituent transform set for a supertransform τ is defined as the set of
all transforms specified by the elements of the Cartesian product E × B. It is
convenient to blur the distinction between the pair 〈E,B〉 and the product E ×B,
and to refer to both of them as the supertransform τ . Thus the following notation
will be used: τ = 〈ε, β〉, τ ∈ τ . �

Example 5.7 (Supertransform). A simple supertransform consisting of six con-
stituent transformations is shown in Figure 5.9 as a rectilinear table. All contexts
have the same interface sites and all bodies have the same initial and terminal
sites. B

If there are multiple site relabellings used in the representation, one can gener-
alise the notion of a supertransform τ to that of a class supertransform, denoted [τ ],
which is defined as an equivalence class on the set of all supertransforms which are
equivalent under the relabelling. In the representation dealt with in this chapter,
we can treat the notions of class supertransform and supertransform as equivalent
(see Remark 5.1).



134 5. FORMAL ARTICULATORY REPRESENTATION OF SPEECH WITH ETS2

The concept of a supertransform is central in ETS2 formalism, because it en-
capsulates the structural means of class description. Given a supertransform, one
can generate (or recognise) an infinite number of objects (structs) of that class.
This is because the structs are generated by the constituent transforms of a super-
transform.

5.2.5. Level Ascension Postulate. Perhaps the most powerful feature of
the ETS2 formalism is its ability to model the environment at multiple levels.
Within the ETS2 model, the transition to a new level of representation consists of
construction of a new next-level set of primitives, which can then be used construc-
tively in the usual manner (as described in the previous sections) to construct the
set of next-level structs, extructs, transforms and so on. The corresponding formal
machinery was defined in (Goldfarb et al., 2004, Section 8).

Proposition 5.1 (Level Ascension Postulate). The class of (context-sensitive)
macroevents corresponding to a class supertransform may be adequately represented
at the next level by a new (original) primitive obtained by completely shrinking that
supertransform’s contexts and by dropping the internal structure of the supertrans-
form’s bodies in the manner described in Definition 5.11. �

The following definition is a direct consequence of the above postulate and
Definition 5.1 (including the notation in the definition).

Definition 5.11 (Next-Level Correspondence). Assume that we have fixed a
set TS of class supertransforms,

TS =
{
[τ 1], [τ 2], · · · , [τm]

}
,

called a transformation system. Define three sets

Π̂′ def=
{
[̂τ 1], [̂τ 2], · · · , ̂[τm]

}
of next-level primitive names ,

SL′
def= SL of next-level site labels ,

ST ′ def= ST of next-level site types .

We now introduce a set of next-level original primitives Π̊′ for which each of its
elements π̊′i is constructed as follows:

π̊′i
def=

〈
[̂τ i], INITi,TERMi

〉
where, for

τ i = 〈Ei, Bi〉 with Bi =
{
βi1 , βi2 , . . . , βiqi

}
,

]INITi[
def= Init

(
βi1

)
,

]TERMi[
def= Term

(
βi1

)
and the corresponding linear orders are induced based on both the constructive
order of the primitives in the first body of τ i as well as on the orders of the sites in
each of those primitives (see Figure 5.10). In addition, we define a next-level site
type mapping

TYPE ′ : SL′ → ST ′

to be the same as mapping TYPE in Definition 5.1. �

The next-level original primitive name

[̂τ i] , 1 ≤ i ≤ m

in the above definition could be thought of as denoting the “name” given to a class
supertransform [τ i], which is inherited by the next-level original primitive. The
next-level counterparts of the notions described in the previous sections (primitives,
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Figure 5.10: Some supertransform τ̊ ′ and the corresponding next-level original
primitive (reproduced with permission from Goldfarb et al., 2004). The symbol ̂
in the depiction of the next-level original primitive is dropped.

structs, transforms and supertransforms) are described in exactly the same manner
as before using the next-level original primitives.

5.2.6. Inductive Structure. Finally, we can encapsulate the entire devel-
oped mathematical structure as a single entity in the following definition (Goldfarb
et al., 2004, Section 8):

Definition 5.12 (Inductive Structure). A (single-level) inductive structure is
a pair

〈Π̊,TS〉 ,

where Π̊ is a set of original primitives and TS is a transformation system. The
latter pair also signifies all relevant concepts, such as structs, extructs, and so on.

A multi-level inductive structure (with l levels) MIS is an l-tuple

MIS def=
〈
〈Π̊,TS〉, 〈Π̊′,TS′〉, · · · , 〈Π̊(l−1),TS(l−1)〉

〉
where TS(l−1) = ∅, TS(k) is the transformation system for the set of original
primitives Π̊(k), and every consecutive pair of inductive structures satisfies the level
ascension postulate from the previous section (see Figure 5.11 and Figure 5.12).

Every k-th level inductive structure
〈
Π̊(k),TS(k)

〉
in MIS is denoted

MIS(k) def= 〈Π̊(k),TS(k)〉 k = 0, 1, . . . , l − 1 .

In addition,
τ (k) → π(k+1) k = 0, 1, . . . , l − 2

denotes the transition from some supertransform τ (k) at level k to a corresponding
primitive π(k+1) at level k + 1. �
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Figure 5.11: Schematic representation of a multi-level inductive structure with l
levels (reproduced with permission from Goldfarb et al., 2004).

Learning in ETS2 formalism reduces to the discovery of the inductive class
structure outlined above. The learning algorithm is presented in Part III of the
white paper (Goldfarb et al., 2004) and is not, strictly speaking, part of the formal-
ism. Because the algorithm is rather involved, for the sake of brevity we decided not
to present it in this thesis, although it has been successfully implemented and tested
on the articulatory structures (Section 5.3) derived from the real data. Briefly, the
algorithm attempts to optimally capture the class representation of the environ-
ment by expanding and refining its multi-level inductive structure MIS, including
the number of its levels. This is accomplished by the creation and modification (but
never deletion) of relevant class supertransforms at the appropriate levels. This is
mainly achieved by the introduction of the numeric components associated with
the main structural concepts presented above. Weights are added to the following
structural associations:

• Connections between primitives;
• Connections between bodies and contexts of the transforms;
• Connections between primitives and structs;
• Constituent transforms of the supertransforms.
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Figure 5.12: Pyramid view (partial) of a k-th level class supertransform: the pyra-
mid should be thought of as being formed by the subordinate class supertransforms
(reproduced with permission from Goldfarb et al., 2004).

These weights are related to the statistical observations of the above associations in
the structs derived by the pre-processor from the data. Numeric association schemes
allow to establish that some structures are more likely to be observed than others.
Once the weights are updated, the hybrid numeric-structural algorithm updates
(or creates) the relevant structures (extructs, transforms and supertransforms),
spawning new levels if necessary. In general, the learning proceeds on all the current
levels of the hierarchy.
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5.3. Articulatory Representation

In Section 5.3.1, we explain the basic tenets of the articulatory representation
and set the scene for subsequent developments. The section also presents an answer
to a question of how to formally approach the modelling of articulatory structures
within ETS2. We also present some representation-specific assumptions which make
the modelling conceptually simpler.

Before proceeding with the representation, in Section 5.3.2 we introduce the
articulatory speech corpus used in this study. Our main reason for introducing it
here, rather than in the experimental section, is simple. Our goal is: on the one
hand to present a formal articulatory representation, and on the other, to show
how this formal model is related to real measurements. Moreover, in later sections
of this chapter we show how to automatically derive this model from the data.

Having introduced the corpus, in Section 5.3.3 we present the atomic units of
the representation — the primitive gestures, which are formally treated as ETS2

primitives. Next, in Section 5.3.4 we present a conceptually simple procedure (first
suggested in Gutkin and King, 2005a) for derivation of the primitive gestures di-
rectly from the articulatory corpus at hand.

We next address the issue of class representation of consonantal phonemes of
English within the ETS2 formalism. In Section 5.2 we mentioned that this can be
achieved by designing an articulatory representation via the ETS2 transforms and
supertransforms. In particular, the transform allows us to describe a particular
pattern of constriction and release of the consonantal sound, while the supertrans-
form encapsulates the family of these semantically and structurally related patterns
(transforms). These non-trivial structural units of representation are described in
Section 5.3.6 and Section 5.3.7. The latter sections are based on the early ideas
on the representation which we reported in (Gutkin et al., 2004) and extended
in (Gutkin and Gay, 2005c).

In Section 5.3.8, we describe a structural search procedure for locating the
constituent transforms of a given supertransform in any given struct generated
from the real data. The section is based on our recent work, reported in (Gutkin
and Gay, 2005a,b).

In this chapter, we focus on an initial (also called sensory) level of representa-
tion. This level is called sensory because it directly interacts with the data. The
mechanism for extending the representation to higher levels is briefly outlined in
Section 5.3.9.

5.3.1. Primitive Articulatory Gesture. In line with the process, event-
based, philosophy of the ETS2 formalism presented in Section 5.2, we base our
analysis on the various articulatory processes (gestural events and combinations
thereof), which operate and cause changes in the states of the articulatory or-
gans. Various dynamic interactions1 between the articulatory organs during the
articulation process are represented as ETS2 primitive transformations, which we
introduced in Section 5.2.1.

The choice of initial level ETS2 primitives therefore amounts to the human
expert performing the following tasks:

(1) Identifying the articulators participating in speech production based on
physiological (Kaplan, 1971; Zemlin, 1968) and phonetic (Ladefoged, 2001)
evidence. These articulators are chosen to correspond to the site types of
the primitives.

1Which phoneticians also call processes, e.g. a nasal sound is a result of an “oro-nasal process”.
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(2) Selecting the most distinct gestures involving the articulators specified
above. These gestures are chosen to be the names of the ETS2 primitives.
Hence, gestures can be seen as transformations of the articulators.

The theoretical motivation for this more general outlook on the articulators and
the interactions between them is supported by linguistic theory, which states that
an articulatory analysis on a physiologically lower, motor level introduces too much
anatomical detail that is linguistically irrelevant for the discrimination between
various sound patterns (Ladefoged, 2001).

The following important domain-specific observations lead to a certain simpli-
fication of the formal structure of primitive transformations within our representa-
tion:

(1) Although the articulators share some mechanical degrees of freedom, they
are commonly assumed to be anatomically distinct and independent. In
other words, any constriction formed by one of the organs does not nec-
essarily produce a constriction in any other (Goldstein and Fowler, 2003).
In our representation, this is reflected in the choice of the sites of the prim-
itives. Any primitive in the representation possesses one specific property:
it does not have multiple sites of the same type.

(2) We also observe that the number and type of the articulatory organs
involved in the production of any given gesture do not change with time.
This leads to an important simplifying assumption that the sets specifying
the initial and terminal sites of each primitive are identical.

The above linguistically-valid assumptions simplify various technical issues involved
in the ETS2 representation. In particular, for the site type mapping TYPE (Def-
inition 5.1), which, given a site label, assigns to it a corresponding type, one can
now use a simple one-to-one mapping. Without a loss of generality, this allows us
to use site types instead of site labels in all the figures which follow.

Example 5.8 (Abstract Articulation). Figure 5.13 shows an abstract articu-
lation involving articulatory organs A1, A2, A3 and three gestures G1, G2 and G3

making use of these organs. The vertical positioning of the gestures corresponds to
the actual flow in time of the pre-processing algorithm which detects them. The
gesture G1 operates on one articulator A1 only, whereas gesture G2 involves all
of the depicted articulators and follows G1. Gesture G1 might mean “raise A1”,
gesture G2 might mean “move A1 to A2 while A3 vibrates”, while gesture G3 could
mean “lower A1”.

Within the ETS2 formalism, this pictorial representation corresponds to the
temporal sequence of three primitives G1[A1|A1], G2[A1, A2, A3|A1, A2, A3] and
G3[A1|A1] which form a struct Gσ = [G1 a G2 a G3] representing some non-trivial
gesture. The structs were introduced in Section 5.2.2. B

It is not difficult to see that each gesture, represented by an ETS2 primitive,
encapsulates both syntactic and semantic information. The syntactic information,
allows for structural processing by the appropriate training and recognition algo-
rithms defined within the ETS2 framework (Goldfarb, 2004; Goldfarb et al., 2004),
while the semantic information makes the representation meaningful and fully in-
terpretable.

5.3.2. The Articulatory Corpus. Speech corpora containing articulatory
measurements are becoming quite popular with the automatic speech recognition
community as more researchers become interested in using articulatory parameters
either as a supplement to or substitute for spectrally based input parameters, or
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Figure 5.13: Pictorial view of an abstract gestural structure.

as an internal representation for the model2. The discussion of various articulatory
approaches to statistical ASR is outside the scope of this thesis and we refer the
interested reader to an overview by Richmond (2001).

The articulatory corpus we are using is the MOCHA corpus (Wrench, 2000;
Wrench and Hardcastle, 2000). The MOCHA corpus consists of articulatory and
acoustic recordings of 460 phonetically-rich sentences designed to provide good
phonetic coverage of English. At the moment, the database contains the finalised
recordings for one male and one female speaker, each consisting of approximately
31 minutes of speech. The particular datasets we used came from the recording of
a female (acronym fsew) and male (acronym msak) speaker of British English.

The articulatory channels include Electromagnetic Articulograph (EMA) sen-
sors directly attached to the upper and lower lips, lower incisor (jaw), tongue tip
(5-10mm from the tip), tongue blade (approximately 2-3 cm posterior to the tongue
tip sensor), tongue back (dorsum) (approximately 2-3 cm posterior to the tongue
blade sensor) and soft palate (velum). The EMA data has been recorded at 500 Hz.
Coils attached to the bridge of the nose and the upper incisor provided the frame
of reference.

Laryngograph/EGG measures changes in the contact area of the vocal folds,
providing the recording of the laryngeal waveform. Pitch and voicing information
can be derived from the laryngeal waveform exactly in the same fashion as from
the acoustic waveform, which is also provided by the corpus. Both the laryngeal
and acoustic waveforms were recorded at 16 kHz.

Electropalatograph (EPG) measurements provide tongue-palate contact data
at 62 normalised positions across the hard palate (Wrench, 2000). EPG information
is very useful because it augments some of the information missing from the EMA
data. The EPG measurements are produced by the subject wearing an artificial
palate specially moulded to fit their hard palate with the 62 electrodes mounted
on the surface to detect lingual contact. Each EPG frame (the EPG.3 version of
the device was used), sampled at 200 Hz, consists of 64 bits, two bits of which
are unused. Each bit from the 62 bit mask is on if the contact was detected, off
otherwise.

The articulatory data was post-processed to synchronise the channels and cor-
rect for the EMA head movement and discrepancies in coil placements during the

2Traditionally, articulatory research received more attention from the linguistic commu-
nity (Byrd, 2003; Perkell, 1969).
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Organ Semantics Measurement Type

UL upper lip EMA
LL lower lip EMA
UI upper incisor EMA
TD tongue back (dorsum) EMA, EPG
TT tongue tip EMA, EPG
VL soft palate (velum) EMA, EPG
HP hard palate EPG
AR alveolar ridge EPG
VF vocal folds laryngeal, acoustic

Table 5.1: Articulators involved in the production of primitive gestures and the
types of available measurements.

recording. The resulting coordinate system of EMA trajectories consisting of (x, y)
coordinates has its origin at the bridge of the nose, with positive x direction being
towards the back of the vocal tract, away from the teeth, and positive y direction
being upwards towards the roof of the mouth. The post-processing step details can
be found in (Richmond, 2001).

The corpus was automatically labelled using forced alignment of the acoustic
signal with phone sequences generated from a phonemic dictionary, thus phonetic
labels are available (see Wrench, 2000; Wrench and Hardcastle, 2000 for more in-
formation). The autolabelling errors were hand-corrected.

5.3.3. Primitive Gestures and Their Groups. Table 5.1 lists all of the
ETS2 site types (articulatory organs) used in our representation. Along with each
site type we show the corresponding interpretation and the source of measurements
offered by MOCHA. As can be see from Table 5.1, for some articulators (like tongue
tip), several sources of measurement are available.

In Section 5.3.1 we mentioned that due to the assumption that the articulators
are physically independent, they all can be modelled by different ETS2 site types.
We also mentioned that this allows us to introduce a simplified site mapping (Def-
inition 5.1) and site relabelling (Definition 5.2) schemes. Let Ta denote the set of
the ETS2 site types corresponding to the articulators shown in Table 5.1. The site
type mapping

TYPE a : SLa → Ta

corresponding to our representation is defined as a one-to-one (identity) mapping

TYPE a : Ta → N , where ∀ti ∈ Ta TYPE a(ti) = i , 1 ≤ i ≤ |Ta| .
Since there is a one-to-one correspondency between the site types and the site labels
in our representation, any site relabelling also has to satisfy this property. In this
study, we are not using any site relabellings since our sites are fixed.

Table 5.2 shows the groups of primitive gestures used in this study. For each
group, the relevant sites (articulators), the number of distinct constituent gestures
(primitives) and the sources of available measurements are shown. As was men-
tioned above, primitives, sites and primitive groups have been specified using the
expert knowledge. Informally, a group consists of closely semantically and syntac-
tically related primitive gestures involving similar articulators.

Example 5.9 (Articulatory Group of Gestures). The group specifying the velic
aperture consists of four gestures which correspond to the EMA trajectory of the
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Group Organs Group Size Measurement Type

bilabial closure UL, LL 6 EMA
tongue dorsum height TD 4 EMA
tongue tip height TT 4 EMA
labiodental contact UI, LL 4 EMA
velic aperture VL 4 EMA
velar contact TD, VL 2 EPG
alveolar contact TT, AR 2 EPG
palatal contact TT, HP 2 EPG
voicing VF 2 laryngeal

Table 5.2: Various groups of primitive gestures shown along with the crucial artic-
ulators (Table 5.1) participating in their formation, group sizes and the sources of
available measurements.

velum, which is the only site these four primitives have. On the other hand, the
velic closure group consists of syntactically different primitives which are derived
from the EPG data and involve two articulators which correspond to the velum and
the tongue back. As we shall see in the later sections of this chapter, the concept of
an articulatory group allows us to introduce some domain-specific knowledge into
the ETS2 framework. B

Some of the groups of the ETS2 primitives are presented in Figure 5.14. The
four groups shown are:

• Vibration of the vocal folds: This group consists of two primitives which
describe the vibration of the vocal folds, in a binary fashion (on/off).
• Velic aperture: Similar to the above, this group also consists of two prim-

itives which specify whether the velic closure has been detected.
• Bilabial closure: This group consists of six gestures which describe the

movement of the upper and lower lips. Note that the these gestures model
the trajectory and also distinguish between two different directions of
movement (lips getting closer and lips parting).
• Tongue dorsum height: This group describes the vertical trajectory of the

back of the tongue (its height) by four gestures. Similar to the gestures
describing the bilabial states, these gestures also distinguish between two
possible directions of the movement.

5.3.4. Automatic Detection of Primitive Gestures. Given an articula-
tor (or group of articulators) of interest and the various corresponding streams of
measurements, various groups of gestures can be detected. Below, we describe a
simple pre-processor front-end for automatic detection of the primitive gestures in
the data.

Vibration of the vocal folds (VF) that uniquely defines voiced and unvoiced
sound patterns is represented by the two primitives standing for the beginning
(VFV-Start) and end (VFV-Stop) of vibration respectively. The pitch detection
algorithm used on the acoustic recordings provided by the MOCHA database is
described by Talkin (1995). We used a 5ms interval for analysis frames and a pitch
frequency search range between 25 Hz and 600Hz. Given the acoustic stream, at
any given point in time the decision about the beginning and termination of the
vibration is made when:
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Figure 5.14: Some of the groups of primitive gestures from Table 5.2.

/d/ /g/ /sh/ /n/

velar

palatal

alveolar

Figure 5.15: Three EPG regions and depiction of typical stable phases of the four
consonants [d], [g], [sh] and [n] (after Figure 1 in Carreira-Perpiñán and Renals,
1998).

(1) a change in the state of pitch is detected by the pitch detection algorithm,
and

(2) this new state is steady for at least 20 ms (around 320 samples of a 16 kHz
recording), which is an minimum duration of a typical short vowel.

Given the EPG stream provided by MOCHA, it is possible to detect various
contacts between the tongue and the hard palate. The output of the EPG sensor
consists of 8 8-bit binary vectors with a simple spatial structure. The first three
rows represent the alveolar region (the first and the last bit of the first row are
unused), followed by two rows representing the palatal region, with the last three
rows roughly corresponding to the velar region. Figure 5.15 illustrates the three
main EPG regions and their typical behaviour during the articulation of the four
consonants [d], [g], [sh] and [n].

In order to determine whether a contact has occurred, for each of the three
regions (velar, palatal and alveolar) we use the contact index measured by the
linear combination of the rows representing that region (which is a sum of all
the bits of the rows), as described by Nguyen (2000). Given an appropriate per-
region threshold (τa,τp and τv representing the alveolar, palatal and velar regions,
respectively) defined by examining the relevant EPG measurements, change in the
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contact information at any given point results in the emergence of an appropriate
primitive if and only if the threshold value of the index is crossed. For instance, the
velar contact gesture VC-Touch emerges when the value of the velar index increases
beyond τv, while the gesture VC-Part signifying the release of the closure emerges
when this value decreases below τv. The emerging primitive gestures involve the
pair of organs corresponding to the contact location. For palatal contact, the organs
would involve tongue tip (TT) and the hard palate (HP), for alveolar contact the
pair would include the tongue tip (TT) and the alveolar ridge (AR). Since the EPG
sampling frequency of 200Hz is reasonably low and the measurements appear to
change slowly over time, we have not imposed any requirements on the values of
the indexes to be steady for any period of time.

The data stream containing EMA trajectories provides additional information
about the articulations. Since the primitive gestures to be detected in the EMA
data have a discrete nature, an obvious approach we follow is to cluster the dis-
tance measurements between the pair of the articulators of interest. The clustering
procedure, making use of an efficient variant of k-means described by Kanungo
et al. (2002), is applied to the entire data available for the particular speaker. Since
vocal tract configurations vary from speaker to speaker, the clustering procedure
is speaker-dependent. Each of the n cluster centroids represents one of the n dis-
cretised distances between the two articulators. For any given EMA frame, the
distance between the two articulators is calculated and compared to the nearest
cluster centroid. If the nearest centroid for this pair of articulators has changed
since the last frame and the current articulation is sustained for at least m frames,
the decision is made to fire a primitive which represents the event responsible for a
change in the state of the articulation. We consider the articulation to be sustained
for m frames if the measurements of the distances between the two articulators for
each of the m frames fall into the same cluster.

If a single articulator is involved in a gesture (for instance, the gesture TT-
LowerMid only involves one articulator), the height of the articulator is calculated
according to Ay −BNy, where Ay stands for the y coordinate of the articulator in
question and BNy for the y coordinate of the bridge of the nose (origin). Whenever
two gestures are involved (for instance, any lip aperture gestures), the distance is
calculated as the distance between their respective vertical coordinates.

Note that two distinct primitives are used to indicate the articulator entering
and leaving the current quantisation region (cluster). For example, if we consider
the medium range of the tongue dorsum heights, when the new cluster centroid rep-
resents a higher range, we represent this transition by the TD-RaiseMid gesture.
Otherwise, if the new cluster centroid represents the lower range, the transition is
represented by a different gesture TD-LowerMid. This behaviour is illustrated in
Figure 5.16. The six transitions indicated on the right-hand side of the figure cor-
respond to four primitive gestures since TD-LowerMax is identical to TD-RaiseMid
and TD-RaiseMin is identical to TD-LowerMid.

5.3.5. Gestural Formations as ETS2 Structs. In Section 5.2.2 we men-
tioned that an ETS2 struct is a temporally ordered sequence of connected primitives
capturing the “history” of the corresponding process. Within an articulatory rep-
resentation, a struct is identified with a temporal sequence of primitive gestures,
which are hypothesised to provide the gestural structure of any given utterance.
We note that any utterance can itself be interpreted as a highly non-trivial gesture.

The inductive construction procedure of the ETS2 structs, outlined in Defini-
tion 5.4, involves the attachment of the currently observed primitive transformation
to the accumulated struct. For our representation, this mechanism may be subopti-
mal. In reality, at any given point in time the pre-processing algorithm (responsible
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Figure 5.16: Detection of four distinct tongue dorsum height gestures in the corre-
sponding EMA stream. Six states correspond to four gestures. The direction of the
movement is significant, hence TD-LowerMax is different from TD-RaiseMid and
TD-RaiseMin is different from TD-LowerMid.

for the derivation of the gestural structure from the real data) may observe sev-
eral instances of different primitive gestures appearing simultaneously. In order to
formally allow this, the ETS2 model has to be modified to allow for partial or-
der of the primitives in the structs, since currently it does not support this. A
domain-specific extension, however, is possible. The following gestural structure
construction procedure allows us to support simultaneous articulatory events at
least partially:

(1) If at any point in time, a single primitive is observed, the struct is grown
as usual using the procedure outlined in Definition 5.4.

(2) Suppose several primitives that do not share any articulators in common
are observed simultaneously. Since these primitives do not share any sites,
no confusion arises and these primitives are represented as an unordered
tuple.

(3) Otherwise, let k be the number of simultaneously observed primitive ges-
tures which share some sites in common. In addition, let ti be the time
of the current speech frame being processed. The k primitives are “de-
parallelised” in such a way that all of them appear sequentially before the
next speech frame starts at ti+1. During this serialisation of primitive ges-
tures, the regular ETS2 struct construction is employed since primitives
are now added one by one.

In practice, however, the steps (2) and (3) of the above procedure are seldom
employed because the simultaneous appearance of primitive articulatory events is
quite rare. We employ the above construction procedure for the derivation of the
gestural structures in form of ETS2 structs for any given utterance.

Example 5.10. Figure 5.17 shows an ETS2-based gestural structure of the
word “get”, consisting of 11 primitive gestures operating on 5 articulators, together
with the corresponding phonetic segments, which are shown purely for convenience
(detection and construction processes do not make use of these segments). Names
of all the articulators (corresponding to ETS2 site types) are given in Table 5.1.
The gestural structure in Figure 5.17 is constructed on-the-fly from the primitive
gestures detected in the available articulatory and acoustic data. For the sake of
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Figure 5.17: ETS2 struct describing the gestural structure of the word “get”, con-
structed using the automatically detected primitive gestures. Corresponding pho-
netic labels are shown.

clarity, only some of the primitive gestures participating in the critical articulation
of the voiced velar stop [g] and the unvoiced alveolar stop [t] are shown.

The articulation of [g], for instance, has a simple interpretation within this
representation. Articulation is achieved by first forming a velar constriction, which,
in turn, is formed by the tongue dorsum TD first rising to its maximum position
(TD-RaiseMax) at 0.248 sec, then completing the constriction before the phoneme
boundary by touching the velum VL (VC-Touch) at 0.266 sec. The constriction is
released within the phoneme boundaries of [e] by first slightly lowering the tongue
dorsum TD (TD-LowerMid) at 0.416 sec and then parting the tongue dorsum TD
from the velum VL (VC-Part) at 0.460 sec. Note that vibration of the vocal folds
VF (VFV-Start) occurs at the onset of [g] at 0.380 sec. Similarly, it is possible
to analyse the unvoiced alveolar stop [t], the articulation of which is obtained by
means of the tongue tip (TT), alveolar ridge (AR), and the vocal folds (VF). B

5.3.6. Articulatory Transformations. In Section 5.2.4 we mentioned that
an ETS2 transform is an encapsulation of a regular temporal pattern of primitives,
which is subdivided into two parts: the context and the body. The context of a
transform identifies the place, within a given struct, in which the application of the
body of the transform becomes legal, while the body is the “chunk” that extends
the (previously constructed) struct (Definition 5.9).

By examining the ETS2 gestural structs, generated by the preprocessing algo-
rithm described previously, several structurally and semantically related gestural
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Figure 5.18: Simplified visualisation of some common gestural patterns encoun-
tered in the data for unvoiced velar (top) and bilabial (bottom) stops [k] and [p],
represented as ETS2 transformations.

fragments of the structs can be discerned. For each of the sound patterns of the con-
sonants under investigation, the corresponding gestural fragments can be roughly
divided into two parts, the actual constriction and the release. As mentioned in the
previous section, the primitives comprising the two parts of the corresponding ges-
tural fragment exhibit asynchrony and often span multiple phone boundaries (the
anticipatory movement toward the lip constriction target, for instance, might start
relatively early, before the constriction is actually produced). Therefore, in our
analysis, the constriction starts with the first primitive gesture aimed at producing
this constriction, ending with the last primitive gesture which secures its release.

Figure 5.18 shows some of the common (simplified) gestural patterns, four per
sound, encountered in the data for unvoiced velar (top) and bilabial (bottom) stops
[k] and [p]. The body of each of the ETS2 transformations consists of the sequence
of gestures which participate in the release of the stop, while the gestures which
participate in the formation of the actual constriction are depicted as part of the
transformation context. The context of the transformation can thus be seen as a
necessary precondition for the respective sound to be produced (the gestures which
are not critical for a particular articulation are shown with the connections to them
crossed out).

Note that while each of the transformations has a similar higher-level seman-
tics (for instance, all four transformations shown in the top figure represent the
release of an unvoiced velar stop), structurally they are all different. The first two
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transformations differ in their bodies which can be interpreted as follows: For the
first body, the release is accomplished by first removing the tongue back (TD) from
the velum (VL) (the position of the tongue in the oral cavity is still high) followed
by the lowering of the tongue back (TD). For the body of a second transformation,
the tongue back appears to be lowered (together with velum) and only then de-
tached. For all of the transformations, the vocal folds may have already stopped
vibrating, meeting the necessary but not sufficient requirement for the articulation
(in which case they are shown in the contexts) or, they stop vibrating at the onset
of the release of that particular stop (in which case they are in the bodies of the
transformations).

5.3.7. Class Description via ETS2 Transforms. In Section 5.2.4 we men-
tioned that an ETS2 supertransform is a set of closely-related transforms specifying
the description of a class, where structural variations account for noise in the class
(Definition 5.10). In the articulatory representation, a supertransform is identified
with the family of temporal patterns of articulatory gestures (given by a family of
transformations from Section 5.3.6) that collectively describe the class structure of
a single phoneme.

Example 5.11. A simple class structure for the class of voiced velar stops
defining phoneme [g] is given in Figure 5.19 (phoneme labels and timestamps corre-
sponding to primitives are not shown). Each column of the supertransform repre-
sentation consists of transforms which have structurally identical bodies (with each
body specifying a release of constriction). The thicker lines connecting constituent
gestures between the body and context of each constituent transform denote in-
terface sites — used to indicate that the necessary precondition (provided by the
context) for the articulation of the respective phoneme has been met. B

In Definition 5.10 of ETS2 supertransform, it was mentioned that there is no
restriction (apart from the one potentially introduced by the learning algorithm,
described elsewhere by Goldfarb et al., 2004, Part III) on the number of the prim-
itives in either contexts or bodies of the constituent transforms. Therefore, one
class supertransform can encapsulate the descriptions of various instances of gestu-
ral formations with different durations.

In this work, we have chosen to focus on class elements which are provided in
terms of contexts of the gestural transforms. Our reason for doing this is that, for
any given gestural transform, the detection of the context alone is enough to decide
whether the phoneme corresponding to that transform has occurred. In addition,
because phonetic labels have been provided with the data in this study, there is
no need for duration modelling (for which one needs both body and context in-
formation). In other words, at present, we are not interested in the information
indicating where each phoneme ends. This information is provided by the body
of the transforms (to be more precise, by the last primitive gesture in transform’s
body). Henceforth, when referring to the gestural structure of phonemes, con-
stituent gestural transforms are assumed to consist of contexts only.

Based on linguistic evidence (Ladefoged, 2001), only some of the primitive ges-
tures from the gestural groups given in Table 5.2 were postulated to be critical
for structural description of each of the 14 consonantal phonemes evaluated in this
study. These phonemes are shown in Table 5.3. Alongside each phoneme P , the
frequency N of occurrence of the corresponding label in the MOCHA corpus (the
number shown is the same for both the male and female datasets) and the hypoth-
esised constituent gestures are shown. Because we are interested in the contexts
only, constituent gestures in Table 5.3 describe formations of various constrictions
involved in production of phonemes in question.
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Figure 5.19: Simplified depiction of an ETS2 supertransform for the class of voiced
velar stops given by phoneme [g], consisting of four ETS2 transforms.

For example, based on Table 5.3, the gestural structure of the unvoiced alveolar
stop [t], is specified by a supertransform having six distinct constituent transforms
(not shown), each consisting of various combinations of the three gestures VFV-
Stop, AR-Touch, and TT-RaiseMax.

5.3.8. Matching Gestural Transformations. Given an observed gestural
formation, constructed using the inductive procedure outlined in Section 5.3.5, it
is desirable to have a procedure for detecting the presence of an ETS2 transform
in ETS2 struct corresponding to that formation. If an ETS2 transform is located
within a struct, this is an indication that a class (defined by a supertransform) to



150 5. FORMAL ARTICULATORY REPRESENTATION OF SPEECH WITH ETS2

P N Hypothesised Primitive Gestures

[b] 306 VFV-Start LipsTouch VC-Part AR-Part HP-Part
[p] 192 VFV-Stop LipsTouch VC-Part HP-Part
[g] 535 VFV-Start VC-Touch TD-RaiseMax AR-Part HP-Part
[k] 370 VFV-Stop VC-Touch TD-RaiseMax AR-Part HP-Part
[d] 531 VFV-Start AR-Touch TT-RaiseMax
[t] 871 VFV-Stop AR-Touch TT-RaiseMax
[v] 226 VFV-Start LD-Touch
[f] 263 VFV-Stop LD-Touch

[ng] 140 VFV-Start VC-Touch TD-RaiseMax VL-Close∗
[m] 410 VFV-Start LipsTouch VL-Close∗
[n] 835 VFV-Start AR-Touch TT-RaiseMax VL-Close∗
[ch] 97 VFV-Stop TT-RaiseMax AR-Touch
[zh] 17 VFV-Start TT-RaiseMax HP-Touch
[sh] 146 VFV-Stop TT-RaiseMax HP-Touch

Table 5.3: Phonemes (P ), the number N of corresponding per-speaker labels (ex-
amples) and the hypothesised constituent constriction-forming gestures (primitives)
under investigation.

which this transform belongs, participates in the construction of an object repre-
sented by a struct.

As mentioned above, the pre-processing front-end detects primitive gestures
in the available streams and employs the inductive construction procedure for up-
dating the currently observed gestural formation (struct). For the detection of
the transform, we only need to consider the case when the addition of a primi-
tive to the end of a struct causes the “completion of construction” of a transform.
Thus, the algorithmic approach presented here may be seen as a rooted depth-
first search (Valiente, 2002), commencing with the last primitive in the body of a
transform (corresponding to the latest primitive in the struct to be searched).

In order to reduce the number of structurally-equivalent transforms in a su-
pertransform, a generalisation of the specification of transform context/bodies to
partial orderings of primitives — rather than total orderings — is possible (see Fig-
ure 5.20). A pseudocode version of structural matching algorithm algorithm, which
we previously reported in (Gutkin and Gay, 2005b), is presented in Figure 5.21.

A transform is accepted when the structure of the transform is detected inside
the searched struct, i.e. when all primitives in Γ are mapped to primitives of the
same type and “interconnectedness” in Π. A mismatch in type or interconnection
causes the rejection of a transform. The worst-case complexity of this algorithm is
O(m2 log m), where m is the number of primitives in the transform to be matched.

In Section 5.3.3 it was mentioned that all of the primitives used in this represen-
tation are divided into various articulatory groups, each consisting of semantically
and structurally related primitives. Additionally, all m constituent primitives γ ∈ Γ
belong to separate groups (see Table 5.3). This allows for the trivial modification
of the matching procedure specified above, whereby any primitive gesture π ∈ Π
which does not belong to any of the m groups is skipped during the search (without
aborting the search procedure). This modification allows the detection of candi-
date transforms in those cases when a “structural overlap” of various class elements
appears in the data. We used this modification of the search algorithm in our work.
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Figure 5.20: Top: Pictorial representation of two distinct transform fragments.
Bottom: Representation of the above fragments as a single fragment, w.r.t. the
partial order specification. Note that the “bottommost primitives” are AR-Touch
and VFV-Stop (neither is attached to any succeeding primitive).

5.3.9. Higher Levels of Representation. The class of gestures defined by
a corresponding supertransform becomes the next-level (non-trivial) gesture in the
representational hierarchy. In particular, the bodies of the constituent transform
leading to this non-trivial primitive specify the various instances of this non-trivial
gesture observed in the data. Figure 5.22 shows the emergence of the next-level non-
trivial gestures (shown as the next-level ETS2 primitives on the right-hand side of
the figure). The unvoiced velar stop consonants from the initial (articulatory) level
gestural struct, corresponding to the word “coconut”, are shown on the left-hand
side. The shading shown indicates two different instances of initial-level gestural
events which are represented at the next-level as the ETS2 primitive [k]. Each
of those instances corresponds to a different constituent transform from a class
supertransform for [k] which is shown in the centre. The sites of a next-level
primitive represent the organs participating in the formation of the class of events
it represents. In the case of [k], the sites stand for the tongue dorsum, the velum
and the vocal folds.

As mentioned in Section 5.2.6, once the new phonemic primitives “appear” on
the next level, they can be used in the usual fashion in the construction of the
next-level representation. Obviously, the primitives do not appear by themselves.
Construction of the representation at all the current levels is accomplished by the
representation construction algorithm. Assuming that for each level we are given a
fixed inductive structure (Definition 5.12), the new primitive appears on the next
level if the representation construction algorithm can locate any of the constituent
transformations of the associated supertransform in the struct at the current level.
The search for constituent transform is performed using the gestural transform
matching algorithm described in Section 5.3.8.
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(1) Let Π denote the (ordered) set of n primitives in the struct to be matched
and Γ denote the (partially ordered) set of m primitives in the transform
to be matched.

(2) For each “bottommost” primitive γi ∈ Γ (see Figure 5.20) that is of the
same type as πn, πn ∈ Π, perform the following search:

Declarations
ρ: a current primitive ( ρ ∈ Γ )
V : a set of visited γ-primitives
P : a set of pending γ-primitives
E: an equivalent primitive mapping E : Γ→ Π

V ← ∅
P ← {γi}
E ← {γi 7→ πn}
WHILE P 6= ∅,

ρ← P.Pop()
IF ρ ∈ V , CONTINUE
FOR each primitive α attached to ρ,

Let β be the corresponding primitive attached to E(ρ)
IF α ∈ V , NEXT
IF Type(α) 6= Type(β)

Try next γi (return to step 2)
IF E(α) exists AND E(α) 6= β

Try next γi (return to step 2)
IF E(α) does not exist

E ← E ∪ {α 7→ β}
P.Push(α)

V.Push(ρ)
HALT:ACCEPT

(3) HALT:REJECT

Figure 5.21: ETS2 Transform Matching Algorithm.

5.4. Experiments and Discussion

In this section we describe two sets of experiments aimed at verifying the ade-
quacy of the proposed articulatory representation, based on the MOCHA articula-
tory corpus described in Section 5.3.2. The phonemic classes under investigation,
corresponding to 14 consonantal phonemes of British English, are shown in Fig-
ure 5.3. Overall, there are 9,878 phonetic labels corresponding to the 14 phonemes
in question, 4,939 per each speaker.

The first set of experiments, described in Section 5.4.1, focused on the verifi-
cation of the primitive articulatory gestures automatically detected from the artic-
ulatory data using an algorithm described in Section 5.3.4. In Section 5.4.1, we
provide the details of the verification algorithm, describe the parameters of the
pre-processor responsible for detecting the gestures and provide the results.

The second set of experiments is described in Section 5.4.2. The experiments
focused on the classification of the gestural class descriptions corresponding to the
14 consonantal phonemes under investigation. Each of the hypothesised gestural
supertransformations (Section 5.3.7), consisting of the gestures shown in Table 5.3,
were searched for within 920 (460 per speaker) ETS2 articulatory formations auto-
matically constructed from the utterances of the MOCHA corpus. The results of
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Figure 5.22: The two instances of the next-level primitive [k] emerging from a
gestural structure of the word “coconut” via the supertransform for an unvoiced
bilabial stop.

the search were then evaluated against the available phonetic labels. We describe
the evaluation algorithm and discuss the results.

5.4.1. Gesture Detection. In order to evaluate the reliability of the primi-
tive gestures described above, experiments were conducted to assess the potential
accuracy of their detection. The evaluation was conducted on the fsew and msak
data sets from the MOCHA corpus (Section 5.3.2). Since the corpus provides the
phonetic labels, it is possible to check whether any of the primitive gestures, a pri-
ori known to participate in articulations which uniquely define certain phonemes,
actually appear during runtime.

5.4.1.1. Verification Algorithm. The verification algorithm is applied to all the
utterances in the corpus. For each phonetic label from a given utterance, each of the
primitive gestures from a corresponding list is processed in turn. According to the
algorithm, the primitive gesture participates in the formation of the corresponding
phone if one of the following conditions is satisfied:

(1) The primitive gesture appears within the boundaries (specified by the
start and end times) of the phone label currently being processed.



154 5. FORMAL ARTICULATORY REPRESENTATION OF SPEECH WITH ETS2

Gesture Organs Source Semantics

LipsTouch UL,LL EMA bilabial closure
VC-Touch TD,VL EPG dorsum touches the velum
VC-Part TD,VL EPG dorsum parts the velum

AR-Touch TT,AR EPG alveolar closure
AR-Part TT,AR EPG alveolar release

HP-Touch TT,HP EPG palatal closure
HP-Part TT,HP EPG palatal release

TD-RaiseMax TD EMA raise dorsum high
TT-RaiseMax TT EMA raise tongue tip high

LD-Touch TT,UI EMA labio-dental closure
VL-Close∗ VL EMA velum not closed
VFV-Start VF AC vocal folds start vibrating
VFV-Stop VF AC vocal folds stop vibrating

Table 5.4: Primitive gestures critical for the articulation of the phonemes given in
Table 5.3

(2) The primitive gesture occurs somewhere within the boundaries of several
previous phones.

In the second case, the algorithm checks that no other primitive gesture belonging
to the same group occurred between the current phone and the phone where the
primitive gesture of interest was detected. This is to ensure that the primitive
gesture being verified (for example, LipsTouch) is not later cancelled by some other
primitive gesture from the same group (for example, LipsSlightPart) before the
current phone boundaries.

5.4.1.2. Experimental Setup. The list of 14 consonantal phonemes evaluated
during the experiments is shown in Table 5.3. For each phoneme, the frequency of
occurrence N of the corresponding label in the corpus is shown, along with the list
of primitive gestures which are a priori hypothesised to participate in the formation
of that phoneme. The frequencies of occurrence of the phonetic labels (4,939 labels
in total) are equal for both male and female speaker data sets. Table 5.4 provides
the description for each of the 13 critical gestures from Table 5.3. Each gesture
is shown alongside the corresponding articulators it operates on, the data stream
where the gesture is to be detected and a simple description. For example, the labio-
dental closure LD-Touch involving the upper incisor and the lower lip is detected
in the EMA stream. The name VL-Close∗ denotes a group consisting of any velic
aperture gestures resulting in any degree of velum opening, excluding the closure.

The EPG parameters are τv = 12, τp = 6 and τa = 9 for the velar, palatal and
alveolar indexes, respectively. These values were determined by manually examining
a small subset (two sentences, one for each speaker) of the corpus. The EMA steady
state parameter m was set to 10 frames (20ms for the EMA data sampled at 500 Hz).
The number of EMA distance clusters n for all the pairs of articulators in questions
was set to 3.

5.4.1.3. Verification Results. Validation experiments for each of the 13 critical
gestures from Table 5.4 were conducted on the female and male data sets separately
with the results shown in Table 5.5. Validation experiments employ the verification
procedure defined above in Section 5.4.1.1. Because the original TIMIT phoneme
labels are available, during this stage we know which gestures to anticipate. The
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error is calculated as the percentage of the primitive gestures which failed to meet
the requirements of the verification procedure. For example, the number of expected
occurrences (Ne) of gesture specifying the biliabial closure (LipsTouch) is 1086. The
number corresponds to the number of bilabial closures which are a priori known
to participate in makeup of various phonemes (such as [b] and [p]). The number
of times this gesture has actually appeared during the validation of female speaker
dataset (Nf

o ) is 1078. Therefore, the accuracy for this gesture is 99.26% (1078 out
of 1086) and the corresponding error (shown in Table 5.5 as Ef ) is 0.74%.

The expected frequency of occurrence of each of the critical gestures Ne is the
same for the male and the female speaker. For the female speaker, the observed
frequency of occurrence of each gesture is specified by Nf

o and the error percentage
is given by Ef . For the male speaker, the corresponding measurements are Nm

o

and Em, respectively. The overall error is 7.29% for the female speaker and 8.17%
for the male speaker.

Gesture Ne Nf
o Ef (%) Nm

o Em (%)

LipsTouch 1086 1078 0.74 1079 0.64
VC-Touch 867 803 7.38 750 13.49
VC-Part 676 670 0.89 644 4.73

AR-Touch 2334 2052 12.08 1870 19.88
AR-Part 727 716 1.52 727 0.00

HP-Touch 163 162 0.61 163 0.00
HP-Part 1403 1209 13.86 1325 5.56

TD-RaiseMax 867 854 1.50 844 2.65
TT-RaiseMax 2497 2352 5.81 2388 4.37

LD-Touch 489 479 2.04 481 1.64
VL-Close∗ 1385 1015 26.71 1086 21.59
VFV-Start 2657 2558 3.73 2573 3.16
VFV-Stop 2282 2213 3.02 2078 8.94

Total 17433 16161 7.29 16008 8.17

Table 5.5: Evaluation results for each of the primitive gestures for the female (fsew)
and male (msak) speaker data sets.

As can be seen from Table 5.5, while the overall error is reasonably low, some
of the primitive gestures are not detected very accurately. The problematic ges-
tures are the alveolar contact (AR-Touch) between the tongue tip and the alveolar
ridge (determined from the EPG data), the velar closure (VC-Touch) formed by
the tongue dorsum and the velum (determined from EPG data) and the group of
gestures (VL-Close∗) defining the nasals (detected in EMA data). The latter inac-
curacy in the detection of the nasalisation from the EMA data has been observed
by others (Richmond, 1999). It is hypothesised that the EPG and EMA detection
errors are due to the recording setup, where the subjects get used to the pres-
ence of the EMA coils and EPG palate and modify their articulation of the sounds
in question, skipping some of the critical articulations. In addition, as observed
by Richmond (2001), the sensors tend to dislocate during the recordings, causing
inaccurate measurements.

5.4.2. Phoneme Classification. The aim of the experiments described be-
low was to assess the performance of the structural identification of the 14 ETS su-
pertransforms, each describing a consonantal phoneme of English,in gestural ETS2
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structures derived from real articulatory data. The algorithm for matching the
articulatory transformations was presented in Section 5.3.8. The reason for select-
ing this particular subset of 14 consonantal phonemes is simple. In this work we
are primarily interested in sounds which are produced by various constrictions of
the articulators (such as stops), because these sounds are clearly manifest in the
articulatory data. Combining the articulatory and acoustic data for the recovery
of vowels will be part of our future work, because other sounds, such as vowels, are
more difficult to model (structurally) based on the articulatory evidence alone.

5.4.2.1. Evaluation Strategy. The evaluation was applied to all 920 gestural
structures (460 per speaker) automatically derived from the utterances of the cor-
pus. Overall, 9,879 phonetic labels were available for the 14 classes corresponding
to the 14 ETS2 supertransforms. In general, a supertransform (phoneme class),
was considered to match if any of its constituent transforms matched the gestural
structure corresponding to the label.

Since the representation is asynchronous and the articulation of stop conso-
nants is anticipatory (Ladefoged, 2001), primitive gestures are not constrained to
appear within the phoneme boundaries of any given label. For such anticipatory
articulation, the primitive gestures forming constrictions usually appear before the
beginning of the phonetic label, often spanning multiple phoneme boundaries. For
instance, most of the gestures participating in the articulation of the voiced velar
stop [g] shown in Figure 5.17 appear before the beginning of the corresponding pho-
netic label. The gesture VC-Touch completing the constriction occurs at 0.266 sec,
94ms before the phoneme boundary.

Given the above, the search boundaries for any given constituent transform
are not restricted to the boundaries of the phonetic label, but also include the
boundaries of several previous phonemes. Phonetic boundaries are specified in
terms of the start and end times of a particular label. In particular, for each
phonetic label and a candidate class element (transform) to be matched, the sought
structure is declared as a successful match if it is identified by the search algorithm
presented in Section 5.3.8 (starting from the end time of the phoneme label and
proceeding backward in time) and if one of the following conditions is satisfied:

(1) The candidate class element is located within the phoneme boundaries of
the phonetic label;

(2) The candidate class element is found to be overlapping with the beginning
of a phoneme label (i.e. the formation of the constriction is anticipatory,
beginning before the start of a phoneme boundary).

5.4.2.2. Results and Discussion. The overall results of the verification of the
14 classes of consonantal phonemes are presented in Table 5.6 in the form of a
confusion matrix. For each of the classes, the number of correct matches is shown
on the diagonal in bold. The number of class phonemes which failed to classify in
any of the available classes is shown under [X]. The number of expected phonemes
is given by Ne, while No stands for the number of correctly matched phonemes.
The accuracy of the structural matching, denoted C, is given in the last column. As
can be seen from Table 5.6, out of 9,878 phonemes, 7,679 were classified correctly
and 278 failed to match against any of the available classes. The overall accuracy
is 77.74%.

Analysis of the per-class statistics shows that the lowest accuracy of 62.16% was
obtained for the alveolar nasal [n] which was often confused with voiced alveolar
stop [d]. This could be explained by the fact that the postulated class structures
of these sounds (see Table 5.3), are not sufficiently discriminative, differing by only
one gesture (the production of [n] is achieved in the presence of the velic opening).
Therefore, due to a failure of the pre-processor to detect the corresponding change
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in the state of the velum, [n] is often classified as [d]. The relatively frequent
misclassification of the class [m] as [b] can also be attributed to the same cause.
In general, it is expected that performance should improve with a more accurate
pre-processor and better discriminating phonemic class descriptions, especially in
the obvious cases when misclassification is not due to noisy data or to errors in
linguistic labelling of the corpus.

5.5. Summary and Potential Improvements

We presented a novel structural representation of speech, developed within the
ETS2 formalism. The representational unit chosen was the gesture, which is seen
as the interaction of the various physiological organs involved in the act of speech
production. We have proposed an intuitively simple methodology for detecting the
gestures in the continuous speech and shown that the gestures can be extracted
with a reasonably low error rate (7.29% and 8.17% error on two speaker data
sets of 31 minutes each). In addition, we have described several domain-specific
alterations of the formal machinery which were necessary to efficiently deal with
the continuous articulatory data. These alterations included the added support for
the concept of a group of primitive transformations, as well as extension of the
inductive construction procedure to have some preliminary support for the partial
(rather than total) ordering of the primitive transformations.

We described the 14 classes of English consonantal phonemes in terms of non-
trivial combinations of articulatory gestures. A structural matching algorithm ca-
pable of detecting an instance of one of the above classes inside a gestural structure
(corresponding to a speech utterance) was also presented. The performance of the
proposed class descriptions on real data (the MOCHA corpus) was evaluated, yield-
ing an overall matching accuracy of 77.74%. Our results support the hypothesis
that a structural representation of articulatory speech allows adequate identification
of the phonemic classes.

Despite a general agreement that the use of articulatory information is highly
beneficial (on both linguistic and physiological grounds), progress in that direction
has been limited. This state of affairs may be attributed to a poor understanding
of how the various parts of a speech production system interact. We believe that
the use of a representational formalism that supports the description of structural
classes of articulatory processes (such as ETS2) will benefit both speech science and
the linguistic community. In particular, such a formalism will guide the modelling
of these complex speech production mechanisms.

Potential Improvements. Following are some important research directions
we are planning to pursue in order to improve the modelling power of the articula-
tory representation:

The pre-processor: Here we list some ideas on how to improve the pre-processing
front-end responsible for constructing the representation:

• As mentioned in Section 5.3.4, the EMA component of the pre-processor
essentially employs k-means clustering (binning of the articulatory ranges)
in order to detect the articulatory gestures. No physiologically-inspired
modelling is used. We currently believe that this approach is suboptimal.

The modelling of the EMA trajectories can be improved by using a
physiological model of the vocal tract based on the estimated tracing of
the shape of subject’s hard palate (as in Jung, 1993, Section 3.2.1).
• Detection of articulatory gestures from the EPG data can be further im-

proved by using something more sophisticated than simple thresholding
we are currently employing. For example, a statistical approach along the
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lines of the one suggested by Carreira-Perpiñán and Renals (1998) could
be used.
• Additional examination of the phonetic segmentation of MOCHA. Origi-

nally it was obtained by means of automatic alignment and some of the
labelling errors were corrected by hand (Wrench and Hardcastle, 2000).
However, some of the errors may have been missed out.
• Introduction of voting may be needed in order to improve the accuracy.

For example, the gestures involving the velum can be detected both in the
EMA and the EPG data. Sometimes the gesture is detected in the EPG
stream but not in the EMA stream due to the noisy EMA measurements.
The decision based on the EPG stream will override the EMA one if for
the last several frames the EMA data was agreeing with the EPG data.

Representation: Improvements in the representation can be obtained by intro-
ducing the following changes:

• Support for a mixed-mode acoustic/articulatory representation. In order
to properly model vowels, articulatory measurements are definitely not
enough. Luckily, MOCHA contains acoustic measurements corresponding
to the articulatory ones. This modification will involve introduction of
new primitives into the representation, which are detected from either the
acoustic or laryngeal waveforms.
• The above modification will allow us to expand the list of classes we can

reliably model to include the vowels. It will also help in modelling the dif-
ficult phonetic classes, such as semivowels. At the initial stage, an attempt
would be made to come up with the class description (via ETS2 super-
transforms) for those classes and evaluation of those class descriptions on
the MOCHA database.
• Since the representation is based on asynchronously-detected articulatory

gestures, one need not focus on phonemes only. A more interesting lin-
guistic class are syllables, which are becoming more popular as the units of
linguistic and speech recognition analysis (Wester, 2003). Once the above
issues are addressed, the problem can be transferred into the syllabic do-
main effortlessly.

Learning: The discussion of the ETS2 learning algorithm has been omitted from
this thesis (apart from being mentioned briefly in Section 5.2.6). The interested
reader is referred to (Goldfarb et al., 2004, Part III). This is because we decided to
focus on representations first. The focus on representational aspects explains why
we did not address learning of the class structures, postulating them using a priori
knowledge instead.

The algorithm, some basics of which have been briefly mentioned in Sec-
tion 5.2.6 on p. 135, has nevertheless been successfully implemented and tested on
the gestural structures derived from MOCHA. There are several problems which
need to be rectified before we can present the alternative formulation of the speech
recognition problem within ETS2. Briefly, the problems are the following:

• Currently, the algorithm operates in an unsupervised mode. This means
that we have no control over the classes which are being discovered. What
we need is the ability to present the learning algorithm with the finite num-
ber of instances of each class. In particular, the supervised version of the
algorithm must ensure that we discover exactly one multi-level inductive
structure (MIS) per class. This is important because the representation is
asynchronous and correlating the result of the unsupervised learning with
the available segmentation is difficult.
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• The algorithm has several (numeric) control parameters which are difficult
to correlate with the number of levels to be discovered, as well as the
average size of the transform and the number of constituent transforms
in the discovered supertransform. The algorithm needs to be changed to
allow direct control over the above configurations.



CHAPTER 6

Formal Auditory Representation of Speech with
ETS4

6.1. Introduction

In Chapter 5 we presented an articulatory, production-based approach to struc-
tural representation of speech. The question which we may ask is what part does
this production-based process play in human speech perception. The study of the
contribution of mechanisms involved in production of speech to perception, i.e. de-
coding of a linguistic message from the acoustic signal, is outside the scope of this
work. We would like to note that some theories (like the motor theory of speech
perception by Liberman and Mattingly, 1985) strongly advance the production-
based argument. This argument is also supported by applied work in automatic
speech recognition (e.g. Deng et al., 1997; Frankel and King, 2005; Kirchhoff, 1999).
Therefore, the articulatory approach presented in the last chapter has its merits. In
this chapter, we present an attempt to devise a structural representation which is
based on auditory principles. Our main goal is to investigate the feasibility of mod-
elling the auditory processes within a single symbolic framework provided by the
ETS formalism. In what follows we briefly describe the main ideas and motivations
behind the proposed approach.

The recent versions of the ETS formalism were designed primarily as a math-
ematical language for representing processes encountered in natural sciences. In
this chapter, the processes under investigation are auditory. The structure and
function of the human auditory system is extremely complex. The structure and
function of the auditory periphery (outer, middle and inner ears) has been studied
in detail (e.g. Dallos et al., 1996) and is reasonably well understood compared to
the functioning of higher auditory structures. With the technological improvements
in measurement techniques, more information is emerging about the mechanisms
involved in speech and language processing in the brain (Alain et al., 2001; Arnott
et al., 2005; Démonet et al., 2003; Zatorre et al., 2004). To what extent these re-
cent advances in speech and language neurophysiology can contribute to modelling
efforts remains to be seen. Up until now there have been very few (if any) mathe-
matical models which utilise information from physiological levels higher than the
cochlea (Hawkings et al., 1996). From the information processing point of view,
there is little doubt that the mental mechanisms of perception are hierarchical.
While many researchers have argued for incorporation of this hierarchical knowl-
edge into models (e.g. Dusan and Rabiner, 2005a,b) and theories (e.g. Phillips,
2001), there have been no attempts to develop formal approaches which can support
multi-level representations. In addition, there are no models which allow emergence
(on multiple levels) of perceptual concepts and classes. Appearance of such models
will allow the study of multiple levels of representation, emerging classes and their
physiological correlates. Ideally, the multi-level representations expressed within a
single mathematical model will facilitate, in particular, bridging the gap between
phonetics and phonology. In addition, emergence of the higher level classes within
such models may shed light on the identity of the perceptual units of speech.

161
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The work described in this chapter was made possible due to the appearance of
the fourth (latest) variation of ETS formalism (we refer to this variation as ETS4)1.
This version resulted from some of the important modifications, which were intro-
duced into ETS2. These modifications were, in part, driven by several important
observations related to modelling of physical and biological systems (Goldfarb et al.,
2005a,b). The main modifications, which are of direct relevance to our represen-
tation, are clarification of a class concept and improved modelling of the level
ascension mechanism. We believe that, presently, ETS4 is the only formal language
which potentially allows the modelling of multi-level perceptual representations and
emergence of classes within them.

The proposed representation is based on physiological principles. The lowest
(sensory) level of the representation corresponds to the response of afferent auditory
nerve fibres to an acoustic stimulus. The sensory level representation is automat-
ically derived from acoustics using standard physiological models of the cochlea,
with little extra post-processing. It is interesting to note that the last stage of
the pre-processor we use roughly corresponds to the last stage of the pre-processor
used by some statistical ASR models based on auditory features (Deng et al., 2004;
Hemmert et al., 2004; Perdigão and de Sá, 1998). The main difference is that the
later approaches “produce” numeric feature vectors acting as an input to a sta-
tistical pattern recognition system, whereas in the proposed representation, the
pre-processor actually constructs a structural representation of an initial (sensory)
level. Starting from a sensory level, the formal language of ETS4 is responsible for
the construction of higher levels of representation. Consistent with the above dis-
cussion, the focus of this chapter is on the pre-processor and the sensory level. The
choice of “interesting” and robust structural atoms of representation at a sensory
level is important. This is because, from a modelling point of view, the sensory
level representation corresponds to the lowest level in perceptual hierarchy.

Finally, it is important to mention that the research we report in this chapter is
at a tentative stage. There are several reasons for this. First of all, a considerable
amount of work was devoted by Goldfarb et al. (2005a) to the development of the
latest version of ETS4, which has appeared very recently. As a consequence, no
work on learning and recognition algorithms for ETS4 is reported here. All the
experiments focused on the pre-processor instead. In addition, the main focus of
the research conducted by the author was on the theoretical ideas, rather than
technical details. This is partly due to the fact that the both the pre-processor and
the representation proposed in this chapter are theoretically and technically more
involved than the ones used for articulatory representation in Chapter 5.

Overview of the chapter. The core elements of the ETS4 formalism are
introduced in Section 6.2. Computational approaches to modelling the auditory
periphery are described in Section 6.3. Structural auditory representation is in-
troduced in Section 6.4. We summarise the chapter in Section 6.5, describing the
potential benefits of this approach and presenting some directions of future research
aimed at improving the representation.

6.2. Preliminaries: The ETS4 Representation Formalism

In this section we introduce the core elements of the ETS4 model. This section
is based on the ETS4 white paper (Goldfarb et al., 2005a,b). In order to simplify the

1The author, being a member of Inductive Informatics Group run by Lev Goldfarb, has been
extensively involved in the production of this variation of the formalism. Author’s contribution
to the white paper is indicated in (Goldfarb et al., 2005a,b, Section 1.5).
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Figure 6.1: Logical sequence of the main ETS4 concepts (reproduced by permission
from Goldfarb et al., 2005a).

exposition, we omitted some of the technical details. The precise (representation-
specific) interpretation of the concepts, which we introduce in this section, will be
provided further on in Section 6.4. The logical sequence of the main concepts is
shown in Figure 6.1.

Remark 6.1 (Important Suggestion). As mentioned above, in this section we
provide some general, mostly pictorial, examples of various concepts of the ETS4

formalism. The examples that are relevant to speech perception are provided later
in Section 6.4. This is justified by the need to introduce the core elements of
the formal language first. Because of an absolute novelty of the proposed formal
language, the reader is advised to read the white paper (Goldfarb et al., 2005a)
first and refer to it whenever he or she encounters difficulties with the concepts and
examples presented in this section. Instead of presenting a full formal exposition
into ETS4, which is done by Goldfarb et al. (2005a), in this section we provide a
synopsis which, hopefully, is an easier read. �

6.2.1. The Two Kinds of Physical Change. Before commencing with the
introduction of the constructive elements of the formalism (Figure 6.1), we describe
the main motivation behind its development, which, from the modelling point of
view, constitutes an improvement over some of the unsatisfactory modelling aspects
of ETS2.

The formalism is built around the observation that natural processes, as ob-
served in many sciences such as physical chemistry and developmental biology, can
be divided into two categories — the cyclic (regular) and acyclic (irregular). The
concept of a regular process encapsulates the notion of some object being observed
over some period of time. The regularity is manifest in the fact that during the
continuous observation of an object, the same “features” reappear in the represen-
tation (structural or otherwise) as the observation returns to the same “state”. To
clarify the later statement, Goldfarb et al. (2005a) provide several simple exam-
ples of regular processes known from physics. These regular processes include the
motion of an electron about a nucleus and successive oscillations of a photon as it
moves through a vacuum. On the other hand, an irregular (acyclic) process cor-
responds to the disruption of the regularity in the above observations. After such
disruption, a new continuous observation of an object is again regular, however the
properties of this regular process are now different from the previous one. Thus, the
irregular process can be seen as transforming the regular processes into the other
regular processes (Goldfarb et al., 2005a). An example of an irregular process is the
collision of two photons. The trajectories of their movement after the collision are
described by the regular processes which are qualitatively different from the ones
describing the system before the collision.

6.2.2. Basic Level Primitives and Class Links. How does one introduce
the above informal notions of a regular and irregular change in a formal setting?
Within the ETS4 formalism, at a single level of representation this is achieved by
introducing the notions of a primitive transformation (or simply primitive) and
primal classes of regular processes (or simply primal classes).
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Within ETS4, a primal class is the most basic building block of the model.
Informally, it is introduced as follows: it is assumed that a set of “primal” (initial
level) disjoint classes of regular processes has been specified. Each element of such
a class is some regular process whose structure is abstracted away, i.e. each process
must, at this initial level, be treated as unstructured and indistinguishable from any
other regular process in the class (Goldfarb et al., 2005a). At the initial level of the
representation, the set of N primal classes of regular processes is simply defined as
a set

(6.1) C =
{

C1, C2, . . . , CN

}
,

where Ci ∈ C denotes some (unstructured) primal class.
The notion of a primitive allows the introduction of the concept of an irregular

(acyclic) event into the model. Informally, a primitive can be seen as an acyclic
event, which transforms some subset of the set of the primal classes, given by
equation (6.1), of regular processes (called the initials) into another subset of classes
of regular processes (called the terminals). There are two basic kinds of primitive
transformations: abstract and concrete.

At a certain level of representation we are given a set of M structural entities we
refer to as abstract primitives. Each abstract primitive, denoted πi (1 ≤ i ≤M), is
defined (Goldfarb et al., 2005a, Definition 1) as a following set of concrete primitives
corresponding to πi

πi =
{

πi(l) | l ∈ Li

}
.

The concrete primitives πi(l) in the above set differ from each other by the label l.
The label l belongs to a set of labels Li that corresponds to an abstract primitive
πi. We next introduce the structure of concrete primitives.

A concrete primitive πi(l) is defined (Goldfarb et al., 2005a, Definition 1) as
the following four-tuple

πi(l) = πil
def=

〈
π̂i, Init(πi), Term(πi), l

〉
,

where
• π̂i is the name of abstract primitive πi;
• l is the label from a set of labels Li associated with the abstract primitive

πi;
• Init(πi) specifies the tuple of initial classes;
• Term(πi) specifies the tuple of terminal classes.

The elements of Init(πi) and Term(πi) belong to a set C given by equation (6.1).
We also need to provide an interpretation for the notion of label. For the sake of
simplicity, we treat each label as an identifier of a corresponding concrete primitive.
In all the examples provided in this section, the labels are characters from some
finite alphabet. The more formal treatment of the labels is provided in (Goldfarb
et al., 2005a, Section 3). An abstract primitive can therefore be seen as a collection
of concrete primitives which possess similar structure but different labels.

Pictorially, it is convenient to represent primitives as convex shapes, with the
initials marked as the various shapes on top and the terminals on the bottom.

Example 6.1. Figure 6.2 shows two abstract primitives (on the left) and the
three corresponding concrete primitives (right). The last two concrete primitives
belong (in a formal set-theoretic sense) to the second abstract primitive. B

The two sequentially observed (concrete) primitives connect to one another if
they share a class link. A class link represents the following observation: one of
the primal classes of regular processes c ∈ Ck produced by the first primitive, at a
certain point in time is modified by the second primitive. The concept of a class
link is depicted in Figure 6.3.
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Figure 6.2: Pictorial illustration of two abstract primitives (left) and three cor-
responding concrete primitives (right) (reproduced by permission from Goldfarb
et al., 2005a).

Figure 6.3: A class link c ∈ Ck between the two concrete primitives πia and πjb

(reproduced by permission from Goldfarb et al., 2005a).

6.2.3. Structural History. In addition to the ability to record interactions
between various primal regular processes, an ability to observe and record more
complex interrelationships in the environment is required. Similar to ETS2, this
capability is provided by the concept of a structural history, or simply struct.

Informally, a struct encapsulates a fragment of the recent structural history of
the observed system and is defined as a sequence of concrete primitives, together
with the corresponding interactions (given by the class links) between the con-
stituent primal classes of regular processes. The particular definition of a struct,
given in (Goldfarb et al., 2005a, Definition 3), allows both total (strictly sequential)
and partial ordering of the primitives (Figure 6.4). Any struct, denoted by σ, can
be seen as a non-trivial event capturing the interaction between initial (denoted
Init(σ)) and terminal (denoted Term(σ)) primal classes of regular processes.

The operation of composition of structs out of the primitives can be further
extended to allow composition of structs out of other structs. For any two given
structs σi and σj , the result of the operation called the unification of σi and σj ,
denoted σi d σj , is another struct (Figure 6.5). Informally, struct unification is
defined as a pair consisting of a union of the two sets of primitives and the union
of the two sets of class links of the structs in question.

6.2.4. Process Generators and Regular Processes. In Section 6.2.1, we
briefly introduced the regular (cyclic) processes. Next, when introducing the con-
cept of a primitive transformation, we mentioned that at the initial (sensory) level,
one can abstract away the structure of regular process and represent it simply as
a structurally unspecified element of some set. Using this logic we arrived at the
definition of primal classes of regular processes (Section 6.2.2). In this section, we
introduce the less trivial structural entities of the model — the process generators.
Process generators represent the basic building blocks, which are used to construct
regular processes.

Informally, a process generator (or simply generator), which we denote by g,
is a pair of structs 〈α, γ〉, where γ is some struct and α, called the context of the
generator, is a substruct of γ. The body of a generator, denoted by β, is defined as

β = γ \ α .
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Figure 6.4: Two structs σ1 and σ2 (reproduced by permission from Goldfarb et al.,
2005a).

Figure 6.5: Two structs and their union (reproduced by permission from Goldfarb
et al., 2005a).

One can think about the generator as consisting of a context α and a body β,
where the context must occur before the body. In addition, according to the formal
requirement of the model (Goldfarb et al., 2005a, Definition 10), every primitive
transformation in the context of a generator must have at least one descendant in
the body. In other words, there must exist at least one directed path between any
primitive in the context and primitives in the body.

Given a struct σ, we say that the generator g continues σ, if the context of
the generator is a substruct of σ. The continuation operation, denoted σ / g, is
illustrated in Figure 6.6. Context primitives are shaded, new primitives actually
“added” to σ by the continuation are shown in bold.



6.2. PRELIMINARIES: THE ETS4 REPRESENTATION FORMALISM 167

Figure 6.6: A pictorial illustration of the continuation of σ by generator g (repro-
duced by permission from Goldfarb et al., 2005a).

We are now ready to discuss the formal mechanism which allows an introduction
of non-trivial structure of the regular processes. Assume that we are given a fixed
struct σ and a finite family (set) G of generators. A regular process, or more
precisely a regular σ-process, is a struct which is constructed as a particular series
of continuations of struct σ with the various generators from the set G. The set
of all the structs constructed using the above mechanism will be denoted Γ(σ,G)
(see Goldfarb et al., 2005a, Definition 14).

Example 6.2. The top row of Figure 6.7 shows the family G of three abstract
generators (the adjective “abstract” refers to the fact that each generator represents
the set of all structurally identical generators) and a struct σ. The bottom row
shows one of the possible regular σ-processes from Γ(σ,G) which can be constructed
with the help of available generators G. There are three possible ways to look at this
regular process: as a struct (left), a struct with the generators indicated (centre)
and as a set of generator outlines (right). Another regular σ-process from the same
set Γ(σ,G) is shown in Figure 6.8. B

Having formally introduced the notion of a regular process, we are now in a
position to clarify the original statement in Section 6.2.1, where the concept of
regularity was described as follows: the regularity is manifest itself in the fact that
during the continuous observation of an object, the same “features” reappear in
the representation of an object. In relation to the concepts of a generator and
regular process, the above statement can be more formally expressed as follows.
First, we note that the observation of an object at the sensory level is recorded as a
struct. The regular fragments of the observation can be formally seen as the surface
manifestations of the σ-processes which are described using the generators. It is
important to note that a family of generators offers a compact means of describing
a wide range of structurally diverse, and yet “regular”, σ-processes. In theory, given
a sufficiently rich family of generators, every struct observed in the environment
can be completely described by the regular processes. In practice, however, this
is not the case, since the measurements will contain numerous manifestations of
acyclic (irregular) change. The latter point is discussed in Section 6.2.5, where we
treat the modelling of acyclic change in more detail.

Finally, we conclude this section by briefly mentioning the concept of a class of
regular processes (Goldfarb et al., 2005a, Section 6). Informally, a class of regular
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Figure 6.7: Top row: a family G consisting of three abstract generators (left), a
struct σ (right). Bottom row: an example of a regular σ-process from Γ(σ,G)
depicted as a struct (left), a struct with generators indicated (centre), and as a set
of “generator outlines” (reproduced by permission from Goldfarb et al., 2005a).

processes, denoted C, is a product of the learning (or generative) mechanism (cur-
rently in the stage of development) which, given a set of generators G and a struct
σ, produces a set of closely structurally-related σ-processes. This set of σ-processes
is a subset of a universe Γ(σ,G). The structural affinity between the members of
the class should in theory be defined on the basis of a training set. For the sake of
simplicity in the subsequent developments, by the class C(σ,G) of regular processes
we will mean the set of all regular processes Γ(σ,G).
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Figure 6.8: Another regular σ-process from Γ(σ,G) (see also Figure 6.7) (repro-
duced by permission from Goldfarb et al., 2005a).

6.2.5. Transformations. Having introduced the primitive transformations
and regular processes, in this section we briefly describe one of the most central
concepts of the model — the transformations, which can be seen as a formal exten-
sion of the notion of primitive transformation.

In Section 6.2.2 we mentioned that, informally, the primitive transformations
can be thought of as representing the acyclic (irregular) events that perturb (reor-
ganise) the corresponding primal classes of regular processes (initials). This per-
turbation results in the new qualitatively different observation of another set of
primal classes of regular processes (terminals). In this section, we formally extend
the notion of primitive transformation. Informally, we define a transformation as
a non-trivial event that is responsible for transforming one set of regular processes
into another set of processes, where the concept of a regular process (Section 6.2.4)
is a non-trivial extension of the concept of the primal class (Section 6.2.2).

More formally, the concept of a transformation is introduced as follows. Assume
that for the initial representation level, a fixed set C of classes of regular processes

(6.2) C =
{

C1,C2, . . . ,CN

}
is specified. As opposed to the set of primal classes of regular processes, given by
equation (6.1), each element Ci has a formally well-defined structure. The class of
regular processes Ci is a collection

{
cij

}
of structurally related regular processes,

where cij denotes a class element. A transformation is defined as an event which
transforms a p-tuple of initial disjoint classes of regular processes, denoted Init(τ),
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into a q-tuple of terminal disjoint classes of regular processes, denoted Term(τ). The
class tuples are drawn from the set C. Similar to the primitive transformations, we
next describe the two types of transformations — abstract and concrete, in a more
formal setting.

A concrete transformation (Goldfarb et al., 2005a, Definition 16) is defined as
the following four-tuple

τ(t) = τt
def=

〈
τ̂ , Init(τ) , Term(τ) , t , βτ(t)

〉
,

where the sets of initial Init(τ) (p-tuple) and terminal Term(τ) (q-tuple) classes of
regular processes were defined above and τ̂ is the name of the transformation. The
set t, called a label of a concrete transformation, is a p-tuple of regular processes
(class elements) drawn from the p-tuple Init(τ). It specifies a particular (concrete)
interaction observed between the initial regular processes. In Section 6.2.6 we show
that this concept is analogous to the concept of a label of primitive transformation,
which was introduced in Section 6.2.2. The last element in the transformation tuple
is βτ(t), called the body of the transformation.

Informally, transform’s body can be described as a structural entity (struct)
encapsulating a fragment of the observations, which is not induced by the set of the
regular process generators from Init(τ). In general, there exist many structurally
diverse structs which can serve as legal bodies for the same transform. The main
formal requirement of the body of the transform is that it must attach to initial
and terminal regular processes participating in the transformation.

An abstract transformation is a more general concept, defined as a following
set

τ =
{

τ(t) | t ∈ T
}

,

where the set T consists of all the possible transformation labels specifying the
observed interactions of classes of regular processes in Init(τ).

Example 6.3. A pictorial illustration of two concrete transforms (with partially
depicted bodies and processes) is given in Figure 6.9. For the concrete transfor-
mation shown on the left of the figure, there are two initial regular processes and
one terminal. The transformation shown on the right-hand side, has one initial and
three terminals. B

6.2.6. Level Ascension and Multi-level Inductive Structures. In this
section we introduce formal machinery which allows transition to the next level of
representation. In Section 6.2.5 we mentioned that at any given level of represen-
tation, a fixed set of N classes of regular processes C, given by equation (6.2), is
specified. One can define (Goldfarb et al., 2005a, Definition 17) a set C′ of next-level
classes

C′ def=
{

C ′
1, C ′

2, . . . , C ′
N ′

}
by abstracting away the structure of the classes of regular processes from the cur-
rent level of representation. In other words, for any class of regular processes Ci,
the next-level analogue C ′

i is obtained by discarding the structural makeup of Ci,
described in Section 6.2.4.

In addition, we assume that at the current level of representation, a fixed set

TS C =
{

τ 1, τ 2, . . . , τM

}
,

of M abstract transformations, called the transformation system, has been observed
in the training data. Given the above transformation system, we can define the set
of names of the next-level primitives as

Π̂′ def=
{

τ̂1, τ̂2, . . . , τ̂M

}
,
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Figure 6.9: A pictorial illustration of two concrete transforms in which the various
bodies and processes are partially depicted (reproduced by permission from Gold-
farb et al., 2005a).

where the name π̂i of the next-level primitive is the same as the name τ̂i of the
corresponding abstract transformation. In what follows, we introduce the set of M
next-level primitives corresponding to M current-level transformations.

Before introducing the concept of a next-level primitive π′i corresponding to the
current-level transformation τi, the following notions need to be defined:

• The initial tuple of the next-level classes Init(π′i) corresponding to the
next-level primitive π′i is defined as a p-tuple of next-level classes C ′

j .
This tuple corresponds to Init(τi).
• The terminal tuple of the next-level classes Term(π′i) corresponding to the

next-level primitive π′i is defined as a q-tuple of next-level classes. This
q-tuple corresponds to Term(τi).
• The set of next-level labels L′i, associated with π′i, is defined via Init(π′i)

analogously to the definition of the initial level primitive labels in Sec-
tion 6.2.2.

Having introduced the above auxiliary notions, the next-level concrete primitive
π′i(l

′) is defined analogously to the basic level concrete primitive from Section 6.2.2
as

π′i(l) = π′il
def=

〈
π̂′i, Init(π′i), Term(π′i), l′

〉
.

Similarly, the next-level abstract primitive π′i is defined as the set of all possible
concrete primitives taken over the set of next-level labels L′. Pictorial representa-
tion of a transition from some concrete transformation to the next-level concrete
primitive is shown in Figure 6.10.

It is important to note that once the next-level primitives are introduced, the
next-level analogues of other important concepts (structs, generators, regular pro-
cesses and transformations) are defined in a way completely analogous to the ex-
position in the previous sections. At each level k of the representation, one can
encapsulate all the above important structural entities (classes, primitives, gener-
ators, regular processes and transformations) in a single mathematical structure,
called a single-level inductive structure. The entire representation consisting of mul-
tiple levels is called the multi-level inductive structure, which is schematically shown
in Figure 6.11. The ascension between different levels is performed by a mechanism
described above. An alternative depiction of level ascension mechanism is that of
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Figure 6.10: Pictorial representation of the transition from a transform (left) to the
corresponding next-level primitive (right) (reproduced by permission from Goldfarb
et al., 2005a).

a “pyramid”, shown in Figure 6.12. A “pyramid” is formed by the corresponding
“subordinate” transforms from the previous levels.
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Figure 6.11: Schematic representation of a multi-level inductive structure with
l levels (the level counter l here should not be confused with the labels of the
primitives) (reproduced by permission from Goldfarb et al., 2005a).
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Figure 6.12: Pyramid view (partial) of a kth-level primitive: the pyramid should
be thought of as being formed by the corresponding “subordinate” transforms from
previous levels (reproduced by permission from Goldfarb et al., 2005a).
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6.3. Modelling the Auditory Periphery: A Review

Based on well-grounded physiological evidence, the auditory periphery can be
subdivided into various interacting auditory components that cause the transduc-
tion of the incoming pressure waves into the neural stimuli that act as an input
to the central nervous system. The latter physiological decomposition allows the
consideration of each auditory component in isolation and development of mathe-
matical approaches to modelling its function. Hence, the auditory periphery can
be seen as a sequence of various filters performing various auditory tasks, which are
described in below.

6.3.1. Outer and Middle Ears. The outer ear acts as a mechanical filter
which shapes the signal according the physiological characteristics of the head,
the pinna and the external auditory canal (Buser and Imbert, 1992; Gelfand, 1990;
Rosowski, 1996). The primary stages of this filter are the diffraction of the sound by
the head and pinna, and the transformation of the sound by the external auditory
canal. The next stage in auditory filtering is the middle ear. In the middle ear the
incoming sound pressure is transferred from the tympanic membrane (eardrum) to
the cochlea. The primary function of the middle ear is to ensure efficient transmis-
sion of the pressure waves to the cochlea by reducing the transmission loss (Buser
and Imbert, 1992; Hawkings et al., 1996). Computational models estimate the joint
contribution of the outer and middle ears to attenuation of high and low frequency
sounds as a simple pre-emphasis stage involving band-pass filtering in the audi-
tory range of 20 Hz–20 kHz and introduction of frequency-specific gain (e.g. Lyon’s
model described in Lyon, 1982; Slaney, 1988)

6.3.2. Inner Ear: Cochlear Spectral Analysis. The inner ear, being the
most important peripheral auditory component, essentially performs two tasks:
analysis and transduction (Ashmore, 2002). In this section we are concerned with
the analysis task. During the analysis stage, a sound pressure wave arriving from
the middle ear is decomposed into frequency channels by mechanical properties
(e.g. stiffness) of the cochlear partition within the inner ear (Patuzzi, 1996). The
cochlear partition consists of two structures: the basilar membrane and the organ
of Corti (Buser and Imbert, 1992; Slepecky, 1996). Sound entering the cochlea
creates a pressure difference between the two cochlear spaces, displacing the basilar
membrane in a transverse direction. This displacement wave travels on the basilar
membrane from base to apex of the cochlea at speeds which decrease continually
and uniformly. As it propagates, the travelling wave grows in amplitude, reaches
a maximum, and then quickly decays (Buser and Imbert, 1992; Gelfand, 1990; von
Békésy, 1960). The location of the maximum, called the characteristic place, is
a function of stimulus frequency: high-frequency vibrations reach a peak near the
base of the cochlea, whereas low-frequency waves travel (almost) all the way to the
cochlear apex (Robles and Ruggero, 2001; Slepecky, 1996). Since various decom-
posed frequencies correspond to locations along the cochlear partition, the latter
arrangement is often referred to as place-rate or tonotopic (Ashmore, 2002; Buser
and Imbert, 1992; Gummer, 2003; Robles and Ruggero, 2001; Slepecky, 1996). The
above mechanicm is called passive because it assumes that vibration is powered
solely by the incoming sound pressure (Robles and Ruggero, 2001). In reality, the
spectral analysis stage is highly nonlinear. Low-intensity sounds are amplified by
enhanced cochlear vibrations which are caused by feedback from the brain (Ash-
more, 2002; de Boer, 1996; Rhode, 1971; Robles and Ruggero, 2001). The latter
cochlear amplification process is referred to as active. Both passive and active
factors explain the cochlear mechanics.
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The ability of the cochlea to filter the incoming broadband sound into a large
number of narrow-band channels is usually modelled by a parallel bank of filters,
each tuned to a different frequency. Because low-frequency filters have slower rise
times than high-frequency filters, this roughly approximates the cochlear delay.
Alternatively, the filters can be arranged in a cascade in such a way that each
successive filter has a lower tuned frequency than a preceding one (Lyon, 1982;
Slaney, 1988). The frequency scale chosen for the filters usually reflects the spa-
tial arrangement of the characteristic frequencies along the basilar membrane. The
spacing of the channels at low frequencies is dense and near linear, while at high
frequencies is wide and almost logarithmically spaced. One of the most popular
psychoacoustic scales matching the latter arrangement is the Equivalent Rectangu-
lar Bandwidth (ERB) scale proposed by Moore and Glasberg (1983). A popular
filter function is a gammatone function that mimics the shape of impulse response
of the auditory nerve (Hubbard and Mountain, 1996). The gammatone filter is usu-
ally implemented as a cascade of recursive filters. Active mechanics are simulated
by dynamically modifying filter parameters using feedback (e.g. Lopez-Poveda and
Meddis, 2001; Meddis et al., 2001; Tan and Carney, 2003).

6.3.3. Inner Ear: Inner Hair Cell Receptor Potentials. Receptor cells
are functionally the most important structures within the organ of Corti. First, all
the receptor cells have bundles of stereocilia protruding from their apical surfaces.
Hence these cells are usually known as hair cells (Ashmore, 1994; Buser and Imbert,
1992). Since the cells are receptory in nature, synaptic specialisations at the basal
end of any hair cell manifest interactions with the terminals of the auditory nerve
fibres. There are two separate populations of ciliated receptor cells, the outer hair
cells (OHC) and the inner hair cells (IHC)2.

The vibration of the basilar membrane causes shearing between several struc-
tures of the organ of Corti. This force tilts the stereocilia in either direction (Frid-
berger et al., 2002; Robles and Ruggero, 2001). The bending of the stereocilia opens
the gating channels through their filaments, increasing or decreasing the ionic cur-
rents flowing into the receptor cell. The change in flow of ionic currents generates
electric potential across the hair cell membrane. The rising phase of the travelling
wave causes the sterocilia to bend in one direction, producing a membrane depo-
larisation. On the falling phase, they bend in the opposite direction, leading to a
hyperpolarisation. This process is referred to as mechano-electric transduction.

The above process can be modelled by a three-stage cascade of filters (Moun-
tain and Hubbard, 1996). A basilar membrane velocity coupling stage (modelled by
a leaky derivative) constitutes the first stage. The second stage models an instanta-
neous opening and closing of the ionic channels by some simple instantaneous non-
linearity (e.g. a half-wave rectifier or a Boltzman function). The final stage consists
of a low-pass filter which describes capacitive losses and ionic leakage through the
membrane (Lyon and Shamma, 1996). State-of-the-art models usually introduce
additional biophysical details (like fluid-cilia and basilar membrane-cilia coupling)
into the filter-based architecture (e.g. the model developed by Shamma et al., 1986).
The transduction model which we used in our experiments is by Baumgarte. This
is a digital modification of an original analog model by Zwicker (1986). The details
of the model can be found in Baumgarte’s thesis (Baumgarte, 2000). In general,
the output of the receptor potential generating stage closely follows the pattern of
vibration of basilar membrane, with the only difference being that the vibration is
distorted by a nonlinearity (or compressed) (Lyon and Shamma, 1996). The effect

2In what follows, we omit OHC from the discussion for the sake of brevity. We would only
like to mention that the OHC are believed to be instrumental in implementing the active feedback
mechanism (Ashmore et al., 2000; Deo and Grosh, 2004).
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of the low-pass filtering of the hair cell membranes is that the temporal fluctuations
in voltage are restricted to frequencies below roughly 5 kHz. For higher frequencies,
the receptor potentials match the envelope of basilar membrane vibration at its
base.

6.3.4. Afferent Synaptic Transmission and the Auditory Nerve. The
innervation of the receptor cells involves afferent and efferent nerve fibres. Afferent
(sensory) nerves carry impulses to the central nervous system, while the efferent
(motor) nerves carry impulses from the central nervous system. According Buser
and Imbert (1992), in humans there are roughly 30,000 afferent nerve fibres and
from 500 to 2,000 efferent nerve fibres. The IHC enjoy about 95% of the innervation
by afferent fibres; each fibre connects with only one cell, but each cell is innervated
by about 10 (in the apex of the cochlea) to 30 (in the base) separate afferent fibres,
distributed over much of the cell body (Sewell, 1996). The mechanism of excitation
of afferent nerve fibres is reasonably well understood and is described in detail
by Sewell (1996), Mountain and Hubbard (1996) and Torre et al. (1995).

A variety of synaptic transmission models have been developed over the years.
Since the entire synaptic input to most auditory nerve fibres consists of one synap-
tic connection only, the functional analysis of the mechanism of neural excitation
is often subdivided into several smaller stages. The first stage of most current
state-of-the-art models (e.g. Sumner et al., 2002) involves modelling of the hair cell
membrane permeability. The main quantity being modelled is the conductance of
the calcium current which characterises the passage of the neurotransmitter vesicles
from the IHC to the synaptic cleft of an auditory nerve fibre. The permeability is
then provided as an input to the next stage of the processing that involves nonlinear
simulation of the quantal mechanism of transmitter release, where “quantum” refers
to release of a single synaptic vesicle (Meddis, 1986). The output of this stage is the
probability of neurotransmitter release. The final stage of the processing involves
estimation of post-synaptic spike trains (or sequences of action potentials) triggered
by the neurotransmitter releases. This involves combining the probability of neu-
rotransmitter release with the probability model of auditory nerve fibre refractory
properties (Holmes et al., 2004; Lyon and Shamma, 1996; Sumner et al., 2002; Tan
and Carney, 2003; Zhang et al., 2001).

The auditory nerve response to receptor potential generated for a pure 1 kHz
tone is shown in Figure 6.13. The vertical axis is tonotopic, reflecting the arrange-
ment of characteristic frequencies along the cochlear partition. The horizontal axis
corresponds to time. The inner hair cell synaptic neurotransmission model used
for the computations is by Sumner et al. (2002). The irregular background pattern
evident in the figure corresponds to the spontaneous activity of the auditory fibres
due to release of neurotransmitter from the hair cells depolarised by the resting
IHC receptor potential in the absence of stimulus. The repetition (every 1ms) of
brief regular patterns corresponds to the synchronisation (also called phase locking)
of the auditory fibres with the periodic stimulus. According to Lyon and Shamma
(1996), the repetition rate can be thought of as a pitch and a regular repeated
spatio-temporal pattern as timbre.

6.4. Structural Auditory Representation

Having introduced the ETS4 formalism in Section 6.2, in this section we de-
scribe the main ideas behind the proposed auditory representation. These ideas are
based on the observation that modelling of perceptual mechanisms should take into
account the structure of underlying peripheral physiological processes involved in
audition (these were presented in the previous section).
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Figure 6.13: Approximation of an overall auditory nerve discharge in response to a
pure 1 kHz tone. The vertical axis is tonotopic, reflecting the arrangement of char-
acteristic frequencies along the cochlear partition. The horizontal axis corresponds
to time. The brief spatio-temporal pattern, evident from the figure, is repeated
every 1 ms. The inner hair synaptic neurotransmission and action potential prob-
ability model is by Sumner et al. (2002). Parameters of the high spontaneous
rate (HSR) population of fibres are provided by DSAM framework (O’Mard, 2000).
The intensity represents an accumulated discharge from 30,000 auditory nerve fibres
synapsing on the hair cells. Duration of the action potential is 0.02 ms.

In Section 6.4.1, justification for the choice of initial (sensory) level of rep-
resentation is presented. Sensory-level primitives are introduced in Section 6.4.2.
Generators are then discussed in Section 6.4.3. Regular processes and transforma-
tions are treated in Section 6.4.4. Finally, initial ideas about level ascension and
emergence of the classes within the framework are presented in Section 6.4.5.

Remark 6.2 (Labelling). It is important to note that in order to simplify the
exposition, in the following discussion no distinction is made between abstract and
concrete structures (e.g. abstract vs. concrete primitives, abstract vs. concrete
transformations). As was first mentioned in Section 6.2.2, any abstract structure is
a collection of concrete structures with different labels. In the following discussion
we assume that each collection consists of one element only. This allows us to
ignore the difference between abstract and concrete primitives, transforms and so
on. This assumption is similar to the assumption we made in Chapter 5 (Remark 5.1
on p. 128), where we dealt with the ETS2 articulatory representation. �

6.4.1. Choice of a Sensory Level. In ETS4, the first task facing the mod-
eller is the choice of the initial (sensory) level of representation. It is hypothesised
that any structural modelling of auditory perception should start at the ear level.
The difficulty lies in identifying the precise stage in the auditory chain from which
a structural model will get its input. In our opinion, the outer and middle ears are
not very appropriate for structural modelling of perceptual mechanisms because
they constitute a very early pre-transduction stage in the auditory chain. Since the
primary mechanisms of transducing an acoustic stimulus into information processed
by the central nervous system are located in the inner ear, we believe that the sen-
sory level should be located there. The latter assumption is also motivated by the
fact that physiological understanding of what happens beyond the first synapses of
the auditory nerve is rather limited compared to the state of our knowledge about
the cochlea (Seifritz et al., 2002). Hence, placing the sensory level “too high” in the
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audition chain (e.g. in the cochlear nucleus) will require structural and functional
modelling of the processes which are not quite understood.

There are several, structurally and functionally well understood, stages in the
processing of an acoustic stimulus by the inner ear (Section 6.3). These stages start
from the mechanical spectral analysis by the basilar membrane and stop at the
generation of action potentials in the auditory nerve. Most auditory-based speech
recognition models extract auditory features somewhere between these stages. For
instance, Hemmert et al. (2004) extract numeric feature vectors from the estimation
of neurotransmitter concentration in the synaptic cleft, while Deng et al. (2004) stop
at the level of basilar membrane in their analog model. Alternative levels of analysis
are also possible. For example, the feature extraction stage may immediately follow
the auditory nerve model. In this case, the pre-processing front-end extracts feature
vectors from numeric profiles (such as average firing rate maps), which represent
the action potential activity in the auditory nerve (Ghitza, 1986).

Depending on the choice of sensory level, structured primitives have to be ex-
tracted from data of different natures. For example, if the sensory level is identified
with the basilar membrane or inner hair cell membrane, the sensory level of struc-
tural representation will correspond to quantised numeric measurements. In the
case of the basilar membrane, these measurements correspond to the membrane’s
displacement, or alternatively, deflection of the IHC cilia. In the case of the elec-
tric transduction stimulus, these measurements correspond to the electric potential
across the IHC membrane. On the other hand, the action potentials in the auditory
nerve are already discrete in nature.

We have chosen the sensory level of representation that corresponds to the
last stage of the cochlear transduction process. This stage involves (post-synaptic)
generation of action potential in auditory nerve fibres. Below we provide several
reasons for this choice.

First, as was mentioned above, the output of the transduction stage is discrete
in nature. Thus, one can employ any computational auditory model that approxi-
mates action potential generation in afferent nerve fibres (Section 6.3). These mod-
els can be used interchangeably. The transduction model acts as a first and major
stage of the pre-processor. The second, smaller transduction-independent stage in
the pre-processing is needed to turn the action potentials into the corresponding
atomic units of the ETS4 sensory-level representation.

Second, the output of such a pre-processor corresponds to the “output” by the
inner ear. This output can be seen as an input to the central nervous system. The
latter observation is important because it corresponds to our general intuition that
perception actually starts at this level of analysis.

Third, starting from a basilar membrane, there are several processing stages
in the cochlear partition that preserve tonotopic arrangement of best frequencies.
Within the inner ear, the arrangement of afferent fibres synapsing on the inner
hair cells is also tonotopic. Hence, at this level it is possible to accurately asso-
ciate physiological structure with its reasonably well understood (tonotopic) func-
tion. Although tonotopic arrangement has also been identified in higher auditory
pathways (e.g. in the cochlear nucleus, as mentioned by Buser and Imbert, 1992
and Delgutte, 1997), accurate description of the processes involved at these levels
is not yet possible.

6.4.2. Sensory-Level Primitives and Primal Classes. Having selected
the level of analysis to correspond to the action potentials in afferent auditory nerve
fibres, in this section we introduce the atomic units of the ETS4 representation that
correspond to the sensory level — primitive transformations (or simply primitives)
and primal classes. These structures were first introduced in Section 6.2.2.
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6.4.2.1. Primal Classes. In Section 6.2.2, the primal class was introduced as
the most basic element of the ETS4 formalism, whose structure at a sensory level
is ignored. Although from a formal point of view, this notion appears to be very
abstract, it nevertheless has connection to physiological reality in the proposed
representation. One can think of the primal class (or primal unstructured process,
in alternative ETS4 terminology) as a process of measuring activity of some afferent
nerve fibre. Perhaps an easier interpretation, which is not based on the notion
of process, involves thinking about some primal class on a sensory level as a tag
identifying the corresponding fibre. The questions that we address next are how to
define the above tag and what its physiological significance is.

In previous sections, we mentioned that various physiological structures along
the cochlear partition, which participate in mechanical spectral analysis and trans-
duction of the stimulus, follow a tonotopic arrangement. Hence, given a certain
physical location along the cochlear partition, there would be a unique character-
istic (or best) frequency associated with it. This arrangement is first observed at
a level of basilar membrane (Section 6.3.2). It also holds for other physiological
structures, including the inner hair cells of the organ of Corti. Hence, considering
any given inner hair cell, it is possible to label it with the corresponding (unique)
characteristic place or frequency. Moreover, each afferent fibre makes exactly one
synaptic contact with any given inner hair cell (Section 6.3.4). Because the afferent
fibres do not branch, this unique labelling can be extended from afferent’s synapse
to axon. Therefore, a tag uniquely identifying each afferent fibre corresponds to
characteristic place or frequency.

As was mentioned in Section 6.3.4, each of approximately 3,000 receptor cells
is innervated by 10 to 30 afferent fibres. Even under the simplifying assumption
that each IHC is innervated by exactly one fibre, the number of primal classes
available for modelling is clearly too large. Since exact modelling is computationally
prohibitive, most of the computational models of the cochlea employ estimation of
the responses at a smaller number of locations along the cochlear partition. For
filter-based signal processing models, the number of computed estimates usually
corresponds to the number of filters in the non-linear filter-bank model of the basilar
membrane (Section 6.3.2). Characteristic frequencies therefore correspond to the
centre frequencies of the filters. The model that we used to obtain the response
to a pure tone (shown in Figure 6.13 of Section 6.3) employs 252 channels for
estimating basilar membrane and inner hair cell synaptic responses. In practice,
fewer than 100 channels are often used (e.g. 80 filter-bank stages reported by Slaney,
1988). Hence, an input to the sensory level of representation now consists of a
computationally manageable number of primal classes. Under these conditions,
each primal class corresponds not to an individual fibre, but rather to a group of
fibres in the neighbourhood of location along the cochlear partition that corresponds
to the centre frequency of the pre-processing filter.

Remark 6.3 (Modelling Terminology). At this point, we would like to make the
following observation about the terminology commonly used in computation mod-
elling of the auditory periphery. Most of the engineering approaches to modelling
the basilar membrane are filter-based (Hubbard and Mountain, 1996; Mountain and
Hubbard, 1996) (the alternative macro- and micro-mechanical models that are not
based on signal processing are reviewed by de Boer, 1996). Hence, as mentioned
above, when referring to various locations along the basilar membrane one usually
refers to channels (Baumgarte, 2000; Lopez-Poveda and Meddis, 2001). The next
stages in transduction (involving the generation of receptor potentials and modelling
of the responses of the auditory nerve fibres) employ more physiologically-concrete
models that are often not filter-based. The terminology used by these models refers
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to individual cells and fibres, rather than channels (Tan and Carney, 2003; Zhang
et al., 2001). In agreement with the terminology used by the latter models, in what
follows we will be referring to primal classes as nerve fibres (or groups thereof),
rather than channels/filters. �

6.4.2.2. Primitives. The results of extracellular recordings of activity in a single
auditory fibre can be classified into two types. The first type of recording reveal
an action potential evoked by the corresponding inner hair cell. In general, action
potentials are able to travel large distances along the axon of a fibre, without
decaying or requiring attenuation. Therefore, most computational models usually
treat action potential as a discrete “all-or-nothing” event or spike, rather than a
graded voltage. To simplify the representation, we also ignore the duration of the
action potential. An action potential may be evoked in response to an external
acoustic stimulus or, as mentioned in Section 6.3.4, “spontaneously”. In the latter
case, this is due to the fibre responding to slightly depolarised resting potential in
the inner hair cells. The second type of recordings reveal an absence of activity
in a fibre. In general, there is a brief (typically an order of a millisecond) period
of time following an observation of action potential during which no further action
potentials are observed. This period is known as the absolute refractory period. In
addition, there is a longer period of time when action potential is difficult to evoke.
It may or may not appear, with the probability of an observation depending on
stimulus intensity as well as on time elapsed since the end of an absolute refractory
period. The latter period is known as a relative refractory period. We represent
both types of observations (action potentials and periods of inactivity) as the ETS4

primitive events (primitives), which were first introduced in Section 6.2.2.
We first consider the first type of primitives representing the observations of

action potentials in afferent fibres. Let G denote the set of m primal classes, where
each primal class gi ∈ G represents a model of a certain afferent fibre located along
the tonotopic axis. The increase in index i corresponds to decreasing characteristic
frequency, where g1 is the first fibre at the basal end of the cochlear partition and
gm is the last fibre located at the apical end. Let primitive event fi denote an action
potential in fibre gi and let F denote a set of m such primitives. The primary action
of event fi involves primal class gi. In addition, the observation of activity of fibres
locally adjacent to gi usually shows that given a sufficiently small neighbourhood of
gi, the locally adjacent fibres in that neighbourhood behave similarly. On the one
hand, this can be explained by the fact that the properties of the stimulus driving
the adjacent receptor cells are similar due to their tonotopic arrangement. On the
other hand, there is some evidence, discovered in the higher levels of the brain (Zoli
et al., 1998), of intracellular communication called volume transmission. Volume
transmission consists of diffusion of signals in the extracellular fluid for distances
larger than a synaptic cleft. Hence, it is plausible that the adjacent fibres can
influence each other indirectly using extracellular communication via their synapses.
In order to take into account these context-dependency between the adjacent fibres,
the primitive event fi is also assumed to have a secondary influence on the activity
of the neighbouring fibres gi−1 and gi+1. The second type of primitives represent
inactivity or “relaxation” in the fibre after the firing. It is syntactically similar to the
action potential primitive. The relaxation primitives are needed for representing
the inter-spike intervals.

Pictorial illustration of an abstract primitive event representing detection of
an action potential is shown on the left-hand side of Figure 6.14. Primitive fi

can be interpreted as expressing several interactions: a primary action (an action
potential) in a corresponding fibre gi together with secondary interactions with the
adjacent fibres gi−1 and gi+1. Since the number of the primal classes involved in fi
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Figure 6.14: Abstract ETS4 sensory-level primitives: (a) context-dependent obser-
vation of an action potential fi in afferent fibre gi, in the presence of adjacent fibres
gi−1 and gi+1; (b) primitive for representing inactivity or “relaxation” pattern ri in
fibre gi, which syntactically similar to primitive in (a).

is not modified by this event, the number of initial classes is equal to the number
of terminal classes. The second type of primitive, representing relaxation ri in fibre
gi, is shown on the right-hand side of Figure 6.14.

As we shall see below, given a certain fibre gi in a two-fibre context gi−1 and
gi+1, one can encounter four related scenarios of firing, each represented by syntac-
tically and semantically different ETS4 primitive. So far, we have only considered
one scenario shown on the left-hand side of Figure 6.14: the firing of gi when the
two neighbouring fibres are inactive.

6.4.2.3. Construction of Sensory-Level Structs. An algorithm for automatic
derivation of primitive events from the acoustic data essentially consists of two
stages. Given a set of m fibres, the output of the first and the most important
stage consists of m estimates of firing activity in each of the fibres. Because the
acoustic stimulus is processed sequentially, at each point in time the output of this
stage essentially consists of “all-or-nothing” (0 or 1) probability of an action poten-
tial in each of the m fibres. Most of the transduction models obtain these firing
estimates by combining a probabilistic estimate of neurotransmitter release, pro-
vided by the synaptic IHC model, with the stochastic refractory (action potential
generation) model of the fibre (Section 6.3.4). As was mentioned in Section 6.4.1,
any transduction model can be used at this stage. In our experiments, we used
the basilar membrane and inner hair cell receptor potential model by Baumgarte
(2000), combined with the inner hair cell synaptic neurotransmission and action
potential probability model by Sumner et al. (2002) 3. The second, representation-
specific, stage involves converting each of the action potentials or absence thereof
into the corresponding ETS4 primitive events. This stage is needed in order to
assign the structure-less action potential the ETS4 syntax.

Conversion of action potentials into ETS4 primitives is intimately connected
with the process of incremental construction of instances of structural history —
the ETS4 structs, which were introduced in Section 6.2.3. Once a primitive event is
detected, it is integrated into the structural history of the representation. At stage
t, the output of the first stage of the pre-processor (mentioned above) are action
potential estimates for m fibres G. Conversion involves the following steps for each
fibre gi ∈ G:

(1) If no activity in gi was detected, proceed to step (2). Otherwise, check
for action potentials in the adjacent fibres gi−1 and gi+1. There are two

3Alternative models were also tried. For example, Baumgarte’s model was replaced by a
two-stage processor from DSAM framework (O’Mard, 2000) consisting of the nonlinear basilar
membrane model by Meddis et al. (2001) combined with the receptor potential model by Shamma
et al. (1986). The author also developed his own pre-processor (not reported in this thesis) in
collaboration with David Gay.
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Figure 6.15: Three ETS4 sensory-level primitives which represent the firing fi of
the nerve fibre gi with some simultaneous activity in adjacent fibres gi−1 and gi+1.
In case (a), gi fires, while gi−1 is inactive and some primitive event (not shown)
simultaneously occurs in gi+1. In case (b), gi is firing, while both neighbours gi−1

and gi+1 are active. In case (c), gi fires, while gi+1 is inactive and some simultaneous
activity occurs in gi−1. These three primitives, together with a primitive shown on
the left-hand side of Figure 6.14, constitute the only four possible scenarios of firing
in a single auditory nerve fibre gi.

possible scenarios, each corresponding to productions of slightly different
primitives fi (there are four possible primitives corresponding to fi):
(a) If no events are detected in the neighbouring fibres gi−1 and gi+1,

produce a primitive event involving all three fibres, as shown on the
left-hand side of Figure 6.14. The semantics of this primitive is as
follows: the action potential is detected in fibre gi, while the neigh-
bouring fibres gi−1 and gi+1 are inactive.

(b) If any of the neighbours is active, produce a primitive event which
involves gi, but excludes the active neighbours. This exclusion is due
to the formal restriction placed by ETS4 on simultaneously detected
primitive events which, in this case, cannot share primal classes in
common. There are three possible scenarios, each corresponding to a
different primitive, shown in Figure 6.15 along with the corresponding
interpretation.

(2) Analogously to step (1), produce a context-dependent relaxation primitive
ri for fibre gi. As before, two neighbouring fibres gi−1 and gi+1 are used as
context. Typically, the relaxation patterns are longer than the firing ones.
Hence, relaxation primitives can be produced not on every time step, but
on every n-th timestep since the last firing, where n takes into account
the refractory properties of the fibre. The latter is essentially a refractory
“timer”, which allows, in particular, production of several consecutive fir-
ing events during its period. We believe this step is necessary because it
provides the (basic) means of representing the inter-spike intervals.

(3) Update the representation constructed at t − 1 by adding the primitive
(either fi or ri) if it was produced by the previous steps (1) and (2) and
appropriately updating the class links (Section 6.2.2).

Example 6.4 (Simple Structs). Figure 6.16 shows three simple ETS4 structs
representing some of the possible spatio-temporal patterns of firing of three auditory
nerve fibres g2, g3 and g4, constructed by the pre-processor. These are perhaps the
simplest patterns of firing that can be identified in any response of the auditory
nerve fibres (such as the response to the pure tone, shown in Figure 6.13 on p. 178).

The pre-processor produces primitives of different types that are indicated in
Figure 6.14 and Figure 6.15. Note that while, overall, there are five fibres shown,
only three fibres actually fire during the identified time period. Fibres g1 and g5

participate purely as a context. Struct (a) corresponds to sequential firing of g2, g3
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Figure 6.16: Examples of several simple ETS4 structs representing basic spatio-
temporal patterns of firing on a sensory level of representation corresponding to
Figure 6.13. The tonotopic axis is horizontal, while the time axis is vertical. Each
of the cases (a), (b) and (c) represents detection of action potentials f2, f3 and f4

in fibres g2, g3 and g4.

and g4. Struct (b) corresponds to simultaneous firing of g2, g3 and g4. Struct (c)
corresponds to a case when firing of g2 is followed by simultaneous firing of g3 and
g4. B

An output of the pre-processor can thus be seen as a very detailed structural
“map” of spatio-temporal neural activity in the auditory nerve fibres. Such repre-
sentation is an analogue of the graphical representation in Figure 6.13 on p. 178.
The main difference between the structural representation and its graphical coun-
terpart is that the latter figure shows the overall activity in the auditory nerve
bundle accumulated from all the fibres watching the inner hair cells, rather than
the activity of individual fibres themselves. The activity of an auditory nerve bun-
dle corresponds to intensity of each pixel in the graphical representation. Structural
representation, on the other hand, encodes the intensity by density of local patterns
of firing primitives.

6.4.3. Sensory-Level Generators. In this section we introduce the sensory
level ETS4 generators (first described in Section 6.2.4) that correspond to our au-
ditory representation and discuss their physiological significance.

At a sensory level one proceeds by constructing an instance of structural his-
tory (struct) corresponding to the spatio-temporal pattern of activity of auditory
nerve fibres, as discussed in the previous section. By examining an ETS4 struct
constructed in such fashion, numerous recurring patterns of neural activity can be
identified. Some of the possible recurring patterns, identified in an auditory re-
sponse to a 45ms stretch of vowel [a], are shown in Figure 6.17. The neural map
shown corresponds to a very high resolution ETS4 struct, where each black pixel
represents a firing event. The white pixels represent patterns of auditory nerve
refraction. Various groups of recurring patterns are identified by different geomet-
rical shapes (ellipses, circles, squares and polygons). Each group of these patterns
re-occurs regularly, with the period of occurrence corresponding to the pitch period.
Within each group, the patterns follow (spatio-temporally) the overall response to
the corresponding stimulus harmonic. Furthermore, the patterns may overlap. The
period of an auditory response corresponding to some fixed tonotopic location can
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Figure 6.17: Some of recurring patterns of activity identified manually in the audi-
tory response to vowel [a] (duration of the response shown in the figure is 45 ms).
Each group (identified by ellipses, circles, squares and polygons) follows the onset
of the response to corresponding harmonic. Within each group, generators often
overlap each other spatio-temporally.

be described in structural terms by a sequence of patterns from different groups. In
Figure 6.17, this period corresponds to a sequence ellipse–square–circle–polygon.

At a first glance, we feel a certain temptation to associate the recurring patterns
of activity from Figure 6.17 with the sensory level ETS4 generators. In reality, how-
ever, these patterns are more likely to correspond to higher-level ETS4 generators
(for the discussion of higher levels of representation, see Section 6.4.5). This associ-
ation is, however, unlikely because the patterns of response enclosed by each shape
seem to us to be too “complex” (each elliptical shape, for instance, may encircle
several dozens of primitive events). The learning algorithm, which we are planning
to develop, will have support for restricting the maximum number of allowable
primitive events for each generator. Experience with ETS2 articulatory representa-
tion from the previous chapter suggests that keeping this number reasonably small
improves the computational performance of a learning algorithm. This is due to
reduction in the amount of structural matching involved during learning. Obvi-
ously, this number is domain-specific and will have to be established on the basis
of experimentation with various generator sizes. Presently, we think that keeping
between six to ten primitive events in each generator is the “right” design choice.

Before proceeding with the examples, we briefly review the notion of a gener-
ator, which was introduced in Section 6.2.4. An ETS4 generator is a struct with
some added functionality. This added functionality allows binding of this struct to
some other struct, provided that the two structs share the same binding site, which
is called the context. The binding operation is defined in terms of struct unification
(Section 6.2.3)4.

From a formal ETS4 point of view, there are a large number of generators which
can be identified on the sensory level. However, the observation that most of these
generators can be arranged into several groups makes the analysis easier. Within

4In terms of its gross function, the ETS4 generator resembles the ETS2 transformation from
the previous chapter. Drawing this parallel is not recommended because, in relation to other
structures, the formal roles of ETS4 generators and ETS2 transforms are very different.
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each group, the generators possess a similar function, despite being structurally
distinct. Below, we provide examples of two such groups of generators and identify
their function. Figure 6.18 shows an example of a generator which describes the
increase in firing response of a certain group of fibres. The left-hand side of the
figure shows the current “working” struct σ before an application of generator g.
The struct σ represents the onset of firing, during which some of the fibres (gi+3 and
gi+2) start responding. The generator g, shown in the middle of a figure, represents
an increased firing (represented by the body of the generator), in response to an
onset activity pattern, represented by the shaded context. This activity pattern
is also present in σ. The increased activity manifests itself in simultaneous firing
in fibres gi+1 and gi+3, followed by an immediate firing in gi+2. The result of
application of generator g to a working struct σ, denoted σ / g, is shown on the
right-hand side of a figure. This operation binds the generator to the corresponding
struct by its context. The overlapping context is shaded. The new primitives and
class links added to σ are identified in bold. A special property of this generator,
which identifies the group of functionally similar generators, is the fact that it
represents a pattern of increased firing activity along the temporal dimension only.
In other words, the same group of afferent fibres, involved in the generation of the
response represented by the initial struct σ, is involved in response represented by
the final struct σ / g. The functioning of this group of generators is pictorially
represented (in the bottom corner, on the left-hand side of the figure), by two
ellipses overlapping each other along the temporal dimension. Other, temporally-
overlapping, groups of generators are possible: generators which describe decrease
in neural activity and generators which cover long stretches of refraction.

The other type of generator is shown in Figure 6.19. This generator is slightly
more complicated than the one shown Figure 6.18. The main property of this type
of generator is in allowing an overlap along both temporal and spatial (tonotopic)
axes. Application of the generator g from Figure 6.19 to the working struct σ
modifies the response in such a way that new fibres get involved in generating
action potentials, while the previously active fibres enter the refractory period.
Hence, the neural response “slides” along both axes of representation.

What is the physiological significance of a generator? The above analyses sug-
gest a rather low, sensory, level of interpretation: each generator is a recurring,
non-trivial, pattern of activity of some local group of fibres, associated with it. A
more intuitive and physiologically interesting interpretation is the following: It is
well known that the structure and the function of the neural auditory pathways
become more and more complicated and specialised the higher one ascends the
neuro-physiological hierarchy. The auditory nerve fibres transmit their activity to
the first stage in the auditory pathways — the cochlear nucleus. This is the first
stage in the perception chain that involves highly specialised receptor cells. These
receptor cells (phasic cells, spherical cells, octopus cells and so on) are able to iden-
tify and respond to certain non-trivial patterns of stimulus provided by the auditory
nerve (Buser and Imbert, 1992, Part 3). Therefore, we can treat sensory-level gener-
ators as some specialised neurons belonging to the cochlear nucleus, which perform
some regular feature extraction. We hypothesise that the primary function of these
neurons is to observe some adjacent group of generator-specific fibres and fire each
time the pattern provided by the generator is detected.

6.4.4. Sensory-Level Regular Processes and Transformations. In the
previous section we introduced the generators as the basic units of the formalism.
In Section 6.2.4 we mentioned that given a finite set of generators, they can be
combined in various ways to form a set of diverse structures, called a set of regular
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Figure 6.18: Sensory-level ETS4 generator with a pure temporal pattern of binding
between the generator g and corresponding working struct σ. Labels of the primitive
events are omitted from the picture. Refractory events are denoted r.
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Figure 6.19: Sensory-level ETS4 generator with a spatio-temporal “sliding” pattern
of binding between the generator g and corresponding working struct σ. Labels of
the primitive events are omitted from the picture. Refractory events are denoted
r.
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processes. Each member of this latter set is called a regular process. The adjec-
tive “regular” refers to that fact that all such structures are produced by a finite
application of generators from the same family. In order to simplify the exposition,
a particular set of regular processes generated by a family G of generators will be
referred to as class of regular processes, denoted C(G).

As was the case with the generators, perhaps the most intuitive way of in-
troducing the regular processes in the auditory setting is to examine the struct
representing the neural response to some specific sound. In the previous section,
we examined the auditory response to a portion of vowel [a], shown in Figure 6.17
(p. 185), in order to identify high-level generators. These generators were repre-
sented by simple geometric shapes. We also mentioned that, structurally, the pitch
period corresponds to a sequence ellipse–square–circle–polygon. If we introduce
additional shapes which describe the transition between the existing shapes in this
path, the newly added shapes will correspond to the generators representing the
refractory periods in the response. The overall sequence of the above generators
will correspond to a non-trivial regular process representing local neural response
during the pitch period. As was the case with the generators, a regular process like
this is more likely to be observed at higher levels of representation. The sensory
level processes possess a simpler structure.

Below, we introduce a more elaborate example of a regular process, and also
introduce an example of transformation (first introduced in Section 6.2.5). Two
families G1 and G2 of generators are shown on the right-hand side of Figure 6.20.
The family G1 may contain generators possessing a purely temporal pattern of
binding (Figure 6.18), while the generators in G2 may be the “sliding” generators
(Figure 6.19). For the purposes of this exposition, the exact structure and function
of these generators is not crucial. We ignore the structure of the generators and
simply represent them as different shaded shapes. Each family of generators may
produce several regular processes belonging to the same class. On the left-hand side
of the figure, two instances of regular processes from class C(G1) (the left “column”)
and two instances of regular processes from class C(G2) (the right “column”) are
shown. In this particular example, the classes do not interact (the interaction would
otherwise be manifest as overlap). The identity of the fibres which trigger these
non-trivial recurring patterns corresponds to the identity of the fibres involved
in triggering the constituent generators. So, the regular processes in C(G1) are
observed in n1 fibres

{
gi, . . . , gi+n1

}
, while the regular processes in C(G2) are

observed in n2 fibres
{
gi+n1+k, . . . , gi+n1+k+n2

}
.

Note that in this particular example there is a tonotopic “gap” of k fibres be-
tween the two classes of regular processes. This gap corresponds to the fact that
these regular processes do not interact. In addition, within each class, there is
a gap between the instances of regular processes along the temporal dimension.
These temporal gaps correspond to some noisy measurements which interrupt the
regularity of the observations in the respective groups of fibres. More formally,
temporal gaps can be explained by the fact that there is no generator (in any of
the existing families) that can describe any of these gaps. The (temporal) disrup-
tion of smoothly running regular processes is modelled by an ETS4 transformation
(Section 6.2.5). In Figure 6.20, the transformation τ(C(G1), C(G2)) is shown as a
dashed rectangle. The transformations act on the adjacent regular processes, mod-
ifying their properties. In the simplest case, shown in the above figure, after the
transformation occurs, one may still observe the same classes of regular processes in
the corresponding groups of fibres. In more complicated cases, the transformation
may cause the adjacent regular processes to merge or split, forming completely new
classes.
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Figure 6.20: Example of two classes of sensory-level regular processes C(G1) and
C(G2) consisting of re-occurring appearance of generators from the corresponding
sets G1 and G2. For the sake of simplicity, only the outlines of the generators are
shown. The set of generators G1 may contain the generators with temporal binding
pattern from Figure 6.18, while the set G2 may contain the “sliding” generators
from Figure 6.19. Two instances of each class of regular processes are identified.
Transformation τ(C(G1), C(G2)) operating on two classes of regular processes is
identified by dashed rectangle.

6.4.5. Level Ascension. In Section 6.2.6, the mechanism for ascending to
the next level of representation was presented. Identifying the transformations on a
sensory (and any other level) allows creation of a new primitive event on a next level
of representation. The primal classes, which this newly created primitive involves,
are obtained by discarding the structure of the corresponding initial and terminal
regular processes (see Figure 6.10 on p. 172). The emergence of the next-level classes
is therefore connected with the detection of the regular processes on the current
level. The next-level primitive corresponding to the sensory-level transformation,
shown in Figure 6.20, involves two identical pairs of initial and terminal primal
classes. The names of the primal classes in question are C(G1) and C(G2). Similarly
to the sensory level, the same mechanisms are employed for construction of a next-
level struct, identification of recurrent features that become generators, formation
of regular processes and transformations (see Figure 6.12 on p. 174). The latter
structures form a multi-level induction structure that evolves in time. In addition
to creation of new levels, inductive structures on existing levels are also updated as
the time passes.
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Figure 6.21: A multi-level representation of a hypothetical transition between two
classes of vowel sounds: vi and vj . At level k, transition τ captures transformation
of class vi into class vj . At this level, the classes are unstructured. At level k − 1,
each vowel “opens up”as a regular processes involving some interaction between the
constituent classes (f1, f2 and f3) representing formants.

A schematic example of a multi-level representation of a hypothetical transi-
tion between two vowel sounds is given in Figure 6.21. At level k the representation
consists of two classes vi and vj , representing the respective vowels. Transition be-
tween the two sounds is represented by transformation τ . This representation is
“uncompressed” at the previous level k − 1. Each of the vowel sounds decomposes
into a corresponding regular process. In turn, each of the regular processes involve
some interaction between the three classes representing formant frequency bands
(for vowel vi, these are identified in the figure as f i

1, f i
2 and f i

3). Each frequency
band, represented by regular process at level k−2, is a class at level k−1. The trans-
formation τ captures the interaction between the corresponding regular processes
representing the frequency bands. As an example, some of the possible primitives
(τ1, τ2 and τ3) within a transformation body are identified. Each of these primitives
may capture more localised interactions (such as appearance or disappearance of
bands) between the frequency bands. Each of the classes at level k − 1 opens up
at previous levels to reveal highly non-trivial organisation and interaction between
various level-specific generators (levels k − 2 and k − l are shown).

In general, the number of classes at any given level of representation increases as
we descend the hierarchy. This is due to finer resolution (both temporal and spatial)
at the lower levels of representation (this is illustrated by Figure 1.6 on p. 31).
At the sensory level, the representation can be considered “nearly” continuous,
whereas at the higher levels it becomes more discrete. At this preliminary stage in
the development of the model, it seems plausible to speculate that the numerous



6.5. SUMMARY AND POTENTIAL IMPROVEMENTS 191

levels between the sensory level and the level where linguistic-like classes start
appearing constitute a model of the phonetic-phonological interface. Obviously, at
present we cannot categorically support this claim. Algorithms for inferring the
multi-level induction structure from the sensory level structs need to be developed
first. Learning the multi-level induction structure amounts to detection (at each
level of representation) of the generators, the corresponding regular processes and
transformations (see some ideas on learning in Goldfarb et al., 2005a, Part IV). This,
in turn, will allow modification (involving the process of growing and updating) of
the multi-level inductive structure.

It is plausible to advance an argument that in the context of speech perception,
the ETS4-based model does not necessarily learn the representation from scratch.
Some studies in categorical perception in infants have demonstrated that infants are
able to discriminate between the phonetically relevant contrasts (voicing, place of
articulation and so on). These studies seem to support the hypothesis of existence
of innate phonetic categories, or universal phonetics (see an overview by Phillips,
2001). This hypothesis can be translated into ETS4 terms by noting that innateness
in ETS4 can be expressed by existing multi-level inductive structure. The latter
structure (see Figure 6.11) does not appear from nowhere, but is a result of inductive
experiences of the agent’s ancestors during their development. Hence, at the start
of its life, the agent already appears to be equipped with some basic set of inductive
structures on a few levels of representation.

6.5. Summary and Potential Improvements

In this chapter we reported our ongoing research in developing the structural
representation of speech based on the auditory principles. The structural represen-
tation is being developed within the ETS4 formalism, which is the culmination of
research efforts aimed at developing a mathematical language for modelling various
natural processes, including perception. We introduced ETS4 by informally pre-
senting the main ideas of the formalism. Compared to the previous version (ETS2),
some of the main postulates of the formalism, such as the nature of the concept
of a class, have been rethought and better fit our present way of thinking about
inductive processes. We believe that the development of computational models of
perceptual processes cannot be divorced from the corresponding physiological pro-
cesses. We briefly reviewed the basic neurobiology of the auditory system, as well
as the current state-of-the-art in computational auditory modelling. The empha-
sis was placed on the auditory periphery, which is a better understood stage in
audition.

Next, we proposed the starting point of analysis for structural representation by
choosing the initial (sensory) level of representation. This sensory level of represen-
tation corresponds to what we think to be the first stage of information processing
in the auditory pathways — the afferent nerve fibres leading to the auditory cortex
of the brain. We introduced the basic structural units of representation for the
sensory level and offered their physiological interpretation. We also described the
details of the pre-processing front-end which we use to automatically construct the
initial level of structural representation from the available acoustic data. We next
described the formal mechanism of level ascension within the auditory representa-
tion. Because the sensory level representation is structurally complex and because
we do not yet have a learning algorithm, at present we cannot provide a rigorous
interpretation of the higher levels of auditory representation with ETS4. Instead,
we presented our preliminary observations (and interpretation) of what to expect
of the higher level ETS4 structures which emerge in the process of level ascension.
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In particular, we provide an intuitive example which demonstrates the emergence
of non-trivial classes on the higher levels.

Potential Improvements. Probably the most pressing issue that we are fac-
ing at present is the development of the learning algorithm for ETS4. Some of
the basic ideas regarding this process are outlined in (Goldfarb et al., 2005a, Sec-
tion 9). Due to the inherent complexity of the modelling task (a similar complexity
was faced by Gay (2005) in structural modelling of processes involved in vision), it
is very important to have an automated procedure for discovery of regular features
at any given level of representation. At present, we deal with the mechanisms of
level ascension manually, by examining the regular patterns at any given level of
representation. The automated procedure will allow, in particular, an improved
flexibility in choice of the basic sensory level structural units (primitives). Using
this procedure, any choice of sensory level primitives will be automatically verified
on the higher levels of representation. If the emerging classes are “not interesting
enough” from physiological and/or linguistic points of view, it would be possible to
go back to the sensory level and re-think the syntax and semantics of sensory level
primitives (provided in Section 6.4.2).

We feel it is important to clarify the latter statement by drawing a parallel be-
tween the structural ETS4 approach and statistical speech recognition. In ASR, the
bad design of the pre-processing front-end will lead to degradation in recognition
performance. Because the structure of the feature vectors, whether they are the re-
sult of a careful development or not, is still the same (vectors in some d-dimensional
Euclidean space), it is tempting to think that one is always provided with “good”
features and concentrate on the models instead. Hence, more often than not, the
issue of feature selection is considered (if at all) to be secondary. However, the over-
all approach to evaluating an ASR system is similar to the ETS4 evaluation process
described above. If we were to design an ASR system from scratch, we would be
looking for features which improve the recognition performance. If the recognition
performance is not satisfactory, we would go back and re-think the speech process-
ing front-end. In ETS4, this process is very similar. If the pre-processing algorithm
is not satisfactory, it needs to be re-designed. In addition, because this algorithm
does not output “rigid” structures (feature vectors), an additional stage involves
re-design (syntactic and semantic) of structural atoms of ETS4 representation —
the sensory-level primal classes and primitives.

Furthermore, the evaluation criterion for ETS4 is, in theory, more flexible. One
can evaluate such a framework not only on the basis of its recognition performance,
but also on the basis of quality of the class descriptions it discovers. The latter
step allows the human experts (linguists or neurophysiologists, for instance), to
check whether the emerging classes are “interesting” from the point of view of their
science.

Once the previous task is accomplished, it will be very interesting to examine
the higher levels of representation in detail. Of particular interest are the emerging
regular processes and next-level classes. In particular, emerging ETS4 representa-
tions of various phonetic classes will be studied. It is currently hypothesised that at
some higher levels, when the representation becomes much more abstract (i.e. more
“discrete”), potential phonological-like correlates of the low-level phonetic processes
may emerge.

While, at present, it is clear that the number of levels in the model is not going
to match the number of major relays in the primary auditory pathway known by
neurophysiologists (five major stages are known, according to Pujol et al., 1999–
2004), it is nevertheless interesting to examine the multi-level representation and
single out the major stages which may correlate with what is currently known about
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the function of auditory pathways. For instance, it is known that various regions
(containing specialised cells) of the cochlear nuclei perform some important spatio-
temporal decoding of a basic neural signal into intensity, duration and frequency
information. How this information is coded on the higher levels of ETS4 represen-
tation is an interesting research question. Identifying such levels may help to shed
the light on the function of cochlear nucleus.





CHAPTER 7

Conclusions and Future Research

In this chapter we conclude the thesis by providing a summary of obtained
results, the main contributions and the directions for future research. This chapter
is organised as follows. A summary of the thesis is presented in Section 7.1. The
main contributions, their significance and relevance to spoken language modelling
are listed in Section 7.2. Several dimensions of difficulty we encountered are dis-
cussed in Section 7.3. We conclude this chapter in Section 7.4, where the main
future research directions are presented.

7.1. Thesis Summary and Results

This thesis explored the issues involved in structural representation of spoken
language. The variety of approaches pursued in this thesis correspond to the evo-
lution of our ideas and understanding of structural modelling. In the first part of
this thesis (Chapters 2–4), a structural similarity-based (or topological) approach
to modelling was investigated. We summarise our findings in Section 7.1.1. In the
second part of this thesis (Chapters 5–6), formal approaches to structural represen-
tation were explored. These are summarised in Section 7.1.2.

7.1.1. Topological Approach. First, we proposed a linguistically well-motivated
structural representation. The atomic units of representation are distinctive phono-
logical features. The objects under investigation corresponded to phones. We pos-
tulated the structure of objects in terms of distinctive phonological features and
designed a similarity measure which operates on these objects. The similarity mea-
sure, together with the set of object representations automatically derived from
speech, comprises a symbolic metric space. The quality of the proposed similarity
measure was evaluated on dataset reduction and phone classification tasks involving
the TIMIT corpus of read speech (Garofolo et al., 1993). To this end, we utilised
several clustering and classification algorithms previously reported in the structural
pattern recognition literature. In addition, we proposed a new initialisation crite-
rion for symbolic clustering. Using this novel criterion, the system performed as
well as simple statistical models (monophone HMMs) on the same task.

Next, we explored the transition from the above symbolic space to the corre-
sponding similarity-based pseudo-Euclidean vector space representation. The pri-
mary motivation behind this transition was to construct an equivalent (similarity-
preserving) representation in a space where efficient visualisation, classification and
learning machinery is available. Several procedures for the construction of isometric
vector space representations using pseudo-Euclidean embeddings were investigated.
We conducted several classification experiments using both simple (k nearest neigh-
bours) and non-trivial vector space classifiers (neural networks and support vector
machines). We introduced a novel step in the algorithm for dimensionality re-
duction of the isometric embedding which, in some cases, resulted in improved
classification performance. In general, the results support the hypothesis that clas-
sifiers constructed on similarity-based vector space representations perform as well
(or better) than classifiers in the original symbolic space on both well-separable
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small (three classes) and full (39 classes) classification tasks. Furthermore, this is
an indication that, from the point of view of the similarity measure, no information
is lost in the transition from symbolic to vector space representation.

We then explored the learning of class representations in the original sym-
bolic space using the ETS0 model. The main motivation behind this stage of the
thesis was to propose the procedure for the discovery of linguistically meaning-
ful structural makeup of the phonemic classes at hand. To this end, we utilised
the previously reported ETS0 algorithms which involve learning of a class-specific
similarity measure. This measure is induced by non-trivial class-specific structural
features discovered by the algorithm. Training and classification experiments were
conducted on both small and full tasks. We found that the ETS0 training proce-
dure discovers linguistically interesting class descriptions. We also demonstrated
that for the small task the new class-specific similarity measures often result in
improved classification performance in comparison with the original symbolic and
vector space algorithms. On a full task, however, we demonstrated a degradation
in classification performance of the discovered similarity measure, which was most
likely due to violation of metric axioms.

Thus, we achieved the first research objective of this thesis, stated in Section 1.4
(p. 32) — to develop a linguistically well-motivated structural representation for
phonemic objects and classes and experimentally evaluate it. The main conclusion
drawn from the first part of this thesis is that the similarity measure plays an
absolutely crucial role in all of the above developments. The careful selection of
features and objects for structural representation is important. Together with a
good similarity measure, which accurately reflects the morphology of the domain,
one can use two general frameworks for representation: a similarity-based vector
space representation and ETS0. Both frameworks stress the importance of the
similarity measure. In the first case, the representation is constructed solely on
the basis of similarities. The similarity measure provides a mathematical structure
for the resulting vector space. In the second case, the discovery of the structural
make-up of classes at hand amounts to the discovery of a class-specific metric, the
learning process being guided primarily by the evolving similarity measure. In this
case, the similarity measure provides the missing link between the representation
of objects and the representation of classes. Therefore we believe that any future
approaches to structural representation of spoken language should focus on the
design of accurate similarity measures. As we hope to have demonstrated in this
part of the thesis, the existence of general frameworks for representation, both
structural and numeric, does not necessarily guarantee interesting discoveries if the
metric is not designed well. Another important conclusion we drew in this part
of the thesis is that the similarity-based and ETS0 approaches are not mutually
exclusive. Each approach possesses important features lacking in the other (ETS0

provides us with structural class descriptions, while similarity-based vector-space
representation provides us with powerful visualisation, classification and learning
techniques). Therefore, we believe that any metric-based structural representation
should employ both techniques for modelling.

7.1.2. Formal Approach. The recent versions of the ETS model introduced
a novel formal language that explicitly addresses the issue of object and class rep-
resentation. It does this by providing a uniform set-theoretic framework which
incorporates the formal machinery for linking these concepts. An important fea-
ture of the formalism is its event-based (or process-based, in the last variation)
philosophy. This allows one to structurally express the dynamic nature of speech
production and perception processes in a single mathematical language. Initial
steps in this direction have been undertaken in the second part of this thesis.
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We first adopted a production-based, articulatory, view of spoken language and
proposed a novel ETS2 representation based on speech production principles. The
representation is primarily motivated by the combinatorial view of speech advo-
cated by the theory of articulatory phonology. We described the basic units of
ETS2 representation — the articulatory gestures — and presented a conceptually
simple pre-processing algorithm for the automatic acquisition of these units from
the articulatory data. We developed the methodology for evaluating the quality
of these units on a standard corpus of articulatory recordings. We showed that
the basic units of articulatory representation can be recovered from articulatory
measurements with a reasonably low error rate. Next, we introduced the entire
sensory-level representation based on the articulatory gestures and described sev-
eral representation-specific assumptions which allowed us to construct a procedure
for evaluating the structural class descriptions. Based on the observations of ar-
ticulatory structures automatically recovered from the data and on the linguistic
evidence, we postulated the class structure of several phonemic sounds. The qual-
ity of these class structures was experimentally verified using a structural matching
algorithm developed for this purpose. Classification results support the hypothesis
that the articulatory class descriptions are important and beneficial for the iden-
tification of phonemes. Thus, we have achieved the second research objective of
this thesis stated in Section 1.4 — to design and experimentally evaluate formal
representation of speech based on articulatory principles.

We next focused on the issues involved in a formal approach to auditory rep-
resentation of spoken language. This coincided with the development of the latest
ETS4 version of the formalism. We provided brief reviews of auditory physiology
and computational auditory models, and identified the sensory level of representa-
tion within the auditory periphery. We suggested that this level corresponds to the
lowest stage in auditory neural information processing — the auditory nerve fibres.
We next proposed the basic units of representation that correspond to the action po-
tentials and the associated refractory information propagated by the auditory nerve
fibres to the higher levels in perception hierarchy. We also described the procedure
for the automatic acquisition of the basic units of representation from acoustic data
and construction of the sensory level of ETS4 representation. The acquisition of
units is a two-stage process. The first stage, that can be based on any computational
auditory model, involves conversion of the acoustic stimulus into the estimates of
individual auditory nerve fibre firings. The second stage involves a reasonably sim-
ple post-processing step which we developed in order to convert the output of the
first stage into context-dependent structural atoms of representation. Having con-
structed the sensory level of representation, we then described the major inductive
structures corresponding to that level and provided their auditory-physiological in-
terpretation. Finally, we described the formal mechanism of ascending levels within
this representation and offered a tentative interpretation of the higher level classes.
Therefore, we believe that we have achieved the third research objective of this
thesis stated in Section 1.4 — to investigate a formal auditory-based approach to
speech representation.

Perhaps the most important lesson learnt from the applications described in
the second part of this thesis is the recognition of importance of the concept of
representation. At the beginning of this thesis, we mentioned that two funda-
mental stages in pattern recognition consist of representation and generalisation
(Section 1.1.1). Representations of articulatory and auditory processes were stud-
ied within a framework in which the concept of an object/process is, for the first
time, formally related to the concept of a class. Unlike the “conventional” approach
pursued in the first part of this thesis, the formal approach allows one to evaluate
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the quality of object/process representation at a very early stage in the design of a
speech representation framework. This is because, by choosing the atomic units of
sensory level representation, it is possible, at this early stage, to use the language of
ETS for construction of simple class representations. The better the sensory level
units reflect important information present in the data, the better the quality of the
resulting class representations. We have shown that it is possible to construct intu-
itively interesting sensory level representations directly from the articulatory and
acoustic data using straightforward pre-processing techniques. The atomic units of
representations thus extracted, namely the articulatory gestures and the events in
the afferent nerve fibres, are simple. At the same time, we have shown that these
units describe important features of the data at hand. Within the formal language
of ETS, these units combine together to form non-trivial structures and structural
class representations that are linguistically interesting from the articulatory and
auditory points of view.

7.2. Contributions of this Thesis

The key contributions of this work are briefly listed below:
(1) Design of a structural pattern recognition system based on linguistic prin-

ciples (Chapter 2);
(2) Clarification of the relationship between phonemic object and class rep-

resentation via the similarity measure, experimentally achieved using the
dissimilarity-based (Chapter 3) and ETS0 (Chapter 4) frameworks; au-
tomatic acquisition of structural make-up of phonemic classes using the
ETS0 framework; application of dissimilarity-based and ETS0 frameworks
to speech representaton and classification;

(3) Development of a structural approach to articulatory representation of
spoken language within the ETS2 formalism; design, automatic acquisition
and evaluation of basic units of articulatory analysis; formal clarification of
the nature of non-trivial articulatory structures, and articulatory classes
in particular; the first known attempt to tackle a pattern recognition
problem with formal versions of ETS (Chapter 5);

(4) Presentation of initial ideas about the development of the first formal
structural model of speech perception within the ETS4 formalism; design
and automatic acquisition of basic units of representation based on the
principles of auditory physiology; initial interpretation of the emergence
of simple linguistic classes within the framework (Chapter 6).

7.3. Open Issues

The summary provided in each chapter of this thesis briefly lists the problematic
issues and potential improvements. Some of these issues are purely “technical” and
can be reasonably well resolved by either modifying the involved algorithms or by
employing alternative techniques developed by others. Other issues point at more
fundamental problems, some of which are reviewed below.

7.3.1. Topological Approach. The approach taken in Chapters 2–4 was to
work with distinctive phonological features as the basic units of structural repre-
sentation. While, from a linguistic point of view, this choice appears to be well-
founded, it is not clear whether this is a good choice from the point of view of
acoustic modelling stage of speech recognition. The reason for this doubt is simple.
Distinctive phonological features are too abstract to be associated with the signal
directly. All of the distinctive phonological features have acoustic correlates. How-
ever, establishing these correlates automatically without recourse to some nonlinear
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mapping is difficult. Therefore, the pre-processor that we used for extracting struc-
tural atoms of representation makes use of the data produced by the non-trivial
model employing recurrent neural networks (see Section 2.3.2 on p. 41) (symbolic
atoms of structural representation are the quantised target values of distinctive
feature-detecting neural networks). This model was used in (King and Taylor,
2000; King et al., 2000; Wester, 2003) to extract distinctive feature estimates from
speech. Thus, there is an intermediate stage between the acoustic signal and the
structural pattern recognition framework. This intermediate stage is in itself a pat-
tern recognition system that needs to be trained (in a supervised mode) in order
to provide accurate estimates. One of the shortcomings of this approach is that
the intermediate stage may introduce errors and inconsistencies into the structural
representation, degrading its classification performance.

While the representation of objects (phones) within the structural framework is
linguistically interesting, there are still several important issues which were not ad-
dressed. The phones are represented by objects called phonological templates. Each
phonological template has knowledge of its own speech frames, but lacks any knowl-
edge about the context, which in its simplest form is defined as the preceding phone
(see Section 2.3.4 on p. 43). Each template consists of several strings (streams).
This particular template structure prevents us from introducing any form of struc-
tural dependencies between the streams, apart from numerical ones. Modifying
the object structure to account for both the contextual variation and inter-stream
structural dependencies will result in a much more complicated (graph-like) struc-
ture. This, in turn, would require re-working of all the symbolic algorithms which
are not purely based on the similarity measure, the template-based ETS0 learning
algorithm in particular. In addition, it is not clear how to structurally capture pos-
sible numeric correlations between various multi-valued features potentially present
in the data.

In the experiments conducted in the first part of the thesis, we employed one of
the most widely-used database of read speech — the TIMIT corpus. In statistical
speech recognition, this corpus is often considered to be small. The spontaneous
speech databases routinely used by large vocabulary continuous speech recogni-
tion (LVCSR) systems are more often than not considerably bigger. We discovered
that even a reasonably small (in statistical speech recognition terms) corpus, such
as TIMIT, poses several problems for the structural approach to modelling. The
most problematic issue that we encountered is the issue of database pruning for
construction of efficient similarity-based vector space representations. Initially, we
constructed 124,962 symbolic object representations that correspond to a 39-class
training portion of TIMIT. On average, this corresponds to 3,204 objects per class.
In Chapter 2, we used symbolic clustering algorithms to reduce the size of this
set. However, we also saw that the vector space embedding of the symbolic space
is analytically more developed and, in particular, provides better developed clus-
tering techniques. In fact, if one was able to construct a vector space embedding
of 124,962 symbolic objects, no symbolic-space clustering would be needed at all
because the structure of the vector space would allow for more computationally ef-
ficient storage and generalisation procedures. Unfortunately, it is computationally
intractable to construct an embedding of the entire training set because it is too
large. The alternative which we followed was to reduce the size of the training set
in the symbolic, rather than vector, space and only then construct a vector space
embedding of the reduced training set. Thus, we were not able to resolve the issue
of constructing pseudo-Euclidean space embeddings of large symbolic sets. We still
have not found a feasible solution, although it is clear that such a solution will
involve an incremental embedding.
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Another issue is the reliability of the similarity measure. Is it possible to im-
prove the performance of the system by using an alternative similarity measure
which better reflects the structure of the objects? The answer to this question is
affirmative. What is unclear is how to incorporate this measure into the ETS0

learning process without breaking the optimisation. The Levenshtein-like form of
the similarity measure which we used in the first part of this thesis allowed for
a reasonably straightforward extension to a block-based edit distance used by the
ETS0 learning algorithm. The resulting distance, however, is not a metric. Worry-
ingly enough (but hardly surprisingly), the semimetric or pseudo-metric properties
of the similarity measure may affect the quality of the learning stage and result in
the discovery of class descriptions which are not discriminating enough. We were
not able to fully resolve this issue.

7.3.2. Formal Approach. In Section 1.3.4 on p. 28 we suggested an informal
way of thinking about the speech communication process based on the multi-level
ETS representation “tower”. The receiver of the linguistic message reassembles
it from acoustics by ascending the levels in a multi-level representation, possibly
updating and growing it. Ascension to a new level is made possible due to detection,
at each level of representation, of important perceptual features present in the
stimulus. Articulation is a reverse process which can be seen as the process of
“collapsing” the multi-level representation into a compact analog acoustic encoding.

Because we are primarily interested in representations for speech recognition,
the question that may be asked is: to what extent does the purely articulatory
representation of Chapter 5 contribute to our understanding of perceptual repre-
sentations. If we adopt the above view of the speech communication process, it
would appear that the articulatory approach does not quite fit our philosophy. At
present, we do not have sufficient knowledge about the extent to which articulatory
information is utilised during the decoding of the acoustic message. Hence, intu-
itively at least, an articulatory approach appears to be a very indirect way to look
at perceptual mechanisms. To a certain extent the latter observation is in disagree-
ment with the motor theory of speech perception (Liberman and Mattingly, 1985).
We think that the pure auditory approach from Chapter 6 is more suitable for
modelling the perceptual mechanisms. At present, however, we decided not to stop
work on the articulatory representation but to continue developing it, because it
may indeed provide several important clues which may not otherwise be discovered
by an auditory representation.

An additional issue with the articulatory representation is that the very nature
of the basic units of representation does not allow us to adopt a uniform approach to
data: detection of each group of gestures requires the pre-processor to incorporate
specific a priori knowledge about each type of articulator. In other words, each
gesture requires the pre-processor to incorporate knowledge about the number of
articulators involved in that gesture, measurement-specific detection components
(e.g. EPG and laryngeal event detectors) and so on. Events from all these sources
are incorporated into a single sensory level of representation. It is still not clear
whether this task has been accomplished in a satisfactory manner. For instance,
at present we are not aware of any structurally elegant ways of incorporating the
events from articulatory and acoustic streams in a single level of representation.
This would pose problems when we introduce additional acoustic events into the
representation — at present, only the voicing events come from the acoustic stream
of measurements. In addition, the articulatory representation is corpus-specific. It
is very difficult to switch to another articulatory corpus which lacks some of the
measurement sources we are currently using. In contrast, the auditory representa-
tion presents a more uniform view of the data, primarily because the representation
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is constructed from a single source of measurements — an acoustic waveform. An
additional important practical advantage of the auditory approach is that the acous-
tic data is available in larger quantities and is easier to acquire than its articulatory
counterpart.

7.4. Future Work

In this section we outline some of the primary directions for future research.

7.4.1. Articulatory Representation. First of all, the articulatory repre-
sentation needs to be constructed within the ETS4 formalism. This will primarily
involve reinterpreting the structure and function of the articulatory gestures within
ETS4. At present, it appears that very few changes are needed: a sensory level of
the ETS4 representation will be similar to our present ETS2 interpretation.

The overall list of potential improvements which can be introduced into the ar-
ticulatory representation has been provided in Section 5.5. The primary direction of
research will involve the development of a more sophisticated pre-processor for the
acquisition of articulatory gestures. Better modelling of the physiological structures
involved in the process of articulation will improve the quality of the sensory level
of representation. The aim is to design a system which is as detailed and accurate
as the pre-processing front-end used by the auditory representation. At present, the
pre-processor makes minimal use of geometry of the articulators and surrounding
structures. Modelling of these structures is known to be beneficial to computa-
tional physiology (Engwall, 2003, 2004) and articulatory phonology (Jung, 1993;
Jung et al., 1996). An alternative articulatory corpus containing more articulatory
measurement sources may need to be considered. We would be interested in obtain-
ing accurate estimates of the gestures involved in production of vowel sounds. In
particular, these will involve estimates of various tongue and labial configurations,
which give important articulatory clues to the classification of vowels.

7.4.2. Generalisation in ETS4. As was mentioned in Section 6.5, the most
crucial direction of research will involve the development of ETS4 generalisation
algorithms. The reason why generalisation was not considered in the second part
of this thesis is because we decided to focus on the representational issues first. It is
important to mention that this choice is in line with the philosophy of the formalism.
During the design of a particular representation, in ETS the emphasis shifts from
generalisation to representation. The set of generalisation algorithms are supposed
to be part of the formal language (Goldfarb, 2004). Once the formal language
is “expressive” enough in terms of interesting representations it can support, it
becomes possible to focus on development of generalisation algorithms within it.

Several generalisation algorithms have been developed over the last five years
for the formal versions of the ETS formalism. Some initial work in this direction
(in the ETS1 context) was conducted by Goldfarb and Golubitsky (2001) and Gol-
ubitsky (2002), and also mentioned by Korkin (2003) and Golubitsky (2004a) in
their theses. In these papers, a stochastic generative model was developed and re-
fined. With the appearance of the ETS2 formalism, an entirely different approach
to learning was adopted. The details of the proposed generalisation process can
be found in (Goldfarb et al., 2004, Part III). Although this generalisation process
was omitted from discussion of the articulatory representation in Chapter 5, apart
from being briefly mentioned in Section 5.2.6 on p. 135, we nevertheless experi-
mented with the implementation of this algorithm to see whether the postulated
class structure actually corresponds to the structure discovered by the learning al-
gorithm. The learning algorithm indeed discovers interesting transformations and
class descriptions on multiple levels. However, we believe that several assumptions
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made during its design make it somewhat impractical for speech recognition (these
assumptions, such as the purely unsupervised mode of operation, were outlined in
Section 5.5).

As was mentioned in (Goldfarb et al., 2005a, Section 9), learning within ETS4

can be very informally reduced to the search for reasonably simple structural reg-
ularities — generators and regular processes. This, in turn, will allow detection of
the transformations and ascension to new levels of representation. As mentioned
in Section 6.5, the introduction of a generalisation component into the ETS4 would
greatly facilitate experimentation with auditory representations. This is because,
unlike the articulatory representation, the sensory level of the auditory represen-
tation contains considerably more spatio-temporal detail. In our experiments with
the articulatory representation, syllable-like classes appeared on the fourth or fifth
level of representation. In the auditory representation, we expect such classes to
appear at a much later stage. This partly explains why we have not provided any
concrete postulates for the auditory class structures.

Once the generalisation mechanism is in place, we will be in a position to con-
duct a rigorous analysis of the classes emerging on the higher levels of representation
and attempt to identify their linguistic correlates. For instance, having constructed
a multi-level representation of an utterance, it would be interesting to see whether
we can locate at higher levels the auditory features which “encode” syllabic or lexical
units.

7.4.3. Speech Recognition Problem Revisited. An important direction
for future research will involve work on a generalisation mechanism that could be
used in a speech recognition setting. First, a supervised learning algorithm will
need to be developed. Given a set of training examples belonging to some class,
the goal of this stage is to discover the class representation. This problem is highly
non-trivial. Ideally, we would like exactly one class (primal class, in ETS4 terms)
to emerge on the highest level of representation. In addition, each class should have
the same number of pre-specified levels in its representation. This is because during
the recognition stage, all the training set classes should ideally emerge on the same
level. Otherwise, producing a transcription would be difficult because some of the
classes may be found on different levels.

An additional issue involves the introduction of class-likelihoods into the model,
which would allow multiple hypotheses to be produced during the recognition stage.
This, in turn, will allow us to introduce a decoding component into the recogniser.
The decoding component may be based on conventional principles and also allow
the integration of a language model. At present, this seems to be a reasonable way
of introducing a priori linguistic knowledge into the framework.

7.5. Concluding Remark

As noted by Deller et al. (1993), the observation made by James Flanagan in
1976 is a largely accurate reflection of the modern state of the field (Deller et al.,
1993, p. 604):

“The problem of speech recognition has not been solved, primarily
because the speech communication process is a subtle one. Many of
its fundamentals are not very well understood. For example, while
most researchers recognise that a short-time frequency spectrum
of speech bears important information, the human ear and brain
are not a laboratory spectrum analyser. We do not completely
understand the inner ear, and what happens beyond an auditory
nerve is almost a total mystery.”
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We believe that the formal study of representations of spoken language and the
development of generalisation algorithms within these representations will eventu-
ally contribute to our understanding of the speech communication process. In this
thesis we hope to have made a small, but important, step in this direction.





APPENDIX A

Cochlear Neurobiology: An Overview

In this section a brief overview of a cochlear neurobiology is presented. The
gross anatomy of an auditory system is introduced in Section A.1. The physiological
structure of the cochlea is described in Section A.2. Cochlear biomechanics and
transduction mechanisms are briefly presented in Section A.3. This concise overview
is primarily based on the excellent overviews by Ashmore (1994, 2002); Buser and
Imbert (1992); Dallos et al. (1996); Gelfand (1990); Hawkings et al. (1996); Robles
and Ruggero (2001)

A.1. Auditory System at a Glance

The auditory periphery of most terrestrial vertebrates consists of three closely
connected components: outer, middle and inner ears. The primary function of outer
and middle ears is to gather sound energy and conduct it to the inner ear (Rosowski,
1996). The inner ear provides the peripheral structure for the auditory perception
mechanism responsible for the transduction of the sound pressure into action po-
tentials in auditory nerve fibres leading to the auditory cortex of the brain.

The outer ear includes the visible pinna (flap), the funnel-like concha, and the
tube-like external auditory canal. Scattering and diffraction of sound by the head,
body and torso also contribute to outer-ear function. The outer ear plays the role of
an acoustic antenna: the pinna together with the head diffracts and focuses sound
waves, the concha and the ear canal act as a resonator. The ear canal leads inward
from the bottom of the pinna and conducts the vibrations to the tympanic cavity
of the middle ear (Gelfand, 1990; Rosowski, 1996).

The middle ear incorporates the tympanic membrane (ear-drum), at the me-
dial end of the external auditory canal, the middle-ear air spaces, the ossicles (the
smallest bones in the body, which in mammals include the malleus [hammer], incus
[anvil] and stapes [stirrup]) and the Eustachian tube, which aerates the middle-ear
air spaces and equalises middle-ear static pressure on both sides of the tympanic
membrane to that of the atmosphere. The ossicles are supported by various liga-
ments. The ligament which is the most relevant to this overview, holds the stapes
footplate in the membrane-covered oval window. The role of the ossicles is to
conduct the sound energy impinging upon the tympanic membrane to the inner
ear (Gelfand, 1990; Robles and Ruggero, 2001).

The inner ear is connected to the middle ear by the oval and round cochlear
windows. The inner ear structures are contained within a system of fluid filled
spaces and canals, called the bony labyrinth, in the porous portion of the tempo-
ral bone (otic capsule). These spaces and canals can be grossly subdivided into
three intercommunicating sections: the vestibule, the cochlea, and the semicircular
canals (Buser and Imbert, 1992; Gelfand, 1990; Rosowski, 1996; Slepecky, 1996).
In the remaining sections, the emphasis is on the structures of the inner ear, more
specifically — the cochlea.

205
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Figure A.1: Cross section of a whole cochlea. The scala vestibuli arrow points
from the oval window, while the scala tympani arrow points to the round window
(drawing by Stéphan Blatrix reproduced by permission from Pujol et al., 1999–
2004):

1 - Cochlear duct 4 - Spiral ganglion
2 - Scala vestibuli 5 - Auditory nerve fibres
3 - Scala tympani

A.2. Cochlear Structure

A.2.1. Gross Anatomy. The bony labyrinth, encapsulating the inner ear,
includes the otic capsule (mentioned in the previous section) as the external bound-
ary of the cochlea, and the modiolus, which is a bony tube that forms the central
axis of the cochlea (Slepecky, 1996). The interior of the snail-like bony labyrinth,
which spirals around modiolus from base to apex (in humans, the number of turns
is between 2.2 to 2.9, according to Buser and Imbert (1992)), is partitioned into
three spaces (scalae). At the base of the cochlea, two membrane-covered windows
open into the middle ear: the oval window in scala vestibuli, to which the footplate
of the stapes (being the innermost of the three middle ear ossicles) is attached,
and the round window in scala tympani. Between scala vestibuli and scala tympani
lies scala media (also known as cochlear duct). Scala media ends near the apex of
the cochlea. This allows scala vestibuli and scale tympani to connect at the apical
end by a narrow opening, called helicotrema. The latter connection between the
two scalae allows them to communicate by equalising the static pressures between
them. The cross section of a cochlea, encased in a bony labyrinth with the three
scalae identified as structures (1), (2) and (3), is shown in Figure A.1.

Afferent and efferent auditory nerve fibres leading to the central nervous system
enter the cochlea from the modiolus through a spiralling bony shelf, called the spiral
lamina. Afferent nerves are those that carry impulses to the central nervous system
— the sensory nerves. Efferent nerves are those that carry impulses from the central
nervous system — the motor nerves. The cell bodies of primary afferent neurons are
collected at junction of spiral lamina and modiolus, forming a spiral ganglion. Spiral
ganglion (4) and auditory nerves in a spiral lamina (5) are identified in Figure A.1.



A.2. COCHLEAR STRUCTURE 207

Figure A.2: Cross section of one single turn of the cochlea (drawing by Stéphan
Blatrix reproduced by permission from Pujol et al., 1999–2004):

1 - Cochlear duct 6 - Tectorial membrane
2 - Scala vestibuli 7 - Stria Vascularis
3 - Scala tympani 8 - Auditory nerve fibres
4 - Reissner’s membrane 9 - Spiral lamina
5 - Basilar membrane

Figure A.2 shows one single turn of a cochlea, where other important cochlear
structures are identified. The upper space, scala vestibuli (2), is separated from
scala media (1) by Reissner’s membrane (4). The lower space, scala tympani (3), is
separated from scala media by parts of the spiral lamina (9) and basilar membrane
(5). As was mentioned above, scala tympani and scala vestibuli connect at the
apical end via the helicotrema, where scala media ends. Overall, the cochlear duct
is bounded by and including Reissner’s membrane, the basilar membrane, and the
stria vascularis (7), which is a multi-layered structure forming the lateral wall
of cochlea. The scala vestibuli and scala tympani are filled with a high-sodium
solution called perilymph. The cochlear duct, between the latter two scalae, is
filled with a high-potassium solution called endolymph. The endolymph has an
electric (endolymphatic) potential which is 80–90mV more positive than perilymph.
This gradient is believed to be maintained by the specialised cells residing in stria
vascularis (Dallos, 1996). Additional structure located in the cochlear duct, called
tectorial membrane (6), protrudes from the spiral lamina.

A.2.2. Organ of Corti. The organ of Corti, shown in Figure A.3, rests on
the basilar membrane within the cochlear duct. It runs along the full length of the
basilar membrane (4) and thus can be seen as spiralling together with it. The organ
of Corti comprises the receptor cells (inner (1) and outer (2) hair cells), various
supporting and accessory cells (Deiter’s (7) and Hensen’s (9) cells) and specialised
cells known as the pillar cells. The latter delimit a particular space called the
tunnel of Corti (Buser and Imbert, 1992; Slepecky, 1996), which separates the
inner hair cells from the outer hair cells. In general, although the diameter of the
bony labyrinth decreases from base to apex, most of the structures in scala media
display a longitudinal increase in size from the base to apex (Slepecky, 1996). The
sizes of the receptor cells in the apex are larger than those in the base. Similarly,
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Figure A.3: Organ of Corti (drawing by Stéphan Blatrix reproduced by permission
from Pujol et al., 1999–2004):

1 - Inner hair cell 6 - Tectorial membrane
2 - Outer hair cells 7 - Deiters’ cells
3 - Tunnel of Corti 8 - Space of Nuel
4 - Basilar membrane 9 - Hensen’s cells
5 - Habenula perforata 10 - Inner spiral sulc

the basilar membrane is wider in the apex and tectorial membrane has a bigger
mass.

Perhaps the most important (functionally) components of the organ of Corti
are the receptor cells, which we consider next. Although the receptor cells differ in
size and function, they share two properties. First, all of the receptor cells have the
bundles of stereocilia protruding from the apical surface of the cell, hence these cells
are usually known as hair cells (Ashmore, 1994). In addition, since the cells are
receptory in nature, synaptic specialisations at the basal end of any hair cell mani-
fest interactions with the terminals of the auditory nerve fibres. As was mentioned
above, there are two separate populations of ciliated receptor cells, the outer hair
cells (OHC) and the inner hair cells (IHC). Moreover, both OHC and IHC seem
to differ in size depending on their location along the basilar membrane. The hair
cells closer to apex have longer stereocilia. According to Buser and Imbert (1992),
in humans there are three to five rows of cylinder-shaped OHC arranged along the
cochlear tunnel. They rest on the supporting Deiter’s cells (see Figure A.3). The
IHC, possessing an ovoid cell body, rest directly in contact with the basilar mem-
brane. They form only one row along the tunnel of Corti. A schematic structure
of inner and outer hair cells is shown in Figure A.4.

The upper (cuticular) surfaces of the entire population of inner and outer hair
cells are bounded by a layer called reticular lamina. Its function is to ensure that
the only parts of the cells allowed to penetrate it and bath in the endolymph are
the hair cells’ stereocilia (Buser and Imbert, 1992).

A.2.3. Tectorial Membrane. The tectorial membrane is a gel-like structure
extending over both the inner and the outer hair cells. As was mentioned earlier, the
relative mass of the tectorial membrane increases along the length of the cochlea
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Figure A.4: Inner (left) and Outer (right) Hair Cells (drawing by Stéphan Blatrix
reproduced by permission from Pujol et al., 1999–2004):

1 - Nucleus 5 - Lateral efferent ending
2 - Stereocilia 6 - Medial efferent ending
3 - Cuticular Plate 7 - Spiral afferent ending
4 - Radial afferent ending

towards the apex. In all the mammalian species, the longest of the three rows
of OHC stereocilia is currently known to be solidly anchored into the tectorial
membrane along the entire length of the cochlea (Hubbard and Mountain, 1996;
Slepecky, 1996). The question of attachment of stereocilia is not so well resolved for
the IHC. At their locations, the TM presents a feature called the band of Hensen on
its internal face, and any coupling between that with the IHC cilia remains doubtful.
The prevailing thought is that the IHC cilia are free from attachment (Buser and
Imbert, 1992; Slepecky, 1996).

A.2.4. Basilar Membrane. The basilar membrane protrudes from the modi-
olus part of the spiral lamina, called spiral limbus, towards an outer wall of the
cochlear compartment called the outer spiral ligament. According to Slepecky
(1996), the basilar membrane is composed of extracellular matrix material, with
fibres embedded in a homogeneous ground substance. Hence, the spiral limbus,
the basilar membrane and the spiral ligament all form a single morphological and
functional unit, where the tension of the fibres can be modulated.

The structure of the basilar membrane contributes to the stiffness and mass of
the cochlear partition. The stiffness of the basilar membrane increases towards the
base from apex, while the mass decreases. In addition, similar to other structures
in scala media that exhibit a longitudinal increase in size from base to apex, the
basilar membrane is narrow and thin at the base, and wide and thick at the apex.

A.2.5. Innervation. The innervation of the receptor cells involves afferent
and efferent nerve fibres. As was mentioned earlier, afferent (sensory) nerves are
those that carry impulses to the central nervous system, while the efferent (motor)
nerves are those that carry impulses from the central nervous system. Afferent in-
nervation comes via peripheral processes of bipolar neurons in the spiral ganglion;
the central processes of the spiral ganglion neurons project to cells in the brain-
stem. The efferent innervation arises from neurons in the brainstem and carries
information from the brain to the cochlea (Tobias, 1972). According Buser and
Imbert (1992), in humans there are roughly 30,000 afferent nerve fibres and from
500 to 2,000 efferent nerve fibres.

Afferent nerve fibres reside in the spiral ganglion. The IHC enjoy about 95%
of the innervation by afferent fibres; each fibre connects with only one cell, but
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Figure A.5: Afferent and efferent innervation of IHC (left) and OHC (right) in the
cochlea (drawing by Stéphan Blatrix reproduced by permission from Pujol et al.,
1999–2004).

each cell is innervated by about 10 (in the apex of the cochlea) to 30 (in the base)
separate afferent fibres, distributed over much of the cell body (Sewell, 1996). Thus,
about 3,000 to 3,500 IHC supply about 28,000 afferent fibres. The trajectory of
these thick myelinated (or type I ) fibres innervating the IHC occurs radially, for
which they are named the inner radial fibres. The OHC receive an innervation
notably different from that of the IHC. Here only 5% of afferent fibres serve the
population of around 20,000 OHC; thus each separate afferent is highly branched
and innervates about between 6 to 100 OHC (Slepecky, 1996). In addition, these
fibres are thin and unmyelinated (type II ). Each cell receives afferents from about
4 separate fibres. Thus, unlike the IHC, the afferent innervation of the OHC is
largely convergent. Its fibres enter the cochlea, cross the tunnel of Corti near the
basilar membrane (as basal tunnel fibres), then when they reach the vicinity of the
OHC, take on a spiral trajectory before innervating the OHC (hence their name —
spiral afferent fibres) (Buser and Imbert, 1992). According to Sewell (1996), little
is known about the auditory function of the afferent innervation of OHC because
the type II fibres are not myelinated, making it difficult to record their activity.

Axons arising from neurons in the superior olivary complex of the brainstem
reach the cochlea (in the olivocochlear bundle) where they synapse mainly at the
base of hair cells. The thin efferent fibres innervating the IHC account for 58%
(according to Buser and Imbert, 1992) of total efferents and form the lateral efferent
system. They take a spiral trajectory and make axodendritic connection with the
individual afferent fibres (as shown on the left-hand side of Figure A.5). The efferent
fibres innervating the OHC are thicker and little fewer in number (42%). They cross
the tunnel of Corti in its upper regions and innervate the OHC axosomatically
(terminating on the receptor body itself), achieving their final connections by an
incident radial trajectory (Slepecky, 1996). These fibres innervating the OHCs
constitute the medial efferent system (shown on the right-hand side of Figure A.5).

A.3. Cochlear Biomechanics

A.3.1. Brief Functional Overview. Environmental sound manifests itself
in pressure waves. Pressure waves reaching the eardrum are transmitted via vi-
brations of the middle ear ossicles to the oval window at the base of the cochlea.
The primary path for sound conduction to the cochlea is to the scala vestibule
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through the coupled motion of the tympanic membrane, ossicles, and stapes foot-
plate (Buser and Imbert, 1992; Rosowski, 1996). In cochlea, these waves create
pressure differences between scala tympani and the other scalae, thus displacing
the basilar membrane in a transverse (i.e. perpendicular to the plane of basilar
membrane) direction. The vibration of basilar membrane causes shearing between
the reticular lamina (upper surface of the organ of Corti) and the tectorial mem-
brane, tilting the stereocilia that protrude from the outer hair cells. The inner hair
cells stereocilia are displaced by friction against the endolymphatic fluid (for a more
detailed account see recent work of Fridberger et al., 2002). Tilting of stereocilia,
in turn, opens and closes mechano-electric transduction (MET) channels located
in their tips. Aided by the endocochlear potential, the modulation of hair cell
conductances produces transduction currents and receptor potentials in the hair
cells (Robles and Ruggero, 2001). Depolarising receptor potentials in inner hair
cells cause generation of action potentials in type I auditory nerve fibres which, as
was mentioned in the previous section, constitute the vast majority (about 95%)
of auditory nerve afferents. The latter action potentials encode the bulk of the
acoustic information processed by the cochlea and are passed on to the auditory
cortex. Finally, the vibrations in the scala tympani are dissipated out of the round
window, into the middle ear.

In the following two sections, we briefly introduce the passive and active me-
chanics, which describes the vibration of cochlear partition (basilar membrane and
the organ of Corti). The study of cochlear mechanics is important because it is
generally agreed by the practitioners in the field that cochlea acts as a mechanical
spectrum analyser over the whole auditory range (Ashmore, 2002; Buser and Im-
bert, 1992; Robles and Ruggero, 2001). More precisely, the cochlear macromechan-
ics is considered. The goal of cochlear macromechanics is to study the mechanical
patterns of vibration of both the basilar membrane and the organ of Corti as a
single body, in relation to the body structures surrounding them. Micromechanics,
dealing with the study of various mechanical interactions within the organ of Corti,
is outside the scope of this review (the interested reader is referred to an overview
by Patuzzi, 1996, and Robles and Ruggero, 2001, Section VI)).

A.3.2. Passive Mechanics. The adjective “passive” refers to the view that
the vibration is powered solely by the incoming sound pressure. The biomechanical
mechanism by which the excitation of the receptors is achieved is dependent, among
other factors, on the elastic and hydrodynamic properties of the cochlear partition.

The first measurements of the vibrational response to sound of the basilar
membrane were carried out by Georg von Békésy (1960) on human cadavers. Békésy
showed that the cochlea performs mapping of frequencies upon longitudinal position
along the basilar membrane. He described a displacement wave that travels on
the basilar membrane from base to apex of the cochlea at speeds which decrease
continually and uniformly. As it propagates, the travelling wave grows in amplitude,
reaches a maximum, and then quickly decays. The location of the maximum, called
characteristic place, is a function of stimulus frequency: high-frequency vibrations
reach a peak near the base of the cochlea, whereas low-frequency waves travel
(almost) all the way to the cochlear apex. Following a characteristic place, there
is a position on a membrane, called the cutoff region, beyond which no vibrations
are observed. Given a certain location on a basilar membrane and measuring the
basilar membrane amplitudes at that location as function of frequencies of various
constant stimuli, the frequency for which the maximum displacement is obtained is
called the characteristic frequency. The travelling wave phenomenon is depicted in
Figure A.6.
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Figure A.6: Passive cochlear mechanics: The travelling wave of Georg von
Békésy (1960) (drawing by Stéphan Blatrix reproduced by permission from Pu-
jol et al., 1999–2004).

A.3.3. Active Mechanics. In passive cochlear mechanics, the shape of the
travelling wave is independent of the stimulus intensity. During the last two
decades, there seems to be an agreement that if the living cochlea was indeed
of the type described by von Békésy, it would at best be exhibiting a “severe sen-
sorineural hearing loss” (Ashmore, 2002). In his pioneering work, Rhode (1971)
demonstrated that basilar membrane vibrations in live organism exhibit a com-
pressive nonlinearity, growing in magnitude as a function of stimulus intensity. His
findings confirmed the observations in psycho-acoustics and neurophysiology (au-
ditory nerve recordings), which previously had led the researchers to expect much
higher degrees of frequency selectivity than those provided by the travelling wave
theory. The compressive nonlinearity phenomenon can be reproduced as follows:
At any given location along the basilar membrane it is possible to measure a ratio of
displacement of basilar membrane and the displacement of the stapes, as a function
of stimulus frequency. The latter is known as a gain function. If measured at a high
sound level, the displacement is similar to that found in von Békésy travelling wave.
As the sound intensity decreases, the gain function becomes increasingly sharper.
The latter phenomenon is sometimes referred to as sharp tuning. Moreover, Rhode
showed that the sharp increase in the gain function can only be demonstrated in the
vicinity of the characteristic frequency. For the frequencies less than an an octave
below the characteristic frequency, the gain function is independent of the stimulus
intensity (Patuzzi, 1996). The latter process by which enhanced basilar membrane
mechanics is generated was termed cochlear amplification (Buser and Imbert, 1992).
According to Ashmore (2002), extensive studies from a variety of animal models
show that the basilar membrane amplitude is enhanced by over 100 times (i.e. by
40 dB) at low sound intensities. It is therefore evident that both passive and active
mechanisms are operative in the selectivity of the ear. A passive mechanism is
paramount for the high-frequencies, while the active nonlinear mechanisms are cru-
cial for low-frequency stimulae (Gelfand, 1990). The above mechanisms are shown
in Figure A.7 for a 10 kHz tone, where sharp tuning is roughly identified at the
location of the characteristic frequency.

In the last two decades, there appeared an overwhelming evidence that the
mechanism of cochlear amplification may be explained by the OHC properties (Buser
and Imbert, 1992; Dallos, 1996; Patuzzi, 1996). In particular, it was discovered that
the bodies of mammalian outer hair cells lengthen (due to hyperpolarisation) and
shorten (due to depolarisation) rapidly in response to intracellular and extracelluar
currents (according to Ashmore et al., 2000, the cells are electrically responsive up
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Figure A.7: Active cochlear mechanics: Given a pure 10 kHz tone stimulus, the
OHC active mechanism shifts by about half an octave the maximum site of vibra-
tion, which is tuned and amplified by about 50 dB. Thus the vibration acting on
IHC stereocilia is quite unlike the passive von Békésy wave (drawing by Stéphan
Blatrix reproduced by permission from Pujol et al., 1999–2004).

to frequencies above 40 kHz). The latter property is often referred to as somatic
electromotility. Somatic electromotility of the outer hair cells acts as a generator
of the forces which enhance the vibration of the basilar membrane via the cells’
stereocilia. More specifically, the OHC electromotile response may be driven by
the receptor potential (hyperpolarisation and depolarisation) in response to acous-
tic stimulus. The changes in OHC length result in a feedback of a cycle-by-cycle
mechanical force upon the basilar and tectorial membranes. The latter force was
shown to cancel the viscous damping due to, in particular, endolymphatic fric-
tion (Ashmore, 2002; Dallos, 1996).

The study of the passive and active cochlear macromechanics is an active field
of research. With the technological improvements in measurement techniques, new
interesting results (e.g. Fridberger et al., 2002, 2004; Mountain et al., 2000; Ren,
2002) have appeared recently.

A.3.4. Cochlear Transduction. Through a series of steps involving mem-
branes, bones, and lymphatic fluids, the sound energy is converted to various forms
of mechanical energy. The mechanical energy must now be converted to electro-
chemical energy, which is used for neural signalling. This process, the generation
of the receptor potential, takes place in the hair cells (Ashmore, 2002).

Earlier in this section it was mentioned that some of the OHC stereocilia are
embedded in the relatively rigid tectorial membrane (Hubbard and Mountain, 1996;
Slepecky, 1996). Consequently, when the travelling wave along the basilar mem-
brane moves the hair cells, there is a shearing force on the stereocilia (the hair
cells move, but their stereocilia are held in place). In the case of IHC, whose stere-
ocilia may not be firmly attached to the tectorial membrane, stereocilia may be
displaced by friction against the endolymphatic fluid. This force is greatest at the
point of maximum deflection (where the travelling wave peaks). The hair cells are
mechano-receptors, which means that they respond to a physical distortion of the
cell’s membrane. In the case of the hair cell, it is the bending of the stereocilia that
generates the receptor potential. The rising phase of the travelling wave causes the
sterocilia to bend in one direction, producing a membrane depolarisation. On the
falling phase, they bend in the opposite direction, leading to a hyperpolarisation.

There appear to be linking filaments, called tip links, between the ends of the
stereocilia. These are further assumed to be attached to proteins, known as gating
units, that can control the status of the membrane ion channels. This configuration
allows a shearing force to directly effect current flow through the ion channel (Ash-
more, 2002; Dallos et al., 1996; Fridberger et al., 2002). A shearing force in one
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direction opens the gating units and increases the channel current. A shearing force
in the opposite direction decreases channel current. The ionic currents, in turn, gen-
erate electric receptor potentials across the hair cell membranes. Consequently, in
inner hair cells, receptor potentials lead (through a sequence of biochemical steps
omitted from this exposition) to the neurotransmitter release of nerve spikes in
the cells of the spiral ganglion (Section A.2) leading to an auditory cortex (Sewell,
1996).
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Engelfriet, J., Fülöp, Z., and Vögler, H. (2002), “Bottom-Up and Top-Down Tree Series
Transformations,” Journal of Automata, Languages and Combinatorics 7(1), 11–70.

Engelking, R. (1989), General Topology, vol. 6 of Sigma Series in Pure Mathematics
(Heldermann Verlag, Berlin), revised ed.

Engwall, O. (2003), “Combining MRI, EMA and EPG measurements in a three-
dimensional tongue model,” Speech Communication 41, 303–329.

Engwall, O. (2004), “From real-time MRI to 3D tongue movements,” in Proc. 8th Interna-
tional Conference on Spoken Language Processing (ICSLP-2004) (Jeju Island, Korea),
vol. II, pp. 1109–1112.

Faundez-Zanuy, M., Bimbot, F., Davy, M., and Mori, R. D. (2004), “Special Issue on Non-
Linear and Non-Conventional Speech Processing,” Speech Communication 42, 479–480,
(call for papers).

Fischer, I. and Zell, A. (2000), “String averages and self-organizing maps for strings,” in
Proc. 2nd ICSC Symposium on Neural Computation, pp. 208–215.

Frankel, J. (Apr. 2003), “Linear dynamic models for automatic speech recognition,” Ph.D.
thesis, University of Edinburgh, UK.

Frankel, J. and King, S. (Sep. 2005), “A Hybrid ANN/DBN Approach to Articulatory
Feature Recognition,” in Proc. 9th European Conference on Speech Communication and
Technology (Eurospeech’2005) (Lisbon, Portugal), pp. 3045–3048.

Fridberger, A., de Monvel, J. B., and Ulfendahl, M. (Nov. 2002), “Internal Shearing
within the Hearing Organ Evoked by Basilar Membrane Motion,” J. Neurosci. 22(22),
9850–9857.

Fridberger, A., de Monvel, J. B., Zheng, J., Hu, N., You, Z., Ren, T., and Nuttall, A.
(Nov. 2004), “Organ of Corti Potentials and the Motion of the Basilar Membrane,” J.
Neurosci. 24(45), 10057–10063.

Fu, K. S. (1982), Syntactic Pattern Recognition and Applications (Prentice-Hall, New
York).
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Pȩkalska, E., Duin, R. P. W., Gunter, S., and Bunke, H. (2004), “On not making dis-
similarities Euclidean,” in Joint IAPR International Workshops on Structural, Syntac-
tic, and Statistical Pattern Recognition, edited by A. Fred, T. Caelli, R. P. W. Duin,
A. Campilho, and D. de Ridder (Springer-Verlag), vol. 3138 of Lecture Notes in Com-
puter Science, pp. 1143–1152.
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von Békésy, G., 209, 210

Wagner, R. A., 46, 100
Watanabe, S., 2, 4, 8, 94
WFST, 21

Young, S., 41

Zwicker, E., 176


