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Abstract. This paper deals with formulation of alternative structural approach to
the speech recognition problem. In this approach, we require both ghesen-
tation and the learning algorithms defined on it to be linguistically meaningful,
which allows the speech recognition system to discover the nature of théslingu
tic classes of speech patterns corresponding to the speech wavefderhsefly
discuss the current formalisms and propose an alternative — a plyicadly in-
spired string-based inductive speech representation, defined witlinadytical
framework specifically designed to address the issues of class aral mypee-
sentation. We also present the results of the phoneme classificationespisr
conducted on the TIMIT corpus of continuous speech.

1 Introduction

One of the issues often neglected during the design of thechpecognition systems
is the issue of whether the learning method can actuallyodéscthe representation
of the class of patterns in question, in other words, to giteim derive the structural

make-up of the patterns which would allow to form some “idedbut the observed
acoustic sequence. The representation is better to bewstlsimply because the use
of vector spaces for modeling does not allow to go beyondtoactson of hyperspaces
which are semantically uninformative. In Sect.2 we prowide formulation of some

of the requirements for such representations based ondh@eeents of the inductive

learning process, put forward in [1]. We require such a regméation to be linguistically

meaningful (interpretable) and provide means of induatiass-description (potentially
being able to generate new objects belonging to the class).

In Sect. 3 we give an outline ofrégid structural representation, given by a pseudo-
metric space, a pair consisting of a set of phonological tatep plus some dissim-
ilarity measure defined on them. We choose to base our asalysthe concept of
distinctive phonological features — the fundamental unit of linguistic analysis. In an-
alytical terms, this concept is necessary for fully and ecoically describing various
phonemic properties of speech. We also assume that thesecfeaan be reliably re-
covered from the acoustics, the assumption supported by tieat encouraging results
reported in speech recognition literature [2—4]. Finallg, view the pattern recognition
models recovering this information from speech as strectigtectors. The procedure
of recognizing unseen patterns in the symbolic space iefiw&r conducted by tem-
plate matching using symbolic metric algorithms [4]. It denreadily verified, that the
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object representation with the set of dissimilarity metiiperating on the objects thus
defined, is not meaningful in artificial intelligence terrgstly, it does not provide us
with any means of class description (normalized edit distdmetween the templates,
for instance, does not furnish us with any understanding®structural makeup of the
particular class of phones in question). Moreover, evereile@arn the optimal weights
for the dissimilarity measures from the training data (thakieving better separation
between the classes), we would still not be able to learrhamygboutwhat makes the
phones structurally different, in other words their nat@bviously, in this context, the
generativity criterion is not satisfied either.

The above limitations of the rigid representation can benielated by casting the
problem into the Evolving Transformation Systems (ETSirfalism, as demonstrated
in Sect. 4, where an inductive speech representation igedtl The transition is ac-
complished by augmenting the rigid representation, desdrabove, with the analytical
machinery necessary for the representation to becometimelyaneaningful. The ETS
formalism has been specifically developed to address thdsrafean inductive learn-
ing process [5, 6]. One the central ideas of this formalisthas the similarity measure
plays the critical role in the definition of a class [6] via tajing the compositional
makeup of objects. We chose not follow too formal an expmsjtbasing the exposition
on [7, 1] (more formal approach is taken in [5]). With helploiktformalism we are able
to discover the inductive string-based structure of variclasses of phonemes.

Experiments conducted on the TIMIT corpus of continuoussheare described
in Sect. 5. We conclude the paper in Sect. 6 and discuss ftggearch work aimed
at improving our representation and rectifying some of thabfems with the existing
approach.

2 Problem Formulation

Given a finite setC* of positive training objects that belong to a (possibly iitéhset

C (concept) to be learned and a finite &t of negative training objects that do not
belong to the concept, find an analytical model that would allow one to construet th
class representation are a consequence, to recognize if the new element belongs to
C. In other words, on the basis of a finite training §6tUC~ such thal*NC~ = 0,
where() is an empty set, the agent must be able to form an “idea” of ildedtive
generalization corresponding to the conoépt

Thestructure of a classis taken to be:

1. Thesymbolic features that make the objects of the same class similactoaher
and/or different from other objects outside the class.
2. Theemergent combinative interrelationships among these features.

The inductive learning process would then involve the discp and encoding of the

structure of the class allowing to abstract (generalize) associate meaning with the
set of objects. In the consequent recognition stagantheed dissimilarity measure is

used to compare a new object to some fixed and reduced seteat®hjomC .
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3 Basic Phonological Object Representation

The lowest (closest to acoustics) level of linguistic hiehécal representation of an
utterance is usually representedgdbywnological distinctive features[8], which are seen
in various phonological theories as the atomic units fullg @conomically describing
the phonemic inventory of any given language. Phonemiaitorg (usually consisting
of a few dozen categories), in turn, is used to describe tlssiply unlimited range of
sounds (phones or segments) encountered in spoken languagehoneme is seen
as minimal contrastive sound unit of a language (two phonesl#ferent phonemes
if they produce phonological contrast), is thus represkatea bundle of simultaneous
atomic units, the sum of properties of which makes a phon@imedistinctive features
used in this work are multi-valued. Each of thé features takes one of the several
possible values — for example, manner of articulation isamapproximant, fricative,
nasal, stop, vowel, silence.

While at present we cannot extract structural informatiomfthe waveforms, there
is a feasible alternative which appears to be a reasonalyléonzoceed. In approach
described in [3], phonological feature recovery from spewaveforms is performed
by time-delaying recurrent neural networks whose activatialues are interpreted as
probabilities of certain features being present in the daumresponding to the current
frame. Since each probability measurement recoveredsmidly has a direct linguistic
interpretation, we assume that this numeric measuremergspmnds to a certain lin-
guistic fact and can thus be represented symbolicallyjriigrthe neural networks into
an effective structural/logical detector. An algorithnsdebed in [4], was used to map
the continuous activation values of the neural networks thé symbols, using simple
quantization overN separate finite alphabets of equal size for each ofhealues
separately.

Once the speech has been transformed into a sequence ofsvettymbols, it
can be seen as a sequence of symbolic matrices, each ideéifyphone in terms of
its distinctive phonological features. A phone realizat{token)p of class (type)P,

p € P, is thus represented as

t tp,+1 tp,+k,—1
f]ip lp 1 flz k:p 1

p flpt tptkp—
12F fs s fo .
ftp tp+1 tp+kp—1

N JN o IN

wheret,, is the start timek, is the duration op in frames andV is the fixed number of
distinctive phonological feature-values which hencéfavill be referred to astreams.
Each of the five features has multiple possible values andehemiltiple corresponding
streams.

This representation has a number of attractive featurasctiunts for duration and
contextual effects. Since the durations of tokens varynevihin a class, templates
of various durations can be used for a given class. Aspeate-afticulation (such as
assimilation, described above) can be accounted for, sivecteatures are represented
explicitly and independently. They can change value anye/dthin a given template.
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Finally, this representation is amenable to human exaipimatince its components
have explicit linguistic interpretations.

Once the structural representation is obtained by meansanitization of neural
network outputs, the next step is to define a dissimilarityasoee between pairs of
templates, or between a template and a token to be classiedssumption made
in [4] is that the streams are entirely independent of ondhemncand all have equal
importance. For a single token, each stream is a string obsisrfrom one of the
corresponding alphabets.

Figure 1 shows a simple representation for the two-clagsi@no consisting of p/
and /b/ consonants, for each of which two realizations are availalbhch template
consists of three independent distinctive feature strdames a three-symbol alphabet)
from the SPE features system defined in [9]. The three symdamishe interpreted as
feature being absent from the makeup of the phéoe)( feature undergoing a transi-
tion (mid) and feature being preseritigh).

Pl P/ P Pl
[Consonanill N (. o
[Sonorant] mid
[Tense] low

Fig. 1. Simple three-stream template representation of phgpgsind /b/ over a three symbol
alphabet

A phonological pseudo-metric space, corresponding to the structural representation,
is a pair( P, D) whereP is a set of all possible templates haviNgstreams and: P x
P — R* is a mapping of the Cartesian produetx P into the set of non-negative real
numbersR™, such thatD = Zf;l d;, whered; can be any chosen string dissimilarity
measure, satisfying the conditions of reflexivity: € P D(z,z) = 0 and symmetry:
Vz,y € P D(z,y) = D(y,x). The setP we consider is obviously finite. The resulting
properties of the pseudo-metric space are essentiallgtdtby the per-stream distance
functionsd;. The same type of distance function is used for all the steeam

Given an example representation in Fig. 1, and defining thighted Levenshtein
distance to act on the templates, we obtain a simple metaiceswhere the sé? con-
sists of four templates and the metric is defined as a lineabowtion of three inde-
pendent per-stream weighted Levenshtein edit distaneagioree different alphabets.

4 Template-Based Evolving Transfor mation System

Template Transformation System A transformation system (TS) is a tripleT =
(P,0, D), whereP is a set of phonological templates defined abave= {o;}7, is

a finite set ofm substitution operations for transforming templates amdtEathought
of as a postulated set of basic, or primitive, object featusatisfying the following
two conditions: all the substitution operations are relsd#sand for every pair of tem-
plates there exists a sequence of operations that transfommtemplate into the other;
D = {A,}.en is a (competingparametric family of distance functions defined onP
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whose parameter sét is the (m — 1)-dimensional unit simplekin R™ given by

and each of the distance functiods, is defined as follows: weight? is assigned to
the operatioro; and A, (px, p1) = min,,co Zle w; where the minimum is taken
over the se of all possible sequences = (ol,..., oi) of operations that transform
templatepy, into templatep;.

For example, the templates introduced in the precedingoseftirnished with the
weighted Levenshtein edit distance define a transformatystem whose set of op-
erations consists of single character substitutions tideke and insertions. The set of
operations is not limited to single letter operations and iceelude strings of length
more than one known dsocks. In such a case, weighted Levenshtein edit distance can
be extended to form a pseudo-metric cal@eheralised Levenshtein Distance [11]. In
this case, the operations on phonological templates aneedkifi exactly the same way
as in the case of a regular weighted Levenshtein distance.

The adjective “competing” is introduced to draw attentiorthe fact that during
learning only a subset of weights is “selected” as non-zero. That is, given a finite set
of learning patterns, some weighting schemeare more appropriate than others for
the learning class discrimination. It is the various ogerstO; that actually “compete”
with each other because of the conditipif” , w* = 1. Thus, all the properties of the
system resulting from this definition can be viewedaergent properties [5].

Given the sets of positiv€ ™ and negative’ ~ training templates from some finite
labeled set, the learning in a transformation system regigceptimization problem of
a following weight functionf : R™ — R, wherem is the number of operations @,

W)
max flw) =max =) @)

the function is restricted tom — 1)-dimensional simplex? given above 3(w) is the

A, -distance betwee@'t andC~ calledinterclass distance, a(w) is the averagel,,-
distance withinC'* called averagéantraclass distance ande is a small positive constant
to prevent the overflow condition when the valuesw¢f) approach zero. Hencgw)
combines in itself both the measure of compactnessof as well as the measure of
separation of”* from C—, following from the simultaneous minimization of function
« and maximization of functiog [5, 7]. The result of the optimization process is the set
of optimal vector weights) = arg max,c; f(w), which generates the most distinctive
metric configuration for the class within the global traoset.

Evolving Metric and I nductive Class Representation When the sef of substitution
operations is not sufficient to achieve a complete separatidoetween the classes,
the structure of the model allows for the modification of tke€(@ which is achieved

1 A concept from functional optimisation not to be confused with the Danimiglex method
for linear programming [10].
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by adding some new transformation operations, each ragiegea composition of

several initial operations, obtaining new set of transfation operations and thus a
new transformation system. Addition of the operations haseffect of changing the
geometry of the distributions of object classes in the gpoading environment: new
shorter transition paths are generated between some paikgexts in the structured
object set. This leads to the central concept of the trangftion system model, the
mathematical structure constructed as a sequence ofdraretfon systems.

Evolving Transformation System (ETS) is a sequence of transformation systems,
defined above, with a common sBtof structured object¥; = (P, O;, D;) in which
each set of operationS;, exceptOy, is obtained from0O,;_; by adding to it one or
several operations that are constructed from the opemaiiof?;_; with the help of a
small fixed setR of composition rules, or operators. Each ruler € R specifies how to
(systematically) construct the corresponding new opamdtiom its operands [5, 6].

In Levenshtein string transformation system, for exampéy operations can be
constructed by concatenating the two left-hand sides ofjihen single-letter opera-
tions, yielding new string operations, i.e. giver— ¢ andb < ¢, the new operation is
ab < e.

From the above definition it follows that at the stage the learning process within
the evolving transformation syste®y C O; C ... C O, and fori € [0,¢ — 1]

Vpr,p1 € P, VAL, € Dy 3A., € Dit1: Ay, (P p1) < Aw, (P, 01)

wherew; € £2;, wy € §2;1; and the dimensions of the simpl€X are smaller than the
dimensions of simpleX?; .1, simplex{2; being a sub-simplex a®;, 1, i.e.£2y C 2, C
... C §2,. Each stage, therefore induces a new topology representec?hy

The optimization process described in the previous settmomes an inner loop
within the general inductive learning process (we are neihgidetails of the learn-
ing algorithm which is a variant of grammatical inferencgaalthm described in [7]
and [11]) which proceeds by constructing a sequence offoamations{O; } in such
a way that, for each sequentially obtained transformatystesn?; = (P, O;, D;), the
inter-distances irC* expressed shrink to zero while the corresponding distaeee b
tweenC* andC~ remains non-zero [7]. In view of the above, following regnirents
of the inductive generalization are set forth in [7, 1]: Tiheuctive class representation
is defined as a triplél = (C't, 0, £2) whereC* c C*, O is the final set of operations
at the end of the learning process, aid_ (2 is a set of optimal weight VectoKsy }
for the final transformation system. The element€0f act as reference patterns for
definining the class. During classification stage, a newtippttern is always compared
with these reference patterns using the set of weighis} from £2. The set of trans-
formationsO is necessary since the concept of a distance can properlgfineed only
in terms of these operations.

Figure 2 shows the non-trivial stream-specific transforomastdiscovered during the
learning process for the two-class phone problem of Figh&s€ operations (the corre-
sponding optimal sets of weighf%/p / andfz/b , are not shown) together with the trivial
one-symbol transformations form the optimal set of tramaftions for each class. To-
gether with the corresponding sets of reference obj(é’?ﬁ and C’fb/ (which for this
problem consist of one template arbitrarily chosen froncibreesponding training set),
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the three-tuples
) = (CF 50y, 2y) and Iy = (CF Oy 2py)

provide inductive class representations for the two ckagsquestion.

[Sonorant]

[Tense]

i [
I
| o |
I [
consonarcr [ [N I E
! i i : high
I [
w1 T O rem -
I
! - ! low
e [N I N BT B [
| o |
I N [ A
| C/er/ = {P}p/} | | (//er/ = {prl/b/} :
I [
I
I [
[Consonantal] ! - _ :
I [ |
I [
I
I [
I
I [
I
I [
I
| [

Fig. 2. Discovered per-stream feature transformatiaig,( andO ,,) corresponding to the rep-
resentation in Fig. 1 and the resulting class representafiops and il ;.

This representation is meaningful, in a sense, that it is tbktapture certain con-
sonantal properties of the phones correspondingfoand /b/. From this toy exam-
ple we, for example, can learn the main difference (withim plostulated three-stream
representation) between the two classes, namely difféedmavior of thetense] fea-
ture. In general, tense sounds are produced with a del&yeaaturate, maximally
distinct gesture that involves considerable musculareffon-tense sounds are pro-
duced rapidly and somewhat indistinctly. In Fig.2, tramsfations corresponding to the
[tense] stream capture the fact that within the available protagygie/p/, this feature
is eitherhigh or in the process of gradually changing around/twh values, whereas
for the prototypes ofb/, the process is opposite. This coincides with the assumpfio
phonological contrast betweegp/ and/b/ phones within the SPE feature system [9].
In addition, the transformations capture certain asyntksoin the process of sound
changes. The first transformation corresponding to[thesonantal] stream for the
class/p/ indicates the change frolow to high which most probably means that one
(or both) of the prototypes were derived from the context inicl they were preceded
by a vowel or consonantal sounds frghma/ or /j/ classes.

5 Experiments

Our experiments used the TIMIT database [12]. This is a cogbtigh-quality record-
ings of read continuous speech from North American speaRérs entire corpus is
reliably transcribed at the word and surface phonetic fevebr details of the feature-
detecting neural networks, please refer to [3]. The stahttaining/test data partition
is kept, with only thesx andsi sentences being used, resulting in 3696 training ut-
terances from 462 different speakers, out of which 100 seetewere held out for
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cross-validation training of neural networks. The enta®t set of 1344 utterances from
168 speakers was used for the classification experiment Nitthe test speakers are in
the training set, and hence all the experiments are openpaadear independent. There
are 39 phone classes.

We quantised the neural network output activations usiegqtiantisation level of
10 and removed the redundant tokens from training and testHee sizes of the sym-
bolic training and test sets thus obtained are 124962 an83fkens, respectively. In
order to obtain the setS™, each training seP was reduced to 5 cluster centroids using
k-medians clustering employing the Levenshtein weightetidistance for similarity
computations and set median algorithm for template seleclihe clustering algorithm
initialisation criteria was duration-based [4].

During the learning stage, for each cld3®sut of the 39 classes, represented by its
training setC'};, we derived its corresponding inductive structiifg by using an algo-
rithm outlined in Sect. 4. We defined the stopping criterianthe optimisation problem
to be\ = f~1(©), wheref (&) is given by (1). The particular value ofwe used was
10~8. During the recognition stage, an efficidaNN AESA search technique [13] was
used to compare each of the 46633 test tokens with the clatstypes by using the
template-based Generalised Levenshtein Distance defirtbe lbespective class induc-
tive structure. The classification accuracy we obtained 31&$, correctly classifying
23783 out of 46633 tokens.

6 Conclusionsand Future Work

In this paper we gave an outline of a linguistically inspistiaictural representation for
speech, an attempt to find an inductively meaningful dedinifor the speech recogni-
tion problem, focusing on a low level phonological repreéatan of speech patterns.
We showed how inductively “rigid” representation can be madpressive with the
introduction ofevolving metric and described the results of the initial experiments
ducted with the highly non-trivial continous speech data.Mlieve that the emphasis
on the class representation of linguistic phenomena wdllifate the development of
the speech recognition field, since the recognition prolarmot be approached ade-
quately without a meaningful representation.

There are several ways of improving the representatiorritbestin this paper. For
example, instead of using extensions of standard strisgébdissimilarity measures,
such as weighted Levenshtein distance, we can introdugeiitically inspired dis-
tance functions along the lines of [14]. The learning altiponis, developed in the gram-
matical inference setting [7, 11], can be further improvedate into the account the
stream-based phonological structure. In addition, sonsélgnonological constraints
can potentially be introduced (stream independence adgamjfor instance, can be
relaxed to account for similar classes of distinctive pHogizal features, place of ar-
ticulation being one of them). An efficient prototype sel@ctalgorithm for reducing
the training set and selecting the templates containinggatively “interesting” features
is also needed. It is expected that the above modificatiohdead to significant im-
provements in the classification accuracy on the TIMIT task.
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