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Abstract

Consonant duration is influenced by a number of linguistic
factors such as the consonant’s identity, within-word position,
stress level of the previous and following vowels, phrasal po-
sition of the word containing the target consonant, its syllabic
position, identity of the previous and following segments. In
our work, consonant duration is predicted from a Bayesian be-
lief network (BN) consisting of discrete nodes for the linguistic
factors and a single continuous node for the consonant’s dura-
tion. Interactions between factors are represented as conditional
dependency arcs in this graphical model. Given the parameters
of the belief network, the duration of each consonant in the test
set is then predicted as the value with the maximum probability.
We compare the results of the belief network model with those
of sums-of-products (SoP) and classification and regression tree
(CART) models using the same data. In terms of RMS error, our
BN model performs better than both CART and SoP models.
In terms of the correlation coefficient, our BN model performs
better than SoP model, and no worse than CART model. In ad-
dition, the Bayesian model reliably predicts consonant duration
in cases of missing or hidden linguistic factors.

1. Introduction
In a concatenative text-to-speech (TTS) system, the duration of
a phone is usually predicted from a database of feature vectors
that each consist of a set of linguistic factors’ values describing
a phone in a particular context. Databases used to train phone
duration models are usually sparse and un-balanced: they cover
only a fraction of all linguistically possible combinations of fea-
ture vectors; different factor combinations occur with unequal
frequencies. However, it has been shown [1], [2] that the prob-
ability of a rare feature vector occurring even in a small sample
of text is quite high. Furthermore, factors affecting phones’ du-
ration interact: a set of two or more factors may amplify or
attenuate the effect of other factors. A robust model for predict-
ing phone duration must generalise well in order to successfully
predict the duration of phones with these rare feature vectors.
Since linguistic factors affecting segment duration interact, we
expect that modelling these factor interactions will give a better
model.

There have been a number of models developed for pre-
dicting a phone’s duration, ranging from rule-based [3] to clas-
sification and regression tree (CART) [4] to sums-of-products
(SoP) models [1], [2]. In the CART model, a phone’s dura-
tion (absolute or z-score) is predicted by finding the data cluster
in the decision tree that matches as many of the feature vector
attributes as possible (in the order specified by the tree). The
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CART model is easy to build, robust to errors in data, but per-
forms poorly when the percent of missing data is too high. In
the SoP model, the log of a phone’s duration is predicted as a
sum of factors’ product terms. The SoP model predicts phone
duration with high accuracy, even in cases of hidden or miss-
ing data. However, this is done at the cost of substantial data
pre-processing. In addition, the number of different sums-of-
products models grows hyper-exponentially with the number of
factors. Therefore, one must use some heuristic search tech-
niques to find the model that fits the data the best.

We model a phone’s duration using probabilistic Bayesian
belief networks (BN) [5], whereby linguistic factors that influ-
ence a phone’s duration are represented as the nodes in a di-
rected acyclic (DAG) graph, and factors’ interactions are mod-
elled by causal relationships among the nodes in the DAG.
The BN model makes robust predictions in cases of missing
or incomplete data, therefore thoroughly addressing data spar-
sity and data imbalance problems. We successfully applied a
Bayesian model for predicting phone duration in our previous
work [6], [7], [8]. We discuss the Bayesian models for predict-
ing phone duration in more detail in [9].

The structure of the paper is as follows. We briefly intro-
duce the theory of Bayesian belief networks in Section 2. We
describe the database used for predicting consonant duration in
Section 3 and define a BN for predicting consonant duration
in Section 4. We describe the training procedure in Section 5
and discuss the results in Section 6. We draw conclusions and
discuss future work in Section 7.

2. Bayesian belief network basics
A Bayesian network for a set of variables
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where + is the size of the network, (*) � � # � is the set of parents
of variable

� # .
For consonant duration prediction we use a special kind of

hybrid (containing discrete and continuous variables) Bayesian
network, namely a Conditional Gaussian (CG) network. We
say that the variables

� #-, U .�/ �10 	�2%2�23	 + of a hybrid BN
have a conditional Gaussian (CG) distribution, if the BN’s con-
tinuous variables follow a multivariate Gaussian distribution



given the values of the discrete variables. For a CG network
with a single continuous variable for a consonant’s duration, the
distribution of that durational variable, D, has a

0
-dimensional

CG distribution, with its PDF being:
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where for each configuration (i.e. instantiation with certain val-
ues) of the discrete parents � ,�� of the duration variable D,� � � � and

� � � � � are the conditional mean and variance of D.

3. Database

Number of consonant feature vectors
Voice Train Test Total

lja �
� 	 ����� � 	�� 0 � � �'	 � � �
rjs

0�� � 	 � � � 0 � 	 ����� 0 � � 	 � � �
erm ��� 	!� ��� � 	"� � � � � 	!� ��#

Table 1: The number of consonant tokens in the train, test sets,
and the total number for the 3 voices: lja, rjs, and erm.

The data were derived from 3 Rhetorical PLC databases: 2
RP English voices rjs (male) and lja (female), and 1 GA English
voice erm (male). The databases consist of a set of utterances,
one set for each voice. The set of utterances was divided into
train (90%) and test (10%) sets. The train and test data were
dumped as a vector of categorical features for each consonant
token, along with the consonant’s duration, using Rhetorical in-
ternal tools. The amount of consonant data for the 3 voices is
shown in Table 1.

4. Bayesian model for consonants
4.1. Linguistic variables chosen

A consonant’s duration is influenced by a number of linguistic
factors such as the consonant’s identity, frontness of the syl-
labic vowel, identity of the previous and following segments, a
consonant’s within-word and syllabic positions, stress level of
the previous and following vowels, phrasal position of the word
containing the target consonant [1]-[3], [10].

Variable # Values Example
manner-voice MV 9 voiced fricative
within-word position Wpos 3 initial
stress S 2 stressed
within-utterance position Utt 3 utterance medial
syllabic position Syl 3 coda
previous segment identity Cpre 3 consonant
following segment identity Cpos 3 silence
frontness of syllabic vowel Front 3 front

Table 2: Linguistic variables chosen for the Bayesian prediction
of consonant duration.

Hence, for our Bayesian model we selected the 8 linguistic
factors shown in Table 2. Consonant identity was encoded as
a compound variable MV that represents manner of production
and voicing distinctive features; it takes on values: voiceless
stops, voiceless affricates, approximants, voiceless fricatives,
nasals, voiced stops, voiced affricates, voiced fricatives and liq-
uids. The within-word position variable Wpos represents the

position of a consonant within a word; it takes on initial, me-
dial, and final values. The stress variable S represents the stress
level of a syllabic vowel, and takes on stressed and unstressed
values. The utterance position variable Utt describes phrasal
position of a word with a target consonant; it takes on initial,
medial, and final values. The syllabic position variable Syl rep-
resents the position of a consonant within a syllable; it takes on
the values onset, coda, and syllabic. The identity of the previ-
ous (following) segment variable(s) Cpre (Cpos) represents the
information about the previous (following) segment in a broad
sense; it takes on 3 values: consonant, vowel, and silence. The
frontness of a syllabic vowel variable Front takes on 3 values:
front, medial, and back. Hence, the “universe” (i.e. the nodes)
of the BN consisted of 9 (including the duration variable D)
variables: U

� �
MV, Wpos, S, Utt, Syl, Cpre, Cpos, Front

	 � � .
4.2. Learning belief network structure

To learn the belief network structure we applied the K2 struc-
ture learning algorithm (see [11] for details). The K2 algorithm
uses a greedy heuristic approach whereby, given a fixed order-
ing of the variables (with parents preceding children), a parent
variable is successively added to the parent set of each variable
in such a way that maximally improves the joint probability of
the training data given the model. Since there are no network
structure learning algorithms for hybrid BNs, we applied the K2
algorithm to a version of the data in which the continuous val-
ues of durations were uniformly discretized. We chose several
levels of discretisation ranging from 2 to 10 bins (i.e. 9 different
versions of the data sets for each of the three voices). We then
applied the K2 algorithm to each set. As a result, we identified
8 different network topologies with which to perform further
experiments using the original, continuously-valued, duration
data. Each network is a representative of a class of networks:
the networks within a class have the same duration variable D
parent set Pa ��� � , being different otherwise (the parent sets of
the linguistic variables within the same class may be different).
If all linguistic variables are observed, all networks within a
class will give the same conditional PDF for D.

Name Pa(D) # params
CBN1 MV, Cpos 27
CBN2 MV, Syl, Front 81
CBN3 MV, Wpos, S, Syl, Cpre, Cpos, Front $�%�&(')$
CBN4 MV, Wpos, S, Utt, Syl, Cpre, Cpos $�%�&(')$
CBN5 MV, Wpos, S, Utt, Syl, Cpre, Cpos, Front *!&�%+*!,�,
CBN6 MV, Wpos, Syl, Cpre, Cpos '-,�.
CBN7 MV, Wpos, Syl, Cpre, Cpos, Front ,�%!*!/('
CBN8 MV, Wpos, Utt, Syl, Cpre, Cpos, Front 0�1�0�*

Table 3: BNs learnt by the K2 algorithm, with consonant dura-
tions being uniformly discretized. The number of the CG pdf
parameters of the D variable is shown in the third column of the
table.

The duration variable D parent sets Pa ��� � for 8 networks
are shown in Table 3. An example BN with the parent set
Pa ��� � � � MV, Wpos, S, Utt, Syl, Cpre, Cpos, Front

�
is shown

in Figure 1.

5. Model training
The goal of the training experiments was to study the perfor-
mance of the networks learnt from the data and to compare this
to baseline CART and SoP models. In addition, we wanted to
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Figure 1: Bayesian network learnt by the K2 al-
gorithm; duration node D parent set Pa ��� � ��

MV, Wpos, S, Utt, Syl, Cpre, Cpos, Front
�
.

find the best (among the 8 belief networks learnt) BN model for
each type of consonant. By best model we mean a network that
predicts consonant duration with the maximum correlation and
the minimum RMS error. We trained all 8 models on each of
the three voices: lja, rjs, erm.

We trained each model by estimating the networks’ param-
eters. We assumed that the discrete variables follow multino-
mial distribution. For the discrete variables we calculated their
parameters as the MAP estimates. The prior values of the dis-
crete (linguistic) variables were estimated as Dirichlet priors
with equivalent sample size of 2. To calculate the MAP esti-
mates, we used the EM algorithm, with the duration variable D
being hidden and the discrete variables being observed.

We assumed the continuous variable for consonant’s dura-
tion D follows a 1-dimensional CG distribution, with probabil-
ity density function defined in Equation 2. We estimated its
parameters � � � � � � � � � � 	��

�
� � ��� as ML estimates: for each in-

stantiation � of the discrete parents ( ) ��� � � � in the train set
we calculated the mean and standard deviation of a consonant’s
duration.

6. Results
6.1. Overall behaviour

To compare the performance of our BN models to CART and
SoP models, we used 2 metrics: test sample correlation coef-
ficient and Root Mean Squared Error (RMS error) in millisec-
onds (ms). After we trained our Bayesian models, we predicted
the duration of each consonant in the test set via Bayesian in-
ference: we calculate the PDF of D given the observed values
of the linguistic variables. The most likely value of D (i.e. the
conditional mean) is chosen as the consonant’s duration. Table
4 shows the correlation and RMS error results for the 8 Bayesian
models as well as SoP and CART. As can be seen from the ta-
ble, for the lja and rjs voices the CBN3 network predicts conso-
nant duration with the maximum test sample correlation (0.84
and 0.80), beating the CART (0.78 and 0.80) and SoP (0.73 and
0.79) models. For the erm voice, the CBN4 network predicts
consonant duration with a maximum correlation of

�'� � � which

Model
Voice

lja rjs erm lja rjs erm
CBN1 0.80 0.77 0.69 3.8 4.4 3.8
CBN2 0.73 0.76 0.67 5.1 5.6 5.1
CBN3 0.84 0.80 0.69 3.5 4.1 3.6
CBN4 0.72 0.74 0.80 4.6 5.1 4.5
CBN5 0.71 0.73 0.74 3.7 4.3 4.5
CBN6 0.80 0.74 0.75 4.6 5.2 4.6
CBN7 0.76 0.73 0.73 4.7 5.3 4.7
CBN8 0.56 0.49 0.75 3.5 4.1 3.7
CART 0.78 0.80 0.82 21 20 24
SoP 0.73 0.79 0.76 25 26 33
SoP-German 0.896
SoP-Dutch 0.77 23.4

Table 4: The correlation and RMS error results by model type
and voice. SoP-German – SoP model for German [13]; SoP-
Dutch – SoP model for Dutch [12].

is higher than that of the SoP (0.76), but smaller than that of the
CART (0.82) models. The best BN models better than the SoP
model for Dutch (0.77) [12] and no worse than the SoP model
for German (0.896) [13]. In terms of the RMS error, all BN
models beat both the SoP and CART models.

6.2. Best network for each consonant type

For each consonant type we chose the best network in terms
of maximum correlation and minimum RMS error. Figure 2
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Figure 2: The correlation between predicted and actual dura-
tions by consonant type and voice. The best (maximum corre-
lation) network for each consonant type is chosen.

shows the correlation results for each consonant type for the 3
voices (lja, rjs and erm). As can be seen from the figure, for
the lja voice, the correlation ranges from 0.31 ( � ��� � ) to 0.84
(for ����� ). There are 5 consonants: � ��� 	 � 	�� 	 + 	 +
	�� for which
the correlations are around or below a value of 0.5. For 37%
of the consonants, the best BN models predict duration with a
correlation greater or equal to 0.75, which is better than the test
set correlation of the the SoP (0.73) model, and no worse than
that of the CART (0.78) model.

For the rjs voice, the correlation ranges from 0.51 ( � ��� � ) to
0.88 ( ��	�� ). There is one consonant � ��� � for which the correla-
tion is 0.51. There are also 3 consonants: � � 	� 	�� � for which
the correlations are around or slightly below 0.6. For 37% of
the consonants the best models predict consonant duration with
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Figure 3: The RMS error by consonant type and voice. The
best (minimum RMS error) network for each consonant type is
chosen.

a correlation greater than 0.75 which is no worse than the test
set correlation of the SoP (0.79) and the CART (0.80) models.

For the erm voice, the correlation ranges from 0.59 ( � � � � )
to 0.90 ( � � � � ). There is just one consonant � � � � for which
the correlation is below 0.6. There are also 6 consonants:
� ��� 	��-	 + 	 +
	 	���	�� � for which the correlation is around or
slightly below 0.7. For 44% of the consonants, the best BN
models predict consonant duration with a correlation around or
above 0.8 value which is better than the SoP (0.79) and no worse
than the CART (0.82) models.

Figure 3 shows the RMS error results for the Bayesian and
SoP models, for each consonant type, for the 3 voices (lja, rjs
and erm). (Since the results for the CART model are of the
same level of magnitude as those for the SoP model, they are
not shown in the figure.) For all voices overall, the belief mod-
els predict consonant duration with RMS errors that are signif-
icantly (e.g. � ��� � � � � � 	 ��� � � � � 0

for rjs voice) smaller than
these of the CART and SoP models.

7. Conclusions and future work
We have used a Bayesian model for predicting consonant dura-
tion using 8 linguistic variables (factors) that are known to influ-
ence consonant duration. We applied the K2 structure learning
algorithm to the discretized duration data and found 8 belief
networks that describe the data the best. We then trained each
model by calculating the networks’ parameters as ML estima-
tors for continuous duration variable D, and MAP estimators for
the discrete variables. To calculate the MAP estimates we used
the EM algorithm. We analysed the performance of each BN
model on the 3 voices: lja, rjs, and erm and compared it to the
SoP and CART models.

On average, the Bayesian models predict consonant dura-
tion with a correlation that is better (0.72-0.84) than that of the
SoP model (0.73-0.76), and no worse than the that of the CART
model (0.78-0.82). In terms of RMS error, our belief networks
(1.5-3.5ms) are better than either the SoP (25-33ms) or CART
(20-24ms) models.

We chose the best model for each consonant type. In terms
of the RMS error, for each of the consonant types, the corre-
sponding best model predicts consonant duration with a RMS
error smaller than that of the SoP and CART models. In terms
of correlation, for at least 37% of the consonants, the best BN
model performs better than either SoP or CART. However, there

are 4 consonants: � ��� 	 � 	��-	 + 	 +
	�� for which these best mod-
els give a correlation that is below 0.5. This can not be ex-
plained by low frequencies of these consonants in the data sets
since the counts are high (e.g. over

0 � 	!��� � ��+ � segments in the
train set for the rjs voice). Still, our best model for ��+ � predicts
duration with a correlation of 0.4. Hence, it may well be that
the chosen best model is not really the best one in terms of the
linguistic variables chosen for the analysis. One possible expla-
nation of such an unsatisfactory performance of the model for
� + is that consonant identity was represented by voice and man-
ner distinctive features which may not be the best descriptor for
this consonant. In future, we may try representing consonants
such as � + � with a place of articulation feature instead. In ad-
dition, we should search for a better model by analysing which
linguistic factors are the strongest predictors of consonant dura-
tion for each consonant type separately.
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