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Abstract

In this paper we examine a method for separating out the vocal-tract
filter response from the voice source characteristic using a large ar-
ticulatory database. The method realises such separation for voiced
speech using an iterative approximation procedure under the as-
sumption that the speech production process is a linear system com-
posed of a voice source and a vocal-tract filter, and that each of the
components is controlled independently by different sets of factors.
Experimental results show that the spectral variation is evidently in-
fluenced by the fundamental frequency or the power of speech, and
that the tendency of the variation may be related closely to speaker
identity. The method enables independent control over the voice
source characteristic in our articulation-to-speech synthesis.

1. Introduction
Kaburagi et al. [1] first reported a technique to synthesise speech
from articulator positions based on the search of a database com-
posed of pairs of articulatory and acoustic data. For elucidating
the speech production mechanism, such an approach is considered
an alternative to acoustically simulated vocal-tract modelling which
has been widely investigated (e.g. [2]). In [1], the capability of
their method for producing intelligible speech is demonstrated by
employing LSP and multipulse excitation; however, speech synthe-
sised by their method has many artefacts and the speech quality is
not sufficiently high.

As a main cause of degradation in speech quality, we point out
that the method searches the articulatory-acoustic database based
only on articulator positions. Clearly, such a search method causes
temporal discontinuities in acoustic parameters if speech has a ten-
dency to change spectrum depending on factors other than the artic-
ulator positions, such as the fundamental frequency (F0) and speech
power. There have actually been many reports, e.g. [3], that varia-
tion in the F0 and power of speech mainly affects the glottal source
signal and consequently influences speech signal. It is therefore
essential for speech synthesis to modulate output speech based on
these factors in addition to the articulatory settings.

We have studied a similar approach to Kaburagi’s for converting
articulation into speech based on an articulatory-acoustic mapping
obtained from an articulatory database [4, 5]. In order to deal with
the above problem, we have been examining a method for separat-
ing out the variation of the source [6]. In our method, the separation
is achieved using an iterative approximation procedure under the
assumption that the speech production process is a linear system
where the voice source and vocal tract are cascaded, and that each
of the components is independently controlled by different sets of
factors.

This paper reports in detail the results of applying the separation
to two different speech corpora, from one female speaker and one
male speaker.
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Figure 1: Speech production model

2. Source-filter separation
2.1. Outline

From the viewpoint of filter design in signal processing, where both
the input and output of a system are observed to find the transfer
function of the system, it is theoretically difficult to estimate the
characteristics of the input (voice source) and system (vocal tract)
simultaneously from the output (speech), which is the only observ-
able signal.

However, variation in the transfer function of one component
can be approximately separated if speech production can be mod-
elled as a linear system composed of cascaded components, as in
figure 1, and the transfer function of each component is controlled
by a set of factors which is uncorrelated with those controlling the
other component. The separation can be achieved by iterative ap-
proximation using a large corpus with the controlling factors of both
components well represented. We accordingly apply the following
assumptions to the source-filter separation:

1. The speech production process is modelled by a linear sys-
tem composed of two cascaded components: voice source
and vocal tract filter.

2. The voice source changes depending only on the F0 and cep-
stral coefficient c0.

3. The vocal-tract filter response changes depending only on
the articulator positions.

2.2. Piecewise constant approximation

The source and filter characteristics are approximated locally by a
constant value. For such a piecewise constant approximation, the
following two types of clustering are applied to the same corpus:

• Based on the articulatory data, all the voiced frames are di-
vided into K clusters (articulatory clusters) C i

h (i = 1, 2, 3,
..., K), so that each of the clusters consists of frames with
similar articulatory positions.

• Based on their F0 and c0 values, all the voiced frames are
divided into L clusters (source clusters) Cj

g (j = 1, 2, 3, ...,
L), so that each of the clusters consists of frames with similar
F0 and c0 values.



LBG clustering [7] is adopted to identify frames with similar values
for a particular controlling factor.

The spectral envelope estimation in this study puts emphasis on
harmonic peaks in the spectrum of voiced speech in the same man-
ner as some methods [8, 9, 10] successful in speech technology. In
addition, the method inhibits an adverse effect of harmonic structure
on the spectral envelope estimation by using the spectra of multiple
speech frames vocalised with similar articulator settings, and con-
sequently is able to estimate very detailed spectral envelopes (see
[5] for details).

2.3. Iterative estimation procedure

The proposed method alternatively discovers the complex cepstra
c
(i)
h and c

(j)
g , which represent the frequency characteristics of vocal

tract and voice source, according to the following iterative proce-
dure. Here we define hk, a harmonic vector of frame k (k = 1, 2, 3,
..., M ), as follows:
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where h
(l)
k represents the natural logarithm of the observed complex

spectrum of the l-th harmonic at frequency f
(l)
k in analysis frame k,

and Nk indicates the number of harmonics in frame k.

Step 1: For each articulatory cluster Ci
h, the cepstrum c

(i)
h is cal-

culated by applying the spectral envelope estimation to the
harmonic vectors {hk|framek ∈ Ci

h}. (the first approxima-
tion)

Step 2: The procedure is terminated if the following E, the sum of
squared approximation errors, converges:

E =

M
∑
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δ
H
k Wkδk (1)

where H denotes Hermite transpose operation and Wk is
a weighting matrix (see [5] for details). The vector δk is
defined as

δk = hk − bk − Bk
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The power offset dk and time delay τk in (2) are obtained
during the spectral envelope estimation [5].

Table 1: Data sets used in the experiments

corpus
number of frames

train test total
fsew0 (female speaker) 78876 8332 87208
msak0 (male speaker) 65859 6807 72666

Step 3: For all the harmonics, the difference between the observed
harmonics hk and the harmonics calculated from c

(i)
h is ob-

tained as follows:

pk = hk − Bkc
(Rh(k))
h .

Thereby the residual pk reflects the variation of the source
characteristic.

Step 4: For each source cluster Cj
g , the cepstrum c

(j)
g is cal-

culated by applying the spectral envelope estimation to
{pk|frame k ∈ Cj

g}.

Step 5: For all the harmonics, the difference between the observed
harmonics hk and the harmonics calculated from c

(j)
g is ob-

tained as follows:

qk = hk − Bkc
(Rg(k))
g .

Step 6: For each articulatory cluster Ci
h, the cepstrum c

(i)
h is

calculated by applying the spectral envelope estimation to
{qk|frame k∈Ci

h}.

Step 7: Return to step 2.

3. Experiments
3.1. Data and procedure

The data used in this study are two speakers from the MOCHA
(Multi-CHannel Articulatory) set of corpora [11]: a female speaker
(fsew0) and a male speaker (msak0). Each of the corpora is com-
posed of 460 TIMIT sentences from a single speaker, and includes
parallel acoustic-articulatory information which was recorded using
a Carstens Electromagnetic Articulograph (EMA) system at Queen
Margaret University College, Edinburgh. The articulatory informa-
tion comprises the positions of the upper and lower lips, lower in-
cisor, tongue tip, tongue blade, tongue dorsum and velum. The sam-
pling rates of the acoustic waveform and articulatory trajectories are
16 kHz and 0.5 kHz respectively.

Voiced sections were first extracted from the corpus and used
to build a set of pairs of harmonic spectra and articulator positions.
We estimated the harmonic spectra from the speech waveform using
the weighted least squares method in [12]. The width and spacing
of the time window (Hanning) were 20 ms and 8 ms respectively.
We downsampled the articulatory information to the same spacing
of 8 ms. Out of the data obtained, we set 10% of the sentences
(46 sentences) aside for testing, and used the remaining 90% (414
sentences) for training. Details of the data sets are given in table 1.

All the voiced frames were divided into 512 articulatory clus-
ters (K = 512) and 128 source clusters (L = 128) using LBG clus-
tering. The order of cepstrum was set to 48 for the vocal tract char-
acteristic, and 32 for the voice source characteristic. These num-
bers were established from the results of preliminary experiments.
Finally, according to the procedure in section 2.3, iterative approx-
imation was performed to find the complex cepstra, c

(i)
h and c

(j)
g ,

for each articulatory and source cluster.
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(b) harmonic phase distortion
Figure 2: Number of iterations vs. harmonic distortion

In order to evaluate estimation accuracy, we introduced two
types of distortions, harmonic power distortion Da and harmonic
phase distortion Dp, defined as

Da =
20

ln 10

√

√

√

√

1

M

M
∑

k=1

δT
RkWkδRk

Dp =

√

√

√

√

1

M

M
∑

k=1

δT
IkWkδIk

where δRk is a vector each of whose elements is the real part of the
corresponding element of δk in equation (1), and δIk is a vector
each of whose elements is the imaginary part of the corresponding
element of δk. Both of the distortions were computed in step 2 of
the procedure in section 2.3.

3.2. Results and discussion

Figure 2(a) shows the relationship between the number of iterations
and harmonic power distortion. Figure 2(b) shows the relationship
between the number of iterations and harmonic phase distortion.
As is evident from these graphs, these distortions decrease as the
process is iterated, for both power and phase.

Shown in figure 3 is the estimated variation in the power spec-
trum of the voice source depending on the c0 value. In this figure,
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(b) male speech corpus: msak0
Figure 3: Variation in the source characteristics depending on c0
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(b) male speech corpus: msak0
Figure 4: Variation in the source characteristics depending on F0
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c0 is expressed using relative power in dB. The female voice has
larger spectral variation than the male voice, and the lowering of
c0 (i.e. speech power) increases relative power in the low frequency
range around F0 and in the high frequency range above 4 kHz. The
former increasing tendency in the low frequency range is very much
in agreement with reports that the glottal waveform becomes more
sinusoidal in the case of low voice power [3].

We think that the increase in power above 4 kHz indicates a rel-
ative rise of the noise level. Since the speech spectrum is generally
inclined at 6 dB/oct, as in figure 5, the spectrum in the high fre-
quency range becomes buried under the noise level, as the speech
power decreases. The noise in the high frequency band is accord-
ingly detected as spectral change caused by the lowering of coef-
ficient c0. As is obvious from these results, we must therefore be
aware that what is obtained by our method is not the actual voice
source characteristic, but the spectral variation due to c0 and/or F0.

Figure 4 shows the estimated variations in the power spectrum
of the voice source depending on the F0 value. Contrary to the
result in figure 3, the male voice has larger spectral variation than
the female voice in this case. Thus the spectral variation caused by
F0 or c0 differs across speakers, and we consider that the tendency
of the variation is closely related to speaker identity. To clarify this
we need to accumulate more analysis results for other speakers and
to investigate how much those spectral changes influence human
auditory perception.

4. Conclusions
We investigated a method for separating out the variations in speech
spectra due to the source characteristic from those due to the filter
response, based on an iterative approximation procedure. The ex-
perimental result showed that the spectral variation was influenced
by F0 or c0, and suggests that the tendency of the variation is closely
related to speaker identity.

The proposed method statistically discovers variation in the
voice source characteristic from a large articulatory corpus, and en-
ables the independent control of the voice source characteristic in
our articulation-to-speech conversion [5]. We have informally con-
firmed that intelligible, high-quality speech can be generated by si-
nusoidal synthesis [13] using harmonics reproduced from the map-
ping obtained.

As we have already reported, introducing a piecewise linear
function for the articulatory-acoustic mapping in each cluster en-
ables better approximation with a smaller number of clusters [5].
Further improvement in the estimation accuracy is expected in com-
bination with the source-filter separation we have discussed in this
paper. Moreover, we intend to apply this separation technique
to text-to-speech synthesis by replacing the articulatory clustering
with one based on phonetic context (or on the types of synthesis
units) instead of the articulator positions measured by the EMA sys-
tem.

Acknowledgements
In carrying out this research, the first author, Y. Shiga, is supported
financially in part by the ORS Awards Scheme.

References
[1] T. Kaburagi and M. Honda, “Determination of the vocal tract

spectrum from the articulatory movements based on the search
of an articulatory-acoustic database,” in Proc. ICSLP98, 1998,
pp. 433–436.

[2] T. Yokoyama, N. Miki, and Y. Ogawa, “An interactive con-
struction system of 3-D vocal tract shapes from tomograms,”
in Proc. the 16th International Conference on Acoustics and
135th Meeting of the Acoustical Society of America, vol. II,
Seattle, USA., 1998, p. 1283.

[3] R. L. Miller, “Nature of the vocal cord wave,” J. Acoust. Soc.
Am., vol. 31, no. 6, p. 667, 1959.

[4] Y. Shiga and S. King, “Estimating the spectral envelope of
voiced speech using multi-frame analysis,” in Proc. Euro-
speech2003, vol. 3, Geneva, Switzerland, Sept. 2003, pp.
1737–1740.

[5] ——, “Accurate spectral envelope estimation for articulation-
to-speech synthesis,” in Proc. 5th ISCA Speech Synthesis
Workshop, CMU, Pittsburgh, USA, June 2004, pp. 19–24.

[6] ——, “Estimation of voice source and vocal tract characteris-
tics based on multi-frame analysis,” in Proc. Eurospeech2003,
vol. 3, Geneva, Switzerland, Sept. 2003, pp. 1749–1752.

[7] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector
quantizer design,” IEEE Trans. Commun., vol. COM-28, pp.
84–95, 1980.

[8] T. Galas and X. Rodet, “An improved cepstral method for de-
convolution of source-filter systems with discrete spectra: Ap-
plication to musical sounds,” in Proc. Int. Computer Music
Conf., 1990, pp. 82–84.

[9] R. J. McAulay and T. F. Quatieri, “The application of subband
coding to improve quality and robustness of the sinusoidal
transform coder,” in Proc. ICASSP93, vol. 2, Apr. 1993, pp.
439–442.

[10] L. Gu and K. Rose, “Perceptual harmonic cepstral coefficients
as the front-end for speech recognition,” in Proc. ICSLP2000,
vol. 1, Oct. 2000, pp. 309–312.

[11] A. A. Wrench, “A new resource for production modelling
in speech technology,” in Proc. Workshop on Innovations in
Speech Processing, Stratford-upon-Avon, 2001.

[12] Y. Stylianou, “Applying the harmonic plus noise model in con-
catenative speech synthesis,” IEEE Trans. Speech and Audio
Processing, vol. 9, no. 1, pp. 21–29, Jan. 2001.

[13] R. J. McAulay and T. F. Quatieri, “Speech analysis/synthesis
based on a sinusoidal representation,” IEEE Trans. ASSP,
vol. 34, no. 4, pp. 744–754, Aug. 1986.


