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Abstract
Recently we have proposed a structural framework for mod-
elling speech, which is based on patterns of phonological
distinctive features, a linguistically well-motivated alterna-
tive to standard vector-space acoustic models like HMMs.
This framework gives considerable representational freedom
by working with features that have explicit linguistic inter-
pretation, but at the expense of the ability to apply the wide
range of analytical decision algorithms available in vector
spaces, restricting oneself to more computationally expen-
sive and less-developed symbolic metric tools. In this paper
we show that a dissimilarity-based distance-preserving tran-
sition from the original structural representation to a corre-
sponding pseudo-Euclidean vector space is possible. Promis-
ing results of phone classification experiments conducted on
the TIMIT database are reported.

1. Introduction

Current automatic speech recognition systems usually use
Hidden Markov models (HMMs) of phones; speech is mod-
elled as a linear sequence of these phones which have no
explicit internal structure beyond the linear topology of the
HMMs. Many researchers are looking for alternative ap-
proaches [1]. Recently, we presented a classification frame-
work based on a structural representation of speech [2] in
which phones are modelled as string templates, making
use of the underlying phonological feature structure. Such
a symbolic representation is motivated by the fact that a
symbolic space is well-suited for capturing and exploiting
structural properties of speech which vector space-based ap-
proaches fail to capitalise on.

Structural representations like this, while offering a
greater representational freedom than conventional vector-
space approaches, have their shortcomings, including the
lack of much of the analytical machinery available in vec-
tor spaces. There are some symbolic space counterparts of
well-known techniques, such as k-nearest neighbours [3], but
their computational complexity is increased by the absence
of vector space properties. Such limitations motivated us to
draw on a theory which unifies structural and vector-space
approaches, on one hand providing the representational con-
venience of symbolic spaces and on the other allowing us to
use vector space decision-theoretical tools. It is such a the-

ory, proposed in [4], that we consider in this paper for the
representation of complex speech data.

2. Structural Representation

The lowest (i.e. closest to the speech waveform) level of our
framework which is symbolic consists of a set of phonologi-
cal distinctive features. Phonological distinctive features are
seen in most varieties of phonology as the fundamental units
out of which phonemes are constructed. We use a subset
of one of the most popular feature systems used to repre-
sent speech, five multivalued features: front-back, place of
articulation, manner of articulation, roundness and voicing.
Each of these features takes one of several possible values –
for example, manner of articulation is one of: approximant,
fricative, nasal, stop, vowel, silence.

The neural networks which were used to recover these
features from speech (refer to [1] for full details) use a 1-
of-Nj encoding on their output units, hence there are Nj

real-valued outputs (ranging 0 → 1) for each feature (for
manner of articulation Nj = 6). The total number of such
values produced by the neural networks for each frame is
N =

∑5
j=1 Nj = 25. When classifying unknown speech

patterns the output activations take continuous values be-
tween 0 and 1, and the features change value asynchronously.
We map these continuous activation values into symbols us-
ing simple quantization over N separate finite alphabets of
equal size (quantization level) for each of the N values sep-
arately.

The speech is now represented by a sequence of vectors
of symbols; this can be seen as a sequence of symbolic ma-
trices, each identifying a phone in terms of its distinctive
phonological features (which henceforth will be referred to
as streams). In the current work we restrict ourselves to clas-
sification: the phone boundaries are known but phone identi-
ties are unknown. A phone realization p is thus represented
as:
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where tp is start time and kp is duration. Our symbolic phone
classification system is template based: it consists of a set



of templates learnt from the training data, one or more per
phone class to be recognized. The templates may be actual
tokens from the training data, or may be constructed; in either
case, each template is represented by the structure described
above.

This representation has a number of attractive features:
it accounts for duration and contextual effects; aspects of
co-articulation such as assimilation can be accounted for,
since the features (which can change value anywhere within a
given template) are represented explicitly and independently.
This paper only shows that we can make a transition from
this representation to a vector space; we do not yet take full
advantage of the structural representation.

2.1. Pseudo-Metric Space

Once the structural representation is obtained, the next step is
to define a dissimilarity measure between pairs of templates,
or between a template and a token to be classified. A simpli-
fying assumption made in this paper is that the streams are
independent and have equal importance.

A phonological pseudo-metric space, corresponding to
our structural representation, is a pair (P,D) where P is
a finite set of all possible templates having N streams and
D : P × P → R

+ is a mapping of the Cartesian product
P × P into the set of non-negative real numbers R

+, such
that D =

∑N

i=1 di, where di can be any chosen string dis-
similarity measure, satisfying the conditions of reflexivity:
∀x ∈ P D(x, x) = 0 and symmetry: ∀x, y ∈ P D(x, y) =
D(y, x). If the triangle inequality condition is satisfied in ad-
dition to the above, the resulting space is a metric space. The
resulting properties of the pseudo-metric space are dictated
by the per-stream distance functions di (which are currently
the same for all the streams). In the remaining discussion we
refer to phonological feature templates as patterns.

3. Vector Representation

The pseudo-metric space (P,D) as defined above, replaces
the notion of similarity of two patterns by the peer notion
of dissimilarity expressed by the distance function, which al-
lows us to reduce the original pattern to a point in some ab-
stract vector space where decisions (e.g. classifications) are
to be made based on the metric information only.

The symmetric dissimilarity matrix between the patterns
of the set P needs to be preserved by the embedding of the
symbolic space into a vector space. It has been shown that,
given a pseudo-metric space, it is always possible to con-
struct an isometric mapping onto the corresponding pseudo-
Euclidean vector space (section 3) – a member of a class of
spaces in which symmetric bilinear forms are not restricted
to be positive – and that in many cases such a construction
cannot be accomplished in a classical Euclidean space [4].

3.1. Pseudo-Euclidean Spaces

A pseudo-Euclidean space R
(n+,n−) [4] of signature

(n+, n−) – n+, n− ≥ 0 – is a pair (V,Φ) where V is a real

vector space of dimension n = n+ + n− and Φ is a non-
degenerate symmetric bilinear form of signature (n+, n−),
which measures the inner product in V . Given an orthonor-
mal (w.r.t Φ) basis (ei)i∈[1,n], the inner product between the
two vectors x, y ∈ V is given by 〈x, y〉 =

∑n+

i=1 xiyi −
∑n

j=n++1 xjyj . The above space can be viewed as con-
sisting of two non-commensurable Euclidean subspaces of
dimensions n+ and n−, respectively. If n− = 0, the
pseudo-Euclidean space corresponds to a Euclidean space.
The square of the distance (which can be negative) between
the two vectors in pseudo-Euclidean space is defined as
‖x − y‖

2
= 〈x− y, x− y〉 = (x− y)T J(Φ)(x− y) , where

J(Φ) =
( In+×n+

0

0 −In
−

×n
−

)

is the canonical matrix of the

symmetric bilinear form corresponding to the orthonormal
w.r.t. Φ basis (ei)i∈[1,n] of V and I denotes an identity ma-
trix.

3.2. Linear Embedding

Given a finite pseudo-metric space (P,D), P = {pi}
k
i=1,

there exists [4] an isometric embedding α : (P,D) →
R

(n+,n−). In other words, let vi = α(pi), i ∈ [1, k], then
for all patterns pi and pj in the original set P , ‖vi − vj‖ =
D(pi, pj).

An algorithm which constructs the vector representation
assumes, without loss of generality, that the mean vector of
the vector representation α coincides with the origin, i.e. v =
1
k

∑k

i=1 vi = 0. In this case, it can be shown that the non-
zero characteristic values of the k×k matrix M(Φ) = (mi,j)
of the symmetric bilinear form Φ of (P,D), where

mi,j =
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,

coincide with those of the covariance matrix of (P,D) w.r.t
α [4]. The vector representation is thus constructed by com-
puting M(Φ) and performing its eigen-decomposition ob-
taining M(Φ) = EFET , where E is the matrix of the eigen-
vectors and F is a diagonal matrix of the eigenvalues. By re-
organizing F into another diagonal matrix C containing first
the positive eigenvalues of M(Φ) in decreasing order, then
the magnitudes of the negative eigenvalues in decreasing or-
der followed by zeros, one obtains

M(Φ) = HCHT = HC
1
2

(

J
0

)

C
1
2 HT = U

(

J
0

)

UT ,

where H is the matrix of the eigenvectors corresponding to
the eigenvalues of M(Φ) in C and Jn×n is a canonical matrix
of Φ from section 3.1. The first n+ +n− elements of the i-th
row of U , where U = HC

1
2 , define the coordinates of α(pi),

i ∈ [1, k], of a vector representation α : (P,D) → R
(n+,n−)

w.r.t. an orthonormal basis of R
(n+,n−). The number of neg-

ligible eigenvalues (corresponding to noisy dimensions) of C

is usually small, hence n is usually close to k.



3.3. Dimensionality Reduction

Since the eigenvalues M(Φ) correspond to the characteris-
tic values of the generalized covariance matrix of the set
{α(pi)}, the reduced vector representation β : (P,D) →
R

(m+,m−), where m = m+ + m− < n, can be constructed
from α by the mapping γ : R

(n+,n−) → R
(m+,m−), which

is an orthogonal projection of the exact representation α on
the subspace spanned by the corresponding principal axes of
the covariance matrix [4]. This is accomplished by removing
the axes corresponding to small magnitudes of the eigenval-
ues |ci| of C and retaining the eigenvalues corresponding to
principal uncorrelated axes. If the removed eigenvalues are
small, the resulting configuration β = γ ◦ α possesses the
same isometric properties as α.

3.4. Metric Projection of Unseen Patterns

During the classification stage, an orthogonal projection of
the new pattern p onto R

(m+,m−) is found by assuming that
p maps to a point in R

(n+,n−) with the calculated distances
to k vectors β(pi) in R

(m+,m−). Such a construction al-
lows us to avoid reembedding anew every time an unseen
pattern is presented [4]. The construction begins by per-
forming a parallel translation τ : R

(m+,m−) → R
(m+,m−),

τ(vi)1≤i≤k = vi − v0, where vi = β(pi) are the vectors
comprising the representation and v0 = β(p0) is a fixed rep-
resentation of an origin, chosen from the set P as a pattern
whose average distance to the rest of the patterns in the train-
ing set is minimum.

Let uj = τ(vj)j∈[1,m], be the chosen basis of R
(m+,m−)

whose m × m Gram matrix G = (〈ui, uj〉)i,j has signa-
ture (m+,m−). Metric projection δ : (P,D) → R

(m+,m−)

of new patterns onto R
(m+,m−) is specified so that unique

projection of new pattern p is defined by m + 1 distances
D(p, p0), D(p, pi)i∈[1,m] as δ(p) = UG−1b, where columns
of U are the coordinate columns of m vectors ui and bm×1

is a vector whose ith coordinate is given by 1
2

[

D(p, p0)
2 +

D(pi, p0)
2 − D(p, pi)

2
]

[4]. Since B = UG−1 can be pre-
computed during the training stage, the only online compu-
tations involved are those of b and the product Bb.

Since the reduced vector representation gives an approx-
imation of the original finite metric set, the Gram matrix G

for δ(pi) in R
(m+,m−) differs from the exact Gram matrix

for the α(pi) in R
(n+,n−), while the calculation of vector b

is based on the precise distances. In order to avoid this per-
turbation, an alternative construction called corrected metric
projection, referred to as δC , is suggested in [5]. The correc-
tion is achieved by projecting the points α(pi) onto the sub-
space of R

(n+,n−) spanned by a subset of the vectors close to
the reduced space R

(m+,m−) and then, projecting them back
onto R

(m+,m−).
For both metric projection methods, δ and δC , the m ba-

sis vectors spanning R
(m+,m−) are chosen in such a way as

to minimize the average projection error between the projec-
tion of the entire training set (obtained with δ or δC) and the
original vector representation obtained by linear embedding

(α or β) of a pseudo-metric space [5, 6].

4. Experiments

In this section we present some of the experimental results
of a phone classification task on the data represented in the
pseudo-Euclidean domain. The experiments use the TIMIT
database [7]. This is a corpus of high-quality recordings of
read continuous speech from North American speakers. The
entire corpus is reliably transcribed at the word and surface
phonetic levels. For details of the feature-detecting neural
networks mentioned in section 2, please refer to [1].

The standard training/test data partition is kept, with only
the sx and si sentences being used (3696 training utterances
from 462 different speakers, less 100 sentences held out for
cross-validation training of neural networks; 1344 test utter-
ances from 168 speakers). No test speakers are in the training
set; there are 39 phone classes. Based on classification re-
sults obtained on the structural representation [2], we chose
a quantization level of 10 and the metric D was a weighted
Levenshtein edit distance.

4.1. Three-class Problem

The first experiment uses three phones which are a priori
known to be reasonably separable: aw (low back round
vowel) b (voiced bilabial stop) and z (voiced alveolar frica-
tive). The original training set contains 6629 patterns. Since
the matrix of pseudo-metric space interdistances for this set
is rather large for matrix decomposition algorithms, we used
clustering [2] to obtain a smaller training set of 100 patterns
per class. The entire test set (2423 patterns) was used. The
first two plots of figure 1 show the corrected metric projec-
tion δC (visualized w.r.t. the three principal axes) of the data
onto the vector space representation constructed using linear
embedding α (section 3). The visualization of the three prin-
cipal axes of the corrected metric projection suggests that lin-
ear decision surfaces can separate the classes; we used a feed-
forward neural network with activation units mapped directly
to target units (denoted LDS). We compare this to a vector-
space equivalent of k−NN AESA [3] (denoted kNN ).

Given the finite pseudo-metric space (P,D) and dimen-
sion m, two different reduced vector representations were
constructed using regular δ (denoted by subscript R) map-
ping and corrected δC (subscript C) mappings. Two differ-
ent approaches to basis selection of the reduced vector space
R

(m+,m−) were employed: the regular approach (superscript
R) [6] ignores the class label of vectors, which can result in
uneven representation of classes within the basis of the re-
duced space; a novel class-based approach (superscript C)
selects the basis of the reduced space to minimise projec-
tion error whilst ensuring the basis vectors are well-balanced
in terms of class representation. Best classification results
(chosen from reduced dimensions of m < 150) are shown in
table 1. For kNN classifiers, k = 1 outperformed k > 1.

As can be seen from table 1, LDS consistently outper-
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Figure 1: Corrected metric projections δC for the three-class problem and full-problem classification results.

Method m Error (%) Method m Error (%)
LDSR

R
39 0.7 LDSC

R
33 0.6

LDSR

C
144 0.6 LDSC

C
130 0.5

kNNR

R
85 2.8 kNNC

R
73 2.4

kNNR

C
63 1.1 kNNC

C
50 1.0

Table 1: Best classification error rates for the three class
problem. Best result obtained in the pseudo-metric space
with 1-NN AESA was 0.9%.

forms k-NN in both symbolic and vector spaces. The class-
based basis selection improves the performance of all mod-
els. The 1-NN classifier in the reduced pseudo-Euclidean
space does not seem to handle perturbations introduced by
the dimensionality reduction as well as the neural networks.
Its error rate, however, comes close to its symbolic counter-
part by only using around 17% (50 out of 300 patterns) of the
original training data.

4.2. Full Problem

The full 39-class task consists of 124962 training patterns
and 46633 test patterns. The training set was pre-clustered to
produce much smaller training sets with different numbers of
prototypes (from 5 up to 100) per class [2]. For each of these
training sets, two different reduced vector representations
were constructed using regular δ and corrected δC projec-
tions. For all the training sets, and for dimensions m higher
than 10, the resulting vector spaces are pseudo-Euclidean. In
order to preserve the significant axes of the representation,
only the relatively small eigenvalues (less than 10−4) were
removed.

Results are shown in figure 1; optimal k = 1 [2]. For
both regular and corrected constructions, k-NN AESA in
pseudo-Euclidean space appears to consistently outperform
the pseudo-metric counterpart for all the dimensions cor-
responding to number of prototypes per class of up to 50.
The best results were obtained for 100 prototypes per class:
60.26% for regular metric projection and 60.31% for the
corrected one, compared to the best result of 60.26% re-
ported [2] for the pseudo-metric space.

5. Conclusions and Future Work

We have demonstrated the feasibility of a transition from
symbolic to vector space by the construction of pseudo-

Euclidean embeddings of finite pseudo-metric spaces. The
vector-space classification accuracy is very close to that
in the original symbolic space, confirming previous find-
ings [4, 6]. Since the future directions of our research will
include more structurally complex representations of speech,
reliable construction of robust dissimilarity-based pseudo-
Euclidean space representations of pseudo-metric spaces is
of paramount importance. In addition, we are planning to
use non-linear classifiers, which are available for pseudo-
Euclidean vector spaces [8]).
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