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Abstract

This paper explores the issues involved in using sym-
bolic metric algorithms for automatic speech recognition
(ASR), via a structural representation of speech. This repre-
sentation is based on a set of phonological distinctive fea-
tures which is a linguistically well-motivated alternative to
the “beads-on-a-string” view of speech that is standard in
current ASR systems. We report the promising results of
phoneme classification experiments conducted on a stan-
dard continuous speech task.

1. Introduction

Current automatic speech recognition (ASR) systems
are usually based on Hidden Markov models (HMMs) of
phones; speech is modelled as a linear sequence of these
phones, like “beads on a string” [11]. Phones have no ex-
plicit internal structure in these systems beyond the topol-
ogy of the HMMs used to model them (usually 3 emitting
states in a simple left-to-right arrangement). The accuracy
of such systems appears to have reached a plateau, moti-
vating many researchers to look for alternative approaches.
In this paper, an attempt to devise a classification frame-
work based on a structural representation of speech is pre-
sented. The method we propose is motivated by the fact that
a symbolic space is well-suited for capturing and exploit-
ing structural properties of speech which HMM systems fail
to capitalise on. Since speech waveforms are not symbolic,
we must make a transformation into a symbolic represen-
tation. At a very low level, frame-based vector quantisation
will do this, but we reject this approach since the symbol
set is chosen purely on acoustic grounds. Other techniques,
such as generalised feature extraction based on structure
detectors [10], have emerged to extract symbolic informa-
tion, providing it as an input to syntactic pattern recogni-
tion frameworks, which operate on time series data. Such
approaches might potentially offer a natural way of extract-
ing symbolic features and further research is needed to es-

tablish whether they are suitable for ASR tasks. We have
chosen to make the transition from vector-space to sym-
bolic representation at a linguistically well-motivated level:
phonological features. Phonological features are a represen-
tation of speech which has several attractive properties, de-
scribed in section 2. Furthermore, it has been shown [7] that
recurrent neural networks can be successfully used to per-
form accurate phonological feature detection from speech
signals.

Two questions now arise: what set of phonological fea-
tures should be used? And how should we treat the real-
valued outputs of the feature-detecting neural networks?
These are addressed in section 2.1.

This paper is organised as follows. In section 2 we in-
troduce the structural representation based on phonologi-
cal feature structure along with a brief description of the
related linguistic formalism and describe the way it is ex-
tracted from speech and some of its properties, section 3
presents results of the experiments. We summarise the pa-
per in section 4.

2. Phonological feature structure

The lowest (i.e. closest to the speech waveform) level of
our framework which is symbolic consists of a setphono-
logical distinctive features. Phonological distinctive fea-
tures are seen in most varieties of phonology as the fun-
damental units out of which phonemes are constructed. The
principle of distinctive features was first proposed by Jakob-
son, Fant and Halle [4] and re-worked by Chomsky and
Halle (cited in [7]) who showed that what were otherwise
complex phonological processes (such as assimilation – for
example, the [n] sound in “in” becomes [m] when followed
by [b], e.g. “in-between”) could be written concisely in
terms of distinctive features (the process which transforms
[n] into [m] is simply the spreading of one feature – place
of articulation – from the [b] backwards into the [n]). Many
systems of features can be used to represent speech; we use
one of the most popular: multivalued features.
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2.1. Multivalued features

We use five multi-valued features: front-back, place of
articulation, manner of articulation, roundness and voicing
(this particular choice is motivated in [7]). Each of these
features takes one of several possible values – for exam-
ple, manner of articulation is one of: approximant, frica-
tive, nasal, stop, vowel, silence. The neural networks that
recover these features from speech use a 1-of-Nj encoding
on their output units, hence there areNj real-valued outputs
(ranging0 → 1) for each feature (for manner of articula-
tion Nj = 6). The total number of such values produced by
the neural network for each frame isN =

∑5
j=1 Nj = 25.

Since the training data is fully labelled and segmented, it is
possible to label each frame in the data with the correspond-
ing phonological features. Network training is achieved by
specifying canonical targets (0 or 1) for each labelled frame,
but at runtime the output activation values take continuous
values between 0 and 1, and the features change value asyn-
chronously. We map these continuous activation values into
the symbols using simple quantisation overN separate fi-
nite alphabets of equal size (quantisation level) for each of
theN values separately.

2.2. Structural representation

The speech has now been transformed into a sequence of
vectors of symbols; this can be seen as a sequence of sym-
bolic matrices, each identifying a phone in terms of its dis-
tinctive phonological features. A phone realisation (token)
p of class (type)P , p ∈ P , is thus represented as
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where tp is the start time,kp is the duration ofp in
frames andN is the fixed number of distinctive phonolog-
ical feature-values which henceforth will be referred to as
streams. Each of the five features has multiple possible val-
ues and hence multiple corresponding streams.

Our phone classification system is template based: it
consists of a set of templates learnt from the training data,
one or more per phone class to be recognised. The templates
may be actual tokens from the training data, or may be con-
structed; in either case, each template will be represented
by the structure described above.

This representation has a number of attractive features. It
accounts for duration and contextual effects. Since the du-
rations of tokens vary, even within a class, templates of var-
ious durations can be used for a given class. Aspects of co-
articulation (such as assimilation, described above) can be
accounted for, since the features are represented explicitly

and independently. They can change value anywhere within
a given template. Finally, this representation is amenable
to human examination since its components have explicit
linguistic interpretations. One of the shortcomings of this
representation is, that at present, we have no way of mod-
elling the feature spreading from one template on to the next
one since each template only has the knowledge of its own
speech frames.

Using every token in the training data as a template is
computationally prohibitive for our data set, so it is neces-
sary to perform clustering to produce a reduced number of
templates to represent each class.

2.3. Similarity measures

Once the structural representation is obtained by means
of quantisation of neural network outputs, the next step is to
define a distance between pairs of templates, or between a
template and a token to be classified. An assumption which
we make in this paper is that the streams are entirely inde-
pendent of one another and all have equal importance. For a
single token, each stream is astringof symbols from our al-
phabet.

We proceed by defining a metric space corresponding to
our structural representation:

Definition 2.1. A phonological metric spaceis a pair(P, d)
whereP is a set of all possible templates havingN streams
andd : P × P → R+ is a mapping of the Cartesian prod-
uctP×P into the set of non-negative real numbersR+, such
thatd =

∑N
i=1 di, wheredi can be any chosen string simi-

larity measure, satisfying the metric axioms.

Note that the resulting properties of the metric space
are essentially dictated by the per-stream distance func-
tions di. An additional assumption we make is that the
same type of distance function is used for all the streams,
i.e. ∀i ∈ [1, N ] : di = d. Thus, given any two tem-
plates,p and q, the distance between them is defined by
d(p, q) =

∑N
i=1 d(sp

i , s
q
i ), wheresp

i and sq
i are the two

strings representing streami of p andq.
The most popular distance function defined on strings

is theLevenshtein Distance, which introduces a set of edit
operations and defines the distance between two strings of
lengthsm andn as the minimum number of edit operations
needed to transform one string into the other. The standard
algorithm [3] uses dynamic programming to find this effi-
ciently in polynomial timeO(m · n). A more general ap-
proach is to assign weights to each of the operations, in
which case the optimal sequence is the one that obtains the
lowest sum of the weights of editing operations used. In our
system, we set all the weights of all insertion/deletion oper-
ations to be equal; weight of the substitution is taken to be
the sum of insertion and deletion weights. All the weights
are normalised by the cardinality of the alphabet.



An alternative distance we used is theNormalised Edit
Distance[9], which is defined asminT

W (T )
L(T ) whereW (T )

is the sum of the editing weights in an editing traceT and
L(T ) is the number of editing operations described byT .
It was shown to outperform its un-normalised counterpart
on a hand-written digit [9] and chromosome [8] recognition
tasks. This algorithm hasO(m · n2) time complexity.

2.4. Template selection

For each class (39 in our task), we create a number of
templates from the set of tokens in the training data of that
class, using clustering. The “mean” of each cluster is used
as a template – this requires a definition of the “mean” of a
set of tokens.

The most obvious choice isset median, a generalisation
of a traditional set median string. Given a setP of tem-
plates, the set medianps is the member of this set that sat-
isfies

ps = argminp∈P

∑
q∈P

d(p, q),

whered is the distance from definition 2.1. The time com-
plexity of this algorithm isO(N · |P |2 · L2) whereL =
maxp∈P |p| is the maximum length (duration) found among
all the templates in a set,|P | is the number of a templates
in a set andN is a fixed number of streams.

An alternative to the set median is the(generalised)
median templatewhich is based on the notion ofmedian
string [1] which is a string minimising the sum of distances
to each string of the set, but that does not necessarily it-
self belong to the set. In general, given a set of stringsS
over a finite alphabetΣ, the median string of a setS is de-
fined as

sm = argminx∈Σ

∑
y∈S

d(x, y).

The search for the generalised median string is NP-hard.
However, efficient techniques for computing an approxima-
tion exist and we have adopted a greedy algorithm described
in [1].

Recall that we treat the streams independently. Hence,
given a set of templatesP , we can findN string medians,
one for each of theN sets of streams comprising the setP .
We then define amedian templatefor a setP by construct-
ing a template which consists of the discoveredN string
medians.

2.5. Clustering strategies

Perhaps the most widely used clustering algorithm isk-
means. In this symbolic setting we use a variant calledk-
medians in which, instead of using the familiar vector-space
cluster means, the cluster centroids are either set medians or
generalised medians from the previous section.

Level Training Set Test Set
3 107284 42061
10 124962 46633
15 125151 46704

Table 1. Num. tokens vs. quantisation level.

The authors of [5] compared four different initialisa-
tion techniques for thek-medians algorithm for strings and
favoured the symbolic version of an efficient initialisation
technique calledMaxminwhich iteratively selects one cen-
troid at a time. At each iteration, the member of the set fur-
thest from any current centroid is added to the set of cen-
troids. Once the centroids are chosen, each token is assigned
to a cluster with the nearest centroid.

An alternative initialisation technique we have tried uses
thedurationof the training tokens. Given the sizeM of the
training data set, the tokens are first sorted by duration and
the data is then divided intok sets each containingM/k
training tokens with the centroids of thesek sets chosen as
initial centroids.

3. Experiments

Our experiments used the TIMIT database [2]. This is a
corpus of high-quality recordings of read continuous speech
from North American speakers. The entire corpus is reliably
transcribed at the word and surface phonetic levels. For de-
tails of the feature-detecting neural networks, please refer
to [13].

The standard training/test data partition is kept, with only
thesx andsi sentences being used, resulting in 3696 train-
ing utterances from 462 different speakers, out of which 100
sentences were held out for cross-validation training of neu-
ral networks. The entire test set of 1344 utterances from 168
speakers was used for the classification experiment. None of
the test speakers are in the training set, and hence all the ex-
periments are open and speaker independent. There are 39
phone classes.

We quantised the neural network output activations us-
ing several different quantisation levels, each inducing a
new alphabet. For each quantisation level, the redundant to-
kens were removed from the resulting symbolic training and
test sets. Table 1 shows the number of tokens in the train-
ing and test sets obtained for quantisation levels 3, 10 and
15. It can be seen from table 1, that increase in quantisa-
tion level leads to increase in number of unique tokens in
both training and test sets.

Each training classP was divided intok clusters by
k-medians clustering using two different distance metrics
(weighted Levenshtein edit distanceLd or normalised edit
distanceNd), two template selection strategies (set median



|k| 5 10 15 30 50 100
Sm/Ld /Dc 54.7 58.4 58.8 59.0 59.6 60.3
Sm/Nd/Dc 47.1 54.1 55.4 56.5 56.9 58.2
Sm/Ld /Mc 49.9 50.6 50.0 50.6 50.7 54.1
Gm/Ld /Mc 45.7 49.7 49.1 49.7 49.8 49.5

Table 2. Classification accuracy (%) for TIMIT.

Smand generalised medianGm) and two different initialisa-
tions (MaxminMcand duration-basedDc).

During the recognition stage, an efficientk-NN AESA
search technique [6] was used throughout and simple near-
est neighbour search based on the score of the top candi-
date (in terms of the smallest distance to the test token) in
thek-best list outperformed the majority voting schemes.

Classification accuracy for the data obtained using a
quantisation level of 10 is shown in table 2 for various val-
ues ofk, which is the number of centroids per class. As can
be seen from table 2, the schemes using weighted Leven-
shtein distance outperform those using normalised edit dis-
tance. The schemes using duration-based initialisation out-
perform those usingMaxmin. These two findings indicate
that accounting for duration is important. Also, the schemes
using set median outperform the one using generalised me-
dian, suggesting that the construction of medians (as op-
posed to selecting an existing member of the set) is prob-
lematic.

The result of 60.3% obtained in our experiments com-
pares favourably with the results ofbasic vector-space
models reported in the literature, such as performance
of context-independent three-state single-mixture Gaus-
sian HMM models (61.7% reported in [14]).

4. Conclusions and future work

In this paper we have introduced a linguistically moti-
vatedstructural approachto continuous speech recognition
based onsymbolic representationof distinctive phonologi-
cal features. We have shown how existing algorithms over
strings can be adapted for a phonological feature structure
framework and have presented preliminary results for a pat-
tern classification recognition experiment.

Whilst the accuracy of the system is currently somewhat
lower than those reported for state-of-the-art vector-space
approaches, like Support Vector Machines [12], we are rea-
sonably optimistic since: the structural framework we have
used is both intuitive and interpretable; the results were ob-
tained using standard algorithms widely used in the struc-
tural pattern recognition community, especially bioinfor-
matics; the system is currently very simple and there is con-
siderable scope for improvement.

Future directions of research will involve improving the
modelling power of the framework, particularly with re-
spect to temporal processes within features both within and
across phone boundaries (such as assimilation). We will in-
troduce weights on the streams and develop a weight learn-
ing component.
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