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Abstract
This paper investigates the use of articulatory-acoustic features
for the classification of syllables in TIMIT. The main moti-
vation for this study is to circumvent the “beads-on-a-string”
problem, i.e. the assumption that words can be described as
a simple concatenation of phones. Posterior probabilities for
articulatory-acoustic features are obtained from artificial neural
nets and are used to classify speech within the scope of sylla-
bles instead of phones. This gives the opportunity to account
for asynchronous feature changes, exploiting the strengths of
the articulatory-acoustic features, instead of losing the potential
by reverting to phones.

1. Introduction
In current state-of-the-art automatic speech recognition (ASR)
systems, the acoustic signal is usually described in terms of
phones, and words are simply seen as concatenations of phone
sequences. However, as many before me have pointed out, the
notion that a word is composed of a sequence of phone seg-
ments, i.e., the “beads-on-a-string” paradigm, is questionable
[15, 7]. As articulators do not jump from one position to an-
other, sounds also do not change abruptly, but the change is
of a more gradual nature. This results in phenomena such as
co-articulation and assimilation. Articulatory-acoustic features
can be used to represent the acoustic signal in a compact way
and they have a number of properties that make them an at-
tractive solution to part of the “beads-on-a-string” problem, for
instance, their asynchronicity and the fact that they can be used
to represent co-articulation and assimilation effects as simple
feature value changes.

The current study builds upon earlier work within the field
of phonological features for ASR [1, 2, 3, 8, 9, 10, 11]. The
phonological features employed in this paper are multi-valued
features along different dimensions, i.e. place of articulation,
manner of articulation and voicing as in [1, 11, 18]. The gen-
eral approach to using articulatory-acoustic features in ASR is
as follows. The starting point is acoustic training material with
phonetic segment annotations. A mapping from the phones to
the articulatory-acoustic features is carried out; i.e., each phone
label is substituted by its corresponding articulatory-acoustic
feature representation. Next, an array of artificial neural net-
works (ANNs) is trained on the basis of those articulatory-
acoustic representations. One ANN is trained for each fea-
ture dimension. The input to the ANN is acoustic features,
for instance, mel-frequency cepstral coefficients. The outputs
from the ANN are estimated articulatory-acoustic feature val-
ues (posterior probabilities) for each 10 ms input frame. The
output from the ANNs is used as input to train a new neural net
[1, 11] or as the input features to train hidden Markov models
(HMMs) [8, 9, 10]. This final step is carried out in order to

perform the mapping from features to higher-level lexical units.
The studies mentioned above have all proved the viability

of using articulatory-acoustic features as an alternative way of
describing the speech signal. However, in none of the studies
did using articulatory-acoustic features significantly outperform
using conventional acoustic features.

One of the limitations of above named studies is that the
step back to phones was always made, thus incorporating the
“beads-on-a-string” paradigm back into the recognition process
again. By going back to phones, the advantageous characteris-
tic of the articulatory-acoustic features; asynchrony is not be-
ing employed. It has been shown that even when the neural
networks are performing well, it is clear from the network out-
put that articulatory-acoustic features often do not all change
at phone boundaries [10]. Asynchronous feature value changes
are common. Recognition models which are capable of mod-
elling this asynchronicity properly should achieve significantly
higher performance than the standard, frame synchronous sys-
tems. The observation that feature values do not change in-
stantaneously at phone boundaries is echoed by findings in [2]
which showed that not all frames are equal in terms of the ANN
outputs. Some frames are classified more reliably, and it is those
frames near the border between phones that are classified less
reliably, which is further proof that there is no instant switch of
feature values at phone boundaries.

Consequently, what is needed are methods that exploit the
strengths of articulatory-acoustic features throughout the recog-
nition process. To achieve this, we need to know how to com-
bine the different feature streams while at the same time retain-
ing the information that is present in the asynchrony of the dif-
ferent streams. I am convinced that an explicit link to syllable
structure is essential in achieving this because:

� co-articulation is stronger within syllables than across
syllable boundaries and co-articulation can be modeled
by allowing phonetic features to overlap within syllables,

� articulations are generally programmed in syllabic units
[5, 6],

� the asynchronous nature of the features can be better cap-
tured within a syllable than within phones.

Therefore, instead of going from articulatory-acoustic features
to phones, I propose side-stepping the phones and going to
syllables. The final goal of the present project is to improve
the recognition results of ASR systems that are enriched with
articulatory-acoustic feature information. This goal implies
that methods to go from features to higher-level lexical units
must be developed. This paper investigates how this can be
achieved by investigating the syllable structure, and what posi-
tion articulatory-acoustic features take in relation to syllables.



2. Material & Syllabification
This section describes the speech material that was investigated
and explains how it was syllabified. Statistics on the syllables
are also given.

2.1. Speech material

The speech material used in this study is from the TIMIT
database [13]. TIMIT comprises hand labeled and segmented
data of quasi-phonetically balanced sentences read by native
speakers of American English. The drawbacks of using TIMIT
for the present study are that TIMIT is read speech instead of
spontaneous speech and, the test set contains a great deal of
out-of-vocabulary words/syllables. Nevertheless, the fact that
TIMIT has been manually transcribed weighs up to these draw-
backs and as a starting point TIMIT is suitable for proving the
validity of the proposed approach. All training sentences ex-
cept SA sentences were used for training, and the core test set
was used for evaluation. A random selection of 100 training
sentences were used for cross-validation during training. The
phone set used in TIMIT was reduced to 39 phones as in [14].

2.2. Syllabification

Syllabification software (tsylb2) available from NIST [4] was
used to extract the syllables from the data. Two sets of transcrip-
tions were syllabified, the manual transcriptions and canoni-
cal transcriptions. Canonical transcriptions of TIMIT were ob-
tained by means of a dictionary look-up. A wraparound for
tsylb2 was written to carry out the syllabification. The result is
a time-aligned list of syllables in TIMIT format. A number of
changes to the TIMIT transcriptions were necessary for tsylb2
to correctly parse the phone string. The main changes to the
transcriptions were the merger of closures with the following
burst, and the mapping of lone closures to stops. In addition,
a number of final consonant clusters were added to the list of
allowable final consonant clusters in tsylb2 because they occur
in the TIMIT transcriptions. For example, /ng z/ was added to
the final coda list as it occurs as the coda to “things” [th ih ng z]
the standard being [th ih ng s].

2.3. Syllable statistics

In this section, various statistics about the syllables are given.
The statistics were compiled on the basis of the output of the
syllabification software.

Table 1 shows the number of unique words in the lexicon,
the average number of variants per word, as well as the number
of syllable tokens and types in the TIMIT training and test sets.
Results are shown for both canonical and manual transcriptions
of the training material. For the test set, only syllabification
results for manual transcriptions are given.

Table 1: Syllable statistics for TIMIT.

data sets canonical manual test
training training

# words in lexicon 4891 4891 2372
average variants/word 1 2.2 1.9
# syllable tokens 47,301 47,397 17,227
# syllable types 3064 5525 3087

Further information that is of interest in this context is the
number of syllables that are not present in the training material

but nevertheless are present in the test material. The number of
out-of-vocabulary (OOV) words and number of out-of-syllable-
inventory (OOS) syllables are shown in Table 2. The final col-
umn in Table 2 shows the number of the OOS syllables that are
not part of OOV words. This result indicates that a substantial
portion of the OOS syllables are a result of OOV words. The
remainder of the OOS syllables are a result of pronunciation
variation, i.e. the transcription of the word in the test set does
not match any of the examples of that word (or even parts of
other words) in the training material.

Table 2: OOV & OOS rates in TIMIT.

OOV OOS OOS-OOV
words syllables syllables

number of OOV/S 1209 906 108
percentage of test set 26 9.6 1.1

Table 3 shows the consonantal-vocalic (CV) structure of
syllables in the TIMIT training set. The percentage of training
material covered by each syllable type is shown in the second
column for the canonical transcriptions and in the final column
for the manual transcriptions. There are three syllable types
that occur in the manual transcriptions, but not in the canoni-
cal, and one that occurs in the canonical transcriptions but not
in the manual. All of these, as Table 3 shows, are infrequently
occurring syllables.

The first four lines in Table 3 are in accordance with previ-
ous findings [5]. “In spoken discourse, over 80% of the sylla-
bles are of the canonical CV, CVC, VC, V form, and many of
the remainder reduce to this format by processes of assimilation
and reduction [5].” In the TIMIT database, 78.3% of the canon-
ical syllables have a CV, CVC, VC or V structure. When one
considers the syllable structure of the manually transcribed data
this percentage goes up to 82.4 %. This is of interest as a more
simple syllable structure is easier to model.

Table 3: Syllable types and coverage in TIMIT.

syllable types canonical (%) manual (%)
[ V ] 7.10 11.00
[ V C ] 10.21 10.99
[ C V ] 30.84 36.04
[ C V C ] 30.17 24.41
[ C C V ] 4.54 4.87
[ V C C ] 1.83 0.83
[ C C C V ] 0.36 0.36
[ C C C V C ] 0.39 0.32
[ C C C V C C ] 0.09 0.06
[ C C C V C C C ] 0.02 0.00
[ C C V C ] 3.51 3.35
[ C C V C C ] 1.22 0.95
[ C C V C C C ] 0.12 0.07
[ C V C C ] 8.30 5.67
[ C V C C C ] 1.19 0.74
[ C V C C C C ] 0.02 —
[ V C C C ] 0.09 0.13
[ V C C C C ] — 0.01
[ C ] — 0.20
[ C C ] — 0.02



3. Articulatory-acoustic features
In order to classify syllables, first the lower level building
blocks, in this case, articulatory-acoustic features must be ad-
dressed. Table 4 shows the feature groups that were inves-
tigated and the values within each feature group. The tar-
get articulatory-acoustic feature representation was obtained by
mapping from phonetic-segment labels to features. The map-
ping was based on [12] and very similar to the mapping pattern
described in [2].

Table 4: Articulatory-acoustic feature sets.

feature values
manner approximant, fricative, nasal, stop, vowel,

silence
voicing +voice, -voice, silence
place labial, labiodental, dental, alveolar, velar,

glottal, high, mid, low, silence
rounding +round, -round, silence
frontback front, back, silence

Artificial neural networks (ANNs) were trained using the
NICO Toolkit [17], which is an ANN toolkit designed and opti-
mized for speech technology applications. For each of the five
feature dimensions a separate ANN was trained. The architec-
ture of the networks (similar to the architecture described in
[16, 17]) was the same for all feature dimensions, with the ex-
ception of the number of hidden units and the number of output
units. The number of hidden and output units for each feature
dimension are shown in Table 5. The input units consisted of
12 Mel-frequency cepstral coefficients plus energy for 25 ms
frames, with a 10 ms frame shift. In addition, deltas and dou-
ble deltas were used. The connectivity from the hidden units to
the output units was set to 25%, the connectivity from the input
units to the hidden units was also 25% and the spread for the
recurrent connections was 25. For more information on these
parameters see [17]. The results in terms of percentage frames
correctly classified are shown in Table 5. These results are in
line with previously reported results [1, 9, 11]

Table 5: Classification results for the articulatory-acoustic fea-
tures.

feature % frames correct # hidden # output
units units

manner 87.0 200 6
voicing 92.9 100 3
place 78.3 300 10
rounding 90.6 100 3
frontback 86.4 100 3

4. Feature Syllable Templates
Various studies [1, 6] have shown that there is a systematic re-
lationship between articulatory-acoustic features and syllables.
In [6], Greenberg explains how articulatory-acoustic features
can give insight into the nature of pronunciation variation at the
level of the syllable. A few of the points raised in [6] which are
relevant to this study are the following;

� In a syllable, onsets are most often produced canonically,

whereas the nucleus and coda are often reduced, the coda
often even being deleted.

� Voicing is the articulatory foundation of the syllabic nu-
cleus.

� It is rare for two segments of the same manner class to
occur in adjacent positions within a syllable.

� Articulatory place cues serve to distinguish among
words, particularly at onset. In coda position there is
a general preference for central place of articulation.

These are all pointers to the type of cues that are present in
speech material pertaining to the role of articulatory-acoustic
features at the syllable level. The question that remains unan-
swered is how to extract this type of information and how to
employ it in the speech recognition process.

As a starting point, to address this question, syllable tem-
plates were defined. The templates were derived from the man-
ual transcriptions by rewriting the strings of phonetic segments
in terms of articulatory-acoustic features and bundling them to-
gether at the syllabic level. The features for manner of articu-
lation, place of articulation and voicing were considered. Note
that describing the training and test material in this way, does
not ensure unique descriptions for all syllables, in particular the
nucleus is under-specified. Disambiguation of the nucleus (i.e.
mainly vowels) will be done at a later stage, as prosodic promi-
nence and lexical stress will have to play an important role to
achieve this [1, 6]. An example of a number of templates is
given in Table 6, which shows the syllable and template de-
scription for the words “ingenuity will”.

Table 6: Example of syllable template descriptions.

template
syllable type voice manner place

[ix n] [ V C ] +voi vow nas high alv
[jh ix] [ C V ] +voi fric vow alv high
[n uw] [ C V ] +voi nas vow alv high

[ax] [ V ] +voi vow mid
[t iy] [ C V ] -voi +voi stp vow alv high
[w l] [ C C ] +voi appr vel alv

Figure 1 shows the same information as Table 6 in a graph-
ical way. The syllabification shown in the first tier is derived
from the manual phone transcriptions. The following three tiers
show the target feature values for voicing, manner of articula-
tion and place of articulation.

4.1. Classification of the syllable templates

In a classification task, the segment boundaries are known.
In this case, the TIMIT syllable boundaries which were ob-
tained during the syllabification process function as the segment
boundaries. In addition to knowing the syllable boundaries, the
syllable templates for all of the test material were also available,
i.e. there were no OOS syllables. Activation values were ob-
tained by running the networks for voicing, manner and place
of articulation. These activation values were scaled and then
normalized, ensuring the range for the outputs was between 0
and 1 and that the values summed to 1.

The probability for each syllable template for each feature
group was calculated. A percentage correct was obtained by
comparing the template with the highest probability to the cor-
rect template. For voicing, 78.1 % of the syllables were classi-
fied correctly, 64.8 % of the syllables were correctly classified
in terms of manner of articulation and 53.2 % correct was found
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Figure 1: Syllable template

for place of articulation. Combining the templates for the three
different feature groups to obain a syllable template leads to
correct classification for 48.2 % of the syllables. These results
show that more is needed than simple template matching to get
from features to syllables, nevertheless, this gives a baseline to
start from.

In ongoing work, weighted finite state transducers will be
employed to learn the mapping from the articulatory-acoustic
features to syllables. Other steps that will be taken are to include
syllable position as an input parameter for the neural networks.
In [1], significant gains are reported in both AF and phonetic
classification accuracy when syllable-position information was
incorporated in the neural networks.

5. Conclusions
The use of articulatory-acoustic features in ASR has been
proved viable to a certain extent. Frame level accuracy rates
are very high. However, the articulatory-acoustic features have
not yet lived up to their full potential, as the frame accuracy
rates do not translate into better recognition rates. This is due to
the fact that their strong points have not yet been fully exploited
in recognition experiments. It was argued that the asynchronous
nature of the features is better modelled in syllables than at the
level of phones.

In this study, an overview of the syllable structure in TIMIT
was given. A first step in syllable classification was made by
simple template matching. Future work will concentrate on em-
ploying WFST and alternatively decision trees to perform the
mapping from feature streams to syllable templates. Syllabic
prominence will also be incorporated in this framework to dis-
ambiguate between different syllabic nuclei.
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