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Abstract

This paper presents an experimental comparison of the performance of the multilayer perceptron (MLP)

with that of the mixture density network (MDN) for an acoustic-to-articulatory mapping task. A corpus of
acoustic-articulatory data recorded by electromagnetic articulography (EMA) for a single speaker was used

as training and test data for this purpose. In theory, the MDN is able to provide a richer, more flexible

description of the target variables in response to a given input vector than the least-squares trained MLP.

Our results show that the mean likelihoods of the target articulatory parameters for an unseen test set were

indeed consistently higher with the MDN than with the MLP. The increase ranged from approximately 3%

to 22%, depending on the articulatory channel in question. On the basis of these results, we argue that using

a more flexible description of the target domain, such as that offered by the MDN, can prove beneficial

when modelling the acoustic-to-articulatory mapping.
� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

1.1. Background

A successful method for inferring articulation from the acoustic speech signal would find many
potential applications: low bit-rate speech coding, helping individuals with speech or hearing
impairment by providing visual feedback during speech training, and the possibility of improved
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automatic speech recognition. Therefore, it is unsurprising that researchers have been investi-
gating the acoustic-to-articulatory mapping for several decades.

Much of this work has pursued an analytical approach, whereby an acoustic signal is subjected
to mathematical analysis to yield the area function of a tube model that might have generated it.
Many early attempts in particular took this approach. For example, Wakita (1979) attempted to
infer the area functions for a model vocal tract for vowel sounds. Unfortunately, analytical
methods have struggled with some fundamental difficulties. Certain types of speech sound have
proved more challenging than others, such as where coupling of the nasal and oral cavities occurs.
Perhaps most importantly, there is no independent means of assessing the performance of the
inversion mapping. Moreover, certain inferred vocal tract configurations may not even be
physiologically possible, let alone common in the speech of human speakers.

Researchers have also turned to articulatory synthesis models for help in studying and devel-
oping an inversion mapping. These may be used as part of a ‘‘mimic’’ algorithm, where the model
parameters are iteratively adjusted to minimise cost functions based on the model output and the
target acoustic signal (e.g., Shirai & Kobayashi, 1986). Synthesis models have also been used to
generate a database of acoustic-articulatory vector pairs by sampling from the domain of the
articulatory control parameters. Such a database can either be used directly for performing the
inversion mapping (e.g., Atal, Chang, Mathews, & Tukey, 1978), or as training data for other
empirical learning models. As an example of the latter, Rahim, Goodyear, Kleijn, Schroeter, and
Sondhi (1993) used Mermelstein�s articulatory model (Mermelstein, 1973) to generate data for
training various MLPs.

Unfortunately, as with analytical methods, the use of articulatory synthesis models still leaves
us with fundamental problems in terms of satisfactory assessment with respect to real human
speech. It is also conceivable that limitations in either the accuracy or scope of the model itself
could manifest themselves in a generated data set.

Human articulography data avoids artifacts resulting from limitations and inaccuracies in the
generating model that might afflict synthetic data. What is more, we are not left with the same dif-
ficulties in assessing how an inversionmethod is really performing; we can evaluate the performance
of an inversion algorithm by comparison with how the speaker actually articulated an utterance. As
such, human articulographic data is a very useful resource for studying the inversion mapping.

Thanks to technologies such as X-ray microbeam (XRMB) cinematography and electromag-
netic articulography (EMA), measured human articulatory data has become increasingly acces-
sible. However, despite the potential advantages, only a relatively small number of studies where
empirical learning models have been applied to measured articulatory data have been previously
reported. These include extended Kalman filtering (Dusan, 2000), self-organising HMMs
(Roweis, 1999), codebook methods (Hogden et al., 1996), and the MLP (Papcun et al., 1992;
Zachs & Thomas, 1994). The studies that have been done have focused almost entirely on a re-
stricted set of speech sounds. Therefore, attempting inversion for all speech sounds and for
continuous speech, as described in the current paper, is a necessary research step in itself.

1.2. Approach to inversion

The MLP is well known as a universal function approximator and has advantages in terms of
efficiency compared with many models. For example, Rahim, Kleijn, Schroeter, and Goodyear
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(1991) reported their MLP inversion system used only 4% of the memory required by the code-
book they used for comparison, and was able to perform the mapping 20 times faster. In view of
the promise shown by the MLP in the past for performing the inversion mapping, we considered it
a worthwhile candidate for evaluation on a larger database of more realistic articulatory-acoustic
data. In Section 3, we present our experience of using the MLP for performing the inversion
mapping.

From this point we go on to address the implications of evidence that indicates that multiple
articulatory configurations are able to produce the same acoustic signal. Lindblom, Lubker, and
Gay (1979), for example, found that speakers whose jaw had been fixed in position by a bite block
were nevertheless able to produce vowels with formants well within the range of variation ob-
served under normal conditions. Another compelling example was provided by Roweis (1999).
Using roughly 20min of speech from each of 57 speakers recorded at the X-ray microbeam facility
at Wisconsin University (Westbury, 1994), Roweis compiled a large data set of acoustic-articu-
latory vector pairs. He then took a reference point in acoustic space and showed how the artic-
ulatory points paired with the nearest thousand points in acoustic space could be spread widely
throughout the articulatory domain, and even feature multimodal distributions.

If humans do use a range of different articulatory configurations to produce the same acoustic
signal, then the inversion mapping is a classic example of what is termed an ill-posed problem, as
the solution is potentially non-unique. In general, it raises the question of how an inversion al-
gorithm should decide between all the possible articulatory configurations that might be associ-
ated with a given acoustic feature vector. In particular, we are led to question how the MLP deals
with ill-posed problems.

It is well known that the outputs of an MLP trained under the sum-of-squares error function
approximate the average of the target data points conditioned on the input vector. This is
equivalent to performing unimodal regression, with a residual global variance over the whole
training data set (Bishop, 1995). While this might be an appropriate solution for many situations,
it can be problematic in the case of ill-posed mappings. Where multiple branches of the solution
exist, the average of several correct target values is not legitimate. In addition, there is no indi-
cation (dependent on the input) of how the potential target values are distributed about the mean.

The mixture density network (MDN), introduced by Bishop (1994), represents a method for
modelling arbitrary probability density functions over the target domain, conditioned on the
input vector. With respect to the inversion mapping problem, the MDN can in principle provide a
full and flexible description of how likely all possible articulatory configurations are given an
acoustic input.

If the conditional distributions of target points in articulatory space conform to a unimodal
Gaussian with a variance that does not depend in a systematic way on the acoustic input, then the
least-squares trained MLP should provide a sufficient description. However, if the distributions of
articulatory points have variance related to the acoustic input, or take a more complex form than
a unimodal Gaussian, then the MDN should demonstrate an advantage over the MLP. It is the
aim of the current paper to test this and to compare directly the MLP with the MDN on an
acoustic-to-articulatory mapping task.

In this respect, the motivation for the approach taken in this paper differs from the general aim
apparent in previous work. It is the intention here to explore the potential for explicitly modelling
the uncertainty, or variance, around estimated articulator positions. This approach is in part
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motivated by the view that, if inferred articulation is to provide useful application, we need to
know how much confidence to ascribe to the accuracy of the inferred articulatory parameters at
each point in time.

This paper first introduces the measured articulatory data that has been used in the exper-
iments described, and explains how it was processed for use as training data for the neural
networks. Next, we describe our implementation of an MLP for performing the inversion task
and evaluate its performance compared with other systems reported in the literature. We then
describe how MDNs have been applied to the same inversion problem. Finally, the charac-
teristics of an MLP and an MDN for performing the acoustic-to-articulatory mapping on this
data set are compared.

2. The inversion task

2.1. MOCHA

The multichannel articulatory (MOCHA) database has recently been recorded in the purpose
built studio at the Edinburgh Speech Production Facility at Queen Margaret University College
(Wrench & Hardcastle, 2000).

During speech, four data streams were recorded concurrently straight to computer: the
acoustic waveform (16 kHz sample rate, with 16 bit precision) together with laryngograph,
electropalatograph and electromagnetic articulograph data. The electromagnetic articulograph
sampled the movement of receiver coils attached to the articulators in the midsagittal plane at
500Hz. Coils were affixed to the top lip, bottom lip, bottom incisor, tongue tip, tongue body,
tongue dorsum and velum. With each of these sensors providing x- and y-coordinates in the
midsagittal plane, 14 channels of salient articulatory information were recorded in total. Addi-
tional coils were attached to the bridge of the nose and the upper incisor. However, the signals
from these coils, which should have minimal movement relative to each other, were only used to
provide reference points for an algorithm which processed the other EMA channels to correct for
head movement.

The speakers were recorded reading a set of 460 British TIMIT sentences. These short sentences
were designed to provide phonetically diverse material. They were chosen in an attempt to capture
with good coverage the connected speech processes in English and thus to maximise the usefulness
of the MOCHA database for speech technology and speech science research purposes.

The final release of the database will feature up to 40 speakers with a variety of regional ac-
cents. At the time of conducting the experiments described here, two speakers had been made
available: one male with a Northern English accent and one female speaker with a Southern
English accent. For this paper, the acoustic waveform and EMA data recorded for the second
speaker (fsew0) were used.

2.2. Data processing

In order to render the raw articulatory and acoustic data into a format suitable for use with
neural networks, several processing steps were carried out. First, filterbank analysis was per-
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formed on the acoustic signal, using a Hamming window of 20ms with a shift of 10ms. For each
time frame, the acoustic vector consisted of 20 melscale filterbank coefficients. These were nor-
malised across all 460 utterances to lie within the range ½0:0; 1:0�.

The articulatory feature vector comprised the x- and y-coordinates of the seven EMA sensor
coils. In order to obtain an articulatory feature vector to pair with each acoustic vector, the EMA
traces were downsampled to match the 10ms shift rate of the acoustic feature vectors. Prior to
downsampling, the signal was first lowpass filtered with a zero-phase FIR filter to lessen the effect
of noise resulting from measurement error in the EMA machine. The articulatory feature vectors
were normalised to lie in the range ½0:1; 0:9�. This range was used because the logistic activation
function of the output units in the MLP has unrealisable asymptotic limits of 0.0 and 1.0. All
normalisation was performed as standard, using mean and standard deviation, then shifting and
scaling for the data to lie within the desired range. Further details of the normalisation process
can be found in Richmond (2002).

The files for each utterance of speaker fsew0 contain an average of approximately 1.3 s of
silence in total before and after the utterance. This compares with an average utterance length of
2.7 s. During silent stretches, the mouth can potentially take any configuration. This could pose a
serious problem to network training, because given an acoustic feature vector representing silence,
the network would be attempting to map to a large range of possible articulatory configurations.
Therefore, care was taken to omit all data containing silence.

From the 460 utterances contained in the database of speaker fsew0, 368 files were included in
the training set, 46 files in a validation set, while 46 files were put aside for the test set. The full
training set contained 92,557 pairs of acoustic and articulatory feature vectors.

3. MLP inversion mapping

The feedforward MLP used to perform the inversion mapping is shown in Fig. 1. As indicated,
this network featured 14 output units, one for each of the x- and y-coordinates of the seven EMA
coil positions. The input layer of the network contained 400 units, which provided a context
window of 20 frames of 20 filterbank coefficients each. The use of a context window in the
acoustic input domain was similar to the approach of Papcun et al. (1992), and empirical eval-
uation has indeed found it to be beneficial (Richmond, 2002).

We used the Skeletonization algorithm (Mozer & Smolensky, 1989) to help identify a
suitable number of hidden units. This pruning algorithm works by taking a fully trained MLP
and identifying the node whose removal would result in the lowest increase in error on the
training set. This node is then removed, and the network is further trained to compensate. The
two steps of removing the least salient node and then retraining are repeated iteratively until
removing a further node results in a deficit in network performance that it is not possible to
recoup.

In this case, the initial MLP contained 50 hidden units. The best performance was observed in
the network with only 38 units remaining; after this point, the network became progressively
worse with the removal of each unit. This number of units was corroborated as approximately
suitable by a separate experiment, in which a set of MLPs were trained and evaluated with a range
of hidden layer and input layer sizes (Richmond, 2002).
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As is common practice, the network shown in Fig. 1 was first initialised by randomising the
weights to lie in the range ½�1:0; 1:0�, and trained until the error calculated on the separate val-
idation data set ceased to reduce. The scaled conjugate gradient (SCG) (Møller, 1993) optimi-
sation algorithm was used to train the MLP. First order optimisation algorithms, such as
standard backpropagation gradient descent, only make use of the first derivatives of the error
function. Conjugate gradient optimisation algorithms on the other hand make use of the second
derivatives of the error function. SCG has been shown to be considerably faster than standard
backpropagation and other conjugate gradient methods (Møller, 1993). The SCG optimisation
algorithm also has the convenience of not requiring the user to decide values for critical pa-
rameters, as all the algorithm�s parameters are adaptive and the user only has to supply non-
crucial initial values. This contrasts with simple gradient descent optimisation, for example, which
is sensitive to the user supplied learning parameter g. When g is small, the network may be slow to
train and may become more easily stuck in local minima. Conversely, when g is large, training can
become erratic.

3.1. Results

Two measures that have been used in the past to compare trajectories of articulatory move-
ments are root mean square (RMS) error and correlation. RMS error is an indication of the
overall �distance� between two trajectories. The correlation score is an indication of similarity of
shape and synchrony of two trajectories.

Fig. 1. Feedforward MLP for performing the inversion mapping. This figure shows the presentation of an acoustic

input vector, made up of 20 time frames of 20 filterbank coefficients. Each frame of filterbank coefficients was computed

with a shift of 10ms, therefore the total context window of acoustic input applied to the network is approximately

200ms. The hidden and output units used a logistic activation function.
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Table 1 presents the results for the MLP when estimating articulation for the unseen test set
containing 46 utterances. The first column of this table shows RMS error, calculated separately
for each of the 14 articulator channels as

ERMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðoi � tiÞ2
vuut ; ð1Þ

where N is the number of input–output vector pairs, or patterns, in the test set, oi is the estimated
value for the articulator channel output by the network, and ti is the measured value. The second
column gives the same RMS errors, but scaled back to the original domain of EMA measurement
in millimetres. Finally, the third column gives a measure of correlation between the actual ar-
ticulatory trajectories and those estimated by the MLP. The measure is calculated by dividing
their covariance by the square root of the product of their variances

r ¼
P

iðoi � �ooÞðti � �ttÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðoi � �ooÞ2 �

P
iðti � �ttÞ2

q ; ð2Þ

where �oo and �tt are the mean channel value for the network output and actual articulator position
respectively.

The results given in Table 1 compare favourably with those of other inversion mapping
methods previously reported in the literature: Hogden et al. (1996) reported an error around 2mm
for the tongue points; Dusan (2000) reported average RMS error of around 2mm; Okadome,
Suzuki, and Honda (2000) reported RMS error between estimated and actual articulatory tra-
jectories of about 1.8mm on average. In addition, Richmond (2002) reported on using global
linear mappings for exactly the same task with a range of different context window sizes. The

Table 1

MLP performance when recovering articulation from acoustics for the unseen test set, given as RMS error and cor-

relation for each articulatory channel

Articulator RMS error RMS error (mm) Correlation

Upper lip x 0.18 0.99 0.58

Upper lip y 0.14 1.16 0.72

Lower lip x 0.16 1.21 0.61

Lower lip y 0.14 2.73 0.75

Lower incisor x 0.16 0.89 0.56

Lower incisor y 0.12 1.19 0.80

Tongue tip x 0.13 2.43 0.79

Tongue tip y 0.12 2.56 0.84

Tongue body x 0.12 2.19 0.81

Tongue body y 0.11 2.14 0.83

Tongue dorsum x 0.13 2.04 0.79

Tongue dorsum y 0.14 2.31 0.71

Velum x 0.13 0.42 0.79

Velum y 0.13 0.41 0.77

The average of the RMS error values given is 1.62mm.
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linear mapping with 20 frames within the context window performed with an error of 1.89mm on
average.

RMS error and correlation scores provide a means to compare objectively and quantitatively
the performance of two different networks, or indeed different inversion techniques described
previously in the literature. Meanwhile, visual comparison of MLP output with the measured
articulatory trajectories undoubtedly gives a very useful qualitative impression of how the MLP is
performing the inversion mapping, and can reveal clues as to the nature of error in the MLP
output.

Fig. 2 demonstrates the output of the MLP for the test set utterance ‘‘The speech symposium
might begin on Monday’’. The figure provides a direct comparison of the trajectories estimated
by the MLP with those measured by EMA and normalised. Silence at the beginning and end of
the files has been omitted. As this example shows, the MLP is typically capable of estimating
the trajectories of some articulators with a good level of accuracy at some times, but less so at
other times. For example, at around 1.8 s, the MLP estimates for the x-coordinates of the three
tongue points are more accurate than for the y-coordinates of the same points. During the rest
of the utterance, however, the accuracy of the tongue point y-coordinate estimates is reasonably
high.

The inertia of speech articulators means they are constrained to move relatively slowly and
smoothly. While continuity is a basic principle of human speech production, an MLP trained with
the sum-of-squares error function will not necessarily emulate this. The aim of training with the
sum-of-squares error function is to minimise the distance of the MLP output from the target
output for each input–output training pattern. In other words, the optimal instantaneous map-
ping that the MLP can provide at a given time frame is the conditional average of the articulator
configurations for all such input vector frames. However, this optimum does not in any way
stipulate that the output articulatory configuration at one time frame should depend on the ar-
ticulatory configuration at any previous or following time frames. Therefore, we rely heavily on
the inversion mapping function itself to yield smoothly varying output. Specifically, we assume
that acoustic input vectors at time t � 1 and time t þ 1 will map to points in the near vicinity of the
articulatory configuration at time t, such that no discontinuities result in the overall sequence of
MLP output. This assumption is reasonable, but is in practice liable to be confounded by one-to-
many mappings from the acoustic to the articulatory domain. For instance, the MLP output
shown in Fig. 2 appears to be noisier than the respective measured articulatory trajectories. This is
despite the use of a context window, which should help alleviate the problem of one-to-many
mappings.

In an effort to make up for inadequacies in the MLP estimated articulatory trajectories, we
might turn to various postprocessing techniques. For example, we know that the articulators
move relatively slowly. Therefore, one simple example of an articulatory constraint we could
impose as a postprocessing step, which utilises this knowledge, is to lowpass filter the MLP
output. In Richmond (2002), we have demonstrated that lowpass filtering the MLP estimated
trajectories, with channel specific lowpass cutoff frequencies which had been identified em-
pirically, does indeed moderately reduce RMS error and increase correlation scores. However,
we will not use this method here. In the present paper, we want simply to evaluate whether a
more sophisticated description of the target articulatory domain might provide a better
model.
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4. MDN inversion mapping

To recapitulate, the MDN provides a principled method for modelling the target data corre-
sponding to each input vector with a full conditional probability density function. This contrasts
with the least-squares trained MLP, which only provides a mean value and a fixed residual

Fig. 2. A comparison of the MLP estimated articulatory trajectories with the EMA-measured articulatory trajectories

for the unseen test utterance ‘‘The speech symposium might begin on Monday’’. Note the articulatory trajectories in

this plot are shown in their normalised range, after processing as described in Section 2.2.

K. Richmond et al. / Computer Speech and Language 17 (2003) 153–172 161



variance for the distribution of possible target values. Moreover, the MLP assumes distributions
of target points corresponding to a unimodal Gaussian.

Since MDNs are not commonplace in the speech field, for the reader�s convenience we shall first
briefly introduce the theory underpinning the model. For a complete description, the reader is
directed to Bishop (1994) or Bishop (1995).

4.1. Introduction to the mixture density network

An MDN can be thought of as the combination of a conventional neural network with a
mixture model. An example MDN is shown in Fig. 3. In this example, the MDN takes an input
vector x of dimensionality 5 and gives the conditional probability density of a vector t of di-
mensionality 1 in the target domain. This density function is modelled by a Gaussian mixture
model with three components, so that it is given by:

pðtjxÞ ¼
XM
j¼1

ajðxÞ/jðtjxÞ; ð3Þ

where M is the number of mixture components (in this example, 3), /jðtjxÞ is the conditional
probability density given by the jth kernel, and ajðxÞ is the mixing coefficient for the jth kernel.
The mixing coefficients represent the prior probability that a target vector t has been generated by
the jth kernel, and therefore they must sum to one. Note that any of a number of different kernel
functions may be used in the mixture model, but only Gaussian kernel functions are considered
here. In theory, any neural network with universal approximation capabilities can be used to map

Fig. 3. The mixture density network is the combination of a mixture model and a neural network. In a trained MDN,

the neural network maps from the input vector x to the control parameters of the mixture model, which in this case uses

Gaussian components (priors a, means l and variances r2) but in theory could be any of a number of kernel functions.

The mixture model gives a full pdf description of the target domain conditioned on the input vector pðtjxÞ.
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from the input vector to the mixture model parameters. In this example, we see a feedforward
MLP with 5 input units, a hidden layer of 2 units with sigmoidal activation and nine linear output
units for the mixture parameters. In general, the total number of network outputs is given by
ðcþ 2Þ 
M , where c is the dimensionality of the target domain, and M is the number of mixture
components. In other words, each mixture component has 1 unit for its prior, 1 unit for its
variance and c units for the mean of the component in the target space. Note that we are using
Gaussian components with spherical covariance here (one variance parameter for each compo-
nent). In principle, the MDN is not limited to using only spherical covariance; both a diagonal or
full covariance matrix could be used for each component. However, complicating the model in
this way is avoidable, because a mixture of spherical Gaussians is theoretically able to model any
distribution function with arbitrary accuracy assuming enough components are available (Bishop,
1995).

In order to constrain the mixing coefficients to lie within the range 06 ajðxÞ6 1 and to sum to
unity, the softmax function (Bridle, 1990) is used to relate the mixing coefficients of the mixture
model to the output of the corresponding units in the neural network:

aj ¼
expðzaj ÞPM
l¼1 expðzal Þ

; ð4Þ

where zaj is the output of the neural network corresponding to the mixture coefficient for the jth
mixture component. The variance parameters of the mixture model are related to the corre-
sponding outputs of the neural network according to the following function:

rj ¼ expðzrj Þ; ð5Þ

where zrj is the output of the neural network corresponding to the variance for the jth mixture
component. This has the convenience of avoiding the variance becoming less than or equal to
zero. Finally, the means for the mixture model are represented directly by the corresponding
outputs of the neural network:

ljk ¼ zljk; ð6Þ

where zljk is the value of the output unit corresponding to the kth dimension of the mean vector for
the jth mixture component.

The objective of training the MDN is to minimise the negative log likelihood of the observed
target data points given the mixture model parameters, which is given by

E ¼ �
X
n

ln
XM
j¼1

ajðxnÞ/jðtnjxnÞ
( )

: ð7Þ

Since it is the neural network part of the MDN that provides the parameters for the mixture
model for each input–output vector training pair, this error function must be minimised with
respect to the network weights. Fortunately, the derivatives of the error at the network output
units corresponding separately to the priors, means and variances of the mixture model may be
calculated (see Bishop, 1995). These error �signals� may then be propagated back through the
network as normal in network training to find the derivatives of the error with respect to the
network weights. Thus, training is a problem to which standard non-linear optimisation algo-
rithms can be applied.
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4.2. Application to inversion mapping task

Using a single Gaussian in the mixture model is similar to the unimodal regression observed
when using an MLP to estimate articulation from acoustics. However, in the case of the MDN,
the variance of the Gaussian as well as the mean is allowed to vary as a function of the acoustic
input vector, which yields greater modelling flexibility. Using a mixture of Gaussians in the
MDN pdf (see Eq. (3)) introduces the additional flexibility of allowing potentially non-
Gaussian and multimodal distributions in the target articulatory domain to be modelled more
closely.

In Richmond (2002), we compared the performance of MDNs trained for each articulatory
channel containing four combinations of either 5 or 10 hidden units and either one or two
Gaussian kernels in the density model. In 27 out of 28 cases where networks were directly
compared, the MDN with a mixture of two Gaussians in the density model demonstrated higher
accuracy than the equivalent MDN with a single Gaussian. The dependence on the number of
hidden units was also indicated by a pairwise comparison of otherwise equivalent networks. In
27 1 out of 28 direct comparisons, the MDN containing 10 hidden units performed better than the
equivalent MDN with just 5 hidden units. For the sake of brevity, we will concentrate here on the
results for the MDNs containing 10 hidden units and 2 Gaussians in the density function for each
articulatory channel.

This limited set of combinations of hidden layer size and density function may not include the
optimal MDN architecture. However, our aim in the current paper is simply to ascertain whether
having variance parameters dependent on the input on one hand and allowing multimodal dis-
tributions on the other can provide a closer model of the distribution of possible target articu-
latory configurations. Since our results will indicate this is the case, this limited set is sufficient for
our purposes here. Nevertheless, there are strong indications that it may prove beneficial in future
work to try MDNs with higher numbers of hidden units and mixture components in order to gain
better performance.

Exactly the same training, validation and testing data sets as were used with the MLP
described in Section 3 were used for training the MDNs. Thus, the MDNs in this section had
400 acoustic input units, which made up the context window of 20 frames of 20 filterbank
coefficients.

Prior to training, the biases for the output units of the MDN were initialised using a k-
means based initialisation algorithm. Under this algorithm, a separate Gaussian mixture
model of the same form as the MDN output was used to model the unconditional density
of the target data. Ten iterations of the k-means algorithm were used to determine the
component centres. The priors were computed from the proportion of the target data be-
longing to each component, and the variances were calculated as the sample variance of the
target data points belonging to each component from the associated mean. The output unit
biases were then set so that the net would output the values in the Gaussian mixture
model. All other biases and weights in the MDN were randomised by sampling from a
Gaussian.

1 Not the same 27 networks from the previous comparison between one and two Gaussian kernels.
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As with the MLP, the MDNs were trained using the Scaled Conjugate Gradient algorithm to
optimise the error function given in Eq. (7). Although the separate validation set was used to
identify the best network during training, an upper bound of 2000 training epochs was also im-
posed. However, all 14 networks appeared to reach a maximum in terms of performance on the
validation set within this limit.

4.3. Results

Figs. 4 and 5 provide a visual representation of the output of the MDNs. These plots, which
might be termed articulatory ‘‘probabilitygrams’’, show the probability density for the location of
an articulator within its range of movement as a function of time. Such plots are produced by
taking the probability density function output by the MDN at each time frame (x-axis) and
calculating the probability density at certain intervals (in this case 0.01) encompassing the range of
movement of the given variable (y-axis). The probability density for a particular articulator lo-
cation at a given time frame is represented by the greyscale intensity. Intense black indicates high
probability density, whereas white indicates low probability density.

As well as showing the output of the MDNs, the measured EMA trajectories are shown for
comparison. Phonetic segmentation is also indicated in these plots. This labelling is provided as
standard as part of the MOCHA database, and was produced automatically using the recording
prompts and an HMM forced alignment.

4.3.1. Variability of variance
In Figs. 4 and 5, it is clear that the variance around the estimated location of an articulator is

higher at some times than at others. We also notice a correlation: when the MDN output variance
is low, the accuracy of the estimated location of the articulator is typically higher. This correlation

Fig. 4. Comparison of MDN output with the actual, measured articulator trajectory for the unseen test utterance

‘‘Bright sunshine shimmers on the ocean’’. The y-coordinate trajectory of the lower incisor is shown in this example.

Probability density over the range of the articulator�s movement is shown as a function of time using greyscale intensity,

where intense black indicates high probability density.
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is unsurprising, since the variances of the probability density functions output by the MDN are
estimated as a function of the acoustic input so as to minimise the negative log likelihood error
function.

Generally, it seems that the variance is low when the articulators might be critical to the
production of the segment. For example, for the tongue tip articulator in Fig. 5, the variance
is lowest during times when the tongue tip is near the upper surface of the vocal tract and
‘‘critical’’, such as during the phones [t, s, z]. Table 2 explores this observation in greater
depth.

For each of the three articulatory channels in Table 2, we have calculated the average variance
output by the respective MDN during all frames in the test set corresponding to 23 separate
phones. 2 Channel specific MDNs containing 10 units in a single hidden layer and a single
Gaussian kernel in the output pdf were used for this purpose (Richmond, 2002). For each ar-
ticulatory channel, we have then ranked the phones according to their respective MDN average
variance.

On the whole, the results in Table 2 are consistent with our initial observation. For ex-
ample, we find that for the ‘‘tongue tip y’’ channel, those phones for which the position of the
tongue tip is critical demonstrate lower average variance, such as [s, z, h. . .]. Meanwhile, for
the ‘‘upper lip x’’ channel, phones such as [m, w, b, p] demonstrate lower average variance
relative to other phones. In the third column, for the ‘‘velum x’’ channel, it is interesting to
note that the MDN output features lower average variance for those phones where the velar
port is most likely to be closed, whereas for the nasal stops [m, n, ¢] the average variance is
relatively high.

2 The remaining 23 phones in the phone set that have not been included in Table 2 were all vowels.

Fig. 5. Comparison of MDN output with the actual, measured articulator trajectory for the unseen test set utterance

‘‘Most young rabbits rise early every morning’’. The y-coordinate trajectory of the tongue tip is shown in this example.

Probability density over the range of the articulator�s movement is shown as a function of time using greyscale intensity,

where intense black indicates high probability density.
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There are of course certain caveats to bear in mind when considering the results in Table 2.
From a practical point of view, it is possible that the picture is clouded to some extent by the use
of the automatically produced MOCHA labelling, which in some respects is closer to a ‘‘pho-
nological’’ labelling rather than a fine-grained ‘‘phonetic’’ labelling: for example, any instances of
glottal stops will be labelled as the underlying phone; instances of assimilation are overlooked; no
distinction is made between dark and light [l], and so on. In other words, the phone classes used
may not correspond to satisfactorily pure groups of allophones. It is also possible, hypothetically
speaking, that an articulator�s position may not be critical to the production of a given phone, but
that its position may nevertheless be relatively accurately predicted (perhaps under the influence
of a critical articulator). Finally, when interpreting these results, it is important not to forget that
the variances in question are not those exhibited directly by the articulators themselves. Instead,
they are the variance parameters from the MDN output pdfs, which are only an approximation to
the conditional probability density of the real data. However, despite these caveats, we never-
theless believe these findings tend to support the view of critical versus non-critical articulators
discussed by Papcun et al. (1992).

Table 2

Ranked phone dependent averages for the variance parameters of MDN output density functions for three articulatory

channels

Tongue tip y Upper lip x Velum x

Phone Av. r2 Phone Av. r2 Phone Av. r2

s 0.003 m 0.015 T 0.007

z 0.003 w 0.016 z 0.007

h 0.005 D 0.017 b 0.008

S 0.006 n 0.018 S 0.008

t 0.009 b 0.019 s 0.008

D 0.010 p 0.019 g 0.009

T 0.011 N 0.019 F 0.009

n 0.011 k 0.020 t 0.009

y 0.012 f 0.020 y 0.009

N 0.012

r

0.020 d 0.010

d 0.012 g 0.020 k 0.011

r

0.012 l 0.021 f 0.011

F 0.013 v 0.021 h 0.011

v 0.013 h 0.021 w 0.012

f 0.013 d 0.021 p 0.012

l 0.014 h 0.021 v 0.012

m 0.014 z 0.022 l 0.013

h 0.014 t 0.024 D 0.013

g 0.014 s 0.027

r

0.018

k 0.015 F 0.027 N 0.021

w 0.016 T 0.028 m 0.024

p 0.017 S 0.028 h 0.025

b 0.017 y 0.029 n 0.037

Phone identities are given using standard IPA notation. Notice that the MDN output generally features lower

variance where an articulator�s position could be considered to exert a strong influence during the production of a

phone.
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4.4. MDN output flexibility

The probability density function over the target domain which the MDN provides is a flexible
model in itself and may be used in numerous ways according to requirement. For example, we
could compute the conditional mean of the target data given the input vector. This value ap-
proximates the output of a standard least-squares trained MLP as a special case. We could also
compute the variance around this average for each input vector. This goes beyond the capabilities
of a standard MLP, for which we can only compute a global residual variance. On the other hand,
at each time frame, we could take the mean and variance of the Gaussian with the highest prior to
give the mode trajectory. This approximates the mixture of experts model (Jordan & Jacobs, 1994)
as another special case. While these few examples give an impression of the flexibility of the MDN
output, many other ways of using the MDN output may be envisaged.

5. Comparing MLP with MDN

In order to gauge whether MDNs allow closer modelling of the distributions of possible ar-
ticulatory configurations than MLPs, we require an error measure to compare like with like. If we
assume that the MLP has sufficient representational power and has been trained well enough to
approximate closely the conditional mean of the target data, we know that any remaining error is
attributable to the variance of the target data itself around its conditional mean (Bishop, 1995).

The global variance for each articulatory channel (r2
k) may be calculated as

r2
k ¼

1

N

XN
n¼1

ykðxn;w�Þ



� tnk
�2
; ð8Þ

where N is the number of input–output vector pairs in the training set, ykðxn;w�Þ is the kth output
of the trained MLP with the optimal weight configuration w� in response to the acoustic input
vector xn, and tnk is the corresponding articulatory target value for channel k.

Hence, at testing time, we can interpret the MLP output for each time frame as a single
Gaussian probability density function, whose mean and variance are given respectively by the
output of the MLP and the global variance precomputed according to Eq. (8). Given the
probability density functions at each time frame, we can calculate the likelihood of the articu-
latory target data for the whole test set. This likelihood can be compared directly with the
equivalent likelihood calculated according to the probability density functions provided by the
MDNs.

Table 3 provides just this comparison. Columns 2 and 3 of Table 3 give the geometric mean
likelihood of the articulatory target data in the test set, 3 given the framewise probability density
functions computed from the MLP and MDN, respectively. This was calculated by dividing the
total log likelihood by the number of input–output pairs in the test set, then transferring back out
of the log domain. In column 4 we have calculated the relative improvement of the MDN model
over the MLP in terms of these likelihoods as a percentage.

3 There were 11, 660 acoustic-articulatory feature vector pairs in the test set.
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To reiterate Section 1.2, in performing this comparison, we are effectively asking whether there is
any point in attempting to model the distribution of possible articulatory points conditioned on the
input vector, andwhether using distributionsmore complex than a singleGaussian can also provide
a better model. If the residual error in the MLP inversion mapping were due to machine measure-
ment error, or any other source of error thatwas not dependent on the acoustic signal, thenwewould
not expect to see any benefit in using the MDN. However, if the distribution of target articulatory
points does depend to any extent on the acoustic input, and thus is characteristic of the inversion
mapping function itself, then the MDN should demonstrate a higher likelihood score.

As the last column of Table 3 makes clear, the use of MDNs does indeed yield higher likelihood
scores for all articulatory channels. The size of this improvement ranges from 2.6% to 21.8%.
Apart from for the velum, it would appear that the best improvement is observed for the y-co-
ordinates of the articulators. Excluding the velum channels, the average improvement for the
articulatory-coordinates is about 13.3%, whereas the average for the x-coordinates is only 4.8%.
In future work, it would be interesting to investigate what might be the reason for this disparity.
For example, it may be this is merely coincidence, or an idiosyncrasy of this particular speaker.
On the other hand, it could be a more general observation. Experiments using data from multiple
speakers would be useful to investigate this question.

5.1. Density function form

As mentioned in Section 4.2, we have found that MDNs with 2 Gaussian kernels outperformed
MDNs with a single Gaussian on the same inversion mapping task in 27 out of 28 cases of
comparison. This indicates that the reason the MDNs outperform the MLP in Table 3 is at least
in part due to greater flexibility for modelling non-Gaussian distributions.

Table 3

A comparison of the likelihood of the test set target data given the framewise probability density functions provided by

MLP and MDN

Articulator channel MLP mean likelihood MDN mean likelihood Increase %

Upper lip x 1.35 1.40 4.4

Upper lip y 1.69 1.83 8.2

Lower lip x 1.52 1.56 2.6

Lower lip y 1.75 1.88 7.4

Lower incisor x 1.49 1.57 5.3

Lower incisor y 2.04 2.48 21.8

Tongue tip x 1.90 2.01 5.4

Tongue tip y 2.11 2.56 21.4

Tongue body x 1.97 2.08 5.4

Tongue body y 2.18 2.38 9.0

Tongue dorsum x 1.92 2.02 5.6

Tongue dorsum y 1.79 2.00 11.9

Velum x 1.90 2.14 12.7

Velum y 1.88 2.00 6.7

Here, 14 channel specific MDNs have been used with 10 units in one hidden layer and an output mixture density

model comprising two Gaussian kernels. The likelihood figures for both MLP and MDN are given as the geometric

mean, calculated over all input–output pairs in the unseen test set.

K. Richmond et al. / Computer Speech and Language 17 (2003) 153–172 169



Fig. 6 illustrates this point. This figure shows the density function output by the MDN for the
y-coordinate of the tongue tip at frame 255 of utterance fsew0_026 (as shown in Fig. 5). This
conditional density function is clearly different from a unimodal Gaussian. We have also marked
the actual articulator location on this plot with an ‘‘x’’, and overlaid a unimodal Gaussian whose
mean is given by the MLP output and whose variance is the residual variance calculated according
to Eq. (8). If we assume the probability density function provided by the MDN is a reasonable
approximation to the real conditional distribution of the target data, we see that by accommo-
dating the probability mass under the ‘‘lobe’’ on the right hand side (apparently centred just below
0.7), the accuracy of the MLP estimate of the articulator position has been compromised.

6. Conclusion

A feedforward MLP has been presented and applied to the task of recovering articulatory
trajectories from acoustics during continuous, phonetically rich speech. This network was trained
and tested using measured articulatory-acoustic data.

While the performance of this network compared favourably with the results of other inversion
methods reported in the field, we suspected that the MLP was ill-suited to estimating articulation
from acoustics in at least two respects. First, the MLP is limited to modelling target data points

Fig. 6. The probability density function output by the MDN (containing 10 hidden units and a mixure density model of

two Gaussian components) for the y-coordinate of the tongue tip at frame 255 (/¢/ phone) of utterance fsew0_026 (as

shown in Fig. 5). The conditional density function output by the MDN at this point is clearly not consistent with a

unimodel Gaussian. For comparison, we also include the equivalent density function for the MLP output, as well as the

y-coordinate of the tongue provided by EMA.
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with a unimodal Gaussian, which is not necessarily a sound assumption to make when modelling
the inversion mapping. Second, the MLP gives no indication of the variance of the distribution of
the target points around the conditional average.

In theory, the MDN is able to provide a description or model of the target domain at each time
frame which is powerful enough to overcome these shortfalls. In order to verify this, we have
sought to compare directly the performance of the MDN with that of the MLP on the same
inversion task.

By reinterpreting the MLP output error in terms of the likelihood of the target data, we have
demonstrated that the MDN does indeed provide a more accurate model of the distribution of the
target variables in the articulatory domain with respect to the inversion mapping problem. This
result is relevant not only to those using MLPs in particular to perform the inversion mapping,
but wherever similar assumptions about the conditional distribution of articulatory parameters
are made.

Furthermore, we have indicated evidence that might explain how this improvement is realised.
Specifically, we have shown that the MDN is able to accommodate the fact that the positions of
the articulators may be more constrained, and thus more reliably estimated, at some times than at
others. In addition, the MDN is better able to handle cases where the conditional distribution of
articulator positions does not correspond in form to a unimodal Gaussian, for example where the
solution to the inversion mapping has multiple branches.

7. Future work

This paper has concentrated on demonstrating that the MDN is able to provide a more flexible
and accurate model of the articulatory domain when attempting to infer articulatory parameters
from the acoustic speech signal. However, we have not considered how the output of an MDN
might best be used in applications. Although we touched briefly on a few values that might be
computed from the pdf output by the MDN in Section 4.4, we have by no means exhausted the
scope of possibilities.

Future work will therefore focus specifically on exploring how best to exploit the MDN output.
The aim will be to derive the ‘‘best-guess’’ trajectory through the sequence of density functions.
For example, one method envisaged would be to use Kalman smoothing, where the variance
output by the MDN is used as an estimate of the measurement error of the articulator position
observations. Articulatory constraints of varying degrees of complexity could be employed within
this technique. Perhaps the simplest would be to constrain the articulators to move slowly from
one time frame to the next. More sophisticated articulatory constraints could be instantiated by
following the approach of Dusan (2000), who used trained Kalman filter parameters specific to
the transition between all phones in the phone inventory.
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