
Galatea: Open-source Software for Developing
Anthropomorphic Spoken Dialog Agents

Shin-ichi Kawamoto1, Hiroshi Shimodaira1, Tsuneo Nitta3, Takuya
Nishimoto2, Satoshi Nakamura4, Katsunobu Itou5, Shigeo Morishima6,
Tatsuo Yotsukura6, Atsuhiko Kai7, Akinobu Lee8, Yoichi Yamashita9, Takao
Kobayashi10, Keiichi Tokuda11, Keikichi Hirose2, Nobuaki Minematsu2,
Atsushi Yamada12, Yasuharu Den13, Takehito Utsuro14, and Shigeki
Sagayama2

1 Japan Advanced Institute of Science and Technology
2 The University of Tokyo
3 Toyohashi University of Technology
4 Advanced Telecommunications Research Institute International
5 National Institute of Advanced Industrial Science and Technology
6 Seikei University
7 Shizuoka University
8 Nara Institute of Science and Technology
9 Ritsumeikan University

10 Tokyo Institute of Technology
11 Nagoya Institute of Technology
12 The Advanced Software Technology and Mechatronics Research Institute of

Kyoto
13 Chiba University
14 Kyoto University

Summary. Galatea is a software toolkit to develop a human-like spoken dialog
agent. In order to easily integrate the modules of different characteristics including
speech recognizer, speech synthesizer, facial animation synthesizer[facial-image
synthesizer] and dialog controller, each module is modeled as a virtual machine
having a simple common interface and connected to each other through a broker
(communication manager). Galatea employs model-based speech and facial ani-
mation[facial-image] synthesizers whose model parameters are adapted easily to
those for an existing person if his/her training data is given. The software toolkit
that runs on both UNIX/Linux and Windows operating systems will be publicly
available in the middle of 2003 [1, 2].

1 Introduction

Anthropomorphic spoken dialog agent (ASDA), behaving like humans with
facial animation and gesture, and making speech conversations with humans,

2 Shin-ichi Kawamoto et al

is one of the next-generation human-interface. Although a number of ASDA
systems [3–8] have been developed, communication between the ASDA system
and humans is far from being natural, and developing a high quality ASDA
system is still challenging. In order to activate and progress the researches
in this field, we believe that an easy-to-use, easy-to-customize, and free soft-
ware toolkit for building ASDA systems is indispensable. For examle, it would
be nice if the toolkit provides unlimited number of life-like agent characters
having different faces and voices as human beings in the real world.

We have been developing such an ASDA software toolkit named Galatea
since 2000, aiming to provide a platform to build next generation ASDA sys-
tems. The features of the toolkit are as follows: (1) high customizability in
text-to-speech synthesis, realistic face animation synthesis, and speech recog-
nition, (2) basic functions to achieve incremental (on-the-fly) speech recogni-
tion, (3) mechanism for “lip synchronization”; synchronization between audio
speech and lip image motion, (4) “virtual machine” architecture to achieve
transparency in module to module communication.

If compared to the related works such as CSLU toolkit [9] and DARPA
Communicator Program [10], our toolkit is still preliminary[germinal].
However, it is compact, simple, easy-to-understand and thus suitable for devel-
oping ASDA systems for research purposes, and of course it the first Japanese
toolkit of life-like agents. One of the outstanding features of Galatea is that it
uses a snap shot of an existing person to synthesize face images of an agent.
Therefore, it can synthesize an unlimited number of agents having different
faces as far as the snap shots of different people are provided. At present,
simple ASDA systems have been successfully built with the toolkit under
UNIX/Linux and Windows operating systems, and the subset of the toolkit
will be publicly available in the middle of the year 2003.

This paper is divided into six sections. In section 2, design concepts for the
Galatea software toolkit are discussed. Brief explanations of each functional
module of the toolkit are given in section 3. Prototype systems developed by
the toolkit are shown in section 4 followed by discussions in section 5. Finally
the last section is devoted to conclusions.

2 Features for the Toolkit

In this section, we discuss the features of Galatea to build ASDA systems
which speak, listen, and behave like humans.

2.1 Configuration for the easy-to-customize

In Galatea, synthesized facial images and voices are customizabile easily de-
pending on the purposes and applications of the toolkit users. This customi-
azability is achieved by employing model based approaches where basic model
parameters are trained or determined with a set of training data derived from

Galatea 3

an existing person. Once the model parameters are trained, facial expressions
and voice quality can be controled easily.

2.2 Key techniques for achieving natural spoken dialog

If compared to the keyboard-based conversation, typical phenomena are ob-
served in speech-based conversation. These include the case that human listen-
ers nod or say “uhmm” during a conversation, and the case that the speakers
control the prosody to indicate types of utterances such as questions, state-
ments, and emotions. Galatea provides basic functions to study those phenom-
ena for human-like speech-based conversation. For example, Galatea provides
the functions of incremental speech recognition, interruption over synthesized
speech, and so on. In addition, Galatea provides a simple function of syn-
chronization between the synthesized speech and the facial animation. This
function will be useful to realize natural speech-based conversation.

2.3 Modularity of functional units

Naturally, Galatea provides a simple architecture to manage each functional
unit, and to work in parallel. In some situations, system creators or toolkit
users will not be satisfied with the performance of the original modules in the
toolkit and they would like to replace them with the new ones or add new
ones to the system. In such cases, it would be desirable[desired] that each
functional unit is well modularized so that the users can develop, improve,
debug and use each unit independently from the other modules. Galatea pro-
vides a basic module management architecture to satisfy these requirements
for research and development.

2.4 Open-source free software

The technology used for creating the toolkit is still insufficient to[not enough
to] achieve human-like conversation. Therefore it is desired that not only the
creators of the toolkit but also the researchers and developers who use the
toolkit would contribute to improve the toolkit further. In that sense, the
toolkit should be released as a free software along with the program source
code.

There are[have been] no existing ASDA softwares so far satisfying all of
the requirements described above.

3 Toolkit Design and Outline

The basic agent system using Galatea consists of five functional modules:
speech recognizer, speech synthesizer, facial animation synthesizer, agent man-
ager which works as an inter-module communication manager, and task (di-
alog) manager. In addition, Galatea prepares the prototyping tool for coding

4 Shin-ichi Kawamoto et al

Agent Manager

Task Manager

Other
Application

Module

IIPL

Speech
Synthesis
Module
(SSM)

Face image
Synthesis
Module
(FSM)

Speech
Recognition

Module
(SRM)

Microphone CRT Speaker

Prototyping Tools

Task
Information

Dialog
Model

Task
Information

Dialog
Model

Fig. 1. System Architecture of Galatea

the dialog scenario easily. Fig. 1 shows the basic module architecture of the
Galatea toolkit. In Galatea toolkit, the functional units are indepen-
dently modularized. Input/Output devices are directly managed in
the module. The agent manager controls inter-module communi-
cation. If you want to add a new function, you implement a new
module with a new function and a new module connects to the
agent manager. The dialog manager communicates the agent man-
ager to achieve the dialog tasks based on the database of dialog

Galatea 5

scenario. The prototyping tool, which supports the database cre-
ation of dialog scenario, works independently of the agent manager.
In this section, we discuss the design of Galatea and the functionality of
its modules[its module functionality].

3.1 Speech recognition module (SRM)

When constructing an ASDA system, the speech recognition module (SRM)
used is required to have the following functions:

• Be able to accept various styles of input and output; For example, accept-
ing a multiple format for grammar representation and outputting incre-
mental recognition results

• Be able to change parameters and resources for recognition flexibly and
dynamically; For example, changing grammar by request from external
modules during dialog sessions

• Be able to control a recognition engine flexibly and dynamically; For ex-
ample, stopping to recognize user’s utterance, and then restarting

To meet the above requirements, we implemented SRM in the configura-
tion shown in Fig. 2.

Command Interpreter

Grammar Transformer

Speech Recognition Engine

Grammar

Request

Response

Speech Input

Fig. 2. Speech Recognition Module (SRM)

SRM consists of three submodules: the command interpreter, the speech
recognition engine, and the grammar transformer. This configuration was de-
signed not to drop the communication events and speech input events that

6 Shin-ichi Kawamoto et al

occur asynchronously by dividing the command processing and speech pro-
cessing and dispatching them to exclusive processes. The configuration also
contributes to concealing the speech recognition engine from other modules.

We prepared “Julian” as the standard speech recognition module, but all
the modules are changeable if a module implements the interface and meets re-
quirements such as accepting grammar written in context free grammar(CFG)
or the same class language.

Major interfaces of SRM are as follows:

• Outputs
– Recognition result

SRM returns N-best multiple results after an entire ut-
terance. Also, Julian supports the incremental output
of recognition results during utterances. Recognition re-
sults are formatted in XML and include word sequences,
a time stamp, score, lexical information of each word,
such as parts of speech, phoneme sequence, and acoustic
information of each word, such as duration, and average
likelihood of acoustic models.

– Engine Status
SRM returns the engine status of speech input, such as
“busy”, “waiting”, if requested by other modules.

• Control Command
SRM can reload grammar through the Command Interpreter at
other modules’ request. If SRM is busy, it inserts sent grammar
into a queue, and it load the grammars into the recognition engine
when it finishes the recognition of each utterance. SRM can also
change the settings of the speech recognition engine at any time.

• Grammar Representation
The grammar that SRM accepts is specified by the XML-based
representation. The representation complies to the[is made re-
ferred as] Speech Recognition Grammar Specification, which was
specified by W3C.
The syntax consists of definitions and sequences of “tokens” and
“rules”. We extend the token tag by adding a “phoneme” or “sylla-
ble” tag which represents the pronunciation of a word. The Gram-
mar transformer transforms the XML grammar into a format that
is accepted by the Speech Recognition Engine. It is developed by
using XSLT [11], which is a XML transformation technology. There-
fore it is easy to exchange the speech recognition engine.

3.2 Speech synthesis module (SSM)

Speech synthesis module (SSM) consists of four sub-modules and its con-
figuration is shown in Fig. 4. The command interpreter receives an input

Galatea 7

command from the agent manager and invokes sub-processes according to the
command. The text analyzer looks up the dictionary to decompose input text
data into morphemes, and provides the waveform generation engine with lin-
guistic information including pronunciation, accent type, part of speech, and
so on. The waveform generation engine produces sequences of speech param-
eters and converts them into synthetic speech waveform. The speech output
sub-module outputs the synthetic speech waveform.

To realize customizable speech synthesis module, the module has to ac-
cept arbitrary Japanese texts including both “Kanji” (Chinese) and “Kana”
characters, and synthesize speech with a human voice clearly in a specified
speaking style. Tags embedded in the text specify the speaking style accord-
ing to the JEIDA-62-2000, which is a description scheme of text for Japanese
speech synthesis and is standardized by the Japan Electronic Industry De-
velopment Association (JEIDA) [12]. Fig. 3 is a sample text described with
JEIDA-62-2000. The speech synthesis for a spoken dialog system is required
to generate various types of prosody according to the user’s intention[sys-
tem’s intention]. The task manager can describe spoken messages using the
JEIDA-62-2000 tags to control prosodic parameters. For example,
<RATE SPEED="n"> ... </RATE>
lengthens the duration of tagged words by n times. For power and F0,
<VOLUME LEVEL="n"> ... </VOLUME>
<PITCH LEVEL="n"> ... </PITCH>
change the power and F0 in the same manner, respectively. The pronuncia-
tion and the accent type can also be assigned to words that are not found
in the dictionary, such as task-specific proper nouns. Input text written with
“Kanji” and “Kana” characters and optional embedded tags is analyzed by
the text analyzer, which is implemented with a free Japanese morphological
analysis system, ChaSen [13], and a newly developed dictionary.

The waveform generation engine in SSM is an HMM-based speech syn-
thesizer, that simultaneously models spectrum, F0 and duration in a unified
framework of HMM (Hidden Markov Model) [14, 15]. HMM is one of model-
ing techniques for a time sequence of the parameter vector. An HMM model
probabilistically generates the parameter vector based on the state transition.
HMM can be used for a pattern recognition, especially for the speech recog-
nition, by selecting the most probable model among models of the class for
observed parameter vectors. On the other hand, HMM can be also a gen-
erator of a time sequence of the feature vector. In the speech synthesis, a
HMM sequence represents the phoneme sequence of a sentence, and it gener-
ates the most probable time sequence of the feature vector. The HMM-based
speech synthesis has an advantage of voice quality control over waveform con-
catenation approaches. Speaker adaptation techniques in HMM-based speech
recognition can be utilized for voice conversion in the HMM-based speech
synthesis [16]. Such techniques enable us to easily prepare various types of
speakers in the speech synthesis system. The <VOICE> tag changes the speaker
of the SSM synthesizer even for partial words in an utterance.

8 Shin-ichi Kawamoto et al

The SSM module serves another important function to provide a mech-
anism for synchronizing the lip movement with speech, which is called “lip-
sync”. The employed mechanism is based on the sharing of each timing and
duration information of phoneme in the speech, which is going to be uttered,
between the SSM and the FSM (facial image synthesis module).

Finally, SSM can interrupt speech output to cope with the barge-in by
the user of the dialog system. This is also important to realize natural dialog
between the human and the machine. When the speech output is interrupted,
SSM reports the phoneme sequence of words, which the user is expected to
listen, to the agent manager.

<SPEECH> <VOICE OPTIONAL="male1">

Kore wa <PRON SYM="ai pi: e:">IPA</PRON>no purojekuto de
(’This is’) (’of’)(’in the project’)

kaihatsusareta <EMPH>taiwa</EMPH>onsei gousei sisutemu desu.
(’developed’) (’dialogue’) (’speech synthesis system’)

</VOICE> </SPEECH>

Fig. 3. A sample of input text for the speech synthesis module. (The input text is
originally written in Kanji and Kana characters. Note that this example is rewrit-
ten in roman characters with English translation in the parentheses just for the
readability.)

Command Interpreter

Speech
Output

Text Analyzer

Waveform
Generation

Engine

Dictionary

Acoustic
Models

Fig. 4. Speech synthesis module

3.3 Facial image synthesis module (FSM)

FSM is the software package to support high quality facial image synthesis,
animation control and precise lip-synchronization with synthetic and natural

Galatea 9

voice. To customize the face model, a graphical user interface is equipped to
fit a generic face wire frame model onto a frontal face snap shot image. Each
action unit of FACS [17] is defined on this generic model and stereo type
facial expression can be synthesized by combination of these action units.
FACS is an objective method for quantifying scheme that codes
the facial muscular movements in terms of 44 action units. Also
idle[autonomous] actions like blinking and nodding can be generated. Lip
movement in an utterance is controlled by VISEME and duration. Facial
animation is expressed easily by a simple script.

Customizing the Face Model

To customize the face model only by snap shot, a generic face model is man-
ually adjusted to the frontal face image. A graphical user interface helps to
shorten the time to complete this fitting process. Fig. 5 shows the image before
fitting and after fitting.

a) Before fitting b) After fitting

Fig. 5. Model fitting by GUI tool

Firstly, four points located on two corners of the sides around temple,
bottom of nose and top of chin are adjusted and then face features are decided
roughly. Secondly, four points around each eye and center of eye ball are
decided, contour of eyelid and mouth and nose position are decided by moving
control points by manual operation. Finally, the outline of the face is decided
and the hair model is fitted. Then the personal face model is completely
generated. In the preview window, fitting status of the face model is confirmed
by rotating face and make a facial expression (Fig. 6). The eyeball can be
selected in color and size.

This model has a generic oral and teeth tongue model and they are con-
trolled in the utterance process. After a 5 minutes fitting process, any facial

10 Shin-ichi Kawamoto et al

Fig. 6. Preview window

expression with texture mapping can be synthesized by combination of action
units of FACS which is predefined in the generic face model.

Facial Action Control

To control facial action, action units of FACS and basic mouth shape of
VISEME are predefined in the generic face model.

Designing Mouth Shape

A typical mouth shape can be easily edited by the mouth shape-editing tool.
A specific mouth shape is decided by controlling 17 parameters about the
positions of lip parts. These parameters are controlled by a slider on the screen
and mouth shape can be checked interactively in a preview window. Typical

Galatea 11

vowel mouth shapes are shown in Fig. 7. All mouth shapes for VISEME in
English and Japanese are already predefined.

Fig. 7. Example of typical vowel mouth shapes (upper-left: vowel of “a”, upper-
right: vowel of “i”, lower-left: vowel of “u”, lower-right: vowel of “e”)

Designing Facial Expression

Facial expression is generated by the combination of action units (AU). These
AUs control the[are] basic movement of face like inner brow raise (AU1),
upper lip raiser (AU10) etc. and are composed of 44 units corresponding to
each facial muscle movement. Fig. 8 shows examples of typical expressions.

3.4 Module integration and customization tools

Agent manager

The Agent Manager (AM) serves as an integrator of all the modules of the
ASDA system. One of its main functions is to play a central role of communi-
cation where every message from a module is sent to another module with the
help of the AM. Here, the AM works like a hub in the Galaxy-II system [18].
Another essential function of the AM is to work as a synchronization manager
between speech synthesis and facial image animation to achieve the precise
lip-sync.

The AM consists of two functional layers: the Direct Control Layer (AM-
DCL) and the Macro Control Layer (AM-MCL). Fig. 9 shows a schematic

12 Shin-ichi Kawamoto et al

Fig. 8. Example of typical expressions (upper-left: happiness, upper-right: sadness,
lower-left: anger, lower-right: fear)

representation of the relationship between the AM and the various modules.
The AM-DCL works as a dispatcher receiving commands from a module and
forwarding them to the designated module. On the other hand the AM-MCL
is a macro-command interpreter processing the macro commands mainly is-
sued by the Task Manager (TM). There are mainly two functions for the
AM-MCL. The first one is to simply expand each received macro-command in
a sequence of commands and send them sequentially to the designated mod-
ule. The second function is to process macro-commands that require more
complicated processing than just expanding the commands. This happens in
the case where more than one module is involved. Currently, the lip synchro-
nization process is realized by a macro command and an example will be given
in Section 4

Virtual Machine model

As previously described, the AM works as a hub through which every module
communicates with each other. It is desired that every module has a com-

Galatea 13

mon communication interface so that the AM can be connected to[make
connection with] each module regardless of the interface used in the module.
Furthermore, having a common interface reduces the effort of understanding
and developing module dependent interfaces. For this purpose a virtual ma-
chine (VM) model is employed, where the module interface is modeled as a
machine with slots, each of which has a value and attribute controlled by a
common command set. Each slot can be regarded as a switch or dial to control
the operation or a meter to indicate machine status. Fig. 10 illustrates the
communication between the AM and a virtual machine model. Changing the
slot values by a command corresponds to check or control the running status
of the module or the function. For example, issuing a[following] command
to the speech synthesis module means starting voice synthesis of a given text
right now “set Speak = Now”.

Agent
Manager

(AM)

Speech
Recognition

Module
(SRM)

Speech
Synthesis
Module
(SSM)

Facial image
Synthesis
Module
(FSM)

Task Manager (TM)

Macro Control Layer
(AM-MCL)

Direct Control Layer (AM-DCL)

Fig. 9. Basic configuration of the AM and Modules

"set" "inq"
"rep"

"def" "do"

Value

Property

"prop"
"tell"

Macro SlotParameter Slot

Agent Manager (AM)

Virtual Machine Model

Fig. 10. Relationship between the AM and a virtual machine model

14 Shin-ichi Kawamoto et al

Task manager (TM)

To achieve the better interactions between agent and human, we must learn
more about the human’s behavior when using the dialog systems. Because the
machines’ abilities of recognizing and understanding speech or image cannot
be compared with the human, imitating the human-to-human interactions
such as speech, facial expressions and gestures is not always the royal road.
First we will make the definition of the dialog as a set of interactions which
can be represented with a dialog description language. The initial specification
may have many limitations, but we can build a dialog system based on the
specification. Using the system, we can obtain the corpus of human-to-machine
dialogs and interactions. Investigation of the corpus may bring the better
models of speech understanding, artificial mind, intelligence and the successive
interactions. Repetitions of such study can contribute to the better design
of the dialog description language, whose capability may gradually increase.
Here we discuss the bootstrap design of dialog modeling and its description
language which can represent the interactions with spoken language.

Although our VM model can manipulate the conversational input and
output events in real-time, it is difficult to write or analyze the time sequence
data of such events manually. As a software toolkit, therefore, it is crucial
to use a language that can help writing dialogue patterns without concern
to the background details of the device controls. It is possible to use the
sequence of VM controls to show the time of each output event, the content
of the utterances, the changes of facial expressions, etc. Higher level dialogue
description language, however, can give the meanings to the series of events,
such as ”Repeat the question until the user answers to the confirmation.”

Conversational phenomena can be explained with the three models as fol-
lows: (a) task descriptions, which include the intentions of the participants
such as question or giving information, etc., (b) characters of the participants
which include the differences of voice and face as well as the differences of the
non-verbal communication styles, and (c) the variations among the dialogue
sessions. Task description is the most important part in designing and ana-
lyzing the human-machine dialogues and there are several de-fact standards
in this area. VoiceXML [19] is one of such options.

VoiceXML can cover two types of dialogues: (1) slot-filling type can be
a simplified machine initiated dialogue, and (2) database search type can
be a mixed-initiative dialogue. There remains, however, another type of the
dialogue that cannot be covered with VoiceXML well: (3) explanation type
can include navigation of the contents initiated by the user. For this type,
we are investigating new style of interface and description language for user
initiated interaction [20].

To meet the both demands of convenience for dialogue task designers and
the usability for the dialogue system users, it is important to choose the
appropriate language for the task description that fits for the dialogue type.

Galatea 15

Our goal in developing the Task Manager is that the system can use the
several types of dialogue description languages including VoiceXML. This is
enabled by dividing the system into the translator, from VoiceXML doc-
uments to the intermediate language (Primitive Dialogue Operation Com-
mands, PDOC), and the dialogue controller that interprets the PDOC docu-
ments. We also extended the original specification of VoiceXML to add some
commands, including the facial expression controls of anthropomorphic dia-
logue agents. In our Task Manager, PDOC plays the role of low-level language
that are close to the device events and sequence control, while the VoiceXML
plays the role of the high-level language that handles the task-oriented infor-
mation and the intentions of the participants. To analyze and model the time
sequence data in conversational phenomena, this low-level description is also
expected to be useful. Current implementation of the system is tested with
tasks of the system-initiative type dialogue.

Making the dialog system which can understand natural language and mul-
timodal input, a Semantic Interpretation Module (SIM) plays the important
role. Although there are no such modules at this stage of our development,
our toolkit design allows the module to be incorporated. There may be various
approaches of SIM implementation, including the statistical models and the
semantic parse tree. While the Task Manager concentrates on the manage-
ment of state transitions or slot-fillings, the SIM can interpret the speech or
multimodal input into the dialog acts.

Prototyping Tool

The rapid-prototyping tool named “Galatea Interaction Builder (IB)” runs on
a PC and can handle the input modalities of speech, mouse, and keyboard as
well as the output modalities of speech (TTS), facial expression, and window
display. System developers can implement these input and output modalities
without the knowledge of Multi-Modal Interface (MMI) description language
by the support of IB [21].

MMI Description Language XISL [22]

XISL is a language for describing MMI scenarios between a user and a system.
In principle, a scenario is composed of a sequence of exchanges that contains
a set of user’s multi-modal inputs and the system’s actions corresponding to
the inputs. Actions include outputs to a user, simple arithmetic operations,
conditional branches, and so on. The details of the XISL specifications are on
the web site [23].

Outline of Galatea Interaction Builder (IB)

Fig. 11 shows the workflow of prototyping using Galatea IB. Galatea IB is
composed of three modules: a document-server module, a dialog manager,
and a front-end module. The document server module holds MMI scenario

16 Shin-ichi Kawamoto et al

(XISL), data (XML), and view style (XSL). The dialog manager interprets
an XISL document and controls the flow of dialog by integrating user’s input
from front-end and executing the system’s action corresponding to the inputs.
The front-end has an Automatic Speech Recognition (ASR) engine, a facial
expression synthesis engine, and a TTS engine developed by Galatea project,
as well as a pointing device (mouse) and keyboard.

Fig. 11. Workflow of Prototyping Using Galatea Interaction Builder

Rapid-prototyping using Galatea IB

Galatea IB provides GUI designed for domain-specific prototyping that in-
cludes applications of airline ticket reservation and secretary services. Fig. 12
shows a screen in prototyping operation. In the following, we describe the
facilities of IB according to the assigned numbers in Fig. 12.

The window shown in (1) of Fig. 12 is a scenario view window that presents
a state transition diagram of an MMI application. Nodes of the diagram,
or MMI components, which correspond to elements of XISL are connected
with links. An application developer can easily construct and comprehend the
structure of an MMI scenario on this window. The tool bar shown in (2) of
Fig. 12 provides all the components such as speech input and output, mouse,
and face etc. used in MMI applications. Each button corresponds to a node
of state transition diagram. Fig. 13 shows the expanded view of the tool bar.
The developer has only to drag one of these buttons and to drop it onto the
scenario view window to add a node to the MMI scenario.

The dialog box, shown in (3) of Fig. 12, is popped up when the application
developer drops a button on an MMI component of the scenario view window.

Galatea 17

Fig. 12. An example of an IB screen

Fig. 13. Tool bar of IB

The developer has to assign some attributes and values to set up parameters
for the MMI component. The developer can confirm the XISL documents by
clicking the XISL tab of the scenario view window as shown in Fig. 14. After
the confirmation, he/she saves the document and uploads it to a document
server module, then tests a prototype system with MMI.

4 Prototype Systems

Using the software toolkit, we have built several experimental ASDA systems
to evaluate the toolkit. A screen-shot of the system and an example of a
user-system interaction are shown in Fig. 15 and Fig. 16 respectively.

All the tasks employed were very basic, small vocabulary where the number
of uttered words is less than 100 and the perplexity is less than 10. The
tasks include (1) an echo-back task which repeats what it heard using speech
recognition and synthesis, (2) a simple appoint-arranging task which changes
facial expressions as the conversation goes on, (3) a fresh food ordering task

18 Shin-ichi Kawamoto et al

Fig. 14. A generated XISL document

Fig. 15. Screenshot of ASDA

Galatea 19

Fig. 16. An example of user-system interaction

that takes orders from customers and responds[responses] with “yes” and
nodding on the fly.

Those systems consist of the SRM [24], the SSM [14], the FSM [25], the
AM, and a simple task-specific TM which was programmed directly with the
command set of the toolkit. We implemented the systems on several platforms
with different configurations. Fig. 17 shows the hardware configurations. Some
of the demonstration movies (in Japanese, unfortunately) are available in our
web site [1, 2].

Fig. 18 shows an example of how the AM and related modules work in
the echo-back task. However, the FSM and lip-synchronization mechanism
have been omitted in the figure for simplicity[brevity]. Here, the macro
commands, [which is] introduced in 3.4, are used in the procedures 3 and
4 to achieve lip-synchronization between the speech and animation. Fig. 19
shows the sequence of commands involved in this lip-synchronization process.

Note that the modules operate in parallel and thus the speech recognition
process is active while the agent is speaking. As a result, we confirmed that
the system responded to the users quickly, [at the same time] face animation
and synthesized voice were synchronized. However, in this case, we assumed
an ideal[that the ideal] environment where[that] the results of speech
recognition are not influenced by the output of speech synthesis.

20 Shin-ichi Kawamoto et al

SRM: Speech recognition module
SSM: Speech synthesis module
FSM: Facial image synthesis module
AM: Agent manager
TM: Task manager
AUTO: Autonomous head-moving module

SHORT TITLE

COMPUTER SPEC.

SYSTEM ENVIRONMENT

FSM

PC #1

Ethernet

10Base-T

Env. #1

(AUTO)
TM
AM

SRM
SSM

PC #2

Env. #2

(AUTO)
TM
AM

SRM
SSM
FSM

PC #3

PC #1 ... CPU: Pentium III Xeon 1GHz x 2, MEMORY: 512MB
PC #2 ... CPU: Pentium III 600MHz x 2, MEMORY: 512MB
PC #3 ... CPU: Mobile Pentium III 1.2GHz, MEMORY: 512MB

Fig. 17. Hardware configuration of the ASDA

5 Discussion

This section describes the current development[developing] status of the
software toolkit and discusses further improvement.

5.1 Customization features

In SRM, multi-grammar support has been realized where grammars can be
changed instantly, and those grammars are easy to customize by means of a
supporting software tool.

The SSM can synthesize speech from arbitrary text sentences of mixed
Kanji and Kana (Chinese characters and phonetic script), with customizable
prosody. Though speaker adaptation has not been implemented, the employed
HMM-based approach is promising in case of speaker adaptation [16,26].

The FSM synthesizes 3D realistic facial animations from a single snapshot
of a person’s face by fitting a wire-frame model to a 2D picture. A software
tool is provided to help fitting a standard wire-frame model to the input
picture, whose manually fitting operation takes normally 10 minutes. Once
the fitting is completed, one can get realistic 3D facial animation of the person
whose motion, including blinking and facial expression, is easily and precisely
controllable by commands in real time. Comparing to the existing cartoon

Galatea 21

2 3
1

2

3

4

A user’s utterance

An agent’s utterance

(recognition results)

(commands to the AM)

Speech
Recognition

Module
(SRM)

Speech
Synthesis
Module
(SSM)

1 4

(recognition results with header)

(commands to the SSM)

tell << EOM
<RECOGOUT>
 <SHYPO RANK="1">
 <WHYPO WORD="silB"/>
 <WHYPO WORK="[result]"/>
 <WHYPO WORD="silE"/>
 </SHYPO>
</RECOGOUT>
EOM

From @SRM tell << EOM
From @SRM <RECOGOUT>
From @SRM <SHYPO RANK="1">
From @SRM <WHYPO WORD="silB"/>
From @SRM <WHYPO WORD="[result]"/>
From @SRM <WHYPO WORD="silE"/>
From @SRM </SHYPO>
From @SRM </RECOGOUT>
From @SRM EOM

Agent Manager (AM)

Task Manager (TM)
Procedure

to @SSM set Text = [result]
to @SSM set Speak = NOW

set Text = [result]
set Speak = NOW

IIPL

SpeakerMicrophone

Fig. 18. An example of echo-back processing task

based[cartoon based existing] approaches where the number of characters is
very limited, the proposed framework enables to generate facial animations of
an almost unlimited number of characters as far as facial pictures are provided.

5.2 Software Modularity of functional units

As is described in the previous section, the virtual machine model enables
highly modularity of each functional units such as SRM, SSM and FSM.
Furthermore, the communication interface based on the UNIX standard I/O
stream helps to develop and debug software modules easily.

5.3 Achievement of natural spoken dialog

Although the implemented mechanism for lip-sync contributes to enhance the
naturalness of the synthetic facial animation, a number of issues are yet to be
implemented to make the agent behave like a human. For example, humans

22 Shin-ichi Kawamoto et al

Fig. 19. Processing flow among the AM, the SSM, and the FSM when agent speaks
(an example of processing in the AM)

move their heads while they are speaking. Besides the facial animation, real-
time[realtimeness of] conversation is another crucial factor for the agent’s
naturalness as described in Section 2.2. A simple mechanism for incremental
speech recognition has been implemented in the SRM. The mechanism pro-
vides frame-synchronous temporal candidates giving maximum scores at the
moment before observing the end of utterance. These incremental recognition
results will help to achieve interactive spoken dialog including nodding.

Galatea 23

5.4 Related Works

Several attempts have been made to develop ASDA toolkits. Among them,
the CSLU toolkit [9] is most similar to our toolkit. The CSLU toolkit pro-
vides a modular, open architecture supporting distributed, cross-platform,
client/server-based networking. It includes interfaces for standard telephony,
audio devices, and software interfaces for speech recognition. It also includes
text-to-speech and animation components. This flexible environment makes it
possible to easily integrate new components and to develop scalable, portable
speech-related applications. Although the target of both of the toolkits is
similar, function-wise and implementation-wise they are different. Compared
to the speech recognizer and speech synthesizer of the CSLU toolkit that
support several European languages, our toolkit supports Japanese language.
The TTS in the CSLU toolkit is based on “unit selection and concatenation
synthesis” from natural speech. It is a data-driven and non model-based ap-
proach. However, the TTS in our toolkit employs the HMM-based synthesis
that is a data-driven and model-based approach. The different approaches
give different characteristics to TTS. Generally speaking, the model-based
TTS requires less training samples and it can control speech more easily than
the non model-based TTS at the cost[expense] of speech quality.

Similar system architectures for distributed computing environments are
employed in the Galaxy-II [18] of DARPA Communicator [10], the SRI Open
Agent Architecture (OAA) [27], and our toolkit. Each of them have a central
module called “Hub”, “facilitator” and Agent Manager (AM), respectively. If
compared to the existing systems which employ a large number of commands,
our toolkit is more compact and simpler and it has only eight commands and
two identifiers so that the programmers can understand and use the toolkit
easily.

6 Conclusions

The design and architecture of a software toolkit for building an easy to cus-
tomize anthropomorphic spoken dialog agent (ASDA) has been presented in
this chapter. A human-like spoken dialog agent is one of the promising man-
machine interfaces for the next generation. The beta-version of the software
toolkit described in this paper will be released publicly in the middle of 2003.
However, a number of factors are to be improved. Because of the high modu-
larity and simple communication architecture employed in the toolkit, we hope
that it would speed up the researches and application development based on
ASDA, and as a result the toolkit would be upgraded.

References

1. Galatea Toolkit. http://iipl.jaist.ac.jp/IPA/.

24 Shin-ichi Kawamoto et al

2. Galatea Toolkit. http://hil.t.u-tokyo.ac.jp/˜galatea/.
3. Gustafson, J., Lindberg, N., Lundeberg, M.: The August Spoken Dialogue Sys-

tem, EuroSpeech, pp. 1151–1154 (1999).
4. Julia, L., Cheyer, A.: Is Talking To Virtual More Realistic?, EuroSpeech, pp.

1719–1722 (1999).
5. Dohi, H., Ishizuka, M.: Visual Software Agent: A Realistic Face-to-Face Style

Interface connected with WWW/Netscape, IJCAI Workshop on Intelligent Mul-
timodal Systems, pp. 17–22 (1997).

6. Ushida, H., Hirayama, Y., Nakajima, H.: Emotion Model for Life-like Agent and
its Evaluation, AAAI-98, pp. 62–69 (1998).

7. Sakamoto, K., Hinode, H., Watanuki, K., Seki, S., Kiyama, J., Togawa, F.:
A Responce Model for a CG Character Based on Timing of Interactions in a
Multimodal Human Interface, IUI-97, pp. 257–260 (1997).

8. Cassell, J., Bickmore, T., Campbell, L., Chang, K., Vilhjálmsson, H., Yan, H.:
Requirements for an architecture for embodied conversational characters, Pro-
ceedings of Computer Animation and Simulation ’99 (Eurographics Series) (Eds.
by Thalmann, D., Thalmann, N.), pp. 109–122 (1999).

9. Sutton, S., Cole, R.: Universal speech tools: the cslu toolkit, Proceedings of the
International Conference on Spoken Language Processing(ICSLP), pp. 3221–
3224 (1998).

10. DARPA, : DARPA Communicator Program (1998). http://fofoca.mitre.org/.
11. XSLT, : XSL Transformations (XSLT) Version 1.0 (1999).

http://www.w3.org/TR/xslt.
12. JEIDA, : Standard of symbols for japanese text-to-speech synthesizer, JEIDA-

62-2000 (2000).
13. Morphological Analyzer ChaSen. http://chasen.aist-nara.ac.jp/index.html.en.
14. Yoshimura, T., Tokuda, K., Masuko, T., Kobayashi, T., Kitamura, T.: Simul-

taneous modeling of spectrum, pitch and duration in HMM-based speech syn-
thesis, EuroSpeech, Vol. 5, pp. 2347–2350 (1999).

15. HMM-Based Speech Synthesis Toolkit (HTS). http://hts.ics.nitech.ac.jp/.
16. Tamura, M., Masuko, T., Tokuda, K., Kobayashi, T.: Adaptation of pitch

and spectrum for HMM-based speech synthesis using MLLR, Proceedings of
IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Vol. 2, pp. 805–808 (2001).

17. P.Ekman, , W.V.Friesen, : “Facial Action Coding System(FACS): A Technique
for the Measurement of Facial Action”, Consulting Psychologists Press (1978).

18. Seneff, S., Hurley, E., Lau, R., Pao, C., Schmid, P., Zue, V.: GALAXY-II: A
Referece Architecture for Conversational System Development, ICSLP-1998, pp.
931–934 (1998).

19. VoiceXML, : Voice eXtensible Markup Language VoiceXML Ver1.0 (2000).
http://www.voicexml.org.

20. Nishimoto, T., Araki, M., Niimi, Y.: RadioDoc: A Voice-Accessible Document
System, ICSLP2002, pp. 1485–1488 (2002).

21. Adachi, H., Katsurada, K., Yamada, H., Nitta, T.: Development of a Prototyp-
ing Tool for MMI Systems, Information Processing Society of Japan, Technical
Report 2002-SLP-43 (In Japanese), pp. 7–12 (2002).

22. Katsurada, K., Otani, Y., Nakamura, Y., Kobayashi, S., Yamada, H., Nitta, T.:
A modality-independent MMI system architecture, ICSLP2002, pp. 2549–2552
(2002).

Galatea 25

23. MMI Description Language XISL. http://www.vox.tutkie.tut.ac.jp/XISL/XISL-
E.pdf.

24. Kawahara, T., Kobayashi, T., Takeda, T., Minematsu, N., Itou, K., Yamamoto,
M., Utsuro, T., Shikano, K.: Sharable software repository for Japanese large
vocabulary continuous speech recognition, ICSLP-98, pp. 3257–3260 (1998).

25. Morishima, S.: Face Analysis and Synthesis, IEEE Siginal Processing Magizine,
18, 3, pp. 26–34 (2001).

26. Tamura, M., Masuko, T., Tokuda, K., Kobayashi, T.: Text-to-speech synthesis
with arbitrary speaker’s voice from average voice, Proceedings of European Con-
ference on Speech Communication and Technology, Vol. 1, pp. 345–348 (2001).

27. OAA (The Open Agent Architecture) (2001). http://www.ai.sri.com/˜oaa/.

