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Abstract
Voice transformation is the process of transforming the charac-
teristics of speech uttered by a source speaker, such that a lis-
tener would believe the speech was uttered by a target speaker.
In this paper we address the problem of transforming voice
quality. We do not attempt to transform prosody.

Our system has two main parts corresponding to the two
components of the source-filter model of speech production.
The first component transforms the spectral envelope as rep-
resented by a linear prediction model. The transformation is
achieved using a Gaussian mixture model, which is trained on
aligned speech from source and target speakers. The second
part of the system predicts the spectral detail from the trans-
formed linear prediction coefficients. A novel approach is pro-
posed, which is based on a classifier and residual codebooks.
On the basis of a number of performance metrics it outperforms
existing systems.

1. Introduction
One of the main applications of voice conversion is in the field
of text-to-speech adaptation. Modern speech synthesisers re-
quire a large database of speech. A voice transformation sys-
tem which could be trained on relatively small amounts of data
would allow new voices to be created with much lower cost.
In addition, such a system could be used in a situation where
the speaker was not available and previous recordings had to
be used, such as is the case where a patient had lost the power
of speech through disease or injury. Voice transformation also
has other applications such as very low bandwidth speech en-
coding, multimedia entertainment, as a pre-processing step to
speech recognition and also in the field of voice disguise. In
addition, gaining a better understanding of the ways in which
speakers differ is likely to be valuable more generally in both
speech synthesis and recognition.

There has been a considerable amount of research directed
at the problem of transforming voice quality [1, 2]. The gen-
eral approach has been to begin with a training phase in which
material from source and target speakers is aligned and used to
define a transformation which maps the acoustic space of the
source speaker to that of the target.

2. Speech data
Data from the Boston University Radio News corpus as de-
scribed in [3] was used to both train and test the system. We
performed endpointing on all waveforms. Four speakers, (two
male and two female) were selected for the experiment. They
are labelled as f1a, f2b, m1a, m2b within the corpus. The speak-
ers are all native speakers of English and have North American
accents. They are all professional news readers.
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xperiments were run on the following transformation
nations; m1 to m2, m2 to m1, f1 to f2 and f2 to f1.

� � � � � 

ds of data were used for training. The test set consists of
inute of speech. The training and testing sets do not inter-
All performance measures presented here are for the test

3. Analysis
rry out a pitch synchronous frame based analysis of the
, since for short segments of speech the spectrum may

nsidered to be stationary. The speech was divided into
verlapping frames, where each frame was two pitch peri-

ng and was centred around the current pitchmark. These
s were then windowed using a Hanning window. The Lin-
ediction Coefficients (LPC) of the filter were computed
the autocorrelation method [4]. The order of LPC analy-
 � � was one of the variables of the experiment. The LPC
oefficients were converted into line spectral frequencies
) [4]. Line spectral frequencies have better interpolation
teristics, which is important for this system since the tar-
Fs will be formed from a weighted sum of source LSFs.

he ear has better frequency resolution at lower frequencies
order that the numerical distance between a pair of LSFs
reflect the perceptual distance between them, this non-
frequency resolution must be accounted for. One scale
hieves this is the Bark scale. The Bark warping function
follows:

� � � � � � � �  " � �$ & ' ' *
+ � �$ & ' ' � - * $ �

he Bark-warping process was applied to the LSFs for each
of speech. Residuals were computed by inverse filtering
rame of speech using the associated LPCs.
me-alignment was carried out on each set of sentences for
ource/target speaker pair. Firstly, Cepstral Coefficients
[4] for each Bark-warped set of LSFs were calculated,
er with the log of the associated residual energy. The
ic Time-Warping (DTW) [4] algorithm was used to find

inimum error alignment.

. Transforming the spectral envelope
ntioned earlier, there are two components of our system,
ponding to the two components of the source-filter model.
section we describe the component which transforms the

al envelope (i.e. the filter).

raining

urpose of the training stage is to estimate the parameters
ansformation function that will map source features (LSF



vectors) to target features with minimum error.

4.1.1. Fitting the GMM

Pre-GMM estimation rejection of poorly matched data
There is a great deal of variability within and across speakers
as to the way words such as ’the’ and ’a’ are spoken. In some
cases these words are drastically shortened, and in others they
are even left out entirely. We attempt to reject poorly matched
data, unlike all previous approaches. Two strategies were em-
ployed to help isolate the poorly matched frames.

Those pairs of aligned frames of speech where one
speaker’s speech was voiced and the other speaker’s was un-
voiced were rejected from the training set. If they have dif-
ferent voicing classification, this suggests that they were poorly
aligned. As described in Gillett’s thesis [5], the predicted ampli-
tude envelope of the target is computed by modifying the source
amplitude envelope. The frames of speech where the predicted
amplitude is more than three times larger or smaller than the ac-
tual amplitude at that point are also rejected. When combined,
these methods typically reject about 25% of the data, and were
found to significantly improve quality in an informal listening
test.

Estimation of the transformation function
The transformation function must map the features of the source
speaker to the appropriate target speaker features. Gaussian
mixture models are one possible approach to this problem. They
have the useful property of being continuous, as opposed to a
lookup table based approach such as that of Arslan and Talkin
[1]. It has been shown that GMMs have as good as or superior
performance at the task of voice transformation to other trans-
formation approaches based on neural networks, vector quati-
zation or linear regression [6].

We use the joint density approach as applied to VT by Kain
[7]. This approach involves fitting a GMM to the joint density� � � � � 	

and then predicting
�

from
�

by finding 
 � � � � �
(the

expected value of
�

given
�

). To do this we form a vector �
where each element is composed of the source features � and

target features � , where � � � � � �
The probability distribution of a GMM with � � � � compo-

nents is given by:

� ! " " � � $ & $ ) $ , 	 � 0 1 2 456 7 9 & 6 ; � � $ ) 6 $ , 6 	 � 0 1 2 45 6 7 9 & 6 � > � & 6 @ A
where

& 6
is the weight for component B ,

; � � $ ) 6 $ , 6 	
is the n-

dimensional normal distribution with mean
) 6

and covariance, 6
.
The probability of a datapoint

�
belonging to a particular

class � may be computed using Bayes’ rule, which is� � C D � � 	 � & D ; � � $ ) D $ , D 	H 0 1 2 46 7 9 & 6 ; � � $ ) 6 $ , 6 	
The Expectation Maximization (EM) algorithm is an itera-

tive algorithm which may be used to find the most likely GMM
parameters

� & � ) � , 	
for a given set of data. To start the process

we set
& 6

equal to
> L � � � � for all B � > N N N � � � � ,

, 6
equal

to the identity matrix for all q, and set each
) 6

by applying the
K-means algorithm. The EM algorithm was then run until ei-
ther the likelihood

� ! " " � � $ & $ ) $ , 	
was maximized, or 30

iterations were exceeded.
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The s
frame
MM estimation rejection of poorly matched data
the GMM had been fitted to the training data, a second
of rejecting poorly matched data took place. We rejected
f the data which had lowest probability

� � C D � � 	
under

M. These points may be regarded as remaining outliers
e due to poor alignment. A GMM was then re-estimated
remaining data points. The optimum proportion for re-
(15%) was found through informal listening tests. The

priate amount to reject is likely to depend on the extent to
the source and target speakers’ accents and prosody dif-
ce we wish to exclude those cases where the two speakers

ying very different things.

ransformation

er to carry out transformation, the speech is first analyzed
puting Bark-warped LSFs for each frame. X and Y are

gned source and target feature streams. There is a simple
apping between � and � . For each frame of source LSFs,
ost likely target LSFs are computed. The expected value
target LSFs for a target frame,

�
, may be computed using

propriate source frame LSFs
�

as follows:

� � � � 0 1 2 45 6 7 9 � ) V6 W , V Y6 � , Y Y6 	 [ 9 � � ] ) Y6 	 	 N � � C 6 � � 	
here, 6 � � , Y Y6 , Y V6

, V Y6 , V V6 � ) 6 � � ) Y6) V6 �
fter the predicted LSFs have been computed, a smooth-
nction is applied to each of the LSF coefficients, in order
rict the difference in value between neighbouring frames.
lter used is a 2nd order lowpass digital Butterworth filter
the cutoff _ � ` is expressed as a fraction of half the sam-

rate. The sampling rate is the rate of pitchmarking. This
ass filtering of the LSFs is motivated by the fact that the
nents of the human speech system responsible for filter-

e signal from the glottis are restricted in how rapidly they
hange their response.

ynthesis

a vector of target LSFs has been predicted, the LSFs are
onverted from Bark to Hertz and converted to LPCs. The
ated target residuals are then found (see section 5), and
ning window is applied prior to inverse filtering with the
ated LPC parameters. The resulting speech is then created
OLA (pitch synchronous overlap-add) of all the frames of
wed speech.

5. Transforming the spectral detail
section we address the problem of transforming the spec-
tail which is represented by the residual. The system pre-
esiduals from transformed LSFs which were predicted in
n 4. The source-filter model is based on an assumption
e residual is independent of the spectral envelope. How-
we will show that the residual is sufficiently correlated
he spectral envelope that prediction is possible.

raining

ystem only attempts to predict the residual for voiced
s of speech, since the residual in unvoiced frames contains



very little information about the nature of the speaker, as there
is no vocal fold activity. A GMM with � � �

components was
fitted to the CC’s for the voiced frames of data. For each com-
ponent of the GMM a codeword was calculated. This codeword
has a magnitude spectrum, which was computed by summing
the magnitude spectra of all the residuals, weighted according
to the probability of each datapoint (frame of Cepstral Coef-
ficients) belonging to that component. If �

� � �
is the posterior

probability of � 	 � � � �
(the training data) for a class � and frame�

, then the magnitude for codebook entry � is:

� � � �� � � � � � � �
� � �� �� � �

�
� � �

The codeword also contains a table of all the phases of the
frames which have a 90% or greater probability of belonging
to that component. The value of 90% was chosen in order to
ensure there was a large enough number of entries in the table
to provide reasonable spread of lengths of the associated phases,
which will be important for reasons explained in 5.2.

5.2. Residual Prediction

Given the set of cepstral coefficients associated with a voiced
frame of speech, the residual may be predicted in the following
way. The magnitude spectrum of the residual was computed by
summing all the codeword magnitudes, weighted according to
the probability of the datapoint belonging to the component that
this codeword is associated with. This is �� � � � �

� � � � � � �
� � �

.
This method for predicting magnitudes has the desir-

able property of the resulting magnitude spectrum changing
smoothly provided the input parameters change smoothly. This
avoids many of the artifacts associated with vector quatization
methods [1].

Unfortunately, the same approach may not be taken with
the phase, since phase may not be interpolated using a weighted
sum analogous to the magnitude summation due to the way in
which phase may ‘wrap around’ (i.e. a phase of

! #
is equivalent

0). Resampling a phase to be a different length also requires
interpolation. Therefore, the phase was computed by finding
the most likely component of the GMM and choosing the phase
from the associated table that was closest in length to the desired
frame length.

After a phase and magnitude vector had been obtained, the
magnitude vector was resampled to be of the same length as
the phase vector. The inverse Fourier transform was then used
to convert the magnitude and phase back into a time-domain
signal.

5.3. Transformation

In order to perform the transformation, we require a set of Cep-
stral Coefficients for each frame of speech. These may either
be predicted using the method of section 4, or obtained directly
from the target speech if the system is being used purely to do
residual prediction. For each frame of speech, if the frame is
voiced, then a residual is predicted on the basis of the Cepstral
Coefficients of that frame. If it is unvoiced, then the source
residual is used, though it is resampled to be of the correct
length. It is acceptable to resample in this case, since the re-
sampling process is being performed in the time domain rather
than the complex frequency domain as was discussed earlier.
Each frame of speech is resynthesised by filtering the residual
using the appropriate LPC coefficients. Finally the speech is

forme
4.3.
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6. Evaluation
erformance indices

Spectral envelope

ror between two aligned sets A and B of LSF vectors may
puted as the Euclidean distance between the two vectors.

s however not a useful way to evaluate the performance
ransformation system since it doesn’t take into account
ifficulty’ of the mapping, i.e. the difference between the

and target vectors. The difference between two speak-
called the inter-speaker error $ & ( * + - + / 1 3 4 + / 1 1

, where
re the LSFs of the target speech. The LSFs of the pre-
target speech are represented as 7- + / 1

. The transformation
is the difference between the predicted and actual LSFs* + - + / 1 3 7- + / 1 1 1

. Kain suggested an LSF performance in-& ( * for assessing the quality of transformation in a voice
ormation system, as follows:

: & ( * � < = $ & ( * + - + / 1 3 7- + / 1 1
$ & ( * + - + / 1 3 4 + / 1 1

value of
: & ( * � A

indicates that the output of the sys-
no more similar to the target than the source is, whereas
e of

: & ( * � <
indicates that the output of the system

tical to the target. In general, a higher value for
: & ( *

sts a better system.

Spectral detail

er to ascertain the relative effectiveness of the spectral de-
nsformation component depending on the parameter val-
ed, it is necessary to have a method for measuring perfor-
. The performance index

: & ( * is not appropriate, since
measures errors in LSFs. The most common measure

n speech coding tasks is the signal-to-noise ratio (SNR).
easure the SNR as:

D � < A � F G H � J � K L L N + 4 + / 1 1 K O� + K L L N + 4 P + / 1 1 K = K L L N + 4 + / 1 1 K 1 O
4 + / 1

is the original speech, and
4 P + / 1

its coded form.
NR of a whole utterance is computed by dividing the

into a number of fixed length (20ms) frames, and then
g the average SNR of these frames, rather than simply
g the SNR of the whole utterance. A frame based ap-

better reflects the perceptual quality as errors in quiet
ud segments of the speech are computed separately. The
s computed on the magnitude spectrum, since this better
s perceptual quality, as the human auditory system is not
ensitive to changes in phase. Higher SNR values indicate
r system.

esults

Spectral envelope

eviously discussed, the experiments were carried out on
airs of speakers, with each speaker used once as source
ce as target. Example output of our system may be found
[8]. Further detail can be found in [5].
large number of different experiments were carried out in

to discover the effects of varying various parameters. The
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Figure 1: Left: Graph showing the relationship between the
cutoff (as a fraction of the Nyquist frequency) of a lowpass fil-
ter applied to the LSFs ( � � � ) and the performance of the re-
sulting system (

� � � � ). Right: Graph showing the relationship
between the amount of training data (

	 
 � � � �
) and performance

(
� � � � ).

variables in the following experiments are as follows: order of
LPC analysis � � � � , the number of components in the GMM

� � � � , the cutoff frequency of a low pass filter applied to the
transformed LSFs � � � and finally the amount of training data	 
 � � � �

. The results were averaged for all four combinations of
source and target speakers.

When we investigated the effect of changing the num-
ber of components in the GMM, it was found that a value of

� � � � � � �
provided the best performance. The performance

does not improve when there are more than 12 components of
the GMM, and this is the case regardless of the amount of data
trained on. We found that a value of � � � � � �  

provides
the best performance. This is consistent with the order of LPC
analysis used in similar tasks [7].

The relationship between the cutoff of the low-pass smooth-
ing filter and the performance of the resulting system is shown
in figure 1 (left). The optimum cutoff is a value of � � � �  ! "

.
The performance when doing smoothing with an appropriate
cutoff value is substantially higher than the performance with no
smoothing. This indicates that the smoothing plays a key role
in obtaining good performance from the system. The movement
of LSFs in natural speech is quite smooth. However, the trans-
formation system works on a frame by frame basis resulting in
noisy tranformed LSFs. Therefore, if there is too little filtering
the transformed LSFs are still too noisy, and if there is too much
filtering then information is lost. Figure 1 (right) shows that as
the amount of training data is increased, the performance of the
system improves. The largest amount of data used for training
was 120 seconds which provided a value of

� � � � �  ! " $
.

6.2.2. Spectral detail

The SNR of the system varies with the number of components
( � � %

) in the residual prediction GMM. The highest SNR values
(3.09 dB) are obtained when � � % � $ (

. Our results show that
the SNR is lower when both the LSFs and residual are predicted
(2.14dB rather than 3.09dB). This is of course what one would
expect. The results show that as the amount of training data
increases, the SNR also increases.

7. Conclusions
The results show that in order to gain the best performance, the
following parameters should be used: � � � � � � � ) � � � � �

�  ) � � � �  ! " ) 	 
 � � � � � � �  *
. This leads to a performance

of
� � � � �  ! " $

. In existing research, the voice transformation
system which has the highest performance is a system by Kain
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. Therefore, our
outperforms this system. Unfortunately we do not have

to the same test and training data as Kain used. Kain does
ve the duration in seconds of the training data used, how-
e does state that 40 TIMIT sentences were used (i.e. 160
ds). The training data used in our experiment is signifi-
different since it is prosodically varied. Kain asked the

ers to speak in a monotone, and to mimic the F0 contour,
nt and word durations of a particular speaker to minimize
peaker error. It is easier to make the transformation if the
and F0 are similar, since it is easier to find a good align-

and also because the F0 of the speech does not need to
ered so much. Our system improves over Kain’s system
it is able to deal with a more difficult problem: natural,
ically varied speech. The improved performance index
system over Kains could be due to the fact that our sys-
jects poorly aligned data from the training set, and also
to the smoothing applied to the mapped LSFs.
was found that when residual prediction alone is per-

d, the quality of the speech is extremely high, and it is
hard to tell from the original speech. Example files may
nd online [8]. When LSF mapping and residual predic-

re performed, the quality is also good and may easily be
ised as the target speaker. However, there are artifacts

l of RELP manipulation.
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