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ABSTRACT

A new method for predicting prosodic parameters, i.e. phone du-
rations and F0 targets, from preprocessed text is presented. The
prosody model comprises a set of CARTs, which are learned from
a large database of labeled speech. This database need not be
annotated with Tone and Break Indices (ToBI labels). Instead, a
simpler symbolic prosodic description is created by a bootstrap-
ping method. The method had been applied to one Spanish and
two German speakers. For the German voices, two listening tests
showed a significant preference for the new method over a more
traditional approach of prosody prediction, based on hand-crafted
rules.

1. INTRODUCTION

Each text-to-speech system first analyzes the input text in order
to specify what the speech should sound like, then it generates the
output waveform. Text analysis includes part-of-speech (POS) tag-
ging, text normalization, grapheme-to-phoneme conversion, and
prosody prediction. Prosody prediction itself often consists of two
steps: First, a symbolic description is generated, which indicates
the locations of accents and prosodic phrase boundaries (through-
out this paper referred to just as “boundaries”). Frequently the
symbols are ToBI [1] labels, which are also an abstract descrip-
tion of an F0 (fundamental frequency) contour. From these, the
numerical F0 values and phone durations are calculated.

The rational behind this two-step approach is the belief that
linguistic features are more strongly correlated with symbolic pro-
sody than with the acoustic realization. This not only makes it
easier for a human to write rules which predict prosody, it also
makes it easier for a machine to learn these rules from a database.

Unfortunately, ToBI labeling is very slow and expensive [2].
Having several labelers available may speed it up, but it does not
address the cost factor. Inter-labeler consistency is another issue
[3]. Therefore, a fully automatic procedure is highly desirable.
By analogy with automatic phonetic segmentation, which starts
out with speaker-independent HMMs and then adapts them to a
speaker in an iterative manner, we propose an automatic prosodic
labeler, which starts out with speaker-independent (but language-
dependent) prosody-predicting rules, and then turns into a classi-
fier, which is iteratively adapted to the acoustic realization of a
speaker’s prosody. The refined prosodic labels in turn are used to
train predictors for F0 targets and phone durations.

2. DATABASE

While in a diphone synthesizer there is only one or a few instances
of each diphone which need to be manipulated in order to meet
the specifications from the text analysis, in Unit Selection [4] a
large database is searched for a sequence of units which meets the
specifications best and, at the same time, keeps the joins as smooth
as possible. At AT&T, such a database typically consists of several
hours of speech per voice. The speech is annotated automatically
with words, syllables, phones, and some other features.

The same database is used to train the prosody models. An-
notations are enriched with punctuation, POS, and F0. POS tags
are generated by the TTS engine. F0 is estimated for each 10
ms frame, and interpolated in unvoiced regions; from the result-
ing contour, three samples per syllable are taken, at the beginning,
middle, and end of the syllable.

We used one American English female speaker, which had
ToBI labels for 1477 utterances. They were used to train a prosody
recognizer. Its automatically generated labels were used to train
the first American English prosody model.

3. CART BUILDING

Our “prosody model” consists of four CARTs (classification and
regression trees) [5]: Two of them make binary decisions about
where to place accents and boundaries. The other two predict three
F0 targets per syllable, and for each phone its z-score, which is the
deviation of the phone duration from the mean as a multiple of the
standard deviation. The two pairs of CARTs represent symbolic
and acoustic prosody prediction respectively. They are made by
the free software tool wagon [6], applying text-derived features.

For labeling speech with the binary decisions, a different pair
of CARTs is used, which applies in addition normalized duration
features (see subsection 4.1) as acoustic features.

3.1. Features

A variety of features derived from text are used for prosody pre-
diction. Some refer to words, such as POS, or distance to sentence
end. Others refer to syllables, such as stress, or whether the sylla-
ble should be accented. For phone duration prediction, additional
features refer to phones, for example their phone class or position
within the syllable.

Some features are simple, others more complex, such as the
“given/new feature”. This feature involves lemmatizing the con-
tent words and adding them to a “focus stack” [7], which models
explicit topic shift; a word is considered “given”, if it is already in
this stack.



As opposed to more traditional approaches, the binary sym-
bolic prosodic decisions are only two of many features for predict-
ing acoustic prosody: the CART-growing algorithm determines if
and when, e.g., the accent feature is considered for predicting the
z-score of a specific phone. This way hard decisions on the sym-
bolic level are avoided.

It is known that CART-growing algorithms have problems with
capturing dependencies between features. Breiman et. al. [5] sug-
gest combining related features into new features. But trying all
possible feature combinations leads to far too many combined fea-
tures. Providing too many features with most of them correlated
often worsens the performance of the resulting CART. A common
countermeasure is to wrap CART growing into a feature preselec-
tion, but with larger numbers of features this quickly becomes too
expensive. The only feasible approach is to offer the feature selec-
tion only those relevant combinations suggested in the literature or
based on intuition which address the most serious problems.

The final F0 rise in yes-no-questions posed one such prob-
lem: Even though the feature set included the punctuation mark,
the sentence-initial POS, and whether the sentence contains an
“or” (since in alternative questions, the F0 rises at the end of the
first alternative, not at sentence end), the CART-growing algorithm
was not able to create an appropriate sub tree. This was partly to
the sparseness of yes-no-question-final syllables, but even adding
copies of did not help: wagon needed an explicit binary feature
“yes-no question” in order to get question prosody right.

3.2. Quantizing numeric features

While CARTs are an obvious way to deal with categorical features,
most CART-growing algorithms cannot really deal with numerical
features: Considering all possible splits
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of equal size. But this kind of quantization may be corrupted by
a single outlier. Cluster analysis and quantization up front is the
solution in this case.

3.3. F0 target prediction

From the set of F0 vectors (three F0 samples per syllable, see sec-
tion 2, approximately a dozen clusters are identified by Lloyd’s
algorithm [8]. The F0 target predictor’s task is to predict the clus-
ter index, which in turn is replaced by the centroid vector. The
centroid vectors can be seen as prototypes for F0 contours of a syl-
lable. The number of clusters is a trade-off between quantization
error and prediction accuracy. It is also important to cover rare but
important cases, e.g. the final rise in yes-no questions. This can be
done by equalizing the training data.

4. ITERATIVE CART GROWING

The basic idea in iterative CART growing is to alternate between
prosody prediction from text and prosody recognition from text
plus speech. To that end, it is a special case of the Expectation
Maximization algorithm [9].

Initial accent and boundary labels are obtained by simple rules:
Each longer pause is considered a boundary, as well as each sen-
tence boundary (most of which coincide with a pause). ToBI hand
labels for a large corpus of one female American English speaker
suggest that boundaries and pauses are highly correlated.

As far as accents are concerned, we would like to initialize the
iteration with a speaker-independent accent recognizer, as it is the
case with the simple boundary recognizer. Acoustic cues for ac-
cents are less strong, and some are similar to cues for boundaries
(see subsection 4.1). For now, initial accent labels are made apply-
ing a simple rule on text-derived features only. Care must be taken
that after the first iteration the resulting CART does not reflect just
this rule, i.e. does not look at acoustic features at all. This can be
achieved by switching between “sufficiently orthogonal” feature
sets.

Once there is a prosody model for a speaker of the same lan-
guage, one can use it to obtain initial labels. A more general and
speaker-independent prosody model can be achieved by further
pruning the corresponding CARTs.

The predicted accent and boundary labels are added to the fea-
ture vectors. From this data, the first CARTs predicting durations
and F0 targets are made. Often they already produce better sound-
ing prosody than hand-crafted rules, probably because they are in-
herently speaker-adaptive.

4.1. Normalized durations

Once CARTs exist that predict durations and F0 from text, these
models can be used to refine the accent and boundary labels by
looking not only at textual features, but also at acoustic features.
In the second step, more acoustic information is available than just
the presence or absence of a pause. The second most important
acoustic feature is the relative syllable duration. Accented sylla-
bles as well as phrase-final syllables are lengthened. Thus, accent
and boundary models must be refined simultaneously. The amount
of lengthening is determined by the ratio of actual and predicted
duration.

In the same manner, actual and predicted duration of a whole
prosodic phrase can be compared, which allows for some degree
of speaking rate normalization. A new CART is grown which pre-
dicts these normalized durations. To that end, improving the dura-
tion model itself is an iterative process.

4.2. Prosodic labeling

Pause durations and syllable durations, obtained from the phonetic
segmentation and normalized with respect to speaking rate and
intrinsic duration are added to the textual features. Eleven fur-
ther features are extracted from the speech signal: Three median-
smoothed energy bands derived from the log. short time FFT make
the energy features. The interpolated F0 is decomposed into 3
components with band pass filters. The F0, their 3 components,
and their time derivatives of them make eight features, that de-
scribe the F0 contour locally and globally [10].

A classifier then is trained to recognize the accent and bound-
ary labels predicted in the previous step. With a mixed set of
features, the problem is that CARTs cannot really handle numer-
ical features (see subsection 3.2) and numerical classifiers cannot
deal with categorical features (unless it is a binary feature en-
coded as 0/1, plus a little noise in order to avoid numerical prob-
lems). Therefore a hierarchic classifier was chosen: The CARTs
predicting accents and boundaries from text features can not only
output the class having the highest posterior probability, but also
this probability itself. The two probabilities are then added to the
acoustic features as “linguistic features”, and a numeric classifier
is applied.



With the hand-labeled data for the female American English
speaker it was found that an n-nearest-neighbor classifier works
best. Its accent and boundary labels are correct (with hand labels
as reference) for 88.5% and 96.7% of all syllables respectively,
which is close to the inter-labeler consistency.

The machine labels are then fed into the next iteration step,
growing prosody-predicting CARTs. With the speakers dealt with
so far, the prosodic labels created this way stabilized quickly dur-
ing the iteration, so that two iterations seem to be enough at this
point. However, more research is needed with other speakers.

Even with the optimal set of features, predicted and recog-
nized prosody labels will never fully converge, because there are
many ways of saying something correctly. But the goal here is to
optimize prosody prediction.

For example, our German male speaker often paused at places
where one would normally not pause. This resulted in initial bound-
ary labels which were too difficult to predict from text. Fortu-
nately, there was already a reasonable CART for the German fe-
male speaker, which was substituted for the first iteration.

There was some trouble with the female speaker, too: When
examining her yes-no questions, a few ended with a falling F0.
Some of them were errors of the F0 extraction, but in others, the F0
actually fell. One may argue that these are not really yes-no ques-
tions. For some cases the corresponding feature could be improved
(e.g. wh-questions which start with an excuse), the remaining ones
would require the TTS engine to “knowing what it is saying”. For
now, it is best to remove examples from the training data that are
too difficult.

5. PERCEPTUAL EVALUATION

The ultimate goal in TTS is to improve the overall quality. Evaluat-
ing individual components, e.g. looking at the RMSE of the phone
duration predictor, may give clues about how to improve it, but
due to interaction with unit selection, decreasing the RMSE does
not necessarily improve the overall quality: When predicting “ex-
treme” durations, there are fewer units in the database and a unit
selected for duration may fit badly in some other respect. Some
prosody setting may improve quality on the segmental level, even
at the cost of higher RMSEs. It is still a challenge to find measures
for acoustic distance which are perceptually more relevant. For
now, TTS quality is still assessed best by human listeners.

Twelve adult native speakers of German participated as volun-
teers in a web-based listening evaluation of several different ver-
sions of German TTS. There were two parts to the web-based eval-
uation experiment, the first part was an A/B Paired Comparison
Test, and the second, a subjective rating test.

5.1. Paired comparison listening test

Two versions of prosody were compared: ManPro, the hand-crafted
prosody rule set, and DataPro, the rule set generated automatically
from data. There is one DataPro for each individual speaker, while
one ManPro per language, which is adapted to the speaker’s pitch
range.

There are two voices for the AT&T German TTS system. The
input text for 19 test utterances was selected completely indepen-
dently of and prior to synthesis by any TTS system tested. The test
utterances included: 10 interactive prompts and 3 German news
paragraphs, which were edited into 9 separate test utterances for
the purposes of paired comparison tests.

Three of the 12 listeners were familiar with German TTS and
nine were unfamiliar. All were employees of AT&T. All subjects
were blind as to the identity of the synthesis system associated with
each utterance. After listening to the two versions of an utterance,
they were instructed to click on the icon representing the utterance
they believe sounded best. Participants were told that they may
listen to the utterances in any order, and as many times as they
liked.

DataPro was favored over I prosody by nearly a 2:1 ratio. The
mean number of utterances preferred (and the corresponding per-
centage of preferred from among 19 test trials) is shown by voice
for each of the two TTS prosody modules in table 1. Across voices,
a preference for DataPro over ManPro was shown by 11 of the 12
listeners, and no listener had a preference for ManPro.

Results of separate one-sample t-tests (two-tailed) for each
voice (with the null hypothesized value of mu = 9.5, which is half
of the 19 test trials per voice) indicate a significant preference for
DataPro over ManPro (Klara: t = 3.4039, df = 11, p = 0.0059;
Reiner: t = 5.3759, df = 11, p = 0.0002). Similarly, the 65.1% pref-
erence for DataPro was significant (with mu = 19, which is half of
the 38 total test trials) when preferences were summed across both
voices (t = 5.8335, df = 11, p = 0.0001).

VOICE DataPro Pref. ManPro Pref. 95% Conf.Int.
Klara 12.4 (65.4%) 6.6 (34.6%) 10.53 - 14.30
Reiner 12.3 (64.9%) 6.7 (35.1%) 11.17 - 13.49
Pooled 24.8 (65.1%) 13.3 (34.9%) 22.58 - 26.92

Table 1. Paired comparison listening test, (19 test utterances).

6. SUBJECTIVE RATINGS OF GERMAN TTS
PARAGRAPHS

Only the three complete German news paragraphs were used as
text input for the ratings portion of the evaluation. Five test utter-
ances were synthesized for each test paragraph: (1) Klara voice
with DataPro, (2) Reiner voice with DataPro, (3) Klara voice with
ManPro, (4) Reiner voice with ManPro, (5) female German voice
from the highest quality commercial competition available for com-
parison.

Participants were told, as before, to listen to an utterance by
clicking on its icon. Listeners were blind as to the identity of the
synthesis system that generated each utterance. After listening to
an utterance, they were instructed to click on the icon correspond-
ing to the rating – on a scale from 1 (Bad) to 5 (Excellent) – that
they believed to best represent the speech quality of the utterance.
Again, they could listen to the utterances in any order, and as many
times as they liked, and they were encouraged to use headphones.

For both AT&T TTS voices, DataPro was rated 0.35 MOS
higher on average than ManPro. A repeated measures ANOVA
was performed, with TTS system (5) and paragraph (3) the within-
subject factors in the fully factorial design. Each prosody version
for each voice of AT&T TTS was rated significantly higher than
competitor’s TTS. Ratings of DataPro were consistently higher
than ManPro ratings for both voices, but only for the Reiner voice
did the size of the difference reach statistical significance. Com-
paring ratings for the two AT&T German TTS voices, Klara’s rat-
ings were significantly higher than Reiner’s ratings, regardless of
the prosody version used. Table 2 below lists the mean opinion



scores (MOS), standard errors, and lower and upper bounds of the
95% confidence intervals for each TTS condition tested.

Voice Prosody MOS SE 95%Conf.Int.
Klara DataPro 3.556 0.155 3.214 - 3.897
Klara ManPro 3.250 0.179 2.855 - 3.645
Reiner DataPro 3.194 0.145 2.876 - 3.513
Reiner ManPro 2.806 0.166 2.439 - 3.172
female Compet. 1.972 0.186 1.564 - 2.381

Table 2. Subjective Ratings of three news paragraphs.

7. SUMMARY

A method has been described that learns text-to-prosody from speech
data. All annotations are made fully automatically from text. The
prosodic annotations are created by a bootstrapping method and in-
dicate just the locations of accents and boundaries. During synthe-
sis, when predicting durations and F0 from features derived from
text, predicted accents and boundaries serve as additional binary
features only.

The method adapts itself to each individual speaker. Prosody
predictors based on hand-crafted rules typically allow adaption to
only a few parameters for to a specific speaker, such as phone du-
ration means and standard deviations, and F0 topline and baseline;
they are not able to capture more prosodic characteristics of the
speaker.

The prosody predictors are created in an iterative method by
alternating prosodic labeling and prosody prediction. For the two
German voices, two iterations and modest manual interference re-
sulted in CARTs that predict prosody significantly better than a
hand-crafted rule set, as two listening tests showed.

Applying the method will always require some manual work,
such as adapting some linguistic features and creating a fairly speaker-
independent prosody model for that language. Adding just a new
speaker is a far more easy task. Future work will focus on fully
automating the process.
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