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ABSTRACT
A new Jacobian approach that linearly decomposes the com-
posite of additive noise, multiplicative noise (channel trans-
fer function) and speaker’s vocal tract length, and adapts the
acoustic model parameters simultaneously to these factors
is proposed in this paper. Due to the fact that these fac-
tors non-linearly degrade the observed features for speech
recognition, existing approaches fail to adapt the acoustic
models adequately. Approximating the nonlinear operation
by a linear model enables to employ the least square er-
ror estimation of the factors and adapt the acoustic model
parameters with small amount of speech samples. Speech
recognition experiments on ATR isolated word database demon-
strate significant reduction of error rates, which supports the
effectiveness of the proposed scheme.

1. INTRODUCTION

Acoustic features for speech recognition are degraded by
number of factors such as background noise, transfer-functions
of communication channels and so on. Some of these fac-
tors may affects the observed features non-linearly. For
example, additive noise in the power spectrum domain de-
grades the cepstral features non-linearly.

There have been number of researches conducted to adapt
the acoustic model parameters to the target environments
in the real world where speech recognition is carried out.
In spite of these efforts, none of the adaptation techniques
outperforms the acoustic models that have been trained suf-
ficiently in the target environment. This fact suggests us
another scenario of adaptation in which (1) we assume we
had a set of acoustic models trained in the same environ-
ment with the target environment, (2) the characteristics of
the target environment will slightly change in accordance
with the time goes by or as the speaker moves in the mo-
bile environment, (3) only small amount of modification of
the model parameters is enough to follow the environmental
change. In such situations where real-time parameter up-
dating is necessary, direct use of modern well-known tech-
niques, PMC [1] and MLLR [2] for example, is not ade-
quate due to the computation complexity. Jacobian adapta-
tion (JA) [3, 4, 5, 6] is one of the solutions for this problem

because everything is carried out in the cepstral domain and
hence no transformation of feature vectors into spectral do-
main is needed.

The basic concept of the Jacobian adaptation is to model
the observed features as a analytic function that may be non-
linear, and approximate the function into a linear form so
that the acoustic model parameters can be adapted in the
feature domain of the acoustic models without transform-
ing the parameters into other domain such as linear spectral
domain.

2. JACOBIAN ADAPTATION

2.1. Formulation of Jacobian Adaptation

In the Jacobian approach, observed vector variable is given
by an analytic function of some variables1. In the present
study, we assume the observed cepstral vectorCY is a func-
tion of vector variables,CS , CN andCH , and a scalar vari-
ableλ, namely,

CY = Ψ(CS , λ, CN , CH) (1)

If CS , CN , CH andλ change by a very small quantity as
∆CS ,∆CN ,∆CH and∆λ, corresponding small change of
CY is expressed by

∆CY =
∂Ψ
∂CS

∆CS +
∂Ψ
∂λ

∆λ +
∂Ψ
∂CN

∆CN +
∂Ψ
∂CH

∆CH

(2)
We call ∂Ψ/∂CS , ∂Ψ/∂CN , and∂Ψ/∂CH Jacobian ma-
trices whose(i, j) component is the derivative of theith
component ofΨ with respect to thejth component ofC,
i.e., ∂Ψi/∂Cj , and we call∂Ψ/∂λ a Jacobian vector with
respect toλ.

Since the above mathematical relationship holds regard-
less the meaning of variablesCS , CN , CH , CY andλ, one
can assume that the first four vectors are the cepstral vec-
tors corresponding to the spectral vectorsSS , SN , SH and
SY which represent clean speech, additive noise and mul-
tiplicative channel characteristics (transfer function in the

1The Vector Taylor Series [7] employs a similar approach.



power spectral domain) and the resultant composite speech
spectrum that we observe. The last variableλ reflects a fac-
tor of speaker’s vocal tract length, which will be discussed
in detail in the following section. Fig. 1 depicts the observ-
ing system assumed in this paper.
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Fig. 1. Observing system: the model of speech, vocal tract
length, noise and channel

In case that the noise and channel conditions represented
by CN andCH (“ConditionA”) change intoCN +∆CN and
CH +∆CH (“ConditionB”) with the clean speech spectrum
fixed, the composite cepstrum also changes into:

CY+∆CY = Ψ(CS , λ, CN+∆CN , CH+∆CH) (3)

where∆CY is given by Eq.(2) with∆CS = 0, ∆λ = 0.
Since we have got the above adaptation formula, we can

adapt the acoustic model parameters, i.e., the mean vectors
of output distributions of HMMs, after observing a small
amount of audio samples for adaptation in a new condi-
tion B. Note that the adaptation is performed with very
small computation complexity because (1) every operation
is done in the same feature domain with the acoustic model
parameters, i.e., the cepstral domain in this case, and hence
no transformation of the features to the spectral domain is
needed, (2) Jacobian matrices are calculated once in the ini-
tial conditionA regardless the target conditionB.

This is the basic idea of Jacobian adaptation to a new
condition.

2.2. Vocal Tractλ-stretched Cepstrum and its Jacobian

In our previous work of Jacobian adaptation [4], the noise
and channel factors have been considered. The speaker’s
vocal tract length is newly employed as the third factor (vari-
able) in the present study.

We assume that if the vocal tract becomesλ times longer
in length then corresponding power spectrum changes from

S(ω) to S(λω). We call thisS(λω) a lambda-stretched
spectrum, and call the corresponding cepstrum aλ-stretched
cepstrum.

The relationship between the cepstrum and the power
spectrum is expressed as

log S = FC (4)

whereF is the Fourier transform matrix. Since the power
spectrum is real and symmetric, the Fourier transform can
be simplified with the discrete cosine transform (DCT) ma-
trix whose(i, k) element is given by

Fik = cos
i(k + 0.5)π

N
. (5)

With a little calculation, the above relationship can be
applied to the case ofλ-stretched spectrum and its relation-
ship to the original cepstrum is written as

log S̃ = F λCS . (6)

whereF λ denotes another DCT matrix including theλ stretch-
ing of frequency axis, whose(i, k) element is given by

Fλ
ik = cos

λi(k + 0.5)π
N

. (7)

Theλ-stretched cepstrum̃CS is thus expressed as

C̃S = F−1F λCS (8)

whosei-th component is given by

C̃Si =
N∑

j=1

F−1
ij

p∑

k=1

Fλ
jkCSk. (9)

SinceC̃S is now represented as an analytic function ofλ,
the i-th component of the Jacobian with respect toλ is de-
rived as

(Jλ)i ≈
N∑

j=1

F−1
ij

p∑

k=1

−j(k + 0.5)π
N

GjkCSk (10)

where the matrixG represents the sine transform, and we
further assumedλ ≈ 1. As a result, we obtain the following
expression if we discard other factors, noise and channel,
that affect the observedCY :

∆CY =
∂Ψ
∂λ

∆λ = Jλ∆λ. (11)

2.3. Jacobians for Noise and Channel

The relationship among then-dimensional vectors,SS , SN ,
SH , andSY in the linear spectral domain shown in Fig. 1 is
given by

SY = SH(SS + SN ). (12)



On the other hand, in the cepstral domain, the relationship
for the corresponding vectors is rewritten as2

CY = F ∗
[
log

{
exp(FCS) + exp(FCN )

}]
+ CH (13)

whereF is the Fourier transform matrix andF ∗ is the trans-
posed complex conjugate ofF thatF ∗F = 1.

If the changes ofCN and CH are small, the resulted
change,∆CY , is denoted by

∆CY =
∂CY

∂CN
∆CN + ∆CH (14)

according to Eq. (2).
The Jacobian matrix for noise is easily calculated at the

initial conditionA:

JN ≡ ∂CY

∂CN

= ∂CY

∂ logSY

∂ logSY

∂SY

∂SY

∂SN

∂SN

∂ logSN

∂ logSN

∂CN

= F ∗ 1
SH(SS+SN )

SHSNF = F ∗ SN

SS+SN
F (15)

Thus, if the differences between the initial and observed
conditions,A andB, are found in the cepstrum domain, i.e.,
∆CN and∆CH , the composite cepstrum,CY +∆CY , is
approximately computed by Eq. (14).

3. JACOBIAN JOINT ADAPTATION

In the previous section, we have shown that the small change
of the observed cepstrumCY caused by the small changes
of Cλ, CN andCH is approximated as a linear combination
written as:

∆CY = Jλ∆λ + JN∆CN + ∆CH . (16)

Thus the adaptation of acoustic models can be carried out if
we can observe these changes,∆λ,JN∆CN ,∆CH . In the
real world environment, however, noise, channel and vocal
tract length will change simultaneously, and thus one can
not easily tell the exact changes of the factors. For exam-
ple, if one could assume that noise alone changed among the
three factors, then he/she could observe∆CN directly from
the pause or silent signal regions where no speech sounds
exists. However, in case that noise and channel change
simultaneously, he/she could not recover∆CN and∆CH

from the observed signal directly. To tackle this problem
we employ the least square estimation approach to decom-
pose the factors from the speech signals.

To put the problem into the least square estimation prob-
lem that is solvable, we need to obtain a set of equations

2Here we assume that the logarithmic and exponential functions also
apply to a vector, in which corresponding operation is applied to each ele-
ment of the vector.

of (16) which are hopefully independent each other. To
that end, in the target environment B, we are going to ob-
serve a sequence of speech signal which contains number
of different phonemes. Note that for each observed sound
corresponding to each phoneme Eq. (16) commonly holds.
Therefore, in case that there areM hidden states in all in the
set of acoustic models, we will have the following system of
linear equations with the observation error termε(i) :8>>>><>>>>:

∆C(1)
Y = J (1)

λ ∆bλ + JN (1)∆cCN + ∆cCH + �(1)

∆C(2)
Y = J (2)

λ ∆bλ + JN (2)∆cCN + ∆cCH + �(2)
...

∆C(M)
Y = J (M)

λ ∆bλ + JN (M)∆cCN + ∆cCH + �(M)

(17)

where∆C
(i)
Y stands for the change ofCY , when the initial

condition A was changed to the target condition B, which
was observed in the speech region where thei-th hidden
state was assigned. In the implementation issue, we assume
that we know the text uttered, i.e., the phoneme sequence,
and time alignment between the observed speech signal and
the hidden states of phoneme models is properly performed
by time alignment algorithm such as Viterbi algorithm.

Solving the problem to minimize the sum of error terms,

Σ
∣∣ε(i)

∣∣2, yields the estimates,∆ĈN , ∆ĈH , ∆λ̂. Once we
have got these estimates, Eq. (16) is applied to adapt all the
mean vectors of the HMMs to the target condition.

It should be noted that giving a linear combination for-
mulation like Eq. (16) with respect to the factors by the Ja-
cobian approximation is the essential idea to achieve the si-
multaneous adaptation of the acoustic models to the factors.

4. EXPERIMENTS

4.1. Experimental Conditions

The proposed Jacobian joint adaptation scheme was eval-
uated using a speech database of isolated words, in which
experimental condition is shown in Table 1.

4.2. Experimental Results

Fig. 2 and Fig. 3 show word recognition rates for differ-
ent target SNR conditions, when the number of adaptation
words was 16. Comparing with the results when only the
two factors, noise and channel, are adapted, the proposed
joint adaptation demonstrates better recognition performance,
though the improvement is not larger than the case of noise
and channel adaptation. This is because, as other studies
have shown frequency axis stretching is not as effective as
other speaker adaptation schemes. Moreover, it will be more
likely in the proposed scheme that the model mismatch caused
by different speakers has been adapted by not only the fac-
tor of vocal tract length but also the other two factors, noise
and channel.

Fig. 4 indicates that 8 or 16 words are enough to achieve
the maximum error reduction performance of the proposed



Table 1. Experimental conditions for noise and channel si-
multaneous adaptation.

Speech DB ATR Speech DB A-set (5240 words)
Training 2650 words (odd-numbered)
Testing 655 words (from even-numbered)
Features 16 LPC-CEPs + 16∆ LPC-CEPs
Models 3-state, 3-mixture, CD phone HMMs
Speaker A MAU (male) or FFS (female)
Speaker B MHT (male) or FMS (female)
Noise A Station yard or Car inside (10dB SNR)
Noise B Intersection or Factory (0, 10, 20, 30 dB)
Channel A Flat

Channel B Simulated
(shown right)
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scheme. If one employs more sophisticated decomposition
algorithm to estimate the changes of the factors in Eq. (16),
one may be able to reduce the size of data for adaptation.
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Fig. 2. Recognition rates for each SNR (male speaker)

5. CONCLUSIONS

This paper introduced a linear decomposition scheme of
noise, channel and vocal tract length differences in the mis-
matched concisions, and simultaneous adaptation of the acous-
tic model parameters using a Jacobian formulation. Exper-
iments on isolated word recognition task, though very pre-
liminary, showed that the proposed joint adaptation scheme
significantly reduced the word error rates with small num-
ber of speech samples for adaptation.

The proposed joint adaptation scheme is quite general
and it is not limited to the case that the model mismatch
is caused by noise, channel and vocal tract length, but it is
also applicable to the case when the mismatch occurs due
to any reasons containing any additive, multiplicative and
frequency stretching disturbances.
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Fig. 3. Recognition rates for each SNR (male speaker)
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