
FRAMEWISE PHONE CLASSIFICATION USING SUPPORT VECTOR MACHINES

Jesper Salomon

Department of Informatics
and Mathematical Modelling

Technical University of Denmark
c960404@gbar.dtu.dk

Simon King
�
, Miles Osborne

�
�

Centre for Speech Technology Research�
Inst. for Communicating and Collaborating Systems

University of Edinburgh, UK
Simon.King@ed.ac.uk, osborne@cogsci.ed.ac.uk

ABSTRACT

We describe the use of Support Vector Machines for pho-
netic classification on the TIMIT corpus. Unlike previous
work, in which entire phonemes are classified, our system
operates in a framewise manner and is intended for use as
the front-end of a hybrid system similar to ABBOT. We
therefore avoid the problems of classifying variable-length
vectors. Our frame-level phone classification accuracy on
the complete TIMIT test set is competitive with other re-
sults from the literature. In addition, we address the serious
problem of scaling Support Vector Machines by using the
Kernel Fisher Discriminant.

1. INTRODUCTION

Most approaches to speech recognition involve learning some
form of model from data. The model might be generative,
as in the case of a Hidden Markov Model, or it might be a
classifier, as in the case of a neural networks [1]. Typically,
the model parameters are set to maximise the likelihood of
the training data.

An alternative to learning models of the data is an
example-based approach where a classifier is constructed in
terms of actual training examples. One such approach is
Support Vector Machines (SVMs) [2]. Whilst SVMs have
been shown to yield competitive results in a number of do-
mains (e.g. handwritten character recognition) they are not
without problems. The problems addressed in this paper
are: the choice of kernel and its parameters; building mul-
ticlass classifiers from inherently binary SVMs; the poor
scaling of the standard training algorithm on large data sets;
and the inability to directly interpret predicted outputs as
probabilities. We give a brief overview of SVMs in section
1.1. Previous speech recognition work using Support Vec-
tor Machines (SVMs) [3, 4, 5, 6] has typically addressed the
problem of classifying entire segments at once. The start
and end times of these segments might be obtained from
manual labelling (during training only), from a first pass us-
ing another model (e.g. a set of Hidden Markov Models), or

may be simply hypothesised at recognition time as part of
the search procedure. This approach has a serious theoret-
ical problem: the classifier must deal with variable length
feature vectors. Various ways round this problem have been
tried, including resampling segments to a fixed length ei-
ther by linear time warping [3] or ad hoc resampling [5],
and building non-linear time-warping into the kernel [6].

We take a different approach, which is analogous to that
in hybrid ASR systems such as ABBOT [1]. In these sys-
tems, a front end (e.g. a neural network or, in our case,
a SVM) estimates a posterior phone conditional probability
density function over the phone set on a frame-by-frame ba-
sis. This pdf is then decoded into a word sequence. Such an
approach avoids the problem of dealing with variable-length
feature vectors.

1.1. Support Vector Machines

Here we very briefly summarise the operation of Support
Vector Machines, originally introduced by Vapnik [2]. SVMs
are kernel machines and can be used for a variety of tasks,
including that of pattern classification. In its basic form,
a single SVM is a binary classifier which learns a decision
boundary between two classes (e.g. two phonemes) in some
input space (e.g. vectors of Mel-scale cepstral coefficients).
We discuss approaches to multiclass problems (e.g. 1-of-40
phoneme classification for TIMIT) in section 1.2. To find a
decision boundary between two classes a SVM attempts to
maximise the margin between the classes, and choose lin-
ear separations in a feature space. A function called the
kernel

����� �
is used to project the data from input space to

feature space, and if this projection is non-linear it allows
non-linear decision boundaries. The formulation for SVMs
is extremely simple. The classification of some known point
in input space x � is 	
� , which is defined to be either �� or� � . If x � is a point in input space with unknown classifica-
tion, then

�	 ��� sign

����
������� ��	�� ��� x �� x � � ��!#" (1)

where 	 � ��� ��� ��� and
�	 � is the predicted class of point

x � . The function
����� �

is the kernel, � � are a set of ad-
justable weights and

!
is a bias, both to be learned during

training. Classification time is linear in the number of sup-
port vectors. Various forms for the kernel function

��� � �
are

possible, subject to certain constraints [2]. We investigated
linear, polynomial and Gaussian kernels.

The training procedure for a SVM amounts to maximis-
ing the following expression using a set of � training vec-
tors � x �
 x �
 	�
�	� x � � with corresponding known targets� 	 � �	 � 	�	�
� 	 � � :��

� � � � � � �� ��
� � �

��
� ��� � � � � 	�� 	 � ��� x �� x� � (2)

subject to
������ � ��	�� ��� and ��� � � ��� where � is a

user-defined parameter know as the penalty term. The set
of support vectors in a trained SVM are those x � for which

� ��� � . It is clearly desirable for both storage and classifi-
cation speed to have a small set of support vectors.

1.2. Multiclass SVMs

Various approaches are possible for constructing a multi-
class classifier for a

�
-class problem from basic binary

SVMs, e.g. [7]. The one we have found most successful is
the one-versus-one scheme, where one classifier is trained
for every possible pair of classes - resulting in �� ����� � � �
classifiers (

� ����� in our experiments, so �� ��� � � � � ���� � . Once a set of one-vs-one classifiers have been trained,
there are two common ways of combining their outputs to
construct a multiclass classifier:
One-vs-one voting scheme The first scheme was a simple
majority vote: for a test frame all �� ����� � � � are run, each
classifier casting one vote on favour of the class it chooses.
The class with the most votes wins. Although this works
reasonably well in practice (results are in section 2.3), there
is clearly a flaw in such a scheme: the one-vs-one classifiers
are forced to choose between only two classes, therefore
many votes are forced to be cast for incorrect classes. In
practice, these votes are distributed sufficiently uniformly
as to not overrule votes from those binary classifiers who
are choosing between a pair of classes which includes the
correct class.
Directed acyclic graph (DAGSVM) scheme An alterna-
tive to the voting scheme is a greedy decision-graph-based
algorithm based on [7]. In this scheme a sequence of bi-
nary classifications are performed using the same one-vs-
one SVMs as above. If the first scheme was called “vot-
ing”, this scheme might be called a “knockout competition”.
Now, only

��� � � � binary classifications are required to
classify a test frame:

� � ��� � ����� in our case.

2. EXPERIMENT 1: PHONETIC CLASSIFICATION

Maximising expression 2 using a general-purpose optimised
quadratic programming algorithm will scale approximately
as � � and require large amounts of memory. One approach
to reducing training time on large data sets is to subdivide
the training data into smaller chunks, effectively solving
smaller optimisation tasks (i.e. ones with smaller �). Our
experiments used the SVMTorch toolkit [8] which provides
the sequential minimisation optimistation method. By using
an extreme decomposition (dividing the problem into sub-
sets of 2), this method effectively reduces the scaling factor
to approximately � � .

2.1. The data

We are currently working with the TIMIT corpus [9] be-
cause of it’s high-quality phone labels. All results reported
are framewise classification accuracies for the complete test
set (the 1344 si and sx sentences which contain just over
50 thousand phones). The speech waveforms are parame-
terised in a standard way as Mel-scale cepstral coefficients
(MFCCs) using 25ms frames spaced at 10ms intervals. Each
input pattern ! � consists of the current frame of 12 MFCCs
and energy plus delta and acceleration coefficients, and two
context frames on each side, making a total of

� � � � � � �� � �#"%$ = 195 components. This formulation was arrived at
by experimentation with varying numbers of context frames
left and right of the frame being classified. The training
set has about 1.1 million frames and the test set has about
400 thousand frames. Each frame has an associated 1-of-40
phonetic label derived from the TIMIT label files.

2.2. Choosing the kernel type and parameters

Kernel type An initial experiment was performed to deter-
mine the best kernel type. This used a reduced training set
of 2000 frames per class for speed and we used the mean
binary accuracy (i.e. the average across all 780 classifiers)
on a validation set for comparisons. The Gaussian kernel
performed best in all experiments, which is consistent with
findings in [3] and [5], so all subsequent experiments use
SVMs with Gaussian kernels.
Kernel parameters Depending on the kernel type, there are
one or more parameters whose values are not learned but
must be set by some other method. We investigated various
methods for automatically determining the kernel parame-
ters, but found that a simple exhaustive grid search of the
parameter space produced the best values. This step is slow,
and is therefore performed using only a subset of the train-
ing data.

We optimised the kernel parameters to maximise mean
binary accuracy on a 4000-samples-per-class validation set.

For the Gaussian kernel, the parameters are the variance �
and the penalty term, � .

2.3. Results for the best system

The best system used Gaussian kernels and a total of 12.8%
of the training frames were used as support vectors.
One-vs-one voting scheme All 780 classifiers must be eval-
uated to classify each unseen test frame using a simple ma-
jority voting scheme. The resulting accuracy is shown be-
low:

system framewise accuracy
one-vs-one 70.6%
DAGSVM 71.4%

DAGSVM system The DAGSVM scheme described earlier
requires far fewer classifiers to classify a test frame (but the
full set of 780 classifiers must be available, and therefore
training is the same as for the voting scheme). By ordering
the sequence of classifications to be initially between the
most dissimilar phonemes (in terms of phonetic features)
this system outperforms the voting scheme while reducing
the classification time by a factor of �� � � � � . The results
are also shown in above table.

3. EXPERIMENT 2: THE SCALING PROBLEM

As mentioned earlier, the training algorithm implemented
by SVMTorch scales approximately as � � for � training
examples, so it is clearly going to be problematic for large
data sets. In our previous experiments, we only managed to
train using around 40% of the TIMIT training set (all test
results are given on the complete test set however, so can be
directly compared to other results from the literature). This
took of the order of � � � (10 thousand) hours of CPU time
on 750 MHz UltraSparc 3 processors1

We estimate 6 years of CPU time would be required for
the full TIMIT training set. Even with ever increasing CPU
speeds, training a SVM of the type in our first experiments
is not going to be practical on larger data sets in the near
future. A solution to the scaling problem is the key to
successfully using SVMs for speech recognition.

In an attempt to solve the scaling problem, we chose to
examine the Kernel Fisher Discriminant (KFD) introduced
by Mika [10]. Like SVMs, it is another type of kernel ma-
chine that uses the ”kernel trick” [2].

3.1. The Kernel Fisher Discriminant

The KFD is a version of Fisher’s classical Linear Discrimi-
nant extended to incorporate kernels. The method attempts
to find a decision boundary (in terms of support vectors)

1Since each binary SVM is trained independently, this step was per-
formed in parallel.

0 5000 10000 15000
0

500

1000

1500

2000

0 5000 10000 15000
0

0.5

1

1.5

2

2.5

3

3.5x 10
4

Fig. 1. Scaling of SVM (left) and KFD (right). Horizontal
axis is training set size and vertical axis is training time in
seconds.

that both maximises the distance between the class means
and minimises the within-class variance. The mathematical
formulation of the KFD can be written as a similar convex
quadratic programming problem to SVMs:

Minimise
����� � � � ��� �	� � (3)

Subject to � � ��� x � x � � � ! � 	 � ��
 ���� ��
and

�
�	������� �������
 � � � and

�
��������� �������
 � � �

The weights � � , training patterns ! � , targets 	 � and bias
!

are
the same as in the SVM formulation. The only difference is
the regularising function, or prior,

� ��� �
. This function can

be chosen freely, and is here set to
� ��� � � � � � � . As with

SVMs, classification of a test point is given by equation 1.
The KFD method has a very significant advantage over

SVMs, which it inherits from Fisher’s Discriminant: assum-
ing Gaussian class distributions, the outputs of a KFD can
be interpreted as class-posterior probabilities. This al-
lows the model to be a direct replacement for the neural
network in systems like [1].

3.2. A Sparse Greedy Approximation

The quadratic program in expression 3 can be solved effi-
ciently by a Sparse Greedy Approximation technique [11].
This is an iterative technique that adds one support vector
per iteration until the value of the expression reaches a pre-
defined threshold. At each iteration, a predefined number of
training patterns are examined, and the one that best min-
imises the objective function is added to the set of support
vectors.

The resulting Sparse Greedy KFD reduces scaling to! � �#" � � and memory requirements to
! � " � � , where �

is the training set size, " the number of support vectors in
the final solution, and the number of training patterns ex-
amined in each iteration. If the required number of support
vectors is low, this method completes training much faster
than the SVM and with lower memory requirements, while
still producing comparable performance (as seen below).

To compare the performance of the KFD to the SVM
method, a selection of 10 binary one-vs-one problems were
randomly chosen from the 780 required for the full prob-
lem. For each SVM, a 2000 frame training set was selected
from the full training set with a separate validation set of
4000 frames; accuracy was measured on a 4000 frame test
set. Kernel parameters were set as described in section 2.2.
Training was stopped when a predefined maximum number
of support vectors was reached2. The table below shows
results comparing KFDs and SVMs on the same data sets.
The KFD with a maximum of 200 support vectors per bi-
nary classifier produces almost the same performance as the
SVM but uses only a third of the support vectors. Even with
only 20 support vectors per KFD, performance remains sur-
prisingly good. Figure 1 demonstrates that training time for
KFDs scales linearly with training set size3

Mean binary accuracy Mean # SVs
SVM 91.75% 634
KFD(200) 91.50% 200
KFD(20) 88.45% 20

4. CONCLUSIONS

The framewise classification accuracy of the SVM is en-
couraging. Working with a subset of only 40% of the full
TIMIT training set, it produced results comparable to the
best results found in the literature [12, 1]. By using Mika’s
Sparse Greedy KFD, we demonstrate a solution to two of
the main problems of SVMs: scaling, and creating sparse
and fast classifiers. However, if a large number of support
vectors " are required, even the KFD is slow, since it scales
with a factor " � .
Future work We are currently running experiments on the
full TIMIT training set using the Sparse Greedy KFD method.
Since the outputs of the KFD can be interpreted as posterior
class probabilities, we intend to decode the framewise out-
put from our KFD model in a similar fashion to [1]. Our
ultimate goal is to move on to larger data sets.

4.1. Acknowledgments

Ronan Collobert (Université de Montréal, Canada and IDIAP,
Switzerland) provided the SVMTorch software. We are deeply
grateful to Sebastian Mika (GMD First, Germany) for soft-
ware and advice for the KFD method. Thanks also to Lars
Kai Hansen (DTU, Denmark).

2Since the maximum number of support vectors can be defined by the
user, this parameter can be adjusted to suit the difficulty of the task.

3Absolute values for training time for the two methods cannot be com-
pared because they were implemented independently and were run on dif-
fering hardware.

5. REFERENCES

[1] Tony Robinson, G.D. Cook, D.P.W. Ellis, E. Fosler-
Lussier, S.J. Renals, and D.A.G. Williams, “Connec-
tionist speech recognition of broadcast news,” Speech
Communication, 2001.

[2] V. Vapnik, The Nature of Statistical Learning Theory,
Springer, N.Y., 1995.

[3] P. Clarkson and P.J Moreno, “On the use of support
vector machines for phonetic classification,” in Acous-
tics, Speech and Signal Processing, volume II, 2000,
pp. 585–588.

[4] N. Smith and M. Niranjan, “Data-dependent kernels
in SVM classification of speech patterns,” in Proc.
ICSLP, Beijing, 2000, pp. 297–300.

[5] A. Ganapathiraju, J. Hamaker, and J. Picone, “Hybrid
SVM/HMM architectures for speech recognition,” in
Proc. ICSLP, Beijing, 2000.

[6] Hiroshi Shimodaira, Ken-ichi Noma, Mitsuru Nakai,
and Shigeki Sagayama, “Support vector machine with
dynamic time-alignment kernel for speech recogni-
tion,” in Proc. Eurospeech, September 2001.

[7] N. Christianini J. Platt and J. Shawe-Taylor, “Large
margin DAGs for multiclass classification,” Tech.
Rep., Microsoft Research, Redmond, US, 1999.

[8] Ronan Collobert and Samy Bengio, “SVMTorch:
Support vector machines for large-scale regression
problems,” Journal of Machine Learning Research,
vol. 1, pp. 143–160, 2001.

[9] J. S. Garofolo, Getting started with the DARPA TIMIT
CD-ROM: An acoustic phonetic continuous speech
database, National Institute of Standards and Tech-
nology (NIST), Gaithersburgh, MD, 1988.

[10] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-
R. Müller, “Fisher discriminant analysis with kernels,”
in Neural Networks for Signal Processing IX, Y.-H.
Hu, J. Larsen, E. Wilson, and S. Douglas, Eds. 1999,
pp. 41–48, IEEE.

[11] S. Mika, A. Smola, and B. Scholkopf, “An im-
proved training algorithm for kernel fisher discrimi-
nants,” 2001.

[12] Ruxin Chen and L. H. Jamieson, “Experiments on
the implementation of recurrent neural networks for
speech phone recognition,” in Proc. of the Thirtieth
Annual Asilomar Conference on Signals, Systems and
Computers, November 1996.

