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Abstract

Studies have shown a potential relationship between speech perception, and the
development of both alphabetic literacy and phonemic awareness. Most of these
studies have assumed that all perceptual changes are developmental, with liter-
acy and phonemic awareness building on, but not affecting perception. How-
ever, a study by Nittrouer (1996b) of the relationship between phonemic aware-
ness, and changes in perceptual cue weighting (also called the Developmental
Weighting Shift) brings into question this assumption. Nittrouer showed that,
while early perceptual development might affect later metaphonemic skills, it is
equally possible that the development of phonemic awareness could impact on
apparently developmental perceptual changes.

The studies in this thesis aimed to determine which of these two possible causal
directions is more likely. Experiment 1 was a longitudinal study of 18 beginning–
reading children (average age at the beginning of the study: 5;8). These chil-
dren were tested on their phonemic awareness, and their perceptual weighting
of two cues to a /

�
/–/s/ contrast. This study showed that changes in acous-

tic cue weighting always follow the development of good phonemic awareness
skills, and furthermore, that early phonemic awareness scores predict later cue
weighting strategies. Experiment 2 was a cross–sectional study of 8 normally
developing older children, who had not begun literacy or pre–literacy training
(average age: 7;3). These children were also tested on their phonemic awareness
skills and cue weighting strategies. This second study showed that in the ab-
sence of phonemic awareness development, changes in cue weighting strategy
do not take place.

These two studies show that changes in cue weighting strategy are affected by
the development of phonemic awareness. This indicates that Nittrouer’s De-
velopmental Weighting Shift model does not in fact describe a developmental
process. These results also suggest that, when studying the development of low
level linguistic behavior, the effect of higher order cognitive processes must be
taken into account.
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CHAPTER 1

Introduction: Setting the stage

The communication of a linguistic message can be undertaken by means of
a number of different media. Two of the most basic of these for the aver-
age communicator are speech and writing, with speech perception and read-
ing as the means of understanding the message in each case. A fair amount
of evidence has been collected that indicates that there is a relationship be-
tween certain aspects of these two methods of understanding. Recent stud-
ies have, for instance, found differences in perceptual performance between
good and poor readers (e.g. Adlard & Hazan 1998, Mody, Studdert-Kennedy
& Brady 1997, Nittrouer 1999, Werker & Tees 1987), and between alphabetic
and logographic readers (e.g. de Gelder & Vroomen 1992). Further studies (e.g.
McBride-Chang 1995b, Nittrouer 1996b) have also found specific correlations be-
tween aspects of perception and the development of awareness of phonemic
segments—a skill which we will later see is highly related to alphabetic literacy.

At first glance it is perhaps unsurprising that these two processes should be
found to be related. The function of both speech perception and reading is, af-
ter all, the same—specifically to understand a message that has been transmitted
by means of some sort of encoding. Indeed the messages themselves are conven-
tionally seen as having the same underlying format—a phonological representa-
tion of words and phrases—and it is often assumed that both speech perception
and reading decode this representation in the form of a string of phonemes.

However, speech perception research has traditionally emphasised that the pro-
cesses by which a phonological message is decoded in speech perception and in
reading are very different. First, the form of the message itself is different for
perception and reading. Liberman, Cooper, Shankweiler & Studdert-Kennedy
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Figure 1.1: Spectrogram of the utterance ‘She had your dark suit in greasy wash water all year.’ Note, for example, that the
section from approximately 2.25ms to the end of the utterance, which corresponds to ‘water all year,’ is virtually continuous, with
little or no indication of possible word or segment boundaries.
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(1967) describe this difference by saying that an alphabetic writing system trans-
mits a phonological message by means of “a simple cipher” (p. 433), while a
spoken message is transmitted by means of “a complex code” (p. 433). The terms
‘cipher’ and ‘code’ serve to underline the difference in the intricacy of the rela-
tionship between the message and the message medium in each case. In the
case of writing, for those languages that make use of an alphabetic script, there
is something approaching a one–to–one relationship between the minimal units
of the underlying phonological message—phonemes—and the letters or letter
combinations that represent them—graphemes. This may seem like an oversim-
plified description of the relationship if one examines a language like English,
where a number of different graphemes may represent the same phoneme—/f/,
for example, is represented by ‘f’ in ‘fish’, ‘ph’ in ‘phone’ and ‘gh’ in ‘enough’—
and one grapheme may represent a number of different phonemes—‘o’ is / � /
in ‘to’, / � / in ‘top’ and /o � / in ‘no’. However, for many languages (e.g. Ger-
man, Greek, Turkish) the relationship is much more transparent, and very much
closer to one–to–one (see Oney & Goldman 1984, Porpodas 1989, Wimmer &
Goswami 1994). In fact, in all languages that use an alphabet, the relationship
between phonemes and graphemes is, at the very least, very much more regular
than the relationship between the same phonemes and the aspects of the acoustic
signal that represent them in speech.

The spectrogram in Figure 1.1 illustrates the first problem in understanding the
relationship between the acoustic signal and the message that it is transmitting:
specifically, that it is virtually impossible to neatly divide the signal into sections
which correspond to individual phonemic segments. Additionally, the aspects
of a signal that cue a particular segment are invariably multiple, some of these
multiple cues overlap with aspects which cue other segments and may be shared
by other segments, and all are affected by the context in which they are spoken.
Thus in order to read a phonemic segment, a reader must be able to make the
connection between a written grapheme and the phonemic segment it represents.
In order to perceive the same segment in speech, on the other hand, a listener has
to be able to reconcile this percept to the many, varied, and heterogeneous aspects
of the speech signal.

This brings us to the second major difference between speech perception and
reading: the manner in which the message is decoded. Listeners decoding a spo-
ken message do not need to be, and in fact are not, aware of the complex pro-
cess by which they are able to make a connection between a phonemic segment

3



and the many and varying acoustic cues to that segment. Speech perception is
a subconscious process: listeners simply understand the message. Reading, on
the other hand, is a conscious process. In order to decode a written message, a
reader must become consciously aware of the underlying phonological form of
the message—specifically, they must become aware of phonemes—in order to be
able to make a phoneme to grapheme connection.

Finally, as pointed out by A. Liberman (1996), there is a fundamental difference
in naturalness between speech perception and word reading. All humans, given
an environmental language, will learn to speak and to perceive speech—these
subconscious processes are seen as essentially maturational. Writing and read-
ing and their accompanying metalinguistic abilities (i.e. the ability to think con-
sciously about the phonological form of a message), on the other hand, do need
to be taught for the most part. Furthermore, the nature of these differences—the
fact that speech perception is a more complex process than reading, and is sub-
conscious and maturational, while reading is conscious and learned—are taken
as support for the view that speech perception as a whole is the more fundamen-
tal of the two skills. Under this view, the development of alphabetic literacy, and
all its component skills, builds on the phonological organisation laid down by
the perceptual system (see e.g. Liberman 1996).

How does one reconcile these apparent differences in the processes by which mes-
sages are understood in speech perception and reading, with the studies (noted
above) that have shown certain aspects of these same processes to be related?
This reconciliation becomes particularly problematic when one begins to inves-
tigate the nature of the relationship between speech perception and reading pro-
cesses, and in particular the possibility that the relationship could be causal. If
the relationship was found to be causal, the direction of causality could either
move from speech perception to literacy—that is, perception would have an ef-
fect on later literacy development—or from literacy to speech perception—that
is, the development of literacy skills would have an impact on some aspect of
speech perception. It is the possibility that causality might move in this second
direction that is particularly problematic for conventional views of speech per-
ception and literacy. Finding that literacy development impacts on perception
would mean that we would have to entertain the idea that some aspect of speech
perception could be affected by conscious, learned processes. We would thus
have to consider that speech perception might not be the wholly subconscious,
maturational and primary process that it has been assumed to be.
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One particular study, by Nittrouer (1996b), does encourage us to consider this
possibility. Nittrouer’s study found a correlation between certain mechanisms
which underlie perception and reading—specifically the use of acoustic cues in
speech perception, and the development of conscious awareness of phonemes.
The crucial aspect of this study is that it is inconclusive with respect to the pos-
sible causal direction between cue use in perception, and the development of
phonemic awareness. At the very least, therefore, we must consider that both
causal directions are possible.

The aim of this thesis is to determine which of the following two possibilities is
more likely: i) that cue weighting has an impact on phonemic awareness, or ii)
that phonemic awareness has an impact on cue weighting. It is also hoped that
in exploring the relationship between these two processes, some new light will
be shed on our understanding of the larger processes of which they are a part.
This first chapter will therefore attempt to situate the studies in this thesis in the
broader contexts of speech perception and metalinguistic awareness studies.

1 Speech perception

Some of the seminal work in speech perception was carried out under the aus-
pices of speech synthesis research by Alvin Liberman and colleagues in the 1950s.
These researchers experimented with using spectrograms to synthetically recre-
ate the impression of speech. The system used in this work was a form of optical
reader (eventually called a ‘Pattern Playback’, see Liberman 1996), which shone
frequency modulated light through a spectrogram onto a phototube. The pho-
totube then vibrated at the frequencies of the speech represented on the spec-
trogram. This work was first attempted with spectrograms derived from real
speech. As can be seen in the spectrogram in Figure 1.1, a speech signal is made
up of both fairly distinctive, gross–grained details—such as the high frequency
noise at time 1.2ms—and less distinctive, fine–grained acoustic details. The Pat-
tern Playback’s vibrating phototube was able to reproduce all of these elements,
creating sounds which very closely approximated real speech.

Importantly for speech perception research, however, Liberman and colleagues
also found that they were able to achieve the same speech–like sounds with
schematic copies of the spectrograms. In particular, it was found that a speech
percept could be created with only a stylised representation of the more gross
aspects of a spectrogram.
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Having thus determined that not all of the fine–grained detail in the acoustic sig-
nal is necessary to create the percept of speech, these researchers then moved on
to determine what parts of the signal were absolutely necessary for a listener to
perceive a specific speech sound, and moreover, what parts of the signal were
simply sufficient to signal a percept. What was found was that almost every dis-
tinguishable aspect of the acoustic signal is sufficient to signal or cue a speech
percept. It was found, for instance, that a short burst of energy can be sufficient
to cue a stop consonant, and that the frequency of this burst relative to the fre-
quency of the formants of the following vowel allows the listener to differentiate
between various stop places of articulation—e.g. between /p/, /t/, and /k/
(Liberman, Dellatre & Cooper 1952). A second possible cue to stop place of ar-
ticulation was found to be the onset frequency and direction of movement of the
post–consonantal vowel formants, in particular the second formant (Liberman,
Dellatre, Cooper & Gerstman 1954). Differences in manner of articulation, such
as that between the stop consonant /b/ and the glide /w/, were found to be
cued by the duration of post–consonantal vowel formant transitions (Liberman,
Dellatre, Gerstman & Cooper 1956), while differences in voicing were found to
be cued by the timing of the onset of the first formant (later known as voice onset
time or VOT, Liberman, Delattre & Cooper 1958). Thus speech perception came
to be seen as a process of determining, and making use of, the relevant aspects
of the acoustic signal to understand the phonological message.

1.1 What is an acoustic cue?

A. Liberman (1996) states that the term “ ‘cue’ is a term of convention, useful for
the purpose of referring to any piece of signal that has been found by experiment
to have an effect on perception” (p. 22). Under this definition, therefore, we can
see that the various configurations of bursts, transitions, and VOT which were
found to signal different speech percepts in the experiments described above,
can all be said to be acoustic cues.

Unfortunately, while this term is convenient and will be used in this way through-
out this thesis, it is also slightly misleading. First, this definition suggests that
a cue is a discrete, definable entity: that a burst is a cue to the presence of a
stop, while a lack of burst signals a lack of stop, for instance. This, however,
fails to capture the potential gradation of cues. The articulators (lips, tongue,
teeth, jaw, vocal folds, etc.) that are used to create speech do not simply vary in
binary configurations—i.e. mouth open or closed, vocal folds vibrating or not
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vibrating—but are free to vary in almost all configurations between these binary
settings. The speech that results from the movement of these articulators thus
varies in as many different configurations, leaving the speech perception system
to reconcile a highly variable acoustic signal with a limited phonological lexicon.
Liberman (1996) notes that there is a great deal of “data now available that in-
dicate how exquisitely sensitive the listener is to all the acoustic consequences
of phonetically significant gestures” (p. 22). What this data means, according to
Liberman, is that “any definition of an acoustic cue is always to some extent ar-
bitrary” (p. 22). It is possibly more clear, then, to think of a cue less as a discrete
aspect of the acoustic signal, and more as an acoustic variable with a potential
function—that is, a short burst of energy is a potential cue to the presence of a
stop consonant.

More importantly, the use of the term cue to refer to discrete aspects of the sig-
nal wrongly suggests some sort of one–to–one relationship between an aspect of
the speech signal and a single percept. As noted in the previous section, this is
not actually the case. Repp, Liberman, Eccardt & Pesetsky (1978) point out that
“In the articulation of an intervocalic stop consonant, for example, the character-
istically rapid closing and opening of the vocal tract has acoustic consequences
that include, among others, the following: various rising and falling transitions
of the several formants; a period of significantly reduced sound intensity; and
then a second, acoustically different set of formant transitions, plus (in the case
of voiceless stops in iambic stress patterns) a transient burst of sound, a delayed
onset of the first formant, and for the duration of that delay, band–limited noise
in place of periodic sound in the higher formants” (p. 621).

In addition to this one–to–many relationship between a speech percept and the
aspects of the signal that cue that percept, there is also a many–to–one relation-
ship between percepts and cues. Because the same articulators are used to simul-
taneously convey other aspects of speech than simply the identity of phonemes,
it is often the case that the multiple “acoustic consequences” of the movement of
the articulators referred to by Repp et al. (1978) above might additionally have
to serve as cues to suprasegmental, or other, aspects of speech. Fowler & Rosen-
blum (1991) note, for example, that there are multiple influences on the frequency
of a speaker’s pitch or F0, each of which cues a different percept. F0 is essentially
controlled by the rate at which the vocal folds open and close. This will be locally
increased or decreased by the speaker to convey lexical and phrasal pitch, but can
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also be increased and decreased by the intrinsic pitch differences between vow-
els, by the voicing (or lack thereof) of an obstruent, and simply by the deflation
of the speaker’s lungs as he breathes out. This means that as well as cuing dif-
ferences in lexical or phrasal meaning, F0 cues vowel height, obstruent voicing,
and the placement of elements in an utterance relative to the beginning of the
utterance (i.e. relative to the point at which the speaker began to breathe out). In
addition to this, because F0 is affected by the size and shape of the speaker’s vo-
cal tract, pitch range can also cue the sex, age and possibly the size of the speaker
(e.g. Laver & Trudgill 1979).

This last characteristic is true not just for pitch, but for all acoustic cues: the size
of the speaker and the nature of their vocal tract, as well as the language and
dialect that they speak, affect the way in which all aspects of the speech stream
are formed. This means that each acoustic cue will be different depending on
the speaker. Moreover, as noted by Jusczyk (1997) “the production of any speech
sound requires the coordination of many different components. As with any
complex motor skill, it is virtually impossible to produce the same speech sound
in the same way on two different occasions” (p. 47). Therefore even very small
changes in a speaker’s rate of speech, loudness, speech register, etc. will have an
effect on the speech stream. As a result, cues do not only vary between speakers,
but also between two productions of the same utterance by the same speaker.
Thus, while a speech percept must be the same each time it is heard, the aspects
of the signal that cue that percept will never be invariable in a straightforward
way1.

1.2 Coarticulation

One further aspect of the articulation of speech which has proved particularly
problematic for speech perception research is a phenomenon called coarticulation.
In effect, coarticulation refers to the articulation of aspects of more than one seg-
ment at the same time. It arises because the articulation of speech is both rapid
and continuous—that is, the speaker does not slow down or stop the articulatory
process at segment boundaries, or even between most words and phrases.

Coarticulation is problematic at both a practical and a theoretical level. From a
practical point of view, coarticulation presents yet more variability in the speech

1Although note that some researchers do posit more complex invariants in the speech stream,
as discussed in Section 2.1, this chapter.
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stream that the perceptual system must cope with. For example, the configura-
tion of the formants at the onset of the vowel /a/ will be different depending
on whether the vowel follows /b/, /d/ or / � / (see e.g. Delattre, Liberman &
Cooper 1955). In fact, the acoustic cues that correspond to any and all segments
are affected by the context in which these segments are spoken.

Theoretically, coarticulation poses a slightly different problem—namely how ex-
actly one should characterise it. Jusczyk (1997) states that

Coarticulation occurs because speech production involves moving
our articulators...from one configuration to another in a very short
time span. Because it takes time to move the articulators into the
proper position for each sound, the articulatory apparatus is forced
to find a compromise solution that involves starting the articulatory
gestures for one segment prior to finishing the gestures relevant to a
preceding segment. This causes the segments to overlap as speech is
produced. For this reason a given slice of the speech wave includes
information about the articulation of several different sounds in an
utterance. (p. 5)

This definition, based on the concept that segments overlap in speech, is in the
middle ground between definitions which see coarticulation as the ‘assimilation’
of certain characteristics of segments (e.g. Daniloff & Hammarberg 1973) and def-
initions which state that coarticulation is “gestural layering—a temporally stag-
gered realization of gestures that sometimes do and sometimes do not share one
or more articulators” (Fowler & Rosenblum 1991, p. 47, see also Öhman 1966).

From the point of view of acoustic cues, the results of coarticulation are usually
defined as transitional cues—that is, aspects of the signal which are ‘in transition’
between one configuration and the next. However, the definitions of ‘transition’
are as varied as the characterisations of coarticulation described above. At one
end of the scale is a model in which transitions are simply the dynamic sections
of the signal that join together supposedly segment–intrinsic cues—the so–called
‘steady–state’ cues, such as fricative noise and vowel target formant frequencies.
At the opposite end of the scale are theories which state that the effect of two
segments on each other can be seen throughout both the segments, effectively
subsuming any ‘transitional’ cues into the acoustic information for the segments
themselves (e.g. Fowler & Rosenblum 1991, see also Section 2.1, this chapter).
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It is fairly clear from the spectrogram in Figure 1.1 that the strict division of an
acoustic signal into ‘steady–state’ cues and ‘transitional’ cues would be nearly
as difficult as the division of the signal into individual phonemes—the signal is
instead best described as almost constantly changing. Additionally, the division
of acoustic cues into those which are intrinsic to a segment and those which only
give information about the effect of coarticulation on that segment, ignores the
numerous studies that have found that transitional information (in particular the
onset frequency and movement of vowel transitions) is crucial to the perception
of a number of phonemic segments (e.g. Delattre et al. 1955, Liberman et al. 1952).

As will be seen throughout this thesis, transitions can be seen as potential cues to
phonemic segments in their own right, in much the same way as release bursts
and VOT. However, as will also be seen, there may be some fundamental differ-
ences in the way that transitional cues and non–transitional cues are used by the
perceptual system in certain situations.

1.3 How do listeners make use of acoustic cues?

Keeping in mind the complex relationship between acoustic cues and the per-
cepts that they engender, the question that then arises is how exactly listeners
make use of cues to arrive at a percept. Determining the answer to this question
has been (and still is) the goal of a great deal of speech perception research. This
research has uncovered a number of perceptual phenomena, such as categorical
perception, cue trading relations, and cue weighting, among others, all of which
may operate to enable the perceptual system to cope with the multiplicity and
variability of acoustic cues.

Categorical perception

Categorical perception has to do with the way in which listeners organise acoustic
cues into a finite number of perceptual categories. As noted above, speech artic-
ulators do not vary in binary configurations. The variation in the acoustic signal
resulting from the movement of these articulators is therefore also not binary.
Just as the tongue can touch the roof of the mouth in virtually any spot from
the teeth to the soft palate, for example, it is possible for any one acoustic cue to
vary in the same way from one extreme configuration to another: e.g. vowel on-
set formant transitions could potentially vary gradually from low rising to high
falling, and VOT could potentially vary from long to short. However, in terms
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Figure 1.2: Idealised graph of identification responses illustrating the phe-
nomenon of categorical perception. This graph represents responses to stimuli
along a formant transition continuum from [ba] through [da] to [ � a]. Each line
on the graph represents the percentage of the stimuli at each point on the con-
tinuum that would be given a particular category label. Note that there is very
consistent labelling within each category, and a very sharp change in labelling at
each category boundary.

of speech understanding, it would be very inefficient for a perceptual system to
automatically differentiate between all possible variants in formant configura-
tions or VOT. Instead, what is needed from a perceptual system is an ability to
determine which changes in the configuration of an acoustic cue signal a mean-
ingful contrast—e.g. a change in formant transition configuration which signals
the difference between [ba] and [da]—and the ability to ‘ignore’, or treat as irrel-
evant, a change which ought not to signal a meaningful contrast—e.g. a change
in formant configuration which signals two different productions of [ba] spoken
in two different segmental contexts. Research has shown that, for a large number
of cues to certain phonetic contrasts, this is precisely how the perceptual system
operates. If listeners are asked to identify speech sounds which are synthetically
designed to vary along a gradual continuum, they do not give gradually less
of one label and gradually more of another to these sounds. Instead, for a con-
tinuum of consonant–vowel (CV) syllables which vary, for example, in formant
configurations from those appropriate for [ba] to those appropriate for [da] and
then for [ � a], there is a sharp change in labels from [ba] to [da], and [da] to [ � a] at
certain points on the continuum, and very consistent labelling of the syllables in
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between these changeover points (see Figure 1.2)2. These areas of consistent la-
belling are said to correspond to phoneme categories, with the changeover points
corresponding to phoneme category boundaries.

In addition, listeners’ discrimination abilities seem to correspond to their la-
belling tendencies. Asked to discriminate between stimuli from the same [ba]–
[da]–[ � a] continuum as described above, listeners perform at chance when at-
tempting to tell the difference between two stimuli within the same category.
Their ability to tell the difference between stimuli which fall on either side of a
category boundary, on the other hand, is significantly better, even if the absolute
acoustic differences between the stimuli from the same category and between
those from different categories are identical. In other words, unless the difference
between two stimuli is considered by the perceptual system to be meaningful, lis-
teners treat the stimuli as equivalent, both in terms of phonetic labeling and in
terms of discrimination (Liberman, Harris, Hoffman & Griffith 1957, Liberman,
Harris, Eimas, Lisker & Bastian 1961).

This last point is interesting, given that there have been a number of sugges-
tions put forward that labeling and discrimination tasks place different linguis-
tic demands on a subject. Specifically, labelling tasks are often seen as requir-
ing the subjects to make a linguistic, phonological evaluation of the stimuli,
while discrimination tasks may not require this type of evaluation (e.g. Simon
& Fourcin 1978). However, while discrimination tasks may not require a lin-
guistic level of processing, they are often seen as allowing for a more stringent
assessment of auditory sensitivity to small acoustic differences in speech (e.g.
Sussman 1993). The implications of these possible differences on theories of per-
ceptual development, and on the design of the current studies, will be discussed
in Chapters 2 (Section 1.2) and 3 (Section 2.1).

It should be noted at this point that categorical perception is possibly one of the
most widely studied perceptual phenomena (Rosen & Howell 1987). A wide
range of listeners (including normal adults, normally developing children, clin-
ical subjects, and non–human animals) have been tested on their tendency to
categorically perceive numerous types of cues to different speech contrasts, as
well as cues to non–speech contrasts. As a result of this extensive testing, it is
often assumed that categorical perception is not simply a remarkable function of

2Although note that not all speech contrasts engender perception responses which are as
strictly categorical as those shown in Figure 1.2: the perception of vowels, for example, has been
shown to be more continuous than perception of stop consonants (see Rosen & Howell 1987).
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a speech perception system, but rather is synonymous with speech perception
as a whole. This in turn has led to categorical perception testing being used as
an indicator of general perceptual ability for a number of studies, as opposed to
simply an indicator of ability to class sounds into phonological categories.

Trading relations and perceptual cue equivalence

As noted above, there is a many–to–many relationship between acoustic cues
and speech percepts. Having shown how listeners might cope with variation in
single cues to a percept—i.e. they tend to perceive categorically—we can now
ask how listeners cope with multiple cues to a single percept. The phenomenon
of categorical perception has proved useful in allowing researchers to determine
a possible answer to this question. Research has found that when multiple, rather
than single cues are presented to a perceptual system, these cues interact and
influence each other to form a percept.

One study of this phenomenon was carried out by Fitch, Halwes, Erickson &
Liberman (1980), who examined the relative influence of two cues to the presence
of post–fricative stop–consonants (as in the words ‘slit’ and ‘split’) on listeners’
categorical perception. The two cues in question were i) duration of silence be-
tween the fricative noise and the onset of the liquid, and ii) presence or absence of
vocalic onset transitions appropriate for bilabial stop closure. The authors were
able to determine the relative effect of these two cues on the listeners’ percep-
tions, by designing a categorical perception–type test in which the two aspects
of the signal being manipulated did not always cue the same percept. A con-
tinuum of silence durations was created, ranging from a long silence duration,
which clearly cued the presence of a stop, to a short silence, which did not cue
stop presence. Then, two different vocalic onset transition conditions were cre-
ated, one which was more likely to cue the presence of a stop, and one which was
less likely to do so. These two transition conditions were combined with each of
the silence durations, meaning that for each point on the silence continuum there
were actually two different test stimuli. The listeners were presented with these
stimuli, and asked to label them as ‘slit’ or ‘split’.

What was found was that the two cues interacted in what has been called a trad-
ing relation. Overall, in both transition conditions, a longer amount of silence
cued a stop consonant percept, and a shorter amount cued the percept of no con-
sonant. However, for each different transition condition, the amount of silence
needed to change the percept was different. When the formant transitions were
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appropriate to cue a stop consonant, only approximately 55ms of silence was re-
quired for a stop consonant to be perceived. When no formant transitions were
present, approximately 80ms of silence was needed before a stop consonant was
perceived. This means that when only one cue, for instance the silence duration,
is available to signal a contrast, the effect of varying that cue (i.e. making the
silence duration longer or shorter) is to change the percept. When a second cue
to the contrast is available, however, it interacts with the first cue, and ‘carries
some of the load’ of creating a percept, therefore less of the first cue is needed.
This is the origin of the term trading relation—the two cues are able to ‘trade’ in
the amount they are needed perceptually.

In the same study, Fitch et al. (1980) also showed the perceptual equivalence of cues
to a contrast. The cues and contrast were the same as those described above: du-
ration of silence and configuration of transitions as cues to the presence of a stop
following [s]. Keeping in mind that both a long silence duration and the pres-
ence of transitions in the vocalic portion of the syllable cue the presence of a stop,
the authors created stimuli in which these two cues either i) co–operated—that
is, both cued a stop (a long silence plus transitions) or both cued the absence of
a stop (a short silence with no transitions)—or ii) were in conflict—that is, one
cued a stop and the other cued its absence (stimuli with long silence plus no tran-
sitions, or a short silence plus transitions). The results showed that those stimuli
with both cues signalling a stop were easily discriminated from those with both
cues signalling the absence of a stop. However, those stimuli with only one cue
signalling the presence of a stop were much less easily discriminated from those
stimuli with only the other cue signalling a stop. This lack of discriminability
is the same result as is found in conventional categorical perception testing: as
noted above, listeners are unable to discriminate between two configurations of
the same cue when the two configurations signal the same percept (that is, when
the two stimuli are from the same category). This led Fitch et al. (1980) to con-
clude that, in the same way that the perceptual system is able to treat two slightly
different configurations of the same cue as perceptually equivalent, the percep-
tual system seems able to treat two different cues to the same contrast as percep-
tually equivalent. This means that despite the obvious acoustic differences be-
tween the silence duration cue and the formant transition cue (as noted by Fitch
et al. (1980) “one of them is silence, the other is sound” p. 349), the presence of
either one is sufficient to arrive at the same percept.
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Acoustic cue weighting

Numerous other studies have been carried out which have shown trading rela-
tions between, and spectral equivalence of, cues to numerous other phonemic
segments (e.g. Best, Morrongiello & Robson 1981, Repp et al. 1978, Stevens &
Klatt 1974). However, a number of other studies have also found that two cues
to the same percept are not necessarily always equivalent in terms of the relative
role that they play when both are present to cue a percept. That is, in arriving
at a percept listeners may not make equal use of all of the cues available in all
situations.

Dorman, Studdert-Kennedy & Raphael (1977) conducted a study to determine
the role of stop bursts and formant transitions in the perception of place of ar-
ticulation of voiced stops. By cross–splicing natural syllables recorded by two
different speakers, these authors created CVC stimuli with 5 different combina-
tions of bursts, aspiration and vowel onset transitions: i) stimuli with all three
cues, ii) stimuli with no aspiration or transitions, iii) stimuli with no transitions,
iv) stimuli with no burst or aspiration, and v) stimuli with no burst. The re-
sults of this study showed that the degree to which the listeners made use of,
or weighted, the burst and transition information—indicated by the degree to
which they were affected by the absence of each cue—differed depending on the
place of articulation of the consonant, the quality of the following vowel, and
the speaker. Similar results were found by Whalen (1991), who showed that the
perceptual weight given to cues to fricative place of articulation depends on the
identity of both the fricative and the following vowel.

Walley & Carrell (1983) also examined the relative importance of different cues to
listeners’ percepts of stop place of articulation. This study made use of stimuli in
which burst spectrum cues either agreed with or conflicted with (i.e. didn’t cue
the same percept as) the vowel formant transition cues. The results of this study
showed that when the two cues to the percept of a particular place of articulation
were in conflict, adults’ identification of the stimuli generally corresponded to
the percept cued by the formant transitions. Further studies (e.g. Ohde & Haley
1997, Wardrip-Fruin 1982, Wardrip-Fruin 1985) have gone on to show similar
differences in the status or weighting of other cues to different percepts.

It should be noted that this apparent division of cues into those that are weighted
more heavily by listeners, and those that are weighted less heavily, should not
be confused with those theories that divide the acoustic signal into ‘primary’ and
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‘secondary’ percepts (e.g. Stevens & Blumstein 1981). The main premise of these
theories (which will be discussed in more detail in Section 2.1, this chapter) is
that invariant properties, which it is claimed can be found at specific points in
the acoustic signal, are the main cues to speech percepts, and all other, context–
dependent aspects of the signal are only secondary cues. It is clear that this
idea of cue use does not correspond well with the results of Walley & Carrell’s
(1983) study described above, which showed that adults give more perceptual
weight to the context–dependent transitional cues. Nor does it correspond well
with the studies of Dorman et al. (1977) and Whalen (1991), who showed relative
cue use to be dependent on a number of factors, including the contrast being
perceived, and the nature of the cues themselves. All of these studies instead
indicate that the perceptual system is free to make use of whichever acoustic
cues are appropriate for any given percept.

Further evidence of the flexibility of cue weighting in speech perception comes
from a number of studies which have induced listeners to change the cue
that they weight more heavily. Some of these studies used some form of
signal manipulation—either background noise (Wardrip-Fruin 1982, Wardrip-
Fruin 1985) or reverberation (Watson 1997)—to mask certain cues in the signal.
These studies found that listeners will weight cues differently when the stimuli
are masked than they do when perceiving in silence—that is, the listeners will
switch the weight given to certain cues if this is necessary for accurate percep-
tion (although see Chapter 2, Section 1.3 for a discussion of the same type of
study with children).

More surprising are studies which found that listeners’ typical cue weighting
behaviour can be shifted without resorting to masking parts of the signal. Gor-
don, Eberhardt & Rueckl (1993) found that when listeners were able to give their
full attention to a phoneme identification task, they gave most weight to VOT
when labeling a /ba/–/pa/ contrast, and gave most weight to formant patterns
when labeling an /i/ to / � / contrast. However, when the same listeners were dis-
tracted from the perception task by attempting to complete an arithmetic calcula-
tion at the same time, the relative importance of the cues to the percepts changed:
the listeners used F0 onset frequency more heavily to identify the /ba/–/pa/
contrast, and used vowel duration more heavily to identify the /i/–/ � / con-
trast. A second study, carried out by Christensen & Humes (1997), made use
of non–speech correlates of acoustic cues found in speech: specifically, frication
noise, sloping frequency transition and a silent gap. Listeners were trained to
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label stimuli with various configurations of these three cues as ‘circle’, ‘triangle’
and ‘square.’ While an identification experiment found that untrained subjects
tended to give the most weight to the frequency transition, these authors found
that they were able to train the same subjects to classify these stimuli according
to a different cue, specifically the duration of the silent gap.

Clearly, therefore, relative weighting of acoustic cues is dictated both by the de-
mands of the perceptual system to make use of the most informative cue in any
given context, and by demands external to the perceptual system itself.

Development of acoustic cue weighting

The apparent ability of the perceptual system to shift the weighting or impor-
tance of cues as required has also been found to be important developmen-
tally. A number of studies have shown that young children do not make the
same use of acoustic cues as do older children and adults in perception (e.g.
Greenlee 1980, Krause 1982, Morrongiello, Robson, Best & Clifton 1984, Nittrouer
& Studdert-Kennedy 1987, Nittrouer 1992, Ohde & Haley 1997). Morrongiello,
Best and colleagues (Best et al. 1981, Morrongiello et al. 1984), for example, found
that children weight transitions more than do adults in their labeling of a ‘say–
stay’ contrast with varying gap duration and vowel onset transitions. Ohde &
Haley (1997) also found that very young children (3–4 years) make more use of
formant transitions than do older children and adults—in this case in the identifi-
cation of stop consonants (all of these studies will be discussed further in Chapter
2, Section 1.3).

One particular set of studies by Nittrouer and colleagues (Nittrouer & Studdert-
Kennedy 1987, Nittrouer 1992, Nittrouer 1996b, Nittrouer & Crowther 1998) in-
dicates, according to the authors, a possible explanation for these differences
in cue weighting between adults and children. Nittrouer & Studdert-Kennedy
(1987) examined adults’ and children’s weighting of two cues to fricative place
of articulation in the fricative–vowel syllables ‘sue’, ‘shoe’, ‘sea’, and ‘she’: i) fre-
quency of fricative noise, and ii) vowel onset transition configuration. The study
found that adults tended to be influenced only a relatively small amount by the
transitional cues, basing their labelling decision more on whether the fricative
noise was closer in frequency to the /s/ or /

�
/ end of the continuum. The chil-

dren, however, were much more influenced by the transitional cues, basing their
labelling decision more heavily on whether the transition was appropriate for
having followed /s/ or /

�
/. Additionally there appeared to be a developmental
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effect: the youngest children (aged 3 years) showed the strongest effect of the
transitions, the 5–year–olds showed a weaker transitional effect, and the 7–year–
olds were very similar to the adults in their cue weighting. Further studies have
gone on to replicate these developmental cue weighting results: for the same
fricative contrast (/s/ vs. /

�
/) in different vowel contexts, for different conso-

nant contrasts (presence or absence of a stop consonant, as in ‘say’ vs. ‘stay’),
for various combinations of synthetic and natural speech, and for different di-
alects of English (Nittrouer, Manning & Meyer 1993, Nittrouer 1996b, Nittrouer
& Miller 1997a, Nittrouer & Miller 1997b, Watson 1997).

However, one particular experiment carried out by Nittrouer (1992) showed that
in a certain context young children give less weight than do adults to transitional
cues. It had been shown in studies previous to Nittrouer’s (1992) study that
adults’ identification of a CV syllable as either /da/ or / � a/ is influenced by the
transitional effects of a preceding VC syllable: specifically, whether the syllable
is either /al/ or /ar/ (see Mann 1980). Nittrouer, however, found that children
are much less influenced by transitions in identifying this contrast.

At first glance this incongruous result appears to indicate that children may sim-
ply process transitional information differently depending on the context of the
transition—i.e. more weight is given to transitions between fricatives and vowels
than transitions between a stop consonant and a glide. Nittrouer, however, rec-
onciles these two results by suggesting instead that children process transitional
information differently depending on the position of the transition in relation to
the overall syllabic structure of the stimuli—i.e. within–syllable transitions are
given more weight by children than across–syllable transitions (Nittrouer 1992).

Nittrouer’s hypothesis is founded on evidence from studies of phonological de-
velopment in both perception and production that has suggested that young chil-
dren’s speech processing is focussed on units roughly the size of a syllable (e.g.
Studdert-Kennedy 1987). Under this account, children do not need to give much
weight to across–syllable transitions, as these occur outside the boundary of their
perceptual units. Children will, however, give more weight to those transitions
that occur within a syllable “because these properties help them recognize sylla-
ble structure in the speech stream” (Nittrouer & Miller 1997b, p. 2254). The same
phonological development studies also suggest that there is some movement
away from syllable organisation, towards organisation around something more
akin to a phonemic segment, as the child ages. Therefore the reason for adults’
different perceptual behaviour with regard to transitions, according to Nittrouer,
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is that they have “ceased to favor properties that specify movement and instead
[have] come to emphasize those properties...that are most informative about
place and shape of vocal–tract constrictions” (Nittrouer & Crowther 1998, p. 810),
i.e. those cues which more closely relate to sub–syllabic segments. This model
of the development of perceptual strategies—in which child listeners weight
syllable–intrinsic cues more heavily and adults weight segment–intrinsic cues
more heavily—has been termed the Developmental Weighting Shift by Nittrouer
and colleagues (e.g. Nittrouer et al. 1993).

2 Changing units in phonological organisation

Nittrouer’s theory that perceptual development moves from being syllable–
based in childhood to phoneme–based in adulthood raises a number of ques-
tions. First, is there any other evidence that such a shift might take place in per-
ceptual development? Second, what is the evidence that such shifts in units take
place in any other area of phonological organisation? And finally, is there any
evidence to suggest that changes in units at all of these different levels might be
at all connected, and thus might reflect a more general reorganisation of phono-
logical units? This section will attempt to give a very general overview of what
is already known (or hypothesised) regarding each of these issues.

2.1 How do adults perceive? Theories:

We begin our investigation at what is assumed to be the end point of development—
perceptual behaviour in the average adult listener. As will be seen, although
there is a great deal of disagreement as the the exact manner in which adults per-
ceive speech, there is actually a reasonable consensus as regards the units with
which they perceive it.

In general, perceptual theories can be divided into two groups: the articula-
tory or motor group (e.g. Fowler 1986a, Fowler & Rosenblum 1991, Liberman
et al. 1967, Liberman & Mattingly 1985), and the acoustic group (e.g. Blumstein
& Stevens 1980, Kingston & Diehl 1995, Stevens 1980, Stevens & Blumstein 1981).
For the strict motor theorist, “the objects of speech perception are the intended
phonetic gestures of the speaker” (Liberman & Mattingly 1985, p. 2). A gesture,
in this theory, is related to articulatory movements: a bilabial nasal [m], for exam-
ple, consists at a fundamental level of a labial stop gesture and a velum lowering
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gesture. Gestures themselves generally involve the movement of two or more ar-
ticulators, “thus ‘lip rounding’, for example, is a collaboration of lower lip, upper
lip and jaw” (Liberman & Mattingly 1985, p. 22). However, because the move-
ment of these articulators may be perturbed by coarticulation, rate of speech,
speaker characteristics etc. (as described above), what is perceived cannot be the
actual, highly variable movement or gesture. Instead what is perceived is the in-
tended gesture. According to the motor theory, listeners perceive these intended
gestures by means of a specific speech module, which compares the input sig-
nal with potential descriptions of that signal. The module is constrained in the
number of descriptions that it produces by the fact that it derives them “by an
analogue of the production process” (Liberman & Mattingly 1985, p. 26)—that
is, the module “guess[es] how the [incoming] signal might have been produced”
with reference to information about the physical characteristics of the vocal tract,
(Fowler & Rosenblum 1991, p. 39).

In terms of the units of perceptual organisation, early versions of the motor the-
ory (Liberman et al. 1967) specifically spelled out that the theory was intended
to account for the part of the perceptual system that “lies between the acous-
tic stream and a level of perception corresponding roughly to the phoneme.”
(p. 431). In a revised version of the theory (Liberman & Mattingly 1985), the term
‘phoneme’ was replaced by ‘phonetic category’ or alternatively ‘phonetic unit.’
Phonetic category is used presumably to account for the fact that in the revision
of the motor theory, gestures are taken to be more directly related to groups of
features than to phonemes. It also takes into account contemporary changes in
phonological theory, in particular the introduction of non–linear phonology. The
term phonetic unit seems to have been chosen to avoid having to specify the size
of unit (other than a gesture) into which the speech stream might be parsed by
the listener. However, it is reasonably clear that the authors are at some level
maintaining the concept of perception as a process of determining the sequence
of phonemes in an utterance. This is reflected in the fact that the gestures that
they claim are perceived by the listener are said to pattern in groups to produce
phonetic segments. A specific example of this can be seen in the suggestion that
there may be parts of an utterance which will contain information about only
one ‘phonetic unit’: Liberman & Mattingly (1985) go on to state that such a part
could be “the middle of the frication in a slowly articulated fricative–vowel syl-
lable, and in vowels that are sustained for artificially long times,” (p. 13) both of
which (the fricative and the vowel) are single phonemes.
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A slightly modified version of the motor theory, the direct–realist theory (Fowler
1986a, Fowler 1986b, Fowler & Rosenblum 1991), also makes the claim that lis-
teners perceive in terms phonetic gestures. In this theory, the claim is made that
invariants do actually exist in articulation. Pardo & Fowler (1997, p. 1142) note
that “coordinative relations” among articulators mean that gestures are formed
“flexibly and equifinally.” By this they mean that the amount that each artic-
ulator is used in a gesture will vary depending on the coarticulatory demands
being made on the articulator (flexibility), and that despite this variability, the
“coarse grained gestural goal” (Fowler 1994, p. 608) will be reached (equifinal-
ity). The example given by Pardo & Fowler (1997, p. 1142) is that of bilabial clo-
sure: “the jaw will contribute less and the lips correspondingly more, to closure
during /ba/ than during /bi/” due to the influence of the vowel, but in either
case the gesture ‘bilabial closure’ is invariantly achieved. Additionally, unlike
motor theorists, direct realists propose that perception of these gestures can be
achieved without recourse to a special speech module. Their claim is that listen-
ers directly parse the underlying phonological structure of an utterance from the
acoustic signal. This is done by detecting, in the acoustic signal, “the acoustic
signatures of gestures as a means of identifying the gestures themselves, which
constitute the speaker’s phonological message” (Pardo & Fowler 1997, p. 1150).

The direct realist theory appears, like the motor theory, to assume that segments
are fundamental at some level of perception. Pardo & Fowler (1997, p. 1141) state
that “phonetic segments are specified not only by their spectral characteristics,
but also by their temporal properties”, which they claim means that “overlap-
ping phonetic gestures can be perceived as just that—physical events that occur
over time and overlap, rather than merely influence, one another.” These authors
then go on to explain that the “perceptual parsing” which takes place under this
theory is a process of separating these temporally overlapping gestures from one
another to derive a sequence of “gesturally parsed segments” (p. 1143).

Acoustic theorists, in contrast to the motor theorists, posit a much more direct
relationship between the acoustic signal and the phonetic percept. Stevens &
Blumstein (1981), for example, propose that there are invariant properties in
speech—in this case in the acoustic signal—which correspond to phonetic cate-
gories (i.e. bilabial stop vs. alveolar stop vs. velar stop) or distinctive features (i.e.
[ ����� voice]). These invariant properties are clearly not the individual, context–
dependent acoustic cues ( e.g. burst frequency, duration of silence, formant tran-
sitions etc.) discussed earlier in this chapter, although elements of these cues may
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be present in the invariant properties. Instead the invariance in the speech stream
is claimed to be found in the overall shape of the spectrum at particular points or
time frames in the acoustic signal, specifically at acoustic boundaries or discon-
tinuities (i.e. the boundaries between segments in an utterance). In the original
specification of this theory (e.g. Blumstein & Stevens 1980, Stevens 1980, Stevens
& Blumstein 1981) one single spectral sample, or spectral template, was pro-
posed per feature: for stop consonants, for example, the sample consisted of the
first 20 ms at the release of the consonant burst. In later versions of this theory
(e.g. Stevens 1985) the spectral samples were increased to two, one from either
side of an acoustic boundary, which were intended to be compared with each
other. Under either version, however, these invariant patterns or properties of
the acoustic signal are considered to be the primary cues to phonetic represen-
tations or features, and are perceived by innately endowed ‘property detecting
mechanisms.’ All other aspects of the signal—i.e. all context–dependent cues—
are seen as secondary cues, used only when phonetic features are represented
ambiguously by the primary cues.

H. Sussman and colleagues also propose that invariant specifiers can be found
in the acoustic signal: in this case in the form of locus equation coefficients (e.g.
Sussman, Fruchter & Cable 1995). Locus equations are “linear regressions of the
onset of F2 transitions on their offsets in the vowel nucleus” (Sussman & Shore
1996, p. 936). These researchers claim that the context–conditioned variability of
vowel onset formant transitions “gives way, when displayed as locus equation
plots, to a lawful acoustic representation of the entire stop category” (Sussman
& Shore 1996, p. 936). Originally designed as ‘phonetic descriptors’ of place of
articulation, the theory has been reinterpreted from a perceptual point of view:
locus equation coefficients have been suggested (by e.g. Sussman et al. 1995) to
be correlates of listeners’ perceptions of place (however, see also Fowler 1994).

Kingston, Diehl and colleagues (e.g. Kingston & Diehl 1995), also acoustic theo-
rists or auditorists, propose a theory which directly contradicts that proposed by
motor or gestural theorists. Kingston and colleagues claim that the reason that
multiple acoustic cues or properties ‘cohere’ into one percept is not necessarily
because acoustic cues have a common articulatory source (i.e. as proposed by the
gesturalists), but because they have similar auditory effects. These researchers
go on to propose that speakers actively choose to “covary articulations precisely
because their acoustic consequences are auditorily similar enough to be inte-
grated into more comprehensive perceptual properties, intermediate between
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the acoustic properties and distinctive feature values” (Kingston & Diehl 1995,
p. 7). Some intermediate properties which have been proposed are C:V duration
ratio, and a low frequency property, which both cue intervocalic voicing. These
intermediate perceptual properties (and others like them) are presumed to coin-
cide with the general sensitivities of the auditory system: it is these properties
which, under this theory, are the objects of perception.

However, while the mechanisms underlying acoustic theories may differ from
those underlying motor theories, in terms of the units of perception acoustic the-
ories tend in general to be similar to the motor theory. Much as the gesturalists,
auditorists assume that the units of perception are phonetic features. Stevens
and Blumstein’s spectral template theory, for example, specifies that perception
involves “the analysis of the speech signal into discrete phonetic features” (p. 2),
as is clear from the fact that each of the invariant properties that the theory pro-
poses is meant to be a direct correlate of a phonetic feature. Inasmuch as the
locus equations posited by H. Sussman and colleagues are intended to be invari-
ant correlates of particular sets of features (e.g. place of articulation features), this
acoustically–based theory can also be seen as specifying some sort of reference
to phonetic features in perception. Finally, Kingston, Diehl and colleagues’ au-
ditory theory also specifies features—for these theorists, “acoustic properties get
mapped onto a specific distinctive feature value when a speech sound is identi-
fied by listeners” (Kingston & Diehl 1995, p. 7).

2.2 How do adults perceive? Some evidence:

The conclusion that can be drawn from all of the theories described above is
that the goal of mature speech perception is the derivation of a sequence of
phonemes, whether directly or in terms of features. However, one can also ask
if the terms phoneme and segment are used because it is conventional to do so,
or because there is evidence that this might indeed be the way in which listeners
behave perceptually.

There is a reasonable amount of evidence from various sources that the de-
scription of adult speech perception in terms of phonemic units may be correct.
Shattuck–Huffnagel (1983, 1987), and MacNeilage & Davis (1990), for example,
have shown that productive errors in adults’ speech often involve the exchange,
confusion, or incorrect serial ordering of phonemic segments. Other researchers
have found further evidence of some level of segmental organisation in studies
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of backward talkers (Cowan, Leavitt, Massaro & Kent 1982) and aphasic speakers
(Blumstein 1981).

It would appear from these studies that there might be some empirical grounds
for the assumption that perception in normal adults is organised around a phone-
mic segment. However, we will reconsider this evidence in Chapter 6 when we
discuss the implications of alphabetic literacy on perceptual processes.

2.3 What do children do in perception?

We turn now to an examination of what is known about perceptual behaviour
in infants and children. A great deal of research into infant speech perception
has found that infants’ speech discrimination abilities are equal, if not superior,
to adults’. Experimental methods, such as the high amplitude sucking technique,
which measures infants’ rate of non–nutritive sucking (on a pacifier/dummy) in
response to familiar and new stimuli, and the head turn paradigm, in which in-
fants respond to new stimuli by orienting themselves towards the sound, have al-
lowed researchers to explore infants’ perceptual abilities. Eimas and colleagues,
for instance, (Eimas, Siqueland, Jusczyk & Vigorito 1971, Eimas 1974, Eimas 1975,
Eimas & Miller 1980, Miller & Eimas 1981), have shown that infants from 1 to 4
months can categorically discriminate speech sounds which differ along a VOT
continuum ([ba] to [pa]), along a place of articulation continuum ([bæ] to [dæ]),
and along a manner continuum ([ba] to [wa]), and [ra] to [la]). Further studies
have gone on to show that not only are infants able to discriminate virtually all
sounds which are categorically perceived by adult speakers of their own envi-
ronmental language, but they are also, unlike adults, able to discriminate sound
contrasts which are not distinctive in their own environmental language. Tre-
hub (1976), for example, showed that English–learning infants could discrim-
inate two non–English contrasts: a Polish or French nasal/non–nasal contrast
along a [pa] to [pã] continuum, and the Czech contrast between [řa] and [za].
Streeter (1976) showed that Kikuyu–learning infants were able to discriminate a
non–native (English) [ba] to [pa] contrast, and Werker and colleagues (Werker &
Tees 1984, Werker & Lalonde 1988) found further evidence that English–learning
infants are able to discriminate non–native consonant contrasts—in this case
along two Hindi retroflex–dental continua: [ � a] to [ta] and [ � a] to [da], and a
Nthlakapmx3 glottalised velar to uvular continuum: [k’i]–[q’i]—and are able to

3A native North American (specifically British Columbian) language belonging to the Salish
family. Also known as Thompson.
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discriminate non–native vowel contrasts—German [ � ] to [Y] and [u] to [y] (Polka
& Werker 1994).

However, despite the fact that these studies show that infants possess what
might be considered highly sophisticated or ‘adult–like’ discrimination abilities,
it should not immediately be concluded that the studies also indicate that infants
make these discriminations in the same way as adults. As noted at the beginning
of this chapter, there is a difference between the function of a speech perception
system and the actual mechanism of that system. Jusczyk (1997, pp. 70–71) notes
that “In most of the investigations, the stimuli were designed to contrast with
respect to a single phonetic segment. Therefore, there is an inclination to view
the infant who successfully discriminates “bug” from “dug” as detecting a dif-
ference between the initial phonetic segments [b] and [d]. Although this is an
accurate enough description of how the experimenter views the contrast, it may
not be a valid description of what infants are doing.” In fact, as Jusczyk goes
on to say, there is no need for the infants to analyse the stimuli into segments in
order to know that they are different: it is possible for them to perceive speech in
terms of much more global units, like words or syllables.

There is some evidence from perception studies that infants and young children
do indeed perceive in terms of units which are more like syllables or monosyl-
labic words than phonemes. Studies by Jusczyk & Derrah (1987) and Bertoncini,
Bjeljac-Babic, Jusczyk, Kennedy & Mehler (1988) have shown that infants are not
sensitive to similarities at the level of the phonemic segment. In these studies,
infants were familiarised with a series of syllables that had a common initial con-
sonant, e.g. [bi], [ba], [bo], [b � ]. The authors then tested the infants’ responses
to one of two new syllables: one that shared the same initial consonant: [bu],
and one that did not: [du]. The prediction was that if the infants perceived the
syllables in terms of a sequence of individual segments, they would detect the
syllable with the new initial segment, but would be less likely to detect the syl-
lable with the same initial segment. The results showed that the infants treated
both the new syllables in the same way, suggesting to the authors that the indi-
vidual syllables were not being perceived in terms of sequences of segments, but
rather in terms of a whole CV unit.

Additional studies by Bertoncini, Mehler and colleagues (Bertoncini & Mehler
1981, Bertoncini, Floccia, Nazzi & Mehler 1995, Bjeljac-Babic, Bertoncini & Mehler
1993) have shown that infants are better able to discriminate three phoneme units
which conform to a syllabic pattern than those that do not: two–month–olds can
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discriminate [tæp] from [pæt] more easily than they can discriminate [tsp] from
[pst]. They have also found that infants detect differences in the number of syl-
lables between stimuli, but do not detect differences in the number of phonetic
segments, or morae4.

Evidence from other perception studies suggests that some flexibility in the exact
definition of children’s unit of organisation may be required. A study by Walley,
Smith & Jusczyk (1986), for example, examined 5–year–old and and 7–year–old
children’s judgments of similarity between pairs of 2–3 syllable CVCV stimuli.
These stimuli were designed so that the pairs shared an initial consonant, an
initial CV unit, or an initial CVC unit. The older children in the study had lit-
tle difficulty in judging that two stimuli which shared only one phoneme were
similar. The younger children, on the other hand, had most difficulty with the
pairs of stimuli which only shared an initial consonant, supporting the hypothe-
sis that phonemes are not the unit of perception for infants and young children.
However, the size of unit that the youngest children were most successful at clas-
sifying as similar was not the CV unit as in the studies above, but the CVC unit.
Additionally, in the study carried out by Bertoncini et al. (1988, noted above)
it was found that when neonates were tested on the same CV syllables as the
slightly older infants, they did not treat all new syllables as different from the
familiar syllables. Instead, neonates appear only to notice new syllables if they
contain a different vowel from the original syllables, prompting Mehler, Dupoux,
Nazzi & Dehaene-Lambertz (1996) to propose that it may be the vocalic nucleus
of the syllable which is important to the perceptual system developmentally.

These studies suggest that we should not jump to the conclusion that the syllable
is the exact unit of perceptual organisation for infants and young children. How-
ever, they do make it clear, along with the results of the other studies discussed
in this section, that it is unlikely that the initial perceptual unit is a phoneme.

2.4 What do children do in production?

Having shown that it is indeed possible that a change in the unit of perception
might occur from childhood to adulthood, we now turn to other areas of lan-
guage development to determine whether such shifts might occur in any other

4A mora is a Japanese phonological unit. Cutler (1996) defines a mora, briefly, as “a CV struc-
ture, or a single vowel, or a syllabic coda (usually a nasal consonant); thus Honda, for example,
has three moras: Ho–n–da” (p. 93). The infants in Bertoncini et al.’s (1995) study were French–
learning rather than Japanese–learning.
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phonologically organised system. There is a great deal of evidence from studies
of phonological output development to suggest that children’s earliest phono-
logical representations may by organised around something like a one– or two–
syllable word. Studdert-Kennedy (1987), in a review of these studies, divides the
evidence up into three main points. The first two of these points come from a
study by Ferguson & Farwell (1975). These authors observed a 15–month–old
who produced phonetic forms correctly in certain contexts but not in others—[n]
was produced correctly in ‘no’ but [m] was produced instead of [n] in the tar-
get word ‘night’ and [b] was produced instead of [m] in the target word ‘moo.’
Studdert-Kennedy (1987) notes that in this example it appears that “the child
does not contrast [b], [m], [n], as in the adult language, but the three words with
their insecurely grasped onsets” (p. 76).

The second piece of evidence that Studdert–Kennedy notes from Ferguson &
Farwell’s (1975) study is again an observation of a 15–month–old’s attempts to
produce an adult target—in this case the word ‘pen.’ In the course of half an
hour, the child produced [mã

�
, v ˜� , d � dn� , h � n, mbõ, ph � n, thn� thn� thn� , bah, � auN,

buã]. Studdert–Kennedy notes that most of this child’s productions actually have
many of the same gestures as the adult model—the child simply has not timed
these gestures correctly relative to each other5. Again, according to Studdert-
Kennedy (1987), the child is not attempting to reproduce a sequence of phonetic
segments, but rather a “holistic pattern of gestures” (p. 78), indicating the per-
ceptual importance of the unit over which these gestures operate—i.e. the mono-
syllabic word.

The third piece of evidence presented by Studdert-Kennedy (1987, see also
Nittrouer, Studdert-Kennedy & McGowan 1989) is the extensive use of conso-
nant harmony or consonant deletion in child utterances. Children appear to
have difficulty with, or avoid, switching place or manner of articulation, thus:
“one child may attempt fish with [f �

�
], another with [ �

�
]; faced with duck, one child

may try [ � � k], another [d � t]” (Nittrouer et al. 1989, p. 120). Menn (1983) describes
child productions of this sort as a single unit which has been “assembled before
it is spoken” (p. 16).

In terms of a change in units of organisation in production, Vihman (1996) notes
that evidence of this can be seen in studies which follow children’s production

5Ferguson & Farwell (1975) actually label the aspects which are common to both the adult
model and the child’s attempts as ‘features’, stating that the child “seems to be trying to sort out
the features of nasality, bilabial closure, alveolar closure and voicelessness” (p. 423).
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behaviour over time: “such studies reveal a gradual qualitative shift from a
predominance of processes affecting the structure of whole words (consonant
harmony, reduplication, final consonant deletion) to those affecting specific seg-
ments or classes of segments (stopping of fricatives, gliding of liquids)” (p. 216).

Additional evidence that children and adults make use of different sized units
in production also comes from studies by Nittrouer and colleagues of coar-
ticulation in speech (Nittrouer et al. 1989, Nittrouer 1993, Nittrouer 1995, Nit-
trouer, Studdert-Kennedy & Neely 1996). Nittrouer (1993) suggests that if chil-
dren’s unit of production is the syllable, then they may articulate syllabic units
as “largely undifferentiated entities” (p. 960), beginning and ending all ges-
tures in the syllable at roughly the same time. If this is the case, then, accord-
ing to Nittrouer, individual gestures in children’s speech will exert their influ-
ence over a greater proportion of the utterance than will the same gestures in
adults’ speech—that is, children’s speech will be more coarticulatory. The stud-
ies carried out by Nittrouer and colleagues did indeed find that young children
show a greater degree of within–syllable coarticulation than do older children
and adults, leading the authors to conclude that “young children organise their
speech over a wider temporal domain than adults do” (Nittrouer et al. 1989,
p. 130).

2.5 What do children do metalinguistically?

There is one further area of linguistic development that displays shifts in units of
phonological organisation similar to those suggested for perception: the devel-
opment of metalinguistic awareness, which begins with awareness of large units,
and involves an emergence of awareness of gradually smaller units.

Metalinguistic awareness can be defined as the ability to consciously think about
and manipulate (i.e. count, delete, segment, correct) variously sized segments
of language. As described by A. Fowler (1991), the process of “gaining access to
these segments in order to count, label or manipulate them...is akin to becoming
aware of the many movements that go into walking for the purpose of learning
ballet” (p. 99). I. Liberman and colleagues (Liberman, Shankweiler, Fischer &
Carter 1974) divide those units of speech which can be thought about consciously
into ‘meaningful’ units, such as sentences, words, and morphemes, and ‘mean-
ingless’ units—i.e. units that have no semantic meaning on their own—such as
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syllables, onset–rime units6, phonemes and features. Within each of these two
groups, awareness of units of different size develops at different times.

Of particular interest to the current line of questioning is the development of
awareness of meaningless units—also known as phonological awareness. It has
been found that young children are able to count the number of syllables in a
word and correctly judge rhyme and alliteration before they can count the num-
ber of phonemes in a word or judge whether words end with the same segment
(e.g. Bradley & Bryant 1983, Liberman et al. 1974). Thus, phonological aware-
ness begins with awareness of syllables and onset–rime units, and moves to the
awareness of phonemes, in much the same way as has been suggested for per-
ception. It should be noted at this point that the development of awareness of
phonemic segments has been found to be highly linked to the development of
alphabetic literacy. This means that the change in size of unit at a metalinguis-
tic level may be more complicated than has been posited for the comparable
change at other levels. The details of and criteria for the development of phone-
mic awareness will be discussed in more depth in Chapter 2 (Section 2.2).

At this point, we have amassed evidence not just for the possibility of a change
in size of organisational unit in perception, but also for similar changes in pro-
duction and in metalinguistic abilities. The question to be addressed now is why
such a change should occur.

2.6 Why start with syllables?

Various reasons have been proposed for why children’s early phonology might
be organised around syllable– or monosyllabic word–sized units. Studdert-
Kennedy (1987) states that “a child’s entry into language is mediated by mean-
ing; and meaning cannot be conveyed by isolated features or phonemes.” In-
stead, the earliest unit of meaningful contrast for the child is “the word (or for-
mulaic phrase)” (p. 67, see also Studdert-Kennedy 1991).

Menn (1983) gives a description of a child’s approach to word production which
suggests an additional possible explanation for the apparent cohesion of syl-
lables for children. Menn notes that the child in question seemed to have

6Throughout this thesis the unit which corresponds to the part of a word which follows a
consonant/consonant cluster onset will be referred to as the rime. The term rhyme will be reserved
for the action of producing or recognising words with the same rime.
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“learned an articulatory program of opening and closing her mouth that al-
low[ed] her to specify two things: the vowel and one point of oral closure”
(p. 5). This description corresponds well with theories that propose a motor–
organisational explanation for syllable–based phonologies in child language (e.g.
Davis & MacNeilage 1995, MacNeilage & Davis 1990, MacNeilage & Davis 1993,
MacNeilage 1994). MacNeilage (1994), for example, states that a syllable is effec-
tively an alternation of opening and closing of the jaw: “a cycle of elevation and
depression of the mandible, the two phases of which are associated with vow-
els and consonants, respectively” (p. 185). Davis & MacNeilage (1995) suggest
that these syllabic cycles of opening and closing are the ‘frames’ into which ‘con-
tent’ or segmental sequences are organised. MacNeilage (1994, p. 186) goes on to
point out that “the first truly speech–like vocalization of infants, their babbling, is
highly syllabic, though relatively undifferentiated at the segmental level” (i.e. all
‘frames’, little ‘content’), emphasising the early motoric importance of syllables
over segments for children.

Research by Vihman and colleagues (e.g. Vihman 1992, Vihman 1993, Vihman,
Macken, Miller, Simmons & Miller 1985, Vihman, Velleman & McCune 1994, Vih-
man & Velleman 1989), has shown that children’s first words tend to capitalise
on these early babbling patterns: there is continuity between a child’s range of
“vocal motor schemes” (Vihman 1993) and the same child’s early words, both in
terms of the repertoire of sound patterns, and the overall word shape (Vihman
et al. 1985). Vihman and colleagues suggest that a child’s earliest (recognisable)
attempts at adult targets are selected for production by the child based on the
similarity of the targets to the child’s existing vocal motor schemes. There is also
a suggestion that the child may perceive adult speech via an articulatory filter
built around its own motor patterns which specifically enhances those adult pat-
terns that match its babbles (Vihman et al. 1994). These adult targets are then
altered to further increase the fit to the child’s pre–existing motor schemes (e.g.
Vihman & Velleman 1989). These studies all underline the probability that the
initial organisation of children’s vocalisations around a word or syllable motor
cycle continues into early speech.

2.7 Why change from syllables?

Having shown that it is quite feasible that children’s initial unit of perception
could be something like a syllable or word, the question that remains to be asked
is why this unit would need to change. There are two hypotheses, not necessarily
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mutually exclusive, which have been proposed to explain changes in represen-
tational unit (whether immediate perceptual representation or more long–term
phonological representation). The first comes from studies of phonological out-
put development, while the second is more closely related to the development of
metaphonological skills.

The first hypothesis is the most commonly proposed explanation for a change
in organisational unit for both perception and production—specifically, that this
change takes place under pressure from a child’s growing lexicon (Lindblom,
MacNeilage & Studdert-Kennedy 1983, Lindblom 1989, Studdert-Kennedy 1987).
Describing this in terms of articulatory or motor–type theory, Studdert-Kennedy
(1987) states that

As long as the child has only a few words, it needs only one or two ar-
ticulatory routines. Initially it exploits these routines by adding to its
repertoire only words composed of gestural patterns similar to those
it has already ‘solved’ and by avoiding words with markedly differ-
ent patterns. Once the initial routines have been consolidated, new
routines begin to emerge under pressure from the child’s accumulat-
ing vocabulary. New routines emerge either to handle a new class
of adult words, not previously attempted, or to break up and redis-
tribute the increasing cohort of words covered by an old articulatory
routine. (p. 79)

This first, lexically–based hypothesis is the explanation that Nittrouer and col-
leagues tend to support. It is fairly clear that the Developmental Weighting Shift
is intended to describe the maturation of the perceptual system under the influ-
ence of a child’s growing experience with language and the resultant expansion
of the child’s lexicon. Nittrouer & Miller (1997b) state that

This model [the DWS] specifically suggests that children initially
show a preferential weighting of dynamic, acoustic properties (i.e.
those that change spectrally over time) because these properties help
them recognise syllabic structure in the speech stream. With linguistic
experience [my emphasis], children gradually decrease their attention
to these dynamic properties, and increase their attention to the static
properties (i.e. those that do not involve spectral change over time)
that are particularly informative about phonetic structure in their na-
tive language. (p. 2254)
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However, Nittrouer also briefly posits an alternative and less conventional hy-
pothesis regarding changes in units of perception. Nittrouer (1992, 1996b) pro-
poses that the shift from words or syllables to phonemic segments that she has
observed in perception may not just reflect a change in sensitivity to phonolog-
ical structure at a subconscious level. She suggests that this change may also be
related to a change in access at a conscious level. It has been noted above that
the development of phonological awareness involves a change in conscious ac-
cess from awareness of syllables to awareness of phonemes. This shift appears to
parallel the perceptual shift documented by Nittrouer and colleagues, suggest-
ing a possible relationship between the two. It is at this point that we return to
the connection between perception and literacy touched on at the beginning of
this chapter.

The idea that phonological organisation can be influenced by developments in
metalinguistic processing, though unconventional, has been suggested by other
researchers. A. Fowler (1991) for instance, states that “there are many reasons to
think that metalinguistic factors may play a role in developing a phonemic rep-
resentation” (p. 110), giving as an example the importance that language play
has been hypothesised to have on the further refinements in word representa-
tions in toddlers. A. Fowler notes that evidence of phonological processing in
deaf children also indicates the possibility that the development of phonemic
awareness may impact on phonological representations. Hanson (1991), for ex-
ample, states that “deaf children’s lack of complete access to the auditory aspects
of English provides them with a considerably different language experience than
that of hearing children. Whatever knowledge they may acquire about English
phonology will be largely influenced by visual experiences such as lipreading
and reading and by gestural experiences such as speaking” (p. 154). All of these
visual and gestural experiences can be classified as metalinguistic exercises for
a deaf child, as the process of learning them will require a conscious awareness
of language on the part of the deaf learner. This suggests in a very circumstan-
tial way that the development of metalinguistic skills has some sort of impact on
phonological processing.

More specific empirical evidence of the potential effect of metalinguistic devel-
opment on phonological processing comes from studies of deaf good and poor
readers. Hanson (1991) describes studies in which children from these two
groups were tested on their ability to recall lists of printed letters (i.e. ‘A, Q,
B, D’ etc.) which either did or did not rhyme. Studies (previous to Hanson’s)
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of word recall by hearing subjects have found an effect of rhyme: hearing sub-
jects are more likely to confuse items in rhyming lists than in non–rhyming lists
(e.g. Conrad 1971), reflecting their sensitivity to the phonological similarity of
the rhyming words. Deaf children, on the other hand, should be unaffected by
rhyme. However, the studies described by Hanson (1991) show that deaf good
readers have more difficulty remembering lists of rhyming letters than lists of
non–rhyming letters, while no such effect was seen for deaf poor readers. This
suggests that those deaf children who have been successfully taught to read have
been able to acquire a system of phonology of some sort which interferes with
their short–term memory in the same way as it would hearing subjects.

Morais & Kolinsky (1995) also propose that orthographic knowledge and phone-
mic awareness may have an effect on phonological representations at some level.
These authors provide evidence of misperceptions from dichotic listening tests
which suggest that literate, semiliterate and illiterate subjects have different per-
ceptual strategies with regard to the segmental structure of speech. Dichotic lis-
tening tests are tests of perceptual processing, in which the listener is presented
with two different stimuli, one stimulus in each ear, and asked to report what
they have heard. One of the possible results is a ‘fusion’ error, in which parts
of the two stimuli are combined perceptually by the listener. What was found
by Morais and Kolinsky was that the proportion of errors which were ‘global
errors’—that is, errors in which a whole syllable or more was completely mis-
recognised, e.g. ‘dono’ for ‘cano’—was highest in the illiterates, and grew less
with literacy. Contrastively, the proportion of errors which were ‘segmental’—
that is, errors in which only one segment was misrecognised, e.g. ‘pano’ for
‘cano’—was lowest in the illiterates, and grew more with an increase in liter-
acy. The authors conclude that it is the literate subjects’ conscious awareness of
phonemes which influences their particular type of phonological error.

All of these examples taken together suggest that this second, metalinguistically–
driven hypothesis is at least a reasonably plausible explanation for a change in
perceptual units.

A study by Nittrouer (1996b) of the relationship between the Developmental
Weighting Shift and explicit phonemic awareness skills did indeed find a rela-
tionship between the two. The results of this study showed that those children
who gave more weight to fricative cues in distinguishing /s/ from /

�
/ had better

phonemic awareness, while those children who gave more weight to transitional
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cues had poor phonemic awareness. This in itself opens the door to the possibil-
ity that shifts in perceptual strategy could be influenced by the development of
phonemic awareness.

Unfortunately, however, the results of Nittrouer’s (1996b) study could be ex-
plained by reference to either a lexical or a metaphonological explanation. As
noted by Nittrouer (1996b), it is equally likely that “learning how best to weight
acoustic properties may be a requisite for recognizing phonetic structure” (p. 1067)
or that “discovering syllable–internal structure [i.e. developing phonemic aware-
ness] may actually create pressure to develop the most effective processing
strategies for providing access to that structure” (pp. 1067–1068). This leaves
us to determine which of these two possible hypotheses is correct.

2.8 Possible implications for perceptual development

At this point we should consider the possible implications of these alternative
outcomes on our understanding of perceptual development as a whole.

If it is possible that some aspect of speech perception might be influenced by
the development of literacy skills, and metaphonemic awareness, then we have
to consider that perceptual development is not an entirely maturational process.
This in turn means that we would have to reconsider the way in which ‘mature’
speech perception is characterised.

Additionally, if a process such as phonemic awareness, which is so closely re-
lated to alphabetic reading skills, can have a developmental impact on speech
perception, we would have to drastically redefine our understanding of the rela-
tionship between speech perception and literacy, and indeed all higher cognitive
processes.

Furthermore, if the change in perceptual unit from word or syllable to phonemic
segment is the result of the development of a non–essential cognitive process,
then it should also follow that the change in perceptual unit is a non–essential
change. As a result, we would then have to entertain the possibility that per-
ception of phonemic segments might not be the goal of perceptual development.
This brings into question the status of the phoneme in perception itself.

Finally, it should be pointed out that the two hypotheses regarding the cause of
a change in perceptual unit are not necessarily mutually exclusive. A. Fowler
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(1991, p. 111), for instance, suggests that “Although it may well be that metalin-
guistic experience in general, and orthographic experience in particular, may aid
us in refining our phonological representations, these findings need not commit
us to the view that phonemes are arbitrary or epiphenomenal in nature.” Instead,
she suggests that a theory which aims to describe the emergence of the phoneme
must simply take into account the fact that “phoneme–level representations, im-
plicit as well as explicit may not come for free but rather must emerge over time,
in the course of lexical expansion, language play, and, potentially, orthographic
experience” (p. 111). If this is the case, then we must consider that speech percep-
tion is not a unitary construct, but rather is multifaceted, with each facet under
the potential influence of different developmental demands.
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CHAPTER 2

Theoretical background and goals

The starting point of the current study, both theoretically and methodologically,
is a study carried out by Nittrouer (1996b), which showed a correlation between
a change in representational unit at the conscious level, and the Developmental
Weighting Shift model of speech perception. This study (which will be discussed
in more detail below) is one of a number of studies carried out by Nittrouer
which aimed to determine the course of development of subconscious perceptual
behaviour. The aim of Nittrouer’s first perceptual studies, however, was not to
establish or support a model of speech perception. Instead, these studies were
designed to evaluate an aspect of the argument between acoustic and gestural
theorists: that of the role of ‘coarticulatory’ cues in speech perception. As noted
in Chapter 1 (Section 1.2), the acoustic variability in speech segments caused by
their articulation in the context of other segments causes problems for perceptual
theories. The question that drove Nittrouer & Studdert-Kennedy’s (1987) study
was:

Is coarticulation necessary and intrinsic to production, and must a lis-
tener therefore draw on the contextually variable information that it
carries to recover the phonetic message? Or...are the acoustic con-
sequences of coarticulation merely noise that a listener filters out?
(p. 319)

Nittrouer & Studdert-Kennedy believed that they could determine the answer to
this question by examining the development of use of coarticulatory, or transitional
cues. If young children are not sensitive to transitional cues, then these cues must
be something which a developing perceptual system has to learn to cope with—
indicating that they play a secondary role in perception, as suggested by acoustic
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theorists (e.g. Stevens & Blumstein 1981). Alternatively, if children are sensitive
to transitional cues, then it is more likely that such cues play an important role in
perception from the onset of development—indicating, as suggested by gestural
theorists, that “the listener uses the systematically varying transitions as infor-
mation about the coarticulation of an invariant gesture with various vowels, and
so perceives this gesture” (Liberman & Mattingly 1985, p. 6). The results of Nit-
trouer & Studdert-Kennedy’s (1987) study showed that children are sensitive to
transitions, which the authors state “runs counter to the claim of Stevens and
Blumstein (1978) that sensitivity to coarticulation in adult speech perception is a
secondary effect, learned by association with a primary invariant” (Nittrouer &
Studdert-Kennedy 1987, p. 329). This result was therefore taken as support for a
gestural description of speech perception.

Additionally, and importantly for Nittrouer’s future model of perceptual devel-
opment, the results of this study and of those that followed also went beyond
addressing the above issue. These studies showed that children are not simply
sensitive to transitional information: in certain contexts they are more sensitive
to this information than adults. It is this finding upon which the Developmental
Weighting Shift (DWS) model is based.

The DWS model states that “the weights assigned to various acoustic speech pa-
rameters change as the child gains experience with a native language and that
this developmental weighting shift is related to developmental increases in sen-
sitivity to phonetic structure” (Nittrouer 1996b, p. 1060). We will examine the
two parts of this model individually. The first part of the model is a develop-
mental shift in weight given to acoustic cues. In the initial definitions of the
model (e.g. Nittrouer & Studdert-Kennedy 1987) this was simply a shift from
heavier weighting of dynamic transitional cues by children, to heavier weight-
ing of more static aspects of the signal by adults. Later, in response to further
studies of the phenomenon, Nittrouer and colleagues elaborated on the model:
the shift was said to move from dynamic transitional cues to those cues which
are most ‘informative’ about the segmental structure of the speech stream—i.e.
if transitional cues happen to be the most ‘informative’ in a certain situation,
then listeners will continue to weight them more heavily through development
(Nittrouer & Miller 1997b).

The second aspect of the model is the fact that the shifts in attention described
above are related to increases in sensitivity to phonetic structure. Thus chil-
dren attend to transitional cues more heavily than adults because children ini-
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tially process all speech into syllable sized units, while adults process speech
into segment–sized units. Nittrouer explains this by relating acoustic transitional
cues to the articulation of a CV syllable:

vocalic formant transitions in CV syllables result from the vocal–tract
changes associated with moving from a consonant to a vowel config-
uration. Using the term ‘constriction’ to refer both to the close con-
striction of the tongue tip and/or blade used in the production of /s/
and /

�
/, as well as to the looser constriction of the tongue body dur-

ing vowel production, it can be seen that acoustic properties of these
transitions are determined by the constriction locations of both con-
sonant and vowel.

Children therefore attend to syllable–internal transitions because they reflect the
whole CV syllable structure. Adults, on the other hand, attend to cues like fre-
quency of fricative noise spectrum, and vowel target formant values, because
these more closely reflect individual (possibly segment sized) components of the
syllable.

Again, earlier definitions of the model were more simplistic than later versions:
initially this increase in sensitivity was seen as operating at a subconscious, pro-
cessing level only. In Nittrouer’s (1996b) study, however, the idea of “increases in
sensitivity to phonetic structure” was expanded to include increases in conscious
sensitivity to phonetic structure1. In this study, Nittrouer explored the possi-
bility that the shifts in cue weighting which had been observed in pre–school
and early–school–age children might be related to the development of phonemic
awareness—the conscious awareness of, and ability to manipulate, phonemic
segments. This skill is related to the development of literacy skills, and therefore
develops in children at roughly the age at which cue weighting shifts had been
found to occur—i.e. early school age. The results of Nittrouer’s (1996b) study did
indeed find strong correlations between ability on phonemic awareness tasks,
and the degree to which dynamic vs. static cues were weighted: children with
poor phonemic awareness weighted cues similarly to the children in Nittrouer’s
previous studies, while children with good phonemic awareness weighted the
cues similarly to the adults in earlier studies.

1A possible relationship between shifts in acoustic cue weighting and the development of
phonemic awareness was posited briefly by Nittrouer & Studdert-Kennedy (1987), and Nittrouer
(1992), however was not expanded on until Nittrouer (1996b).
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Because the development of phonemic awareness involves an expansion at the
conscious level from the ability to focus on larger units like syllables and onset–
rime units, to the ability to focus also on phonemes, the results of the 1996 study
have been taken by Nittrouer as strong support for her DWS model, in particu-
lar her hypothesis that perception develops from syllable–based organisation to
phoneme–based organisation. However, this study also raises issues regarding
the perceptual phenomenon which the model is attempting to describe. Specif-
ically, this study leaves open the question of possible developmental influences
within the relationship. From the results of this study it is, as Nittrouer (1996b)
points out, equally possible to conclude that phonemic awareness could affect
speech perception as it is to conclude that speech perception affects phonemic
awareness development. This being the case, one can ask whether shifts in cue
weighting are, as Nittrouer claims, strictly developmental, or whether they are
affected by the development of conscious awareness of phonemes.

The central goal of this thesis will therefore be to attempt to answer this ques-
tion. This thesis will be an investigation of the relationship between shifts
in acoustic cue weighting in perception, and the development of phonemic
awareness skills. In particular, this study will focus on the possible causal na-
ture of the relationship, and will attempt to determine the extent to which one
of these processes might affect the development of the other.

Before this investigation can be carried out, however, it is important first to es-
tablish what is already known about the development of the two processes in
question. This chapter will describe those studies which have explored the de-
velopment of acoustic cue weighting, and phonemic awareness, both in isolation
and in relation to each other.

1 The development of acoustic cue weighting

1.1 The Developmental Weighting Shift model

The Developmental Weighting Shift model is based primarily on the results of
two perceptual studies: Nittrouer & Studdert-Kennedy (1987) and Experiment 3
of Nittrouer (1992). Nittrouer & Studdert-Kennedy (1987) examined perception
of fricative–vowel stimuli, in particular ‘sue’, ‘shoe’, ‘sea’ and ‘she’, by 3–, 4–, 5–,
and 7–year–old children and adults. This study found that the younger children
(3–5 years) made significantly more use than the older children and adults of
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within–syllable transitional information in their perception of these syllables. In
fact, the younger the children were, the more use they made of this information:
3– to 4–year–olds made significantly more use of transitional cues than did the
5–year–olds. Contrastively, the 7–year–olds and the adults made significantly
more use of information provided by the frequency of the fricative noise than
did the younger children.

As noted both above, and in Chapter 1 (Section 1.3), the results of Nittrouer &
Studdert-Kennedy’s (1987) study have been interpreted by the authors as mean-
ing that children are more influenced in their perceptual decisions by dynamic
aspects of the speech stream (such as formant transitions), while adults are more
influenced by relatively more static aspects of the speech stream (such as fre-
quency of fricative noise). This in turn has been taken as support for the hy-
pothesis that children organise their perception very globally, possibly in terms
of syllable–sized units, while adults’ perception is much more analytical, being
organised around something more like a phonemic segment. However, the re-
sults of this one study do not actually provide any evidence that there is anything
about the shift in cue weighting which has to do with syllable preference in chil-
dren, or phonemic segment preference in adults, other than the fact that the tran-
sitions that the children weighted more heavily were within–syllable transitions.
Fortunately, a study carried out by Nittrouer in (1992) provides what can be seen
as critical support for this aspect of the model. The study examined perception
of two syllable VCCV stimuli: ‘arda’, ‘alda’, ‘arga’, ‘alga’, again by children (age
5 and 7 years) and adults. The results of this study found that young children
made less use of across–syllable transitional information than did older children
or adults. This is taken as evidence that children are not so much attentive to
transitional cues across the board, but rather that they attend more heavily only
to certain transitions: those that occur within syllable boundaries.

How was Nittrouer able to uncover these apparent developmental trends in
acoustic cue use? The answer lies in the experimental paradigm used for these
two studies. This method, which was also used for all of Nittrouer’s other speech
perception studies, is based on Fitch et al.’s (1980) cue trading relations study
(discussed in detail in Chapter 1, Section 1.3)2. The most straightforward way
to explain this methodology, as well as the premise behind it and the results that

2Nittrouer has also conducted a number of studies of perception of non–speech sounds, which
have not always made use of the same methodology.
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might be expected from it, is to give a detailed description of its use in Nittrouer’s
first study of acoustic cue weighting.

Nittrouer & Studdert–Kennedy 1987

The main goal of the method employed by Nittrouer is to be able to compare
relative use, or weighting, of two different cues to the same contrast. For Nit-
trouer & Studdert-Kennedy’s (1987) study these two cues were i) the frequency
of fricative noise and ii) the configuration of vowel onset formant transitions, in
the fricative–vowel syllables /si/, /

�
i/, /su/ and /

�
u/ (‘sea’, ‘she’, ‘sue’, ‘shoe’).

Both of these aspects of the signal can be used in the identification of /s/ and /
�
/

word–initially. As can be seen in the stylised spectrograms of the two fricative–
vowel syllables /su/ and /

�
u/ in Figure 2.1, the fricative noise cue and the for-

mant transition cue are different for each syllable: the frequency of the fricative
noise is relatively high for the /s/ and relatively lower for the /

�
/, while F3 falls

from a higher onset point, and F2 falls from a lower onset point, following /s/
than following /

�
/.

These differences mean that either cue could potentially be used by the percep-
tual system to signal the place of articulation of the fricative. In order to deter-
mine listeners’ relative use of these (or any other) cues to a contrast, stimuli are
designed in which the two cues do not always agree as to the percept they should
engender. First, a continuum is created in which one of the cues varies gradu-
ally from a configuration which cues one percept, to a configuration which cues
the other percept. In the case of Nittrouer & Studdert-Kennedy’s (1987) study,
it was the fricative noise that was varied along the continuum, from a fricative
frequency which is a strong cue to /

�
/, to a frequency which is a strong cue to

FR
EQ

U
EN

C
Y

TIME

[su]

FR
EQ

U
EN

C
Y

TIME

[
�
u]

Figure 2.1: Stylised spectrograms of /su/ (left) and /
�
u/ (right). Note that both

the frequency of the fricative noise and the onset configurations of the vowel
formants differ between these two CV–syllables.
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Figure 2.2: Stylised spectrograms of Nittrouer–style /� u/–/su/ continua. Num-
bers refer to stimulus number on the fricative noise continuum: 1 is the most
/� /–like fricative noise, while 9 is the most /s/–like fricative noise. The upper-
most continuum has vowel onset formant frequencies which are appropriate for
having followed /s/, while the lower continuum has vowel onset formant tran-
sitions which are appropriate for having followed /� /.

/s/. The other cue—in this case the formant transitions—is set in one of two
configurations, each strongly cuing only one of the two percepts: that is, either i)
transitions appropriate for having followed /s/, or ii) transitions appropriate for
having followed /� /. To complete the stimuli, each of these binary varying cues
(the transitions) is combined with each of the more continuously varying cues
along the continuum (the fricative noises)3. This means that for each point on
the fricative continuum there will be two different stimuli. Put another way, this
means that (as illustrated in Figure 2.2) the stimuli used in Nittrouer & Studdert-
Kennedy’s (1987) study were effectively two /� /–vowel to /s/–vowel continua,
with identical fricative noises, and identical vowel targets, but different vowel
onset formant transitions.

The reasoning behind the use of this type of stimuli is as follows. On its own a
continuum of a single speech cue—e.g. the fricative noise—should engender a
reasonably classical categorical perception response: a rapid change at one point

3Note that, as pointed out in Chapter 1, Section 1.3, neither the speech articulators, nor the sig-
nal that they create vary in strictly binary configurations—however, this configuration is useful
for the purposes of these studies.
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on the continuum from one phoneme label to the other, and fairly consistent la-
beling on either side of this change–over point. However, as explained in Chap-
ter 1, Section 1.3, the addition of a second cue to the stimuli affects the labeling of
the contrast. The second cue will interact with the first cue and, for those stimuli
where the first cue is ambiguous, will either reinforce or contradict the percept
which would be engendered by the first cue alone. In the case of the fricative–
vowel syllables in Figure 2.2, without the vowel transition cue the listener might
place the /s/–/

�
/ category boundary between fricative noises 4 and 5. However,

with the addition of formant transitions which cue /
�
/, the boundary might be

placed closer to the /s/ end of the continuum: between fricative noises 5 and 6
for example. The reason for this is that the addition of the /

�
/–transition rein-

forces the /
�
/ percept, meaning that a slightly less /

�
/–like fricative noise is now

sufficient to engender an /
�
/ percept. The same is true of the addition of a set of

formant transitions which cue an /s/: more of the stimuli should be perceived as
/s/, so the phoneme category boundary should be shifted towards the /

�
/ end

of the continuum. This shift is illustrated in Figure 2.3.

This trading relationship between cues is what allows Nittrouer to determine the
extent to which each cue is used by a listener: her testing materials are designed
to take advantage of this perceptual phenomenon, as will be seen below. Because
the stimuli in this type of test form two continua, each listener will have two sets
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Figure 2.3: Example responses to Nittrouer–style /
�
/–/s/ continua. The x-axis

shows the continua of fricative noises, ranging in frequency from 2.2kHz (the
most /

�
/–like) to 3.8kHz (the most /s/–like). The solid line represents a lis-

tener’s /s/ responses to stimuli with /s/–transitions; the dotted line represents
the same listener’s /s/ responses to stimuli with /

�
/–transitions.

43



of responses, and thus two categorical–perception–type response curves, one per
continuum (as illustrated in Figure 2.3 for an /

�
/–vowel to /s/–vowel contin-

uum). If the cue which is varied along both the continua—in this case the frica-
tive noise—is used more heavily by the listener than the cue which is only varied
between the continua—in this case the transitions—then such a listener should
label both the continua relatively similarly (i.e. place their category boundaries in
roughly the same place for each). In the case of Nittrouer & Studdert-Kennedy’s
(1987) stimuli, this is because the fricative parts of the fricative–vowel syllables
in both continua are the same. If, alternatively, the listener makes more use of
the cues which vary between the continua than those which vary along the con-
tinua, such a listener should label the two continua very differently. Again in the
case of Nittrouer & Studdert-Kennedy’s (1987) stimuli, this is because the formant
transitions for each continuum are completely different.

Figure 2.4 illustrates two extreme, and highly hypothetical, sets of responses
from listeners making sole use of only one of the two cues present: Graph (A)
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Figure 2.4: Hypothetical extreme responses to Nittrouer–style /
�
/–/s/ continua.

The x-axis shows the continua of fricative noises, ranging in frequency from
2.2kHz (the most /

�
/–like) to 3.8kHz (the most /s/–like). On both graphs, the

line with filled dots represents a listener’s /s/ responses to stimuli with /s/–
transitions; the line with open dots represents the same listener’s /s/ responses
to stimuli with /

�
/–transitions (note that because the two response curves are

identical in Graph (A), only the line with the filled dots is visible in this graph).
Graph (A) represents responses from a listener who makes sole use of fricative
noise cues, while Graph (B) represents responses from a listener who makes sole
use of transitional cues.
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is a set of responses for a listener who only makes use of fricative noises: both
their sets of responses are the same, regardless of the transition following the
fricative noise; Graph (B) is a set of responses for a listener who only makes use
of transitional cues: the two continua are not perceived as continua, instead all
the stimuli with /s/–transitions are perceived as /s/–vowel and all the stimuli
with /

�
/–transitions are perceived as /

�
/–vowel.

It should be noted, however, that it is extremely unlikely that a listener would
make sole use of one acoustic cue when others were present, unless such a cue
was extremely unambiguous. A more realistic set of responses are those actually
obtained by Nittrouer & Studdert-Kennedy (1987) shown in Figure 2.5. These
graphs show the percent /s/ responses given to two /

�
u/–/su/ continua by

the oldest and youngest listeners in the study: adults and 3–year–old children.

Figure 2.5: Perceptual response curves from Nittrouer & Studdert–Kennedy
1987. Note that the IPA symbol in parentheses indicates the transitional context
of the continuum. Figure from Nittrouer (1992, p. 352) c

�
Academic Press Ltd.

Reprinted by permission.
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As can be seen, neither of the age groups show responses like the completely
categorical or completely a–categorical responses illustrated above. Instead both
groups of listeners display response curves which are roughly half–way between
the two extreme types of response, suggesting that both groups are affected by
both the fricative noise and the vowel formant transitions.

It is important to note, however, that the response curves of the two groups,
while not as extremely different as the hypothetical responses in Figure 2.4, are
not actually the same. This suggests that the children and the adults are not us-
ing the fricative noises and the formant transitions to the same extent. First, the
adults’ responses are relatively more categorical than the children’s, to the extent
that the extremely unambiguous fricative cues at the endpoints of the continua
engender clear /s/ or /

�
/ responses regardless of the transitional cue that fol-

lows. Additionally, the adults’ two category boundaries are relatively less sep-
arated than the children’s. Contrastively, the children’s response curves are rel-
atively less categorical than the adults’ (note that the endpoints of the continua
only engender clear /s/ or /

�
/ responses when the transition that follows cues

the same percept as the fricative), and their category boundaries are relatively
more separated. According to Nittrouer & Studdert-Kennedy (1987) this combi-
nation of results indicates two things: i) the fact that the adults’ response curves
were more categorical than the children’s indicates that the adults were using the
fricative noise more heavily than the children, and ii) the fact that the children’s
response curves were more separated than the adults’ indicates that the children
were using the transitional cues more heavily than the adults. The validity of
this conclusion will be discussed further in Section 1.2.

In order to be able to make statistical analyses of these qualitative observations,
Nittrouer & Studdert-Kennedy (1987) also made quantitative measures of the
relative influence of fricative noise and vowel formant transitions on listeners’
judgments. Three measures were calculated from the listeners’ response curves
using a normalising equation (described in more detail in Chapter 3). The first of
these is a measure of the slope of the response curve, which is calculated twice for
each listener or set of listeners: one measure for each response curve. The slope
of a response curve can be taken as a reflection of the degree of ‘categorical–ness’
of the responses: i.e. the rate at which the listener changed from one category la-
bel to the other. Examining the response curves of the adults and children from
Nittrouer & Studdert-Kennedy (1987) displayed in Figure 2.5, it can be seen that
the adults have relatively steeper slopes, meaning that it took fewer changes in
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fricative noise frequency for them to change from predominantly /
�
/ responses

to predominantly /s/ responses. The children, on the other hand, have relatively
shallower slopes, meaning that it took a larger number of changes in fricative
noise frequency for them to change from /

�
/ to /s/ responses. This age differ-

ence in slope values was seen for all of the listeners in the study: response curves
became steeper with increasing age. The two youngest groups (3– and 4–year–
olds) had the shallowest slopes, the 5–year–olds had intermediate slopes, and
the 7–year–olds and adults had the steepest slopes. These differences were sig-
nificant, both between the youngest children (3– to 5–year olds) and the oldest
groups (7–year–olds and adults), as well as between the very youngest groups
(3– to 4–year–olds) and the 5–year–olds.

The second measure taken from the response curves is the mean of the responses.
This is seen as corresponding to the 50% point on the response curve: that is,
the point at which 50% of the responses are /

�
/ and 50% of the responses are

/s/. Described in another way, this is the point at which the listener places the
category boundary, although it should be noted that because it is calculated by
normalising the response curve values, this point may not always coincide ex-
actly with one of the points on the continuum. In Figure 2.5 these points are
marked by vertical dotted lines. Again, as for the slope, there will be two val-
ues per listener or listener group for mean—each corresponding to one response
curve.

The third and final value is not calculated directly from the listeners’ response
curves, but from the means of the two response curves. This third value is the
separation of the response curves, and is calculated by taking the difference be-
tween the means of each listener’s two response curves. Separation is seen as cor-
responding to the degree of ‘transition effect’, that is, the degree to which the cat-
egory boundary placement is affected by the presence of the two different sets of
formant transitions—one would expect, for instance, to see “more ‘s’ responses
to tokens with /s/ vocalic transitions” (Nittrouer & Studdert-Kennedy 1987,
p. 326). Only one separation value is calculated per listener or listener group.
In Figure 2.5, the separation for the adults and the children is marked by a hori-
zontal dotted line (between the two vertical lines marking the means): this line is
longer for the children’s responses than for the adults’ responses. The calculation
of this measure allowed Nittrouer & Studdert-Kennedy (1987) to show a transi-
tion effect for all age groups. Additionally, these authors were also able to show
that the effect decreased with increasing age: a significant difference in transition
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effect was again found between the youngest and the oldest groups, as well as
between the very youngest children (3– to 4–year–olds) and the 5–year–olds.

Nittrouer 1992: Experiment 3

Nittrouer employed essentially the same methodology as described above in her
1992 study of the weighting of across–syllable transitions. However, the relation-
ship between the two cues to the contrast examined in the 1992 study is slightly
different to the relationship between fricative noise frequency and formant fre-
quency in the /s/ vs. /

�
/ contrast. The contrast examined in the 1992 study is

essentially a /d/–/ � / contrast, but in this case the /d/ and / � / were embed-
ded in the following two–syllable non–words: ‘arda’, ‘arga’, ‘alda’ and ‘alga’, as
opposed to CV syllables. As noted in Chapter 1 (Section 1.3), a study by Mann
(1980) has shown that adults are affected in their perception of the CV syllables
/da/ and / � a/ by the transitional influences of preceding VC syllables /ar/ and
/al/. A more detailed examination of the acoustic characteristics of these VCCV
words should make the reason for this clear. In isolation, one of the main differ-
ences between the syllables /da/ and / � a/ is the configuration of F3 at the onset
of the vowel: as shown in Figure 2.6, F3 falls after the release of /d/ but rises
following the release of / � /. However, when these two syllables are preceded
by /ar/ or /al/ the configuration of F3 is influenced by the place of articulation
of the liquid, in much the same way that the configuration of the vowel onset
formants following the fricatives (in the study discussed above) is influenced by
the place of articulation of the fricative. Both the stop consonants /d/ and / � /
and the liquids /l/ and /r/ have contrasting places of articulation: /d/ and /l/
are alveolar sounds and are therefore formed relatively farther forward in the
mouth, while / � / and /r/ are velar sounds and are therefore formed relatively
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Figure 2.6: Stylised spectrogram of /da/ (left) and / � a/ (right). Note that F3 falls
following /d/, but rises following / � /.
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Figure 2.7: Stylised spectrogram of /arda/ (left) and /al � a/ (right). Note the sim-
ilar onset configurations of F3 in the second syllables as a result of coarticulation.

farther back in the mouth. The effect of articulating these sounds immediately
after each other is to shift the place of articulation of the constrictions: /d/ is
formed farther back after /r/ than after /l/, while / � / is formed farther front
after /l/ than after /r/.

These assimilatory effects create a situation in which there is the potential for
perceptual confusion: the vowel onset transitions in /da/ preceded by /ar/ and
those in / � a/ preceded by /al/ are very similar in their configurations, as dis-
played in Figure 2.7, and are therefore ambiguous cues to the /d/–/ � / contrast
(see e.g. Lotto & Kluender 1998). However, Mann (1980) found that when these
ambiguous CV syllables followed /al/, more of them were identified by adult
listeners as / � a/, while the same ambiguous CV syllables following /ar/ were
identified more often as /da/. Mann interprets this as meaning that these listen-
ers were able to compensate for the lack of acoustic cues to differentiate between
the two CV syllables by using knowledge of the way in which a preceding sylla-
ble would influence the articulation of the stop: if the syllable followed /ar/ then
it was perceived as a /da/ which had been formed further back in the mouth
than it would have been in isolation; if it followed /al/ then it was a / � a/ which
had been formed further forward.

Nittrouer (1992) replicated this study with children, in an effort to determine
whether this across–syllable transitional information is used in perception by
younger listeners. For this study, the syllables /da/ and / � a/ were synthesised
on a continuum in which the parameter which varied was the onset transition of
F3. To the beginning of each of these syllables were added four other syllables—
two /ar/ and two /al/. These four initial syllables were spliced from natural
tokens of the pseudowords /alda/, /arda/, /al � a/, /ar � a/. Each therefore re-
tained transitional information about the CV syllable that they preceded.
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According to Nittrouer (1992) children’s responses to these stimuli were much
less affected than adults’ by the transitions between the two syllables. Nittrouer
interprets this finding as support for the syllable–to–phoneme aspect of the DWS
model. This study shows, she claims, that adults make use of whatever cues will
give them the most information about individual segments—in this case the in-
formation regarding the across–syllable influence of liquids on stops. Children,
says Nittrouer, use the information provided by across–syllable transitions less
than do adults, because these do not give them information about their percep-
tual units, the syllables. The issues regarding this conclusion will be discussed
in more detail in the following section.

1.2 Issues relating to the DWS model

The studies described above provide the core perceptual support for Nittrouer’s
Developmental Weighting Shift model. However, the development of acoustic
cue weighting is slightly more elaborate than simply a movement from heavier
weighting of syllable–internal dynamic cues to heavier weighting of segment–
internal static cues, as a closer examination of Nittrouer & Studdert-Kennedy
(1987), Nittrouer (1992) and the studies that followed them will show. There
are a number of issues regarding Nittrouer’s studies, and the conclusions she
has drawn from them. Some of these issues have been raised by Nittrouer and
colleagues themselves, others have been raised by other studies, however each
has required a re–evaluation and/or elaboration of the original definition of the
Developmental Weighting Shift model.

Limited experimental evidence

Perhaps one of the most problematic issues regarding the Developmental Weight-
ing Shift model is the possibility that the results on which it is based might
be due, not to a general developmental property of the perceptual system, but
rather to certain acoustic characteristics of the contexts which have thus far been
examined. In the two studies discussed to this point, Nittrouer and colleagues
have shown a developmental weighting shift to occur for an /

�
/–/s/ contrast,

and a different shift to occur for a /d/–/ � / contrast, when preceded by /r/ and
/l/. The question is, do these same shifts occur in any other phonetic context?
Unfortunately, it is difficult to answer this question because shifts in cue weight-
ing have been shown to occur for only a very limited range of phonetic contrasts.
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The issues arising from this problem can be broken down into three slightly dif-
ferent problems. The first revolves around the fact that even within the limited
number of contrasts that have been tested, a difference in transitional effect has
been seen for different vowels. Specifically, the size of the transitional effect—
that is, the amount that the response curves were separated— was greater for
transitions from fricatives into /u/ than for transitions from fricatives into /i/.
The effect of these different vowel contexts on the transition effect was evident
for both child and adult listeners. However, while the effect was proportionally
the same for both groups (the transitional effect was about

� � 	 as large in the /i/
context as in the /u/ context, Nittrouer 1992), the absolute extent of the vowel
effect was much greater for the children, due to the fact that their transitional
effect was much larger than the adults’ in the first place.

Nittrouer & Studdert-Kennedy (1987) hypothesise from this result that “the per-
ceptual weight given to transitions is proportional to their extent” (p. 326). By
extent the authors mean the duration of the transition and the amount of change
in frequency from the onset to the offset of formant movement, which will dif-
fer depending on the physical distance to be traveled by the articulators from
one constriction to the next. Both /s/ and /

�
/ are constrictions which have a

place of articulation near the front of the mouth. If these two fricatives are fol-
lowed by an /u/, which is a back vowel in American English, then the distance
to be travelled is relatively large—thus /u/ following a fricative has relatively
extensive onset transitions. If the fricatives are followed by /i/, which is a front
articulated vowel, then the distance to be traveled is relatively short—thus /i/
following fricatives has comparatively less extensive onset transitions.

Nittrouer (1992), however, notes that because only two vowel contexts were ex-
amined in the 1987 study, one which engendered a strong transitional effect, and
the other which engendered a weaker transitional effect, it is possible that re-
sponses to either of these could have been caused by some artifact of the syn-
thesis process. If this were the case, then a possible reason for the difference in
response pattern between the two vowel contexts might simply be that one of
the two types of response pattern does not reflect normal speech perception be-
haviour. Therefore, in order to determine whether it is indeed the case that the
strength of the transitional effect is determined by the extent of the transitions,
Nittrouer (1992) conducted a further study of the /s/–/

�
/ contrast, using the

same /u/ context and an additional one: /a/, which is articulated in a relatively
more back position than /i/ (although generally not as far back as /u/).
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Nittrouer found in this later study that the /a/ context engendered a much more
similar set of responses to the /u/ context than had the /i/ context in the 1987
study. In response to both the /a/ context and the /u/ context stimuli, children
showed much shallower and more separated response curves than adults. The
response curves for /u/ were still slightly larger than those seen for /a/, how-
ever the difference was not as large as that seen between /u/ and /i/. Nittrouer
(1992) takes this result as further support both for her Developmental Weighting
Shift model and for her hypothesis that transitional effects depend on the extent
of the transitions.

The second problem has to do with a lack of consistency in phonetic contexts
between Nittrouer & Studdert-Kennedy’s (1987) study, and Experiment 3 in Nit-
trouer’s (1992) study. The problem is that the comparison which Nittrouer makes
between weighting of within–syllable transitions and across–syllable transitions
is also a comparison between weighting of transitions in two completely differ-
ent phonetic contexts. That is, not only were the studies comparing the use of
transitions between segments, and transitions between syllables, but they were
also comparing the use of transitions between a fricative and a vowel (the /su/–
/

�
u/ contrasts, for example), and transitions between a liquid and a stop (the

/arda/–/al � a/ contrasts). The fact that acoustically comparable contexts were
not chosen to test within– and across–syllable transition use, raises the possibil-
ity that the difference in cue weighting seen between these two studies has to do
more with the phonetic contexts of the transitions than with syllable structure.

The last problem is simply to do with lack of extensive proof for proposals re-
garding the cues that are attended to by adults and children. First, the DWS
model specifies that infants and young children always attend more to within–
syllable transitional cues. This suggests that children are unable to make efficient
use of non–transitional information, which in turn suggests that they should
have difficulty perceiving contrasts in which the transitional cues are minimal
or perhaps even non–existent. There is some evidence to suggest that this might
be the case (see Section 1.3 below for a discussion), however it has also been
found that children will attend less heavily to transitions (and more heavily to
other cues) when those transitions are less extensive: Nittrouer and colleagues’
studies above showed that children attend more to transitions between fricatives
and /u/, than between fricatives and /i/. Unfortunately no contrasts have been
tested by Nittrouer and colleagues in which transitional cues are naturally very

52



poor cues to the contrast, therefore no conclusions can be drawn about the extent
to which children are ‘programmed’ to attend to transitions.

The model is slightly more complicated as regards the cues which adults are
meant to weight most heavily. As noted in the introduction to this chapter, Nit-
trouer and colleagues originally hypothesised that adults would make most use
of static cues, like fricative noise, to contrast with the dynamic cues used most
by children. A study by Nittrouer & Miller in 1997, however, led the authors to
amend this hypothesis. This study examined perception of a /sa/–/

�
a/ contrast

and a /su/–/
�
u/ contrast, in which some of the transitional information was

neutralised. The aim of the study was to further investigate the importance of
transitional cues to listeners, by effectively removing the information that they
carried. The neutralisation of the transitional cues did indeed affect the listeners’
percepts, but to a different extent for each vowel context. For non–neutralised
stimuli, adults had previously shown a very small transitional effect (similar, but
much reduced in comparison to that shown by the children). For the stimuli
with the neutralised transitions, however, this effect was even more reduced—
but only for those stimuli with an /u/ vowel: i.e. only for those stimuli with
extensive transitions. The authors claim again that this is due to the fact that
fricative–vowel transitions are more extensive at the onset of /u/ than at the
onset of /a/ (as noted above). The more extensive a transition, the greater the
effect it should have on perception, and consequently the more detrimental the
neutralisation of that transition should be. The authors hypothesise that

It should be the case for phonetic environments in which formant
transitions are not particularly informative about segment identity
(and, reciprocally, in which another property is especially informa-
tive) that the weight children assign to those transitions should de-
crease with language experience. However, for phonetic environ-
ments in which formant transitions are informative (and, recipro-
cally, in which other properties are not) the weight children assign
to those transitions should continue to be substantial. (Nittrouer &
Miller 1997b, p. 2265)

There are, however, problems with this hypothesis—in particular with the def-
inition of ‘informativeness.’ Nittrouer & Miller (1997b) appear to assume that
the indicator of the informativeness of a cue is the degree to which it is used by
adults to make their labeling decisions. The authors state that Harris (1958)
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demonstrated that the [fricative] noise is the primary property on
which adults make this fricative decision [a /s/ vs. /

�
/ decision] (and

so is presumably informative concerning fricative identity). Con-
versely, Harris showed that the noise is not weighted heavily by
adults when the fricative is /f/ or /th/ (and so is presumably not
informative). (Nittrouer & Miller 1997b, p. 2265)

Unfortunately, however, this results in rather a circular argument: adults attend
more to certain cues than others because these cues are more informative; the
way to determine of a cue is informative in perception is to ascertain if it is at-
tended to by adults.

The solution to all three of these problems is one which has yet to be undertaken—
specifically, an in depth investigation of cue weighting shifts in a more extensive
range of contrasts, in terms of the variety both of phonetic context, and of syl-
labic structure. In order to address the question of whether such shifts occur
across the board in perception, it would be necessary to examine cue weighting
for contrasts for which the ‘steady–state’ and/or the transitional cues were much
more or much less informative than they are for an /s/–/

�
/ contrast. Possible

candidates for this type of test include fricative contrasts for which the frica-
tive noise is comparatively weaker in amplitude than the noises in /s/ and /

�
/

(e.g. /f/, / � /), or stop consonant contrasts for which the majority of information
comes from the transition configuration rather than the ‘steady–state’ burst noise
(e.g. /b/, /d/). This type of study is outside the scope of this thesis, however,
these concerns will be borne in mind in the design of the stimuli to be used in
this study.

Auditory processing

The question asked in the previous section was whether the results of Nittrouer
and colleagues’ studies might be due, not to a developmental perceptual phe-
nomenon, but rather to characteristics of the contrasts examined. The question
asked in this section is whether the results might indeed be due to a developmen-
tal perceptual phenomenon—but not the phenomenon that Nittrouer proposes.
A number of researchers (e.g. Elliott, Hammer, Scholl & Wasowicz 1989, Sussman
1993, Sussman & Carney 1989) have proposed that “immature sensory process-
ing” (Sussman 1993) in children might be the source of the differences between
adults’ and children’s perceptual behaviour. In other words, the phenomenon
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observed is not simply related to the manner in which children learn to process
speech, but rather is related to children’s developing auditory systems, and their
ability to process all sounds.

J. Sussman (1993) suggests that the reason for both Nittrouer & Studdert-Kennedy’s
(1987) results, and their explanation of these results, is the fact that Nittrouer
& Studdert-Kennedy only collected “phonetic identification data” (p. 392)—that
is, data on identification of stimuli by means of phonemic labels. As noted in
Chapter 1, Section 1.3, there is some question as to whether speech labeling and
speech discrimination access the same perceptual processes. J. Sussman claims
that phonemic labeling tasks do not allow for any assessment of subjects’ sen-
sitivity to fine–grained acoustic differences between speech stimuli. The type
of test that does allow for this type of assessment is, according to Sussman and
various other researchers (e.g. Elliott et al. 1989), a discrimination test. In this
type of test the listener is asked to differentiate between two sounds which dif-
fer to varying degrees along a particular parameter. The object of the test is to
determine the smallest degree of difference that a listener can successfully dis-
criminate (this degree is known as a just noticeable difference or j.n.d.). The results
of such a test give a measure of the listeners’ auditory sensitivity to the vary-
ing parameter. In a criticism of other studies which make use of labeling rather
than discrimination tasks (specifically, Tallal & Peircy 1973, Tallal & Peircy 1975),
J. Sussman (1993) suggests that the performance of subjects on such a task “may
reflect their ability to label the tokens differentially, rather than their ability to
differentiate the lower level acoustic information in the stimuli” (p. 1287).

In response to criticism from the auditory sensitivity camp, Nittrouer and col-
leagues have carried out a number of tests of children’s and adults’ discrimina-
tion abilities. The first study, carried out by Nittrouer (1996a), compared labeling
of fricative–vowel stimuli (of the same design as those used in Nittrouer 1992)
with discrimination of stimuli which varied along a fricative noise spectrum,
and discrimination of stimuli which varied in F2 transition configuration. The
results of this study did show a difference between labeling and discrimination
behaviour: children had shallower and more separated labeling response slopes
than the adults (much as had been found in Nittrouer’s previous studies), but
required greater differences in fricative frequency and transition frequency in or-
der to discriminate the stimuli than did the adults. The discrimination results
on their own would seem to indicate that children are indeed less sensitive to
changes in both these parameters. A later study by Nittrouer & Crowther (1998)
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found similar results. This second study examined discrimination of non–speech
stimuli: both dynamic spectral (glide or transition) stimuli and static spectral
(steady–state) stimuli. Again it was found that children required larger differ-
ences than adults to discriminate both types of stimuli, and that both groups
required larger differences to be able to discriminate dynamic spectral stimuli
than static spectral stimuli.

These results do support some sort of theory that children’s auditory sensitiv-
ity must develop to a certain level in order to be able to detect fine–grained
differences in stimuli. However, as noted by Nittrouer & Crowther (1998), the
results do not in any way explain the shifts in acoustic cue weighting seen in
Nittrouer and colleagues’ previous studies. In order to be able to explain the
differences in labeling behaviour by reference to differences in auditory sensitiv-
ity, discrimination studies would have to show that children were less sensitive
to acoustic differences in fricative–like stimuli, and more sensitive to differences
in transition–like stimuli. That is, the children’s apparent preference for transi-
tions in cue weighting tasks would have to be borne out by a greater sensitivity
to this cue in discrimination tasks. As the discrimination results show the op-
posite behaviour, Nittrouer & Crowther (1998) conclude that while adults and
children may show differences in auditory sensitivity, these differences cannot
be the source of adults’ and children’s differences in cue weighting behaviour.

At this point it is not clear why two such different sets of results should be found
for two tests which are assumed to both tap speech perception abilities. The
possibility that these conflicting results may be the result of more than one per-
ceptual phenomenon will be discussed further in Chapter 6.

Synthetic vs. natural stimuli

As noted above, Nittrouer & Studdert-Kennedy (1987) made use of ‘hybrid’
stimuli, which were a combination of synthetic fricative noises, and naturally
produced vowel portions (transition–plus–vowel target). However, as noted by
Nittrouer & Miller (1997b, p. 2254), “it is possible that children show a greater
weighting of vocalic formant transitions than adults, while demonstrating a
lesser weighting of the fricative noise, because children fail to process synthetic
speech components as they do natural speech.” In other words, there is a pos-
sibility that the children attended to the transitions in the 1987 study not be-
cause of their ‘transitional’ nature, but because of their naturalness. Nittrouer
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& Miller (1997b) attempted to address this issue by replicating the original per-
ceptual weighting study using wholly synthetic stimuli. In general these stimuli
engendered a slightly more categorical response than the hybrid stimuli from
both adults and children. Despite this, though, the general developmental trend
of less categorical, more separated curves in the younger listeners was nonethe-
less replicated.

However, there remains a possibility that the results seen in this later study could
again be due to the nature of the stimuli. The synthetic vowel portions used by
Nittrouer & Miller (1997b) were ostensibly based on a combination of parameters
provided by Whalen (1981), and values gained from acoustic analysis of natu-
ral speech vowel portions similar to those used in the original study. However,
while the transition onset and offset frequencies were taken from frequencies in
the natural tokens, the values for all the frequencies between these two points
were linearly interpolated. This means that although the beginning and end val-
ues of the formant transitions were realistically modeled, the overall shape of
the transitions was highly stylistic. Hazan & Rosen (1991) have suggested that
in highly simplistic stimuli of this sort, the stylised aspects of the stimuli may be
more salient than the equivalent, more complex cues present in natural speech,
and thus may be potentially more likely to draw some listeners’ attention.

Slope of response curves

As noted above, the perceptual response curves obtained for these studies are
analysed in terms of two values. The first is the separation of the two response
curves, which is taken as an indicator of the extent to which the listener’s re-
sponses have been influenced by the transitional cues which differ between the
two speech continua. The second measure is the slope of the response curves,
which is taken as an indicator of the degree to which the listener’s responses have
been influenced by the fricative noises. Nittrouer and colleagues consider these
two values to be the result of the same phenomenon: the degree to which the lis-
tener attends to either syllable– or phoneme–specific information. It is possible,
however, that the slope, or categorical–ness of the response curves may not only
be a result of the listener’s degree of attention to the fricative noises. The first
possibility is that the children’s shallower response curves are due to difficulty
in maintaining attention to the perception task. A sharply categorical response
curve is the result of a listener giving extremely consistent responses (e.g. 8–10
out of 10) to stimuli on either side of a category boundary. This consistency is
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due partly to the categorical perception phenomenon, but also naturally requires
that the listener maintain steady attention to the task. The response curve of a
listener who is not paying attention to the task, and is consequently giving in-
consistent responses, will be much shallower, and in extreme circumstances may
even sit on or around the 50% point (as the listener has a 50% chance of ran-
domly choosing one or the other of the two available labels). If the children who
had participated in Nittrouer’s early studies had been easily distracted from the
perception task, it is quite possible that their responses would be less consistent,
and their response curves therefore more shallow than the adults’. Nittrouer
(1992) therefore decided to test children’s transitional cue weighting in a context
which would engender age–related differences in perceptual behaviour in terms
of boundary placement, but not in terms of slope of response curves.

The context chosen to test the source of the children’s shallower response curves
was one which had been used by Morrongiello et al. (1984) to examine weighting
of cues to the presence of a post–fricative stop consonant, as in ‘say’ vs. ‘stay’.
The two cues to this contrast are the duration of silence (or ‘gap duration’) fol-
lowing the fricative noise, and the configuration of the vowel onset formant tran-
sitions. As in the /

�
/–/s/ studies described above, the stimuli used by Nittrouer

(1992) were designed so that one cue varied along a continuum, while the other
cue varied in one of only two configurations. For this study, the length of the
post–fricative gap was varied from a duration which strongly cued the absence
of the stop, to one which strongly cued the presence of a stop. Each of these
gap durations was combined with the two vowel formant transition configura-
tions: one which was appropriate for having followed /s/, the other which was
appropriate for having followed /st/.

It should be noted at this point that these transitional cues are slightly different
from those used in the 1987 study, in that they are not each unambiguous cues
to different places of articulation. Both /s/ and /st/ are formed with a rela-
tively closed vocal tract, with both closures occurring at the alveolar ridge. The
formant transitions which follow these noises will reflect this: both the transi-
tion configurations will indicate that they have followed some sort of alveolar
closure. However, because of the slight difference in manner of articulation be-
tween /s/ and /st/ (/st/ involves a complete closure of the vocal tract, while
/s/ involves an incomplete closure) the degree to which these two cues indicate
a complete closure (i.e. a stop) will differ. Morrongiello et al. (1984) found that
adults classified /e � / vowel portions with transitions which were appropriate
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for having followed /st/ as ‘day’ with 100% accuracy4, while they classified /e � /
vowel portions with transitions which were appropriate for having followed /s/
as ‘day’ only approximately 50% of the time, and as ‘ay’ the other 50% of the time.
It has also been found (as has been found for other contrasts) that the strength of
these transitional cues in signalling the presence of a stop interacts with the gap
duration cue: Best et al. (1981) found that for adult listeners,

If unequivocal spectral [i.e. transitional] information about the oc-
currence of a medial /t/ is provided, listeners hear ‘stay’ when the
duration of a silent gap between /s/ and the vocalic syllable mini-
mally specifies a stop closure. However, when spectral information
provides only equivocal information about an alveolar stop, listen-
ers need stronger evidence for stop closure from another acoustic cue
(e.g., longer closure gap) in order to perceive ‘stay’. (p. 205)

What Nittrouer found in her 1992 study of this contrast was that, for the stim-
uli with ambiguous transitional cues, the children’s response curves were sig-
nificantly less separated than the adults’. The interpretation of this is that the
children needed a much smaller amount of silence than did the adults to per-
ceive ”stay” from these ambiguous transitional cues (which is essentially the
same conclusion drawn by Morrongiello et al. 1984). Nittrouer proposes that
the reason for these results is once again the fact that young children give more
perceptual weight to transitions than do adults. For adult listeners, the ambigu-
ous transitional cue, as found by Morrongiello et al. (1984), was labeled as ‘ay’
or ‘day’ essentially at chance when presented in isolation, and required a larger
amount of silence to be perceived as ‘stay’ when presented in the context of frica-
tion+silence. For the children in Nittrouer’s (1992) study, however, this ambigu-
ous cue required less support from the gap duration than was needed by the
adults, indicating (according to Nittrouer) that the ambiguous transitional cue
was worth more towards a stay response for children—i.e. they gave it more
weight perceptually (see also Nittrouer, Crowther & Miller 1998, for a replica-
tion of these results with the addition of a burst cue).

4In English one of the main differences between voiced and voiceless stops is in degree of
aspiration—/d/ is unaspirated; /t/ is aspirated. However, unvoiced stops following /s/ are
unaspirated, thus ‘stay’ with the fricative noise removed will sound more like ‘day’ than ‘tay’
(Ladefoged 1993).
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Importantly, however, Nittrouer (1992) also found that although young chil-
dren’s response curves for stimuli with ambiguous transitional cues were shal-
lower than adults’, children’s response curves for stimuli with unambiguous tran-
sitional cues were similar in slope to the adults’. Nittrouer states that if children’s
shallower responses to this type of stimuli were caused by lack of attentiveness
to the task, they should have displayed equally shallow responses for both sets
of stimuli. Nittrouer therefore concludes that she is justified in considering the
slope and the separation of the response curves as resulting from the same per-
ceptual phenomenon.

However, another possible explanation for the children’s shallower response
curves compared to the adults is that this gradual change from a shallow slope
to a steep slope is a characteristic, not of a change in fricative cue use, but of the
development of labelling consistency. It may simply be that children’s ability to
categorise speech sounds improves as they mature. Simon & Fourcin (1978) car-
ried out a study of English and French children’s perception of voicing contrasts
based on a combination of durational cues (long vs. short VOT) and spectral cues
(for the short VOT: rising or flat F1 transition, for the long VOT: no F1 transition).
What these authors found was that although English– and French–learning chil-
dren differ in the rate at which they learned to successfully make use of VOT,
both groups appear to go through three basic developmental stages of stimulus
labelling in terms of this cue. Simon & Fourcin (1978) showed that i) very young
children label unambiguous stimuli (i.e. continuum endpoints, which are stimuli
with extreme VOT values) reasonably clearly, but give quasi–random responses
to ambiguous stimuli (i.e. those stimuli between the endpoints on the contin-
uum), ii) slightly older children label stimuli ‘progressively’, giving gradually
more of one label and less of the other as they move along the continuum, and
iii) older children label stimuli in a basically categorical manner.

Support for this explanation comes from a study by Hazan & Barrett (1999).
These authors examined the perceptual weighting of both transitional and non–
transitional cues to 5 CV contrasts: / � /–/k/, /d/–/ � /, /s/–/z/, /s/–/

�
/, /t

�
/–

/
�
/. The child subjects in this study were older than any of the child subjects

examined in Nittrouer’s perceptual studies, ranging from 6 through 12 years of
age. The results of the study showed that response curves continued to get pro-
gressively steeper from 6 through 12 years, and that even the oldest children
did not display response curves which were as steep as those of the adults. As
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noted by Hazan & Barrett (1999), this supports the claim that “sharpness of cat-
egorisation, and hence labelling consistency of phonemic contrasts continues to
increase until adulthood” (p. 2496). Contrastively, these studies did not find any
conclusive evidence that children from 6 through 12 years make any greater use
of transitional cues than do adults. The authors point out that this does not
contradict Nittrouer’s Developmental Weighting Shift model, as the shift from
heavier use of transitional cues to heavier use of fricative cues is presumed to
have taken place by that point in development. However, this result does raise
the question as to whether the slope of a listener’s response curve and the sepa-
ration between the listener’s two response curves are really the result of the same
perceptual phenomenon, as proposed by Nittrouer. If these two measures were
as strongly linked as has been suggested, one would not expect to find one of
them continuing to develop after the other has ceased to develop.

1.3 Other studies which have examined the development of transitional cue use

There are a number of other studies which lend support to Nittrouer’s theory
that children have an initial perceptual preference for dynamic spectral cues.
Some of these have directly evaluated infants’ and children’s use of transitional
cues in comparison with other cues. Nittrouer et al. (1998) also note that indi-
rect evidence for the view presented in the DWS model can be found in studies
which show that children have difficulty perceiving contrasts when the informa-
tion provided is non–transitional only.

As noted above, Morrongiello et al. (1984) found the same age–related differ-
ences in the weighting of two cues to the presence of a stop consonant (as in ‘say’
vs. ‘stay’) as did Nittrouer (1992). That is, it was found that children needed
much less silence than did adults to compensate for a transitional cue which
only weakly cued the presence of a stop consonant. These authors drew the
same conclusions as did Nittrouer: that transitional cues, even when weak, are
more important to children than to adults.

A set of studies by Ohde and colleagues (e.g. Ohde 1994, Ohde, Haley & McMahon
1996, Ohde & Haley 1997), for instance, have also shown a developmental shift
in the use of transitional cues, in this case cues to place of articulation of stop
consonants in CV syllables, and to vowel quality in certain segmental contexts.
The three cues varied in these studies were formant transitions, noise bursts,
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and voicing duration. These studies made use of a slightly different methodol-
ogy to that used by Nittrouer and colleagues, in that none of these three cues
were varied along a continuum. Instead, for each cue there were two potential
conditions, one ‘informative’, the other ‘uninformative’. For the formant tran-
sitions, these two conditions were ‘moving’ or ‘straight’ (the straight condition
was assumed to be less informative than the moving condition); for the noise
burst the conditions were ‘present’ or ‘absent’; and for the voicing duration the
conditions were ‘46ms’ of voicing or ‘10ms’ of voicing. The results of these stud-
ies showed that 3– to 4–year–old children had difficulty identifying consonants
when the formant transition cues were attenuated (‘straight’ formant condition),
while formant motion (or lack thereof) had little effect on the responses of either
older children (5 to 11 years) or adults. This effect was particularly pronounced
for perception of the velar consonant [ � ]. Interestingly, for the identification of
vowel quality, younger children were again more influenced by formant transi-
tions than older children and adults, but this time only for vowels in the context
of a velar consonant.

Parnell & Amerman (1978) also examined adults’ and children’s use of two types
of cue to stop place of articulation: burst–plus–aspiration, and vowel formant
transitions. This study made use of natural speech stimuli from which the burst
and aspiration, the formant transitions, and the vowel target formants were var-
iously excised. The older children (11 years) and the adults were able to identify
the place of articulation of the stops from the stimuli which contained only burst
and aspiration information. The younger children (4 years), on the other hand,
performed at chance on these stimuli. When transitions were added to the stim-
uli with only burst and aspiration information, however, these younger children
performed well above chance. This would again seem to suggest that the tran-
sitional information was more important to the younger children than the older
children or adults.

A study by Lacerda (1992) has extended the study of cue weighting to infant per-
ception abilities. Making use of a high amplitude sucking technique (see Chap-
ter 1, Section 2.3), this study examined infants’ (age 16 to 230 days) and adults’
ability to discriminate place of articulation distinctions based on transitional cue
differences only. The stimuli used in this study were CV syllables which con-
sisted only of formant transitions and steady states, with the transitions in vari-
ous configurations (straight, low and rising, high and falling) and in both vowel
initial (CV) and vowel final (VC) position. Lacerda reports that while the adults
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were least able to discriminate those stimuli with a maximum transition rate,
the infants’ discrimination performance improved as transitions became more
dynamic, indicating the importance of these cues to young listeners.

Watson (1997) replicated Nittrouer & Studdert-Kennedy’s (1987) /s/–/
�
/ study

with groups of normal adults, normally developing children, and children with
expressive phonological disorders. This study found that older phonologi-
cally disordered children had more global cue weighting strategies than their
normally developing peers—that is, they weighted syllable–internal transitions
more heavily than did the normal children. Additionally, when reverberation
was used to mask the transitional cues, it was found that while the adults and
the older normal children were able to increase the weight they gave to the frica-
tive frequency cue, the younger normal children, and the phonologically disor-
dered children were not able to shift from heavier weighting of the (now much
less salient) transitional cue. The results of this study again support the hypoth-
esis that young children’s cue weighting strategies are indeed more global than
older children’s and adults’. The study also suggests that the shift in cue weight-
ing strategies observed by Nittrouer and colleagues might have something to do
with the development of an ability to become more flexible in cue use.

Finally, three studies of acoustic cue use in the perception of voicing in final stops
(Greenlee 1980, Krause 1982, Wardrip-Fruin & Peach 1984) seem to indicate that
younger children have more difficulty identifying voicing when no transitional
information is provided. Greenlee (1980) used a deletion method to create stim-
uli in which the only cue to the voicing of the final consonant was the duration of
the preceding vowel. The youngest children tested (3 years) were unable to iden-
tify the stimuli on the basis of only vowel duration, however their identification
improved for stimuli which had not had transitional and other cues to voicing
deleted. The older children (6 years) had less difficulty identifying the stimuli as
voiced or voiceless based on just the vowel duration, but this group also bene-
fitted from the addition of other cues to voicing. Wardrip-Fruin & Peach (1984),
who used a similar deletion technique, also found that 6–year–old children had
much more difficulty making a voiced/voiceless judgment when they were not
provided with transitional information. Additionally these authors found that
when this group of children were provided with transitional cues, they weighted
them more heavily than did adults. Krause (1982) investigated perception of the
same voiced/voiceless contrast, but in this case using synthetic stimuli which
varied along a continuum from a short to a long vowel duration. Krause found
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that the youngest children that she tested (3 years) required a longer vowel du-
ration to perceive voicing than either the older children (6 years) or the adults,
indicating that they weighted changes in this cue much less than older listen-
ers. Interestingly, Krause also notes that a certain number of children were in-
fluenced in their labeling decisions by one of the non–test characteristics of the
stimuli, namely the presence or absence of an F1 transition. There was a ten-
dency in these children to label those stimuli with an F1 transition as voiced, and
those without as unvoiced, regardless of the duration of the vowel, once again
indicating the potential importance of transitional cues to younger listeners.

It would appear, then, that despite the many questions raised regarding the De-
velopmental Weighting Shift, one premise on which it is based—that children
have a perceptual preference for within–syllable transitions—has experimental
support, at least for a limited range of contrasts.

2 The development of phonemic awareness

As noted in Chapter 1 (Section 2.5), phonemic awareness is one of a number
of skills which fall under the umbrella of phonological awareness skills—i.e.
those metalinguistic skills which involve conscious awareness of ‘meaningless’
units of speech. These ‘meaningless’ units include larger units such as sylla-
bles and onset–rime units, and smaller units such as phonetic features, as well
as phonemes. However, as will become clearer in this section, awareness of
phonemes is not simply another in a list of metaphonological skills that a child
acquires over the course of development. Studies by I. Liberman and colleagues
in the 1970s showed that the development of phonemic awareness is strongly
linked to the acquisition of alphabetic literacy skills. These studies found that
children at different stages of reading acquisition performed differently on tests
of phonological awareness. Specifically, children who could not yet read were
only aware of the phonological structure of words to the level of syllables, while
children who were reading were aware of phonological structure to the level of
phonemes (e.g. Liberman et al. 1974). Thus the development of phonemic aware-
ness involves a shift from syllables to phonemes which (as mentioned above) ap-
pears to parallel the shift that Nittrouer and colleagues have suggested occurs at
a perceptual level. Before we examine the connection between these two shifts,
however, we will first examine the development of phonological awareness as a
whole, and establish how this development relates to literacy acquisition.
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word

syllable

onset–rime

phoneme

‘jumping’

/ � � m/

/ � /

/ � /

/ � m/

/ � / /m/

/p ��� /

/p/

/p/

/ ��� /

/ � / / � /

Figure 2.8: Hierarchical model of the phonological structure of ‘jumping’.

2.1 What is phonological awareness?

Phonological awareness skills encompass a wide variety of metalinguistic abili-
ties. Specifically, phonological awareness is defined as an ability to consciously
think about and manipulate speech sounds which are smaller than a morpheme
(this is often more likely to mean conceptually smaller rather than physically
smaller). Therefore, a child who is able to recognise that ‘cat’ and ‘hat’ rhyme,
or is able to produce ‘frog’ as a rhyme for ‘log’ is said to possess phonologi-
cal awareness, as is the child who can say that ‘pat’ is the odd one out in the
list ‘mud, miss, pat, moon,’ and the child that is able to say that the sounds
in the word ‘sheep’ are /

�
–i–p/. However, a number of studies have found

that these different metalinguistic analyses are not equivalent in terms of the
ease with which children can carry them out. This has led researchers to sug-
gest that phonological awareness is a heterogeneous set of skills which de-
velop in stages, rather than one homogeneous skill which develops gradually
(Bertelson & de Gelder 1991, Goswami & Bryant 1990, Morais 1991, Treiman &
Zukowski 1991, Treiman & Zukowski 1996). Treiman & Zukowski (1991), for ex-
ample, claim that phonological awareness can be broken up into levels. One way
of seeing these levels is in terms of ‘linguistic’ level. By this Treiman & Zukowski
mean level of linguistic unit in a hierarchical sense: words, which occur at the
top level, can be broken down into syllables, and syllables can be broken down
into onset and rime units5, and finally all of the above can be broken down into
phonemes (see also Gussenhoven & Jacobs 1998), as illustrated in the tree dia-
gram in Figure 2.8.

5In theories of syllable structure, rimes may also be broken down into a nucleus (also known
as a peak) and a coda (e.g. Gussenhoven & Jacobs 1998), however these units have not been
proposed as valid metaphonological units.
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Therefore, a child who is able to access syllables, for example, will be able to say
that the word ‘elephant’ has 3 syllables. A child that is able to access onset/rime
units will be able to segment the word ‘phone’ into /f/ (the onset) and /on/
(the rime), and will be able to to produce and recognise words that rhyme with
‘phone’, or that have the same onset. Finally, a child that has good phoneme
awareness will be able to name all of the component sounds in a word: ‘cat’, for
example is /k–æ–t/, while ‘sneeze’ is /s–n–i–z/.

Treiman & Zukowski (1991) note that “children’s performance depends on. . . the
linguistic level that the task taps. For example, tasks that require children to
segment speech at the level of words seem to be easier than tasks that require
children to segment speech at the level of phonemes” (p. 67). Here the authors
cite a study by Fox & Routh (1975) in which 3– to 7–year–old children were asked
to say ‘just a little bit’ of a sentence, a word, or a syllable: i.e. just a little bit of
the sentence ‘Peter jumps’ is the word ‘Peter,’ just a little bit of the word ‘Peter’
is the syllable ‘Pete,’ and just a little bit of the syllable ‘Pete’ is the phoneme ‘P.’
Fox & Routh (1975) found that the children’s success at sentence and word level
tasks was good, however the phoneme task was found to be more difficult for
the younger children. Treiman and Zukowski go on to suggest in a later paper
(Treiman & Zukowski 1996) that the reason for the difference in ease with which
different linguistic units can be analysed

is that the ability to segment speech into higher–level phonological
units develops earlier than the ability to subdivide these units into
their lower–level constituents. According to this hypothesis, children
first gain the ability to segment speech into words. They next become
able to divide words into syllables, then syllables into intrasyllabic
units, and finally intrasyllabic units into phonemes (Treiman 1992).
(Treiman & Zukowski 1996, p. 194)

While not all researchers agree that conscious analysis of words into intrasyllabic
units (i.e. onsets and rimes) constitutes a separate level of metaphonological
analysis (see e.g. Carlisle 1991), most will agree that there is a fundamental dif-
ference between analysing utterances into larger units like syllables and onset–
rime units, and analysing utterances into smaller units like phonemic segments.
There is a great deal of empirical evidence to support this divide, for the most
part in the form of studies of the relationship between phonological awareness
and literacy.
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2.2 Phonemic awareness: phonological awareness meets literacy

It is not at all surprising that phonological awareness is implicated in the acqui-
sition of literacy. As noted in early studies by I. Liberman (Liberman 1973), and
reiterated by numerous other researchers since, speech understanding does not
require the listener to have a conscious concept of units smaller than a word,
or perhaps a morpheme. Reading in an alphabetic orthography, on the other
hand, requires a much more explicit understanding of speech sounds. This is
not the same as knowing what sounds each letter is supposed to correspond to:
if this were the case then “The child who is told that /b � /, /æ/, /t � / are the
sounds of B,A,T, respectively, would read ‘bat’ as the nonsense word ‘buhatuh’ ”
(Morais 1991, refering to Liberman 1973). Instead what is needed is for the child
to become consciously aware of the phonological structure of speech, and to re-
late this structure to an orthographic representation of speech.

The seminal study of the relationship between specific levels of phonological
awareness and literacy skills was carried out by Liberman et al. (1974). I. Liber-
man and colleagues found that while young, pre–reading children were able to
successfully count the number of syllables in a word (indicated by their ability
to tap out the syllables in the word), they were unable to count the number of
phonemes. Older, reading children, on the other hand, were able to count both
the number of syllables and the number of phonemes. Thus, the shift from syl-
lable awareness to phoneme awareness appears to imply literacy in some way.
The question that then arose from these findings, and which continues to be quite
contentious, is what exactly the nature and direction of causality might be in the
relationship between shifts in phonological awareness and literacy.

Clearly, if pre–reading children are able to count the number of syllables in a
word, this is not a skill which is likely to be caused by literacy acquisition, al-
though it might be one which would itself aid in learning to read. A num-
ber of researchers have proposed such a relationship: i.e. between the lev-
els of phonological awareness which clearly precede literacy acquisition, and
later literacy acquisition itself. Studies (both longitudinal and training) by
Bryant and colleagues (Bradley & Bryant 1983, Bryant, MacLean, Bradley &
Crossland 1990, Bryant 1998, Goswami & Bryant 1990, Kirtley, Bryant, MacLean
& Bradley 1989) have shown that awareness of onset–rime units, which arises be-
fore reading, is particularly predictive of later reading ability. These researchers
suggest that the importance of onset–rime awareness to reading becomes clear
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when one examines the complex phoneme–grapheme relationship in English,
referred to in the introduction to Chapter 1:

English is a capricious orthography in general, but it is much less pre-
dictable at the level of the single letter than of groups of letters. Thus
a word like “light” cannot be easily read letter–by–letter, because the
individual letters represent sounds which do not add up to the word
“light.” But it is quite possible that a child could come to read this
word by learning that there is a group of written words which end in
the letters “–ight,” and which always end in the same rhyming sound.
(Goswami & Bryant 1990, p. 27)6

However, while the spontaneous emergence of syllable, and perhaps onset–rime,
awareness clearly precedes reading, it is not clear from Liberman et al.’s (1974)
study what causes the emergence of the ability to analyse words at the level of
phonemes. The two groups of children in the study differed both in literacy level
(pre– and beginning–readers), and in age (pre–school and kindergarten). From
the results of this study, therefore, it is impossible to conclude whether phonemic
awareness is a skill which develops maturationally, or one which develops as a
result of literacy acquisition.

Differences in phonemic awareness ability have also been found between chil-
dren of the same age who are either good or poor readers: poor or dyslexic read-
ers have much more difficulty with phonemic awareness tasks than do good
readers (e.g. Bradley & Bryant 1983, Fox & Routh 1975, Treiman & Baron 1981).
However, while these studies underline the relationship between phonemic
awareness and literacy, they do not address the question of causality in the rela-
tionship: an inability to become phonemically aware could be either the source
of poor readers’ literacy problems or the result of them.

A clearer picture of the relationship between phonemic awareness and literacy
emerges from studies of groups of subjects who have different levels of liter-
acy not because of age differences or clinical disorders, but because of differ-
ent educational experiences. The groups that meet these requirements that have
been studied most extensively are illiterate vs. literate adults, and alphabetic

6For an argument against the importance of onset–rime awareness in reading acquisition, see
also research by Snowling and colleagues, e.g. Muter, Hulme, Snowling & Taylor (1997), Hulme,
Muter & Snowling (1998).
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vs. non–alphabetic literates. The first pair of subject groups—illiterate and lit-
erate adults—has been studied in great depth by Morais, Bertelson and col-
leagues (Bertelson, de Gelder, Tfouni & Morais 1989, Morais, Cary, Alegria &
Bertelson 1979, Morais, Bertelson, Cary & Alegria 1986). The studies of these re-
searchers have shown that while literate adults (whether literate from childhood,
or ‘ex–illiterate’—i.e. only literate from adulthood) were able to perform phone-
mic awareness tasks at the same level as reading children, illiterate adults per-
formed at a comparable level to pre–reading children (i.e. poorly)7. These studies
would seem to suggest that alphabetic literacy acquisition, and the understand-
ing of phoneme–to–grapheme correspondences that it entails, is the catalyst for
the development of phonemic awareness, and that without this catalyst, phone-
mic awareness does not develop. A very specific example of this comes from a
study by Morais (1991) of two illiterate poets. These two subjects were found to
have highly developed awareness of all levels of phonological structure except
phonemes. Both poets were able to correctly judge rhyme, distinguish rhyme
(e.g. ‘povas–movas’) from assonance (e.g. ‘chomba–zonta’) (Morais 1991, p. 11),
and find the odd–word–out of a list based on differences in onset. However, even
when one of the subjects was explicitly taught to analyse CV and CVC syllables
into phonemes, he was unable to segment new CVC syllables.

Morais & Kolinsky (1995) note that a number of objections have been raised
against the results of the above studies, on the grounds that the illiterates’ poor
scores could be due to less well developed general cognitive abilities as a result
of lack of schooling. Morais goes on to note that the same differences in phonemic
awareness ability are seen between illiterate adults and ex–illiterate adults, both
of whom score at the same level on tests of general cognitive ability. However,
there are studies which do go some way further to addressing this specific prob-
lem. These studies examine subjects with different literacy backgrounds, but
no difference in overall educational background: alphabetic vs. non–alphabetic
literates. The best referenced of these studies is an examination of two groups
of Chinese subjects, carried out by Read, Zhang, Nie & Ding (1986). The stan-
dard Chinese orthography (for both Mandarin and Cantonese) is a logography—
i.e. each symbol is an ideogram. There is, however, an alphabetic script, called
Hanyu Pinyin, which is also taught in China. The two groups in Read et al.’s
(1986) study consisted of one group who could read only logograms, and a sec-
ond group who could read both logograms and the alphabetic Pinyin. Consistent

7Note that these illiterate adults are adults who have never been exposed to literacy training,
as opposed to adults who have failed to acquire literacy skills.
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with the results of all of the above studies, the logogram–only readers performed
very poorly on phonemic awareness tasks, while the logogram–plus–alphabet
readers performed very well on the same tasks.

Bertelson & de Gelder (1991) report on a pilot study which replicated the above
study with Chinese–Dutch bilingual subjects. All of the subjects in this later
study could read Chinese logograms, but only half had learned to read in Dutch
(none had learned the Chinese alphabetic Pinyin). The subjects were tested in
Dutch (using both real and non–real words) on their ability to judge rhyme,
and to segment and delete consonants. Again, both groups scored well on
rhyme judgment, but the logogram–only readers scored much worse than the
logogram–plus–alphabet readers for consonant segmentation and deletion.

The results of all of these studies provide evidence that, at the very least, the
development of phonemic awareness skills is very closely related to alphabetic
literacy acquisition.

2.3 Issues

Having provided what appears to be reasonably conclusive evidence for the way
in which phonemic awareness develops, it should be pointed out that there are
a large number of unresolved issues regarding the emergence of this skill. These
issues, which relate to the development of phonemic awareness, its relationship
with literacy, and the way in which it is tested, will be discussed in this section.

Absolute link between alphabetic literacy and phonemic awareness

The results of the above studies of illiterate and logogram–only literate adults
have led Morais, Bertelson and colleagues to propose that the link between
phonemic awareness development and alphabetic literacy is exclusive: that is,
unless a child learns to read in an alphabetic orthography, they will not become
phonemically aware (e.g. Morais & Kolinsky 1995). There are, however, some
questions which have been raised about the validity of this claim. Mann (1986),
for example, carried out a study which compared the phonemic awareness skills
of Japanese school children to those of American first grade children. Mann be-
lieves the results of this study show evidence of phonemic awareness develop-
ment without alphabetic literacy acquisition. The Japanese children in this study
were first through sixth grade students, learning to read in both a kanji logog-
raphy (based on the Chinese logography) and a kana syllabary. The Japanese
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syllabary transcribes speech in terms of moras (see Chapter 1, Section 2.3 for a
definition of a mora). The older children in the study (those in the sixth grade)
had also begun to learn to read using an alphabet called Romaji, which is based
on the Roman alphabet. The Japanese first grade children were found to per-
form poorly on phoneme counting and deletion tasks compared to American
first grade children. However, the Japanese fourth grade children were found to
perform reasonably well compared to the American first graders, despite the fact
that at this point they had not begun to learn to read in an alphabet. Finally, both
the Japanese fourth grade children and the American first grade children were
outperformed by the Japanese sixth grade children, who (like the American chil-
dren) had begun to learn to read in an alphabet.

The performance of the first grade Japanese children in comparison to their
American counterparts is what might be expected from the results of the stud-
ies discussed to this point. On the other hand, the performance of the Japanese
fourth grade children suggests that access to an alphabetic orthography may not
be absolutely necessary for phonemic awareness development. However, Bertel-
son & de Gelder (1991) propose that Mann’s study of Japanese readers is not a
true test of the constraints for the development of phonemic awareness. These
authors suggest that there may be some aspect of the kana syllabary which gives
Japanese children access to phonemic structure:

The kanas are actually not pure syllabaries. First, some characters
represent single segments: the five vowels /a/, / � /, /i/, /o/ and
/u/, and the consonant /n/. Also, the fact that different kana stand,
for instance, for /pa/, /ta/, /ka/, /ma/, and /a/ may indirectly
draw attention to the consonants. The probability of such discov-
ery is increased, because kanas are usually presented to the pupils
in matrix arrangement with columns corresponding to the initial con-
sonant of the represented mora and the rows corresponding to the
vowel. (Bertelson & de Gelder 1991, p. 402)

Mann (1986, 1991), however, notes that although some of the subjects in the study
did report relying on a strategy which made use of the kana syllabary matrix
chart, these subjects did not perform any differently than the rest of the sub-
jects. Mann instead suggests that the difference seen between the Japanese and
American pupils, in particular the better performance of the Japanese sixth grade
pupils compared to the American first grade pupils, indicates that “the age of the
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child has an impact on the degree of phoneme awareness, and also on the abil-
ity to profit from instruction in the alphabetic code” (Mann 1991, p. 58). Mann
then goes on to propose a sort of critical period for phonemic awareness devel-
opment, which she suggests could “reconcile the presence of awareness among
children who lack knowledge of an alphabet and its absence among illiterate
adults” (Mann 1991, p. 62).

Mann, however, does not suggest that the development of phonemic awareness
is wholly dependent on age or maturation—just that this may itself place con-
straints on the development of phonemic awareness. Instead she proposes that
phonemic awareness should develop in the context, not just of alphabetic lit-
eracy training, but of any “experience in manipulating the internal structure of
words” (Mann 1991, p. 62). An example of such an experience, suggests Mann,
can be found in the acquisition of ‘secret’ or play languages spoken by many chil-
dren (and adults) in literate, illiterate, and non–alphabetic cultures. The premise
of most of these languages is the manipulation (i.e. reversal, addition, dele-
tion, etc.) of the phonological structure of words, at various different levels,
including the phonemic level. Examples of these languages are ‘pig latin’, an
English–based play language which manipulates words at the level of onset–
rime—thus ‘please’ becomes /lizp � � /—and the ‘la–mi’ language of Cantonese
(e.g. Mann 1991) which manipulates words at the level of the phoneme—‘ha:ng’
becomes /la:ng h � ng/ (the initial consonant, the vowel, and the final conso-
nant separate, the initial consonant and the vowel reverse, /l/ is inserted before
the vowel, / � / is inserted after the consonant, and the final consonant is added
back to the ends of both new syllables). Mann (1991) proposes that experience
with language play such as found in these games can serve to encourage phone-
mic awareness development in both alphabetically literate and illiterate children
without requiring specific alphabetic reading instruction.

It should also be noted that there is some evidence from clinical studies that
phonemic awareness can be directly trained in pre–reading children. Studies
have shown that the type of metaphonological training that is sometimes used
as part of the remediation process for phonologically disordered children, en-
courages the development of phonemic awareness before the onset of literacy
training (e.g. Howell, Hill, Dean & Waters 1993, Innes 1995).

Mann (1991) does however go on to note that her suggestion—i.e. that any
experience with accessing the ‘internal structure’ of words can lead to phone-
mic awareness—does not explain the original invention of secret languages in
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non–alphabetic cultures. Mann goes on to note that “There is also the problem
that certain children demonstrate surprising levels of phoneme awareness that
their teachers and parents are at a loss to explain” (Mann 1991, p. 62). Other
researchers explain these phenomena by claiming that some level of phonemic
awareness may develop without any particular training, either formal alphabetic
literacy training or otherwise. Lundberg (1991), for example, notes that in a cer-
tain number of studies (e.g. Lundberg, Olofsson & Wall 1980, Lundberg, Frost &
Petersen 1988) a very small number of pre–reading children (ranging from 8 out
of 387 pre–readers, to 9 out of 51 pre–readers) were able to correctly perform half
or more of the phonemic awareness tasks. Lundberg believes that “the fact that
such children exist apparently indicates that it is possible, at least in principle, to
develop phonemic awareness without the support of formal reading instruction
at school” (Lundberg 1991, p. 50).

It does seem, from the results of these studies, that phonemic awareness may in
fact develop in response to various sorts of metaphonemic training, and, in rare
cases, may even develop spontaneously to some extent. Alphabetic literacy train-
ing may not after all be the sole source of phonemic awareness ability. It should
be noted at this point, however, that the opposite does not appear to be true—
that is, while it has been shown that phonemic awareness may develop without
alphabetic literacy, it has not been shown that it is possible to become literate
in an alphabetic language without, as a result, developing phonemic awareness.
Therefore, while there is some argument as to the exclusive nature of alphabetic
literacy’s causal relationship with phonemic awareness, it can at least be said that
the relationship is absolute.

How aware is aware?

Lundberg’s findings, that in some rare cases children may develop phonemic
awareness spontaneously without reading instruction, raises another issue: what
constitutes awareness? How successful does a subject need to be at a given
phonemic awareness task to be considered phonemically aware? And, does
the same subject then need to show equally high levels of awareness in other
phonemic awareness tasks in order to be considered phonemically aware? Lund-
berg (1991) clearly believes that a score of 50% on any test constitutes phonemic
awareness, and does not appear to believe that it is necessary for subjects to
achieve this score on all tests of phonemic awareness: while 9 of 51 pre–readers
that she reports on performed to this level on a phoneme segmentation task, only
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3 of the same 51 performed to the same level on a phoneme synthesis task. All
of these subjects were considered by Lundberg to have some phonemic aware-
ness ability. Morais & Kolinsky (1995), on the other hand, suggest that “A non–
negligible score in one particular “phonemic awareness” task does not necessar-
ily indicate the presence of phonemic awareness. Rather it may reflect the fact
that the subjects have found some strategy that is appropriate to deal with the
particular task they have to perform” (p. 318). As evidence of this, the authors
describe the performance of an illiterate adult on various phonological aware-
ness tasks. This subject achieved a 50% success level on a consonant deletion
task, performed at chance on a consonant oddity task (i.e. ‘miss, moon, pig’),
and was unable to correctly perform any of a syllable deletion task. Based on
the first two results, Lundberg might state that this subject was phonemically
aware, however Morais & Kolinsky (1995) claim that the results of the syllable
deletion task, which is usually quite easy for pre–and illiterate subjects, show
that this subject is not actually precocious at phonemic awareness tasks, rather
that she has devised a strategy which allows her to perform one specific type of
task. This leaves the question open, then, as to what level of success at phone-
mic awareness tasks is required for an individual to be considered phonemically
aware. This question will be addressed further in Chapter 6.

What constitutes a phonemic awareness test?

In addition to the issue regarding the level of success required at a phonemic
awareness task, there is also the issue of the actual design of the phonemic aware-
ness tests themselves. The question is, what type of task taps phonemic aware-
ness and can be said not to tap anything else?

The first problem in this area is the potential that exists for confounds between
units of the same actual size, but different linguistic size or level. In the hierar-
chical model of phonological structure described in Section 2.1, a word is made
up of a certain number of syllables, each of which can be broken up into onset–
rimes, and finally all of the above can be broken up into phonemes. However,
in many instances, elements of a word may be valid units at more than one lin-
guistic level. As noted by Mann (1991), “deleting the initial consonant from a
word like cat can be regarded either as “phoneme” or “onset” deletion; the first
phoneme of a word like open is simultaneously a phoneme, a rime, and a sylla-
ble” (p. 56). This is illustrated in Figure 2.9.
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Keeping in mind the possible differences in reading and other experience that
have been found to be necessary for different levels of phonological awareness, it
becomes clear that such confounds pose potential problems for phonemic aware-
ness testing.

A second possible problem area in phonemic awareness (and in fact in all met-
alinguistic awareness) testing has to do with the level of explicit vs. implicit aware-
ness that is being tested. Morais (1991) gives a good example of the difference
between these two levels in his report on the study of two illiterate poets. As
noted above, both were able to produce rhymes and alliterative pairs, and to
make correct judgments on pairs of words based on rhyme vs. assonance. How-
ever, they were unable, even with training, to delete the onset of a word, and
produce just the rime. Morais suggests that the two poets are able to produce
and judge rhymes

not because they are able to make the onset–rime distinction, but be-
cause they are more sensitive to phonological similarities that arise
from common onset or from common rime. Alliteration and rhyming
abilities cannot be equated with the ability to analyse syllables in
terms of onset and rime. (Morais 1991, pp. 11–12)

The poets seem to have an implicit awareness, or sensitivity as Morais calls it, to
the phonological structure of words which allows them to play with language in
the way that is necessary for them to create poetry. They do not, however, seem
to have the explicit awareness of the units of speech that they are playing with
which would allow them to manipulate these units individually. If this divide
between implicit and explicit awareness does exist, then there is a fundamental

word

syllable

onset–rime

phoneme

‘cat’

/kat/

/k/

/k/

/at/

/a/ /t/

‘open’

/o/

/o/

/o/

/p � n/

/p/

/p/

/ � n/

/ � / /n/

Figure 2.9: Phonological structure of ‘cat’ and ‘open’.
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difference between phonemic (or any metalinguistic) awareness tasks which re-
quire some sort of passive judgment to be made (e.g. judging which word in a
list starts with a different sound from the others), and those tasks which require a
deliberate manipulation of elements of speech (e.g. deletion of a phoneme from
a word).

Finally, there are a number of non–metalinguistic processes which have been
found to be implicated in phonemic awareness. Treiman & Zukowski (1991), as
well as noting that phonological awareness tasks differ depending on the lin-
guistic level that is being tapped, note that tasks may also differ depending on
the level of cognitive development necessary to complete the task: “children
have more difficulty manipulating the phonemes in a word, as in saying ‘sun’
backwards, than in recognising that ‘sun’ contains ‘s’, ‘u’, and ‘n’.” (Treiman &
Zukowski 1991, p. 67). In other words, the more cognitive processes that are
called into play (e.g. in the first ‘sun’ example these include an ability to under-
stand what ‘backwards’ means, and the ability to apply this concept to a string
of elements), the more difficult the task will be. In a study which directly tested
this relationship, McBride-Chang (1995b) found strong correlations between the
general cognitive ability of subjects and their success on a phonemic awareness
task.

McBride-Chang (1995b) also found that subjects’ ability on tasks which tested
their memory correlated with their phonemic awareness. This is not entirely sur-
prising: as McBride–Chang notes, in order for a subject to be able to complete
a phonemic awareness task, they must be able to remember the stimulus, the
nature of the operation to be performed, and (potentially) all of the individual
phonemes in the stimulus. Studies by other researchers have also found that
dyslexics and poor readers, who as noted above generally have poor phonemic
awareness, often also have poor short–term memory skills, and in particular per-
form very differently to good readers when asked to recall lists of rhyming words
(Conrad 1971, Liberman, Shankweiler, Liberman, Fowler & Fischer 1978).

Most importantly for this current study, the third process that McBride–Chang
and colleagues have found to be implicated in the process of phonemic aware-
ness is speech perception (McBride-Chang 1995b, McBride-Chang 1996, McBride-
Chang, Chang & Wagner 1997, Manis, McBride-Chang, Seidenberg, Keating,
Doi, Munson & Petersen 1997). Again this finding is not entirely surprising—at
the very least the successful completion of a phonemic awareness task requires
successful perception of the stimuli. However, as will become clear in the next
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section, where the potential correlations between perception and awareness will
be discussed in detail, the relationship is much more complicated than this.

It appears, therefore, that the answer to the question posed at the beginning of
this section—i.e. what type of task taps phonemic awareness—has three parts.
First, because of the possibility of confounds between phonemes and onsets, we
can only say for certain that a task is tapping phonemic awareness if there is no
possibility that the unit being manipulated is also an onset. Second, it has been
shown that tasks that ask for an implicit judgment and those that ask for an ex-
plicit manipulation of phonemes may require different types of phoneme aware-
ness. Finally, it appears that cognitive, memory and perceptual demands are also
implicated in phonemic awareness tasks.

3 The relationship between acoustic cue weighting and

phonemic awareness

As noted in the introduction to this chapter, the central goal of this thesis is to in-
vestigate the nature of the relationship between perceptual weighting of acoustic
cues, and phonemic awareness, with particular emphasis on the possible causal
direction of the relationship. The first step in this process was to establish what
is known about the way that each process develops individually—this was the
goal of the last two sections of this chapter. The next step in the process is to
determine what is known about the way in which these two processes correlate.

Clearly the primary evidence for the existence of a relationship between the two
processes comes from Nittrouer’s (1996b) study—in fact, this appears to be the
only study which has explicitly looked at the relationship between these two
very specific aspects of speech perception and metaphonological awareness.
However, additional support for the existence of a relationship can be found
in studies from two slightly different, but related areas of research. The first
of these is the study of the relationship between speech perception and literacy
skills. Keeping in mind the reasonably well documented relationship between
reading acquisition and the development of phonemic awareness (as discussed
in the previous section), any studies which show a relationship between percep-
tion and literacy should also indicate a potential relationship between perception
and phonemic awareness.
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The second area of research that provides additional support for a possible re-
lationship between cue weighting and phonemic awareness encompasses those
studies of speech perception which have also looked at some aspect of phono-
logical awareness. Again, because phonemic awareness is part of the spread of
phonological awareness skills, studies that show a relationship between speech
perception and phonological awareness also lend support to Nittrouer’s (1996b)
findings.

Some of the studies in both areas do investigate acoustic cue weighting, while
others specifically investigate phonemic awareness. However, very few look at
the two together, and none (besides Nittrouer’s (1996b) study) actually look for a
correlation between the two. Additionally, most of these studies suffer from the
same problem as Nittrouer’s (1996b) study—specifically that they are predom-
inantly cross–sectional rather than longitudinal. However, having said this, all
of the studies provide some degree of support for the actual existence of a rela-
tionship between perception and awareness, and many also allow for a level of
speculation regarding the causal direction of the relationship: this should aid in
the formulation of possible hypotheses for this thesis.

3.1 The relationship between speech perception and literacy

For the most part, studies which have examined the possibility of a relationship
between speech perception and literacy have made use of contrasting groups of
good and poor, or dyslexic, readers. The main reason for this seems to be that
the goal of these studies was not to simply establish the existence of a relation-
ship between perception and literacy. Rather the goal was to determine whether
perceptual problems could be the source of poor readers’ literacy deficits. Un-
fortunately this goal often gives the conclusions drawn from the studies a rather
one–sided slant: perceptual development is almost always seen as a building
block for later reading ability, rather than reading ability as a possible cause of
changes in perceptual behaviour, despite the fact that the predominantly cross–
sectional studies preclude conclusions being drawn either way. However, the
results of the studies themselves do suggest that a relationship of some sort ex-
ists between perception and literacy.

A variety of methodologies have been used in these studies to test perception.
The first is potentially the most ‘life–like’—that is, the most like the perceptual
situations encountered by the average listener—specifically, word recognition or
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repetition. In this type of test, the subject listens to a list, or lists, of words and
repeats what they think they’ve heard back to the examiner. The drawback of
this type of test is that it is more difficult to control for variation in all aspects
of the stimuli, and therefore difficult to determine the exact aspect of the stimuli
which might be problematic for listeners. However, the tests are often made
more difficult (and thus more likely to show up more subtle differences between
listeners) by masking the words with white noise, or by using non–or pseudo–
words (which prevents the listener from using context to help them decipher
misperceived sounds).

This type of test was used in a study by Brady, Shankweiler & Mann (1983) which
attempted to determine the possible source of dyslexics’ poor short term mem-
ory difficulties. As noted in Chapter 1, Section 2.7, it has been shown that lis-
teners are affected by rhyme when remembering lists of words—that is, they
are more likely to make recall errors for a list of rhyming words than for a list
of non–rhyming words (Conrad 1971). It has also been shown that there is a
difference between good and poor readers in the amount they are affected by
rhyme: poor readers are much less affected than good readers by whether words
in the list rhyme or not (Liberman et al. 1978, Shankweiler, Liberman, Mark,
Fowler & Fischer 1979). Brady et al. (1983) suggest that this difference is due to
poor readers’ “failure to fully exploit phonetic coding” (p. 346, see also Liberman
et al. 1978)—in other words, poor readers are less sensitive to the phonological
similarities between rhyming words, and thus are less likely to confuse them.
Brady et al.’s (1983) study was designed to test whether this apparent problem
can be traced to perceptual difficulties. Good and poor readers were played
words, both with and without noise masking, and were asked to repeat them. In
the unmasked condition there was no difference in perceptual performance be-
tween the good and the poor readers. However, in the masked condition the poor
readers had significantly more difficulty correctly perceiving the words than did
the good readers. Brady et al. (1983) conclude that poor readers have less effec-
tive perceptual skills than good readers, but that the difference is so slight that it
can only be seen when listening conditions are made more demanding.

A similar study was undertaken by Snowling, Goulandris, Bowlby & Howell
(1986). These authors expanded on Brady et al.’s (1983) study by including non–
words, as well as high and low frequency real words, and by assessing percep-
tual ability not just in good and poor readers of the same chronological age, but
also in normally developing children of the same reading age as the dyslexics (i.e.
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younger children who are reading at the same level as the dyslexics). This study
again made use of noise masking. The results showed that while dyslexic read-
ers were equally good as the age–matched good readers on high–frequency real
word repetition, they were much worse on low–frequency and non–word rep-
etition. When compared with the reading–age–matched children, the dyslexics
were much worse at non–word repetition, but were equal in ability for both high
and low frequency real word repetition. Interestingly, contrary to the findings of
Brady et al. (1983), the dyslexics were not affected by the noise masking any dif-
ferently from the normally developing readers. Snowling et al. (1986) conclude
from this that not all aspects of speech perception are impaired in poor readers:
the authors suggest that, because the noise masking affected all readers similarly,
dyslexic readers’ perceptual difficulties are not related to perception “at input”
(p. 504). Instead, the authors claim that the fact that the dyslexics had most diffi-
culty with the non–word repetition indicates that the aspect of perception which
is impaired is some post–input aspect which deals with immediate analysis of
the phonological structure of new words8.

A number of studies have used a variation of this type of test, in which listeners
are asked to discriminate between pairs of words, instead of simply recognising
them (e.g. Adlard & Hazan 1998, Masterson, Hazan & Wijayatilake 1995, Mody
et al. 1997). The pairs of words may differ in a number of different ways: they
may be minimal pairs (differing in only one feature, e.g. ‘date–gate’), consonants
appearing in one word may be omitted from the other (e.g. ‘pay–play’), and
consonants may be changed across word pairs (e.g. ‘spill–still’) (all examples
from Adlard & Hazan 1998). All of these studies report certain discrimination
deficits for dyslexics compared to normal readers, although in all studies the
deficit was found to be restricted in some way. Masterson et al. (1995) found
the two adults dyslexics that they tested to have perceptual discrimination dif-
ficulties only for specific contrasts (predominantly fricatives). Adlard & Hazan
(1998), on the other hand, found that only 30% of the dyslexic children that they
tested showed perceptual difficulties, and that while the error rate for this sub-
group was significant, it was also quite small. The study by Mody et al. (1997)

8This multi–layer view of speech perception put forward by Snowling is one of a number of
different hypotheses which account for the mechanisms of speech perception. This particular
view is based on a model of word recognition in which there are two routes to verbal word
repetition—one which requires phonological analysis, and one which only requires access to the
phonological representations stored in the mental lexicon (see Snowling et al. 1986, p. 491). Under
this hypothesis, new words cannot be recognised by reference to a lexicon, and must therefore
be analysed phonologically before repetition.
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tested poor readers’ ability to discriminate pairs of the following (computer–
generated) syllables: /ba/, /da/, /sa/, /

�
a/. The poor readers were found to

be worse than good readers on discriminating between /ba/ and /da/, but not
on discriminating /ba/ from /sa/ or /da/ from /

�
a/. The authors suggest that

poor or dyslexic readers may have specific perceptual problems with phonologi-
cal contrasts which are phonetically similar (i.e. which differ in only one feature).

As noted above, while word repetition tasks, and to a lesser extent word or syl-
lable discrimination tasks, are fairly natural tests of general perceptual ability,
they are not very flexible tests of more specific aspects of the perceptual pro-
cess. For instance, although word repetition test materials can be controlled to
a reasonable extent in terms of the number and placement of different types of
segments—i.e fricatives vs. stops vs. nasals etc.—it is difficult to use these tests
to assess listeners’ ability to cope with the minute variations in different aspects
of the speech stream that they would have to cope with when listening to (for
example) multiple different speakers—e.g. variations in fricative frequency, or of
VOT. Word discrimination tasks can test a listener’s ability to cope with more
global variations (i.e. the change from /s/ to /

�
/) but a more sensitive test of the

effect of smaller variations in stimuli on the perceptual system is a categorical
perception test. In fact, because the perceptual phenomenon of categorical per-
ception is well tested and reasonably well understood, this type of testing has
been used as a measure of perception in a number of studies of perception and
literacy.

One well known study of categorical perception and literacy was carried out
by Werker & Tees (1987). These authors believed that there might be a link be-
tween the categorical perception phenomenon and the access to phonological
structure needed for the phoneme–to–grapheme conversion process: “This cat-
egorical perception capability imposes an initial phonetic categorisation on spo-
ken language and is thought to provide the basis from which phonological cat-
egories are constructed” (Werker & Tees 1987, p. 49). Presumably any develop-
mental problems in perception would affect the organisation of these categories,
and thus impinge on the development of phoneme awareness. Werker & Tees
(1987) examined average–reading and reading–disabled children’s perception of
a /ba/–/da/ contrast, which varied along a continuum in terms of the onset fre-
quency and configuration of F2. The subjects were presented with these stimuli
in four different speech perception tasks. The first of these was a 2–item, forced
choice labeling task: the subjects were told that they would hear either /ba/ or
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/da/ and were asked to say which they had heard. The second and third tasks
were both discrimination tests: an AX task, in which the subjects were told they
would hear pairs of stimuli and were asked to label the pairs as same or differ-
ent, and and ABX task in which the subjects heard three stimuli and were asked
to state whether the third was the same as the first or the second. The final task
was a change/no change task, in which subjects were played repetitions of one
or two stimuli, which, at irregular intervals would either change or remain the
same. The results of the study found that the disabled readers’ perception was
less categorical than the average readers’ for all but the ABX task (for which both
groups performed poorly, suggesting that it is a fairly demanding task). These
differences were small, but both significant and consistent (Werker & Tees 1987).

Other studies have also found differences on categorical perception tests be-
tween good and poor readers, although much as the results of Werker & Tees,
the differences are often small, or apparent for only one subset of the subjects.
Godfrey, Syrdal-Lasky & Knox (1981), for example, tested labeling and discrimi-
nation of /ba/–/da/, which varied in terms of F2 and F3 onset transitions, and of
/da/–/ � a/, which varied in terms of F3 onset transitions. These authors found
that poor readers labelled both contrasts more variably and less categorically
than good readers, and were significantly less accurate than good readers at dis-
criminating between stimuli which were taken from either side of the phoneme
category boundary. A study by Reed (1989) found that reading–disabled chil-
dren were less able than good readers to discriminate consonants, although they
were no different from the good readers for the discrimination of vowels.

A more recent study by Joanisse, Manis, Keating & Seidenberg (1998) found
that only a subset of the dyslexics that they tested showed categorical percep-
tion deficits. Dyslexics in this study were labeled (pre–testing) as ‘phonological’
dyslexics, ‘language impaired’ dyslexics, or ‘delay–type’ dyslexics. The testing
involved labeling of two sets of contrasts: a ‘dug–tug’ contrast (VOT contin-
uum) and a ‘spy–sky’ contrast (F2 onset continuum). Only the ‘language im-
paired’ dyslexics showed perception that was significantly less categorical than
the normal control group. The authors suggest that this variability in perceptual
behaviour among dyslexics could explain the relatively small differences seen
between dyslexics and good readers in some of the previously discussed cate-
gorical perception studies.

Interestingly, in relation to the aims of the current study, there are a number of
studies (two of which have been discussed above) which have actually looked
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at the use, or weighting, of particular acoustic cues by good and poor readers.
As well as looking at word discrimination, Mody et al. (1997) also attempted to
replicate Nittrouer’s (1992) study of the weighting of cues to a /s � � /–/st � � / (‘say–
stay’) contrast. Unfortunately, although the authors state that the stimuli which
they use are identical to those used by Nittrouer (1992), there is an important dif-
ference between the two studies in the design of the stimuli. Nittrouer’s study
used two continua, both varying along a continuum of silence duration, and each
with a different F1 onset configuration. Mody et al., on the other hand, made use
of just one continuum, which had a fixed silence duration of 20 ms. (approxi-
mately half–way between the two end point gap durations used by Nittrouer),
and an F2 onset continuum which varied from a configuration appropriate for
/s � � / (611 Hz) to a configuration appropriate for /st � � / (211 Hz). The results of
Mody et al.’s (1997) study showed a small and non–significant difference in per-
ceptual behaviour between the good and poor readers—the poor readers had a
slightly shallower response curve slope that the good readers. The authors com-
pare this result to those of Nittrouer (1992) and conclude that the poor readers
did not weight transitional cues more heavily that good readers. This is contrary
to what might be expected from Nittrouer’s studies if poor readers are delayed in
perceptual development. However, while this is one potential explanation of the
results, it may not be the only explanation. Because this study made use of only
one continuum, there is no opportunity to measure the shift in phoneme bound-
ary caused by the addition of a second cue to the contrast, as was done in all of
Nittrouer’s studies of acoustic cue weighting. Additionally, the fact that the two
cues were swapped in the stimulus design relative to those used by Nittrouer
(1992) (Nittrouer varied the silence duration on a continuum, while Mody et al.
(1997) varied F2 onset configuration along the continuum) means that it is quite
difficult to directly compare this study with those of Nittrouer and colleagues.

The second study which undertook to determine the extent to which good and
poor readers make use of certain cues is the study by Adlard & Hazan (1998)
(discussed above). These authors presented good and poor reading children with
speech stimuli in what they call ‘combined–cue’ and ‘single–cue’ conditions. The
stimuli for the ‘combined–cue’ condition were designed on a continuum which
simultaneously varied a combination of cues (usually two) to a certain contrast:
for example, for the ‘date–gate’ contrast that they used, both the burst frequency
and the F2 onset transitions were varied from values which cued /d/ to val-
ues which cued / � /. For the ‘single–cue’ condition, stimuli were designed so
that only one of the cues from the combined–cue condition was varied along the
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continuum: for the ‘date–gate’ contrast, therefore, both a continuum varying in
burst noises, and a continuum varying in F2 onset transitions were created. The
authors note that by comparing listeners’ ability to label contrasts which are sig-
nalled by different sets of acoustic cues, it should be possible to determine which
cue is most important to any listener. The results of the study show little dif-
ference in ‘categorical–ness’ of perception between good and poor readers for
the ‘combined–cue’ conditions. Additionally, perception was generally less cat-
egorical for both groups in all of the single–cue conditions, although (as found
by Nittrouer for fricative–vowel stimuli) the children’s perception was more cat-
egorical for the /d/–/ � / single–cue contrast when this cue was F2 transitional
information rather than burst frequency information. A significant difference in
perceptual behaviour between normal and poor readers was, however, found
for one of the four contrasts tested: dyslexics were found to respond less cate-
gorically than non–dyslexics to a /s/–/z/ contrast cued by changes in fricative
duration only.

Finally, Nittrouer herself has examined acoustic cue weighting in good and
poor readers. Nittrouer (1999) tested good and poor readers on acoustic cue
weighting for four contrasts. The readers were divided on the basis of the read-
ing sub–test of the Wide Range Achievement Test–Revised (WRAT-R; Jastack
& Wilkinson 1984), which assigns subjects into ‘normal’ or ‘poor’ phonologi-
cal groups. The four contrasts tested were: /da/–/ta/ (the two cues were burst
intensity and vowel onset transitions), /s � � /–/st � � / (the two cues were silence
duration and vowel onset transitions, see Nittrouer 1992), /sa/–/

�
a/ and /su/–

/
�
u/ (the two cues were fricative noise frequency and vowel onset transitions,

see Nittrouer 1992, Nittrouer 1996b, Nittrouer & Miller 1997b). Nittrouer (1999)
found that poor readers weighted cues differently from good readers in both
/s/–/

�
/ contexts. Specifically, it was found that poor readers weight transitional

cues more heavily than fricative cues in labeling these contrasts.

The final studies to be discussed in this section are two investigations by de
Gelder & Vroomen (1992, 1998) on audio–visual speech perception. The visual
speech perception (or lipreading) aspect of the studies will be discussed in more
detail in the following section. In the audio speech perception part of these stud-
ies, de Gelder & Vroomen compared categorical perception of a /ba/–/da/ con-
tinuum (F2 and F3 onset transitions) by different groups of subjects. However,
for de Gelder & Vroomen (1992) unlike the previous studies discussed in this
section, the groups of subjects were not good and poor readers, but alphabetic

84



and non–alphabetic (logographic) readers. de Gelder & Vroomen tested Dutch
alphabetic readers, Chinese–Dutch bilingual logographic readers, and Chinese–
Dutch bilingual and bigraphemic readers (i.e. readers of both an alphabet and
logograms). The results showed that logographic readers had significantly less
categorical response slopes, and placed their phoneme boundaries in a signif-
icantly different place, from the alphabet–only readers. Interestingly, the bi-
graphemic readers had categorical perception slopes which were intermediate
between the alphabetic and logographic readers, leading the authors to suggest
that “the possibility that orthographic skills exercise an influence on speech cate-
gorisation must be taken seriously” (de Gelder & Vroomen 1992, p. 423). Making
use of the same methodology, de Gelder & Vroomen (1998) replicated the results
of the 1992 study with good and poor readers. This suggests that the results of
the 1992 study were not simply due to the different language experiences of the
subjects, but more to their different metalanguage experiences.

It is reasonably clear from all of the above studies that at least some poor
readers show some speech perception deficits compared to good readers, and
that even non–alphabetic readers may perceive speech differently from alpha-
betic readers. For the most part, however, even those studies which show a
clear deficit in speech perception for poor readers have shown this deficit to
be restricted in some way—restricted to a specific aspect of perception (e.g.
Snowling et al. 1986), restricted to a specific type of phonemic contrast (e.g.
Masterson et al. 1995), restricted to only a portion of poor or dyslexic readers
(e.g. Adlard & Hazan 1998, Joanisse et al. 1998), or simply restricted to a very
small difference between poor and good readers (e.g. Brady et al. 1983, Werker
& Tees 1987). However, for the purposes of this study, the fact that poor read-
ers and logographic readers, who have both been shown to have poor phone-
mic awareness skills, also possibly have different speech perception strategies
to good/alphabetic readers, offers at least some support for Nittrouer’s (1996b)
finding that phonemic awareness and perceptual cue weighting are related.

3.2 Speech vs. non–speech perception

It should be noted at this point that a large number of the studies above have
tested poor readers on their perception of non–speech as well as speech sounds.
The main reason for the inclusion of these tests in the studies is that there is some
debate as to “the nature and origin of the perceptual deficit” (Mody et al. 1997,
p. 200) in poor readers. There are generally considered to be two hypotheses: the
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first is that any speech perception problems in poor readers are just that—deficits
in perception of speech. This account is generally put forward by researchers
who hold the view that ‘speech is special’ (see e.g. Liberman 1996), that is, that
speech perception is a function of a system dedicated to speech. The second
hypothesis is that poor readers’ speech perception difficulties are due to prob-
lems in their general auditory capacity—this view is held by researchers who
believe that speech perception is a function of a general perceptual system—i.e.
a system which operates for perception of all sounds (see Section 1.2 above for
a brief discussion of auditory processing). No direct contribution to this debate
will be made in this thesis. However, the argument itself could be important to
our understanding of the relationship between speech perception and phonemic
awareness.

Specifically, the theory that perception of speech is performed by a general au-
ditory system seems to place restrictions on the direction of causality between
perception and awareness. It is plausible that some specific aspect of an audi-
tory system could be harnessed by metalinguistic development to enable a child
to become aware of phonemes. It seems less plausible, however, that the de-
velopment of phonemic awareness would have an impact on the functioning of
an auditory system that serves for the perception of all, not just speech, sounds.
The theory that perception of speech is performed by a dedicated system, on
the other hand, seems to allow for the causal relationship between perception
and awareness to go either way. It is equally plausible under this second theory
that perception could have an impact on phonemic awareness, or that the de-
velopment of phonemic awareness could affect a perception system dedicated to
speech.

A great deal of research into the possible connection between general audi-
tory deficits and literacy has been carried out by Tallal and colleagues (Tallal
& Peircy 1973, Tallal & Peircy 1975, Tallal 1980, Tallal & Stark 1981). These au-
thors state that both language impaired and reading impaired children have a
perceptual deficit in ‘temporal processing.’ This deficit is claimed to result in dif-
ficulty judging the order in which stimuli have been presented, and in perceiv-
ing either brief or rapid acoustic events, such as stop bursts (which are brief, e.g.
Tallal 1980), or formant onset transitions (which change rapidly in frequency, e.g.
Tallal & Peircy 1975), or stimuli (speech and non–speech) which are presented in
rapid succession (e.g. Tallal & Peircy 1973). The primary evidence that reading
impaired children suffer from ‘temporal auditory processing’ deficits comes from
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Tallal (1980). In this study, 20 reading impaired children were tested on their
ability to perceive rapidly presented tones and stop consonants, and to perform
a temporal order judgment task on pairs of tones and consonants (a temporal order
judgment or TOJ task involves listening to a number of stimuli, and identifying
the order in which they were played). Eleven of the subjects performed at the
same level as normally developing children, while 9 had difficulty with the tasks,
leading Tallal to conclude that reading impairment may coincide with difficulties
in perceiving stimuli which are characterised by ‘temporal’ cues (however, for an
examination of Tallal’s use of the the term ‘temporal’ see Mody et al. 1997). Ad-
ditionally, Tallal found a correlation between temporal order judgment of tones,
and non–word reading. This is supported by the results of Reed’s (1989) study
(discussed above), which found that reading disabled children had more diffi-
culty than good readers in judging the temporal order of stop consonants. Reed
(1989) did, however, find that poor readers were no different than good readers
for TOJ of vowels rather than consonants.

The evidence for the hypothesis that perceptual differences between poor readers
and good readers are speech specific comes from a number of different sources.
The study by Mody et al. (1997) discussed above, directly addresses Tallal’s claim
that speech perception is a capacity of a general auditory system. This study
tested good and poor readers on their ability to discriminate between the sylla-
bles /ba/, /da/, /sa/, and /

�
a/. In addition, Mody et al. tested the same listen-

ers on their ability to perform temporal order judgements on the same syllables,
as well as their ability on discrimination and temporal order judgment tasks in-
volving non–speech stimuli (these stimuli were sine wave analogs of /ba/ and
/da/). The results found that while the poor readers had more difficulty than the
good readers with certain speech contrasts (see above), there was no difference
between good and poor readers in their perception of the non–speech sounds—
both groups had more difficulty with this than with speech perception. The au-
thors conclude that “Deficits in speech perception among reading–impaired chil-
dren are domain specific and phonological rather than general and auditory in
origin” (Mody et al. 1997, p. 227).

A second test of Tallal’s hypothesis can be found in another study discussed
above: Nittrouer’s (1999) study. As noted above, Nittrouer tested good and poor
readers on their acoustic cue weighting for a number of contrasts. Not mentioned
above is the fact that this study also included tests of temporal order judgment
of non–speech stimuli (sinusoids at 800 Hz and 1200 Hz). Nittrouer (1999) found
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that, while poor readers weighted cues differently from good readers in certain
contexts, there was no significant difference in temporal order judgment of non–
speech between good and poor readers. It should also be noted that in those
cases where poor readers differed from good readers in the acoustic cues that
they used for perception, it was the transitional cues that they weighted more
heavily—which is specifically the type of cue that Tallal suggests should be prob-
lematic for poor readers. Nittrouer (1999) concludes that poor readers do not suf-
fer from deficits in general auditory perception, but rather have problems with
speech perception, and more specifically with the aspect of speech perception
which allows them to shift their weighting of acoustic cues.

Other studies, while not necessarily directly addressing the auditory deficit hy-
pothesis, have also found evidence that speech perception is different from non–
speech perception. Brady et al. (1983), for instance, tested poor readers’ percep-
tion of ‘environmental’ sounds—e.g. phone ringing, car starting—which they
subjected to masking in the same way as they had the speech sounds. Although
the poor readers were found to perform much worse than the good readers at
word repetition in noise, their levels of success were the same as the good read-
ers for identification of environmental sounds, whether in or out of noise. Adlard
& Hazan (1998), also found that poor readers, including a subgroup which had
been shown to have poor speech perception, did not perform any differently than
the good readers for non–speech discrimination tests.

Finally, the studies of de Gelder & Vroomen (1992, 1998), which paired tests of
audio speech perception with tests of visual speech perception (lipreading), also
seem to indicate that speech perception is controlled by a dedicated system. de
Gelder & Vroomen (1992) note that

Visual speech identification performance offers a complementary source
of information on speech sound categorisation as vision and audition
represent two autonomous but very closely linked input modalities
for speech. Adults with normal hearing combine the auditory and
visual speech information in normal circumstances, as well as under
impoverished conditions (e.g. Massaro, 1987). (p. 415)

In both of these studies, listeners were asked to label a synthetic /ba/–/da/ con-
tinuum which was presented simultaneously with a video of a speaker saying
/ba/ and /da/. The listeners were also presented with the stimuli in audio–
only and video–only conditions. de Gelder & Vroomen (1998) suggest that
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if the differences in perceptual behaviour between good and poor readers are
speech specific, this difference should be apparent in speech reading as well;
however, if the perceptual difference is due to a more general auditory deficit,
then there should be no reason for poor readers to show a difference in speech
reading. As had been found in previous studies of audio–visual speech per-
ception (see McGurk & MacDonald 1976), the addition of a visual speech cue
influenced the perception of the speech sounds for both the good and the poor
readers. However, poor readers were found to be less categorical than good
readers in audio speech perception and less accurate at visual speech percep-
tion (de Gelder & Vroomen 1998). Additionally, it was found that normal,
non–alphabetic (i.e. logographic) readers had less categorical audio speech per-
ception, and less accurate visual speech perception than alphabetic readers (de
Gelder & Vroomen 1992). As the logographic group cannot be said to have any
general auditory problems, this result further refutes the general auditory deficit
hypothesis.

As noted by Mody et al. (1997), all of the above studies are limited in the extent
to which they can test Tallal’s ‘general auditory deficit’ hypothesis, because the
“results cannot disprove the hypothesis: They can merely fail to support it where
support would be expected” (p. 224). However, the evidence from these studies
for a specific perceptual capacity dedicated to speech is both fairly wide–ranging,
and fairly convincing. Based on this evidence, then, this study will continue on
the assumption that the act of speech perception is performed by a system ded-
icated to speech, and therefore that the causal relationship between this system,
and the system under which metaphonemic awareness develops, could theoret-
ically go in either direction.

3.3 Speech perception and phonological awareness

Clearly the main drawback of the perception and literacy studies discussed
above is the fact that none of them explicitly looked for a connection between the
perceptual abilities of the subjects and their phonological or phonemic aware-
ness. Studies which explicitly show a correlation between some aspect of speech
perception and some aspect of phonological awareness development (includ-
ing phonemic awareness), therefore, offer slightly more relevant support for
Nittrouer’s (1996b) findings. Unfortunately the number of studies which have
directly examined the relationship between these two processes is quite small.
A number of studies have shown potential correlations—for example, a group
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of subjects with both shallow categorical perception slopes and poor phoneme
awareness skills—without specifically looking for a correlation between the two.
One of these is a study by Flege, Walley & Randazza (1992) which examined En-
glish speaking adults’ and children’s perception of native and non–native vowel
contrasts. The ‘native’ contrast was / � /–/i/, and the ‘non–native’ was / � / to a
vowel which the authors symbolised as /Y/. No age difference was found for
the number of vowels identified as / � /, but age differences were found in the
slope of the perceptual response curves: 4– to 6–year–old children had shallower
slopes than adults. The study then went on to show that this same age group
(4– to 6–year–olds) had more difficulty than older children in both a rhyming
task and a phoneme segmentation task. Flege et al. suggest, in conclusion,
that these two results are related: “The slope differences may. . . have arisen from
age–related differences in ability to perform perceptual tasks involving localised
sound segments” (p. 2415)—i.e. that the children’s inability to segment speech
into phonemes influenced their speech perception.

Other studies which have tested both perceptual ability and phonological and/or
phonemic awareness ability, without specifically testing a correlation between
the two, include Nittrouer’s (1999) study, and Joanisse et al.’s (1998) study, both
discussed above. Both studies found that the group of children that had per-
formed worse than, or differently to, the good readers on their perception tests,
also had poor phonemic awareness. However, neither study attempted to deter-
mine to what extent the two processes correlated.

A number of studies, however, which do explicitly examine the relationship be-
tween speech perception and phonological and/or phonemic awareness, have
been carried out recently by McBride–Chang and colleagues (McBride-Chang
1995a, McBride-Chang 1995b, McBride-Chang 1996, Manis et al. 1997, McBride-
Chang et al. 1997). The main aim of the first of these studies (McBride-Chang
1995b) was to pull apart the component skills necessary for what McBride–Chang
called phonological awareness—in fact, all of her phonological awareness tasks
specifically tapped phonemic, rather than any other level of awareness and will
be referred to as phonemic awareness tests from this point on.

McBride–Chang proposes that there should be at least three components to the
successful completion of a phonological/phonemic awareness task besides the
awareness itself. The first is speech perception—at one level this is important be-
cause in order to operate on a stimulus it must first be correctly perceived. At a
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more complex level, the successful access of the phonological structure of a stim-
ulus requires that the phonological structure itself be correctly organised, which
presumably might have required the successful development of the perceptual
system. The second component is general cognitive ability—the subject must
have the cognitive capacity both to understand the task and to think about the
stimuli metalinguistically. Finally, the third component is short–term memory—
the stimulus must be held in memory long enough for the metaphonological
manipulation to be carried out. McBride-Chang’s (1995b) study is a test of this
proposal. Children from grade 3–4 (age approximately 8–9 years), were given
tests of their phonemic awareness as well as their IQ, short–term memory and
speech perception. The phonemic awareness tasks were a phoneme deletion task
(e.g. “say the word ‘melvz’ without the ‘v’ ”); a position analysis task (e.g. “what
sound comes before/after the ‘r’ in ‘fremps’?”); and a phoneme segmentation
task. All used non–words. Three speech perception tests were carried out, all cat-
egorical perception, and all identification tasks. The stimuli for these tests were
a ‘bath–path’ contrast (along a VOT continuum), a ‘slit–split’ contrast (along a
gap duration continuum), and a ‘ba–wa’ contrast (along a continuum varying in
length of formant onset transition). The slope of subjects’ response curves was
taken as the measure of categorical perception ability. Using structural equa-
tion modeling, which models relationships between processes, McBride-Chang
(1995b) found a moderate relationship between speech perception and phone-
mic awareness. Importantly, speech perception was found to be associated with
phonemic awareness “even after more complicated verbal abilities such as vo-
cabulary (within general cognitive ability) and verbal short–term memory, have
been accounted for” (McBride-Chang 1995b, p. 187).

McBride-Chang’s (1996) study went on to expand the investigation of the rela-
tionship between perception and awareness to encompass reading ability. In this
study, subjects were tested on their speech perception and phonemic awareness
(in the same way as in the previous study), as well as on a number of other
factors, including word reading. Again, using structural equation modeling
as above, McBride–Chang tested the possible relationships between perception,
awareness, reading, and the other parameters measured. The best model of the
subjects’ performance was one in which phonemic awareness was highly associ-
ated with both word reading and speech perception. Additionally, an alternative
model of the relationship between the three processes in which a dissociation was
specified between speech perception and phonemic awareness, was found to be
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a significantly worse model of the subjects’ behaviour, further emphasising the
relationship between the two processes.

The third study in this set expanded the investigation of speech perception and
phonemic awareness to dyslexic readers. Manis et al. (1997) tested dyslexics
(from grade 4–10, age approximately 9–15 years), chronological–age–matched
good readers, and reading–age–matched children on their categorical percep-
tion of a ‘bath–path’ continuum, and on their phonemic awareness (tested us-
ing a position analysis test, as described above). Consistent with the studies
described above, the dyslexic subjects were significantly less proficient at the
phonemic awareness task than their age–matched controls, but not the–reading–
age matched controls. The dyslexics also showed significantly less categorical
perception than the age–matched controls, and slightly less categorical percep-
tion (although this was not significant) than the reading–age matched controls.
Manis et al. (1997) found a significant correlation between results of the phone-
mic awareness test and the categorical perception test. Interestingly, the authors
note that McBride-Chang (1996) had found that “the best fitting model was one
in which the relationship between speech perception and reading was mediated
by phonological awareness” (Manis et al. 1997, p. 231). However, these authors
go on to suggest that “It is possible. . . that causality runs the other way, i.e. that
learning to read refines children’s representations of speech” (p. 231).

Partly in order to test this possibility, McBride-Chang et al. (1997) carried out a
longitudinal study of the development of phonological awareness and reading.
The study took place over the course of approximately 18 months and all of the
subjects were pre–readers at the beginning of the study. Once again, the subjects
were tested on categorical perception of a ‘bath–path’ contrast. They were also
tested on their ability on three phoneme awareness tasks: phoneme synthesis (in
which the phonemes in a word are presented segmented and the child is asked to
say what the word is—i.e. /k–a–t/ is ‘cat’), phoneme elision (which is the same
as the phoneme deletion task described above), and a ‘sound isolation’ task (in
which the child is presented with two words, one of which is the rime of the
other, e.g. ‘pie’, ‘eye’, and asked to identify the sound that is present in one and
not the other). As would be predicted from McBride–Chang’s previous studies,
relatively strong associations were again found between speech perception and
phonological awareness. McBride-Chang et al. (1997) also suggest again that the
effect of speech perception on word reading may be mediated by its relationship
to phonological processing. Additionally, analysis of the longitudinal aspect of
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the study showed that speech perception, cognitive ability, and verbal short–
term memory together predicted 26% of the subjects’ growth in, and 42% of their
final ability in, the phoneme elision/deletion task.

It appears that the relationship between speech perception and phonemic aware-
ness is more robust than that between speech perception and alphabetic read-
ing skills, as these studies by McBride–Chang and colleagues show. This con-
clusion is supported, though to a lesser extent, by the studies which show a
fairly consistent co-occurrence of poor categorical speech perception, or more
global acoustic cue weighting strategies, and poor phonemic awareness (i.e.
Flege et al. 1992, Joanisse et al. 1998, Nittrouer 1999). Additionally, the results
of McBride–Chang’s tests which showed that perception was only correlated
with reading skill through the relationship of both to phonological or phonemic
awareness, may go some way to explaining the limited correlation seen between
speech perception ability and reading skill. However, all of these studies provide
only partial support for the possibility that a relationship exists between acous-
tic cue weighting and phonemic awareness. For the evidence which clearly sup-
ports the existence of this relationship, we will have to turn to Nittrouer’s (1996b)
study.

3.4 The relationship between acoustic cue weighting and phonemic awareness

The main aim of Nittrouer’s (1996b) study was to find support for her hypoth-
esis that developmental changes in the weighting of acoustic cues were due
to a shift in perceptual strategy from one that was syllable–based to one that
was phoneme–based. Nittrouer believed that if she could show that shifts in
cue weighting were related to the development of phonemic awareness, which
also involved a shift from syllables to phonemes, this would lend credence to
her claim. The study did find a relationship between perceptual weighting and
phonemic awareness. However, while this can be taken as support for Nit-
trouer’s syllable–to–phoneme hypothesis, the study also brings up issues about
other aspects of Nittrouer’s DWS model. Specifically, Nittrouer hoped that this
study would also provide support for the view that shifts in acoustic cue weight-
ing were “based on linguistic experience” (Nittrouer 1996b, p. 1061). However,
the results of the study raise more questions about the strictly maturational na-
ture of the DWS than they actually answer.
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Nittrouer 1996

The experimental subjects for Nittrouer’s (1996b) study were 7– to 8–year–old
children from the following backgrounds: (i) children with what was classed as
a significant history of otitis media (i.e. ear infections, significant being defined
as having had 6 or more documented infections before the age of 3 years, and/or
having had myringotomy tubes inserted before the age of 3 years), (ii) children
from a low socioeconomic background (defined as having an annual family in-
come of less than $15,000 US), or (iii) children with both a significant history
of otitis media, and a low socioeconomic background. Nittrouer chose subjects
with these backgrounds because she believed they could be classified as having
had diminished linguistic experience (Nittrouer cites studies by Eimas & Clark-
son (1986), Gravel & Wallace (1992), Raz & Bryant (1990) and Wallach, Wallach,
Dozier & Kaplan (1977), among others, that report language delays, speech per-
ception difficulties, and difficulties with phonemic awareness for these groups).
The control children were from mid socioeconomic backgrounds and had no sig-
nificant histories of otitis media.

All of these children were tested on their phonemic awareness and their acoustic
cue weighting. The contrasts for the cue weighting tests were the /sa/–/

�
a/ and

/su/–/
�
u/ contrasts from Nittrouer (1992). Measures of both the slope and the

separation of the response curves were taken for all subjects.

Two types of task were used to test phonemic awareness. The first was a
phoneme deletion task, in which the subject was presented with a nonsense
word, and was asked to delete a given phoneme to make a real word (the exam-
ple given is “say /p � nt/ without the ‘t’.” Nittrouer 1996b, p. 1063). The second
task was a modified ‘pig latin’ task. Playground pig latin involves a modification
of words at the onset–rime level, so that the onset of the word is placed after the
rime, and the vowel / � � / is added: ‘star’ thus becomes /arst � � /. In the modified
version of this task, the first phoneme of the word was moved rather than the
whole onset: ‘star’ thus becomes /tars � � / (Nittrouer 1996b).

The results showed, first, that all of the experimental groups had significantly
less phonemic awareness than the control group. Within the experimental group,
the children from low socioeconomic backgrounds (both with and without oti-
tis media) had worse phonemic awareness than the children with histories of
otitis media. The results also showed that, for the perceptual tests, children in
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the experimental groups had shallower response slopes, and more widely sep-
arated response curves than the control group. This is taken by Nittrouer as
an indication that these children perceive more in terms of syllables, like the
younger normally developing children in her previous studies, than in terms of
phonemes, like the older children and adults. Again, this perceptual behaviour
is more extreme in the children from low socioeconomic backgrounds (both with
and without otitis media) than in the children with histories of otitis media.

The most important result for the current study, however, is the finding that
the phonemic awareness scores and the degree of transitional vs. fricative cue
weighting (measured in terms of the separation of the response curves) are sig-
nificantly correlated. Specifically, as the separation decreased (indicating, ac-
cording to Nittrouer, a shift from syllable perception to phoneme perception)
success at the phonemic awareness tasks increased.

Nittrouer takes this finding as support for at least one of the claims of the DWS
model—that the “developmental weighting shift is related to developmental in-
creases in sensitivity to phonetic structure” (p. 1061)—i.e. is related to a shift
from global, syllable–based perception to analytical, phoneme–based perception.
Nittrouer then goes on to take the finding that children with histories of otitis
media, and those from low socioeconomic backgrounds, have lower phonemic
awareness scores and more global speech perception strategies as support for
the second hypothesis being tested: the claim that “experience with a native lan-
guage provides the child with the opportunities to develop both mature percep-
tual weighting strategies and phonemic awareness” (p. 1068). However, as will
be seen in the following section, this is not strictly speaking a conclusion that can
be drawn from these results.

Issues

It is clear from Nittrouer’s (1996b) study that some sort of diminished experience
with language may impinge on a child’s ability to develop analytical percep-
tual weighting, and/or good phonemic awareness. What we cannot conclude
from this study, however, is that undiminished language experience must lead to
both analytical speech perception strategies and good phonemic awareness. In
the case of phonemic awareness we know that it is rare for maturation alone to
lead to phonemic awareness development. We should also not then assume that
maturation always leads to analytical speech perception.
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Figure 2.10: Graph of perception and awareness results from Nittrouer’s
(1996b) study. Phonemic awareness is displayed on the y-axis. Cue weighting
strategy is displayed on the x-axis in terms of separation of response curves (here
called /

�
/–/s/ difference): analytical strategies can be found towards the left of the

graph, global strategies can be found towards the right of the graph. Figure from
Nittrouer (1996b, p. 1067) c

�
American Speech–Language–Hearing Association.

Reprinted by permission.

Nittrouer (1996b) herself acknowledges that there are two possible explana-
tions for the results of her study. Either “the development of mature percep-
tual weighting strategies [i.e. less global speech perception] leads to phonemic
awareness or. . . the cognitive demands of improving phonemic awareness forces
the child to develop more effective perceptual weighting strategies” (Nittrouer
1996b, p. 1067). The cross–sectional design of Nittrouer’s (1996b) study prevents
us from using the results of the study itself to address this issue. However, we
can use these results to develop theories regarding the answer to this question.

The relationship between acoustic cue weighting and phonemic awareness is il-
lustrated in Figure 2.10. The first thing to note about the graph is that the distri-
bution of the data points is fairly bimodal: generally all those children with poor
phonemic awareness also have very global perceptual strategies—this group in-
cludes all of the children from low socioeconomic backgrounds, plus some of
the children with otitis media, and one child from the control group. The over-
whelming majority of the control group, and most of the rest of the otitis media
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group are in the opposite corner of the graph, with both good phonemic aware-
ness scores and more analytical perceptual strategies.

This type of distribution does put a restriction on the conclusions, or even hy-
potheses that can be drawn from this study. A more varied distribution—one in
which there were a reasonable number of children who did not have both good
phonemic awareness and analytical perceptual strategies, or both poor phone-
mic awareness and global perceptual strategies, would have been more infor-
mative. If a number of children had developed one process but not the other,
we could hazard a guess that this process develops before the other, and might
play a causal role in the development of the other. It should be noted at this
point that the bimodal distribution seen in these results is largely due to Nit-
trouer’s choice of subjects. All of the subjects were 7– to 8–years–old, which
means that they had received 1–2 years of literacy instruction—enough time for
the subjects in the control group at least to have developed very good phonemic
awareness. This means that there is little chance of observing any of these sub-
jects’ behaviour part–way through their development. An additional difficulty
with the choice of subjects is the fact that the experimental groups have been
found to have such wide–ranging speech and language problems. This makes it
difficult to hypothesise as to which deficit might have caused the other.

However, some information can be gleaned from the graph in Figure 2.10. While
the distribution of data is predominantly bimodal it is not completely bimodal. In
the top right hand corner of the graph are two data points, representing one
control and one otitis media subject. The fact that these data points are at this
point on the graph means that these two subjects had good phonemic awareness,
but had very global speech perception strategies. Importantly, there are no data
points in the opposite corner of the graph, meaning that there were no children in
this study who developed analytical speech perception strategies without having
developed good phonemic awareness.

What can be hypothesised from this? Nittrouer (1996b) suggests that

The finding that two children in this study demonstrated good phone-
mic awareness, even though their perceptual weighting strategies
were among the less mature [i.e. less analytical], might suggest that
discovering syllable–internal structure may create pressure to de-
velop the most effective processing strategies for providing access to
that structure. (pp. 1067–1068)
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Is it possible that the development of phonemic awareness could impact on per-
ceptual strategies? The studies of McBride–Chang and colleagues (McBride-
Chang 1995b, McBride-Chang 1996, McBride-Chang et al. 1997, Manis et al. 1997)
who found speech perception (along with memory and cognitive ability) to be
predictive of later phonemic awareness, would suggest not. The findings from
those studies support the more conventional hypothesis that speech percep-
tion is a maturational process, the development of which allows other processes
to develop—processes from speech understanding to metalinguistic awareness.
However, while it is not the conventional view, the idea that certain percep-
tual strategies could develop because of the development of phonemic aware-
ness and/or alphabetic literacy has been proposed by other authors, notably
Flege et al. (1992) and de Gelder & Vroomen (1992) (discussed above) and Fowler
(1991) and Morais & Kolinsky (1994) (discussed at the end of the previous chap-
ter).

The next question to be asked, then, is what impact each of these hypotheses
would have on Nittrouer’s Developmental Weighting Shift model. Clearly the
theory that perceptual weighting changes maturationally, and in doing so allows
phonemic awareness to develop, fits most closely with Nittrouer’s proposal that
the DWS is a developmental or maturational model. In order to accept the the-
ory that shifts in perceptual weighting are caused by the development of phone-
mic awareness, on the other hand, Nittrouer would have to abandon the mat-
urational aspect of the Developmental Weighting Shift for a view which allows
higher, conscious cognitive development to influence lower level, subconscious
processes like speech perception.

The fact that there is at least some support for both sides of this argument, and,
the additional fact that Nittrouer’s (1996b) study is inconclusive in this regard,
means that the question of possible causality between acoustic cue weighting
and phonemic awareness remains to be empirically addressed. The main goal
of this thesis, therefore, will be to attempt by means of two studies to begin to
answer this question.
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4 Hypotheses

The general aim of this thesis is to attempt answer the following question:

� What is the causal direction (if any) of the relationship between changes
in acoustic cue weighting in speech perception, and the development of
phonemic awareness?

The two competing hypotheses for the outcome of the thesis will therefore be:

� Children’s perception will always undergo a shift in acoustic cue weight-
ing from global to analytical strategies before the onset of the develop-
ment of phonemic awareness. Shifts in acoustic cue weighting will pre-
dict later ability in phonemic awareness.

� Phonemic awareness will always develop before shifts in acoustic cue
weighting take place. Ability in phonemic awareness will predict later
shifts in acoustic cue weighting.

The following chapter will describe in more detail the methodologies that will
be adopted in order to evaluate these two hypotheses.
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CHAPTER 3

Methodological issues

1 Experimental design

The main goal of this thesis is to determine the nature and direction of the relation-
ship between acoustic cue weighting and phonemic awareness. In particular, the
intention is to discover whether acoustic cue weighting is a pre–requisite skill for
the development of phonemic awareness, or whether the development of phone-
mic awareness impacts on cue weighting strategies.

Nittrouer’s (1996b) study was unable to address this issue, for two main reasons.
The first of these was the cross–sectional design of her study. Cross–sectional
paradigms allow for the researcher to determine whether a correlation exists
between two processes, but say “little about the direction of causality between
the development of these processes” (Nittrouer 1996b, p. 1067). An alternative
paradigm which does allow for a more extensive evaluation of possible causal
directions is a longitudinal study. In this type of study, subjects’ behaviour is
tracked over an extended period of time, allowing for observations to be made
of the gradual development of the processes in question. Although this type of
study may not always allow for conclusive claims to be made regarding causality,
it does allow such claims to be constrained: if perception consistently develops
before awareness, for instance, it is very unlikely that awareness would play a
causal role in the development of perceptual strategies. Longitudinal studies also
allow for statistical analyses of the predictive relationship between processes—
that is, given test results for two processes over a period of time, it is possible to
determine to what extent specific results are dependent on the development of a
process at a previous point in time.
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The second problem with Nittrouer’s (1996b) study was (as noted in Chapter
2, Section 3.4), the choice of experimental subject groups. Although Nittrouer
noted that otitis media and low SES have been shown to affect speech and lan-
guage development, the exact nature of this effect appears to be diffuse across a
number of different areas of speech and language. This means that in examining
the perceptual and metaphonemic behaviour of children from these groups, it
is impossible to determine which of the two processes might have had a causal
effect on the other. The solution to this problem is to make use of an experimen-
tal group of normally developing children who have not yet developed one of
the processes in question. Clearly it is not possible to find a group of normally
developing children who also have had no chance to develop perceptually: this
was the problem that faced Nittrouer (1996b) (who stated that “The ideal exper-
imental paradigm would have included two groups of children from identical
backgrounds, but one group would have had all linguistic input withheld for all
of their short lives” (p. 1061)). It is, however, possible to find normally develop-
ing children who have not yet acquired phonemic awareness. Presumably, any
child that has not had access to alphabetic print will be unlikely to have devel-
oped phonemic awareness (leaving aside the cases of children who may develop
phonemic awareness as a result of speech therapy, and the rarer cases of sponta-
neous phonemic awareness development). Most children in literate societies are
trained in reading and reading–readiness from the beginning of formal educa-
tion: conventional state primary and fee paying schools in the Edinburgh area,
for example, begin such training at approximately 4;6–5;6 (years;months) in at
least the first year of school (Scottish Office Education Department 1991). There
are, however, a number of independent school systems that delay all forms of lit-
eracy training and preparation until later: for example, the Steiner and Waldorf
school systems do not start literacy training until children are approximately 8
years of age. It is very unlikely that children in these or similar school systems
would begin to develop phonemic awareness until after they begin this training.
Such children could therefore be considered an appropriate normally developing
experimental group when compared to children attending more conventional
schools.

This thesis made use of both of these solutions, in two different studies. Experi-
ment 1 was a longitudinal study, and followed the development of acoustic cue
weighting and phonemic awareness in a group of normally developing children
in their first year of full–time education in conventional state primary or fee–
paying schools (referred to as the ‘beginning–reading’ group). These children
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were tested three times (referred to as Sessions 1–3), at regular intervals, allow-
ing for assessment of the development of the two processes in relation to each
other. Following Nittrouer and colleagues (1987, 1992) a group of adults was
also tested on their acoustic cue weighting strategies, for comparison with the
children. Experiment 2 was a cross–sectional investigation of children from an
independent school which delays reading/reading–readiness training (referred
to as the ‘reading–training–delayed’ group). This group of children were the
same age as the children at the end of Experiment 1, but had not yet begun any
literacy training. It should therefore be possible to compare the cue weighting
strategies and phonemic awareness abilities of this (predominantly) non–reading
group with their same–age beginning–reading peers from Experiment 1.

2 Stimulus and test design

In Chapter 2, a number of issues regarding Nittrouer’s DWS model and the
methods used to test acoustic cue weighting were outlined. Issues were also
raised regarding the testing of phonemic awareness. In the design of the stimuli
for the studies in this thesis, as many of these issues as possible were taken into
account.

2.1 Acoustic cue weighting

Synthetic vs. natural stimuli

Nittrouer and colleagues have made use of two basic types of stimuli for their
acoustic cue weighting studies: hybrid stimuli—that is, part synthetic and part
natural speech—and highly stylised synthetic stimuli. Both of these are poten-
tially problematic for cue weighting studies, as both make use of designs which
could render the transitional cues more salient to children than these cues would
be in natural speech. In the hybrid stimuli the transitional cues could be con-
sidered to be more salient because they are natural speech (the fricative noises
were synthetic), while in the all–synthetic stimuli, the transitional cues could
be considered more salient due to their highly stylised nature (see Hazan &
Rosen 1991).

The stimuli to be used in this study were therefore created by means of a method
called ‘copy–synthesis’ (Hazan & Rosen 1991, see also Liberman 1996). In this
method, highly detailed acoustic analyses of natural speech are made, and the
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resulting values then used to synthesise the stimuli. As noted by Hazan & Rosen
(1991, p. 198) “because of the similarity in level of pattern complexity to natu-
ral speech [results obtained with this method] would be more representative of
natural speech processing than those that are obtained with highly simplified
synthetic stimuli.” If Nittrouer’s interpretation of the changes in cue weighting
is correct, listeners should display similar changes for copy–synthesised stimuli
to those they display for hybrid or stylised synthetic stimuli.

Limited experimental evidence: phonetic context

The contrast used to test cue weighting in these studies was the contrast be-
tween the fricatives /s/ and /

�
/ in fricative–vowel single–syllable words. As

noted in Chapter 2, Section 1.2, Nittrouer and colleagues have suggested that
the transitional effect—that is, the separation between the response curves—is
proportional to the extent of the transitions. In order to ensure, therefore, that
the greatest possible effect of the transitional cues would be seen in the current
studies, a vowel context with extensive transitions was required. Of those con-
texts previously studied by Nittrouer, the one with the most extensive transitions
following /s/ and /

�
/, and which engendered correspondingly greater weight

from the children, is /u/. However, there is a difference in the subject population
between the current studies and those of Nittrouer and colleagues that makes
the use of the /u/ context problematic. While the subjects in Nittrouer’s stud-
ies spoke Standard American English, the predominant dialect of the subjects in
the current studies was Standard Scottish English. For speakers of Scottish En-
glish /u/ is generally not a back vowel, as it is in most American dialects, but a
front vowel (McClure 1995). This means that /u/ in Standard Scottish English is
likely to have transitions following /s/ and /

�
/ which are more like /i/, which

was the context that engendered the smallest transitional effect in Nittrouer &
Studdert-Kennedy’s (1987) study. Therefore, the current studies made use of a
vowel context which has more appropriately extensive transitions following /s/
and /

�
/ in Scottish English: the back, rounded /o/. This has the additional ad-

vantage of being a context which has not been previously studied by Nittrouer.
As a result, it served as a small test of the generalisability of the phenomenon of
shifts in cue weighting.

103



Auditory processing

A two–item forced–choice labelling task was chosen as the perceptual testing
method for this study. The main reason for choosing a labelling task over a dis-
crimination task was to allow ease of comparison between the results of this
study and those of Nittrouer and colleagues’ studies (Nittrouer & Studdert-
Kennedy 1987, Nittrouer 1992, Nittrouer 1996b). Additionally, as was noted in
Chapter 1 (Section 1.3), there is some debate as to whether labeling tasks and
discrimination tasks tap the same perceptual processes. Simon & Fourcin (1978),
for instance, have suggested that only labeling tasks require a linguistic deci-
sion to be made regarding the stimuli. The hypotheses that will be evaluated in
this thesis depend very much on the relationship between children’s conscious
knowledge of linguistic categories (i.e. phonemic segments) and their speech per-
ception. Therefore, a perceptual task which is presumed to access on–line, sub-
conscious linguistic knowledge, like a labeling task, might be more relevant than
one which might be more related to auditory sensitivity.

2.2 Phonemic awareness

What constitutes a phonemic awareness task?

McBride-Chang (1995b) found that the memory load of a phonemic awareness
task, and the general cognitive ability of the test subject have significant effects
on phonemic awareness performance. The results of McBride–Chang’s study
showed that the higher the memory and cognitive demands of the task, the
worse will be a subject’s performance, regardless of their basic awareness of
phonemes. McBride–Chang reported these effects for children aged 8–9 years.
As the children in the current studies ranged from 5;2–7;7 care was taken in the
testing of these groups, whose memory and cognitive skills were likely to be still
less developed than those of the older children tested by McBride–Chang.

In choosing the words for the phonemic awareness test stimuli, a decision was
made to use real word stimuli, for memory load reasons. There is some evidence
that nonsense words afford a more conclusive test of phonemic awareness than
real words: Tunmer & Nesdale (1982), for instance, suggest that “Beginning read-
ers who lack phonemic segmentation skills but read words by sight may. . . resort
to a ‘grapheme’ strategy” (p. 301) in phonemic awareness tasks. Such a strat-
egy, they say, would result in children ‘overshooting’ the number of phonemes
in a word in cases where phonemes are represented by digraphs, e.g. ‘tea’ has
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two phonemes: /t/—/i/, but three graphemes: t—e—a. In terms of phonemic
awareness testing, the possibility that some children may be using a grapheme–
strategy causes problems when the number of phonemes in a word is equal to
the number of graphemes, as in this case it is impossible to determine if the child
has mastered phonemic awareness, or has simply resorted to a spelling strategy.
Tunmer & Nesdale (1982) propose that nonsense word testing would eliminate
this problem, because children would not have any pre–learned grapheme rules
for the stimuli.

However, work on short term memory suggests that new or unfamiliar words
(including nonsense words) carry a greater memory load (in particular phono-
logical memory) than familiar words (Gathercole & Baddeley 1998). Therefore,
in order to minimise the memory load for the children in the current studies, real
words were used to test phonemic awareness. Keeping in mind Tunmer’s sug-
gestion that real words encourage the use of graphemic strategies, at least half of
the stimuli for each of the phoneme blending and phoneme segmentation tests
(25/50 and 26/50) made use of di– and trigraphs (e.g. [

�
ip]—‘sheep’, [kat

�
]—

‘catch’). It should therefore be evident from subjects’ responses to these stimuli
whether or not they have a tendency to make use of graphemic strategies. Addi-
tionally, the use of real words is slightly less of an issue for this particular study
than for those that have used older subjects (e.g. McBride-Chang 1995b, Tunmer
& Nesdale 1982). The subjects in both of the current experiments were predomi-
nantly pre–literate or only beginning–literate: it was therefore very unlikely that
many of the words to be used for the tests would be in their reading or spelling
vocabularies, even for those beginning–readers who were only reading by sight.

There are a large number of possible tasks available for testing phonemic aware-
ness, each of which can also put different demands on a subject’s memory and
cognitive abilities. Nittrouer (1996b), for example, made use of a phoneme dele-
tion and a modified ‘pig latin’ task. Other studies have made use of different
tasks: e.g. phoneme tapping (Liberman et al. 1974), in which the subject is taught
to tap out the number of phonemes in a word, and is then asked to tap novel
words; substitution (Goswami & Bryant 1990), in which the subject is asked to
replace part of a word with another sound or set of sounds (e.g. ‘lug’ becomes
‘fog’, ‘fli’ becomes ‘fru’); phoneme oddity tasks, in which the subject is presented
with three words, two of which share a phoneme (e.g. ‘mop’, ‘lead’, ‘whip’), and
asked to find the odd one out (in this case ‘lead’, see Treiman & Zukowski 1996);
position analysis, in which a word or non–word is presented, along with a single
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phoneme from that word, and the subject is asked to say what sound came before
or after the presented phoneme in the stimulus word (McBride-Chang 1995b).

In addition to requiring that the subject understand the concept of a phonemic
unit, most of these tasks also place heavy demands on the subject’s cognitive abil-
ities and short term memory. Position analysis, for instance, requires the subject to
i) segment a word into a sequence of phonemes, ii) hold this sequence in mem-
ory long enough to locate the target phoneme in the sequence, iii) understand
the concepts of ‘before’ and ‘after’, and iv) remember the order of the sequence
of phonemes so that the sound that comes before or after the target phoneme
can be identified. Likewise, Nittrouer’s modified pig latin task (Nittrouer 1996b)
requires a large number of manipulations: the subject must i) segment the word
into (at least) two units corresponding to ‘initial phoneme’ and ‘rest of word’, ii)
hold both units in memory long enough to transpose them, iii) blend the trans-
posed units together and hold this new nonsense word in memory, iv) remember
the tag segment / � � / (‘ay’), and v) blend the tag segment onto the end of the non-
sense word formed by the transposition of the original units. Even the relatively
straightforward oddity task requires that three words be held in memory, and that
a complex comparison be made of these words.

In order to minimise the memory and cognitive demands of the tasks in the cur-
rent studies, two of the three assessments which were used in the current study
were tests which require awareness of phonemes, and only one basic manipula-
tion of these units. For one of these tests, phoneme segmentation, this manipula-
tion is the division of a word into a sequence of separate phonemes, e.g. ‘phone’
is /f–o–n/. For the other test, phoneme blending, the manipulation required is
the re–synthesis of a number of separate phonemes into a single word, e.g. /f–
o–n/ is ‘phone’. A third, and slightly more cognitively demanding test was also
used: phoneme deletion, which requires the understanding of the concept sub-
traction (removal of part of a whole) as well as the ability to segment phonemes.
The cognitive and memory demands of this task were, however, minimised, first
by ensuring that the phoneme to be deleted was in the same position within the
word for all stimuli, and second by ensuring that both the stimulus word, and
the word which was formed when the phoneme was deleted, were real words
(e.g. ‘snow’ with the /s/ removed is ‘no’).

Finally, in terms of the division suggested by Morais (1991), and to an extent
Fowler (1991), all of the tasks used in these studies required explicit manipula-
tion of phonemic segments, rather than implicit recognition of phonemes.
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How aware is aware?

Because the first of the two studies in this thesis was a longitudinal study, the
children’s success at the phonemic awareness tasks was measured predomi-
nantly in terms of their progression, rather than in terms of one specific cut–off
point. Awareness was therefore considered on a scale from less aware (0% cor-
rect) to more aware (100% correct). However, as will be seen in the following
section, which describes the graphics that used to represent the results, it is use-
ful to have some fixed point against which to measure the subjects’ progression.
For the purpose of these studies, this fixed point was the median score of the
subjects in Experiment 1 at Session 1 of the longitudinal study. In this way, the
subjects were measured for success against their own initial ability. Additionally,
this fixed point was also used in Experiment 2, so that the ability of this second
group of children could be compared against the ability of the group from Ex-
periment 1.

The question of how to gauge awareness applies not only to overall score, but
also to the scores given to individual items in a test. The tests themselves were
scored in a very basic way: the subjects received one point for every correct re-
sponse. A correct response for the phoneme blending was simply the correct
identification of the segmented word, with all the phonemes in the correct order,
thus responding ‘room’ to the presentation of /r– � –m/ was correct; respond-
ing ‘arm’ was incorrect. The subjects were required to respond to the phoneme
segmentation test with segment sounds rather than letter names, and all these
sounds were required to be present and in the correct order. Thus, the response
/k–l–æ–p/ for the word ‘clap’ was correct; the response /k–æ–p/ was incorrect,
as was /k–æ–l–p/. Additionally, a response in which not all phonemes were
segmented was also incorrect, thus /kl–æ–p/ did not receive a point. Incor-
rect vowel quality was not given a point, however subjects were given a point
whether they segmented diphthongs as one sound or two, thus for ‘mouse,’
both /m–a � –s/ and /m–æ– � –s/ were correct. Dialectal variation was taken into
account, thus both /t–r–e � –n/ and /t

�
–r–e � –n/ for ‘train’ were counted as cor-

rect. Additionally, there was some flexibility in terms of whether the subject ap-
proached the task from a phonetic or a phonological point of view. For the word
‘space’, therefore, both /s–p– � � –s/ and /s–b– � � –s/ were counted as correct. This
last point also applied to the phoneme deletion task: in those cases where the
deletion of an initial phonemic segment left two possible results depending on
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whether a phonetic or phonemic approach was taken, both were considered cor-
rect. Thus for the phoneme deletion task, the deletion of the /s/ from the word
‘spot’ could produce either /p– � –t/ or /b– � –t/ correctly.

3 Preliminary analysis methods

This section will describe in detail the graphics used to represent the results of the
cue weighting and phonemic awareness tests, and the methods used to interpret
these representations.

3.1 Acoustic cue weighting

Figure 3.1 shows a hypothetical set of response curves for the type of perceptual
stimuli which were used in this study.

The data from the cue weighting tests was normalised using a probit transfor-
mation. This is a normalizing transformation, which extracts rate–of–change in-
formation from data on an S–shaped curve (Cohen & Cohen 1983).
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Figure 3.1: Hypothetical perceptual responses to the /
�
o/–/so/ stimuli used in

the current study. The x-axis shows the continua of fricative noises, ranging in
frequency from 2.2kHz (the most /

�
/–like) to 3.8kHz (the most /s/–like). On

both graphs, the solid line represents a listener’s /s/ responses to stimuli with
/s/–transitions; the dotted line represents the same listener’s /s/ responses to
stimuli with /

�
/–transitions. Graph (A) represents responses of a listener with

analytical cue weighting strategies. Graph (B) represents the responses of a lis-
tener with more global cue weighting strategies.
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As noted in Chapter 2, Section 1.1, this transform gives estimates of values which
can be used to describe each set of response curves. To re–cap, these values are:
the mean of the responses, the slope of the response curves, and the separation of
the response curves.

The mean of this transform is equivalent to the point along the fricative con-
tinuum (the x-axis) at which the /s/ responses reach 50%. In Figure 3.1 this
corresponds to the point (on the x–axis) at which the response curves cross the
horizontal dotted line. The mean therefore represents the point along the con-
tinuum at which the responses cease to be predominantly /

�
/ and begin to be

predominantly /s/—i.e. the phoneme boundary between /
�
/ and /s/.

The slope of the response curve is obtained by taking the reciprocal of the stan-
dard deviation (Cohen & Cohen 1983). Slope is representative of the rate at which
the above change (from predominantly /

�
/ responses to predominantly /s/ re-

sponses) takes place. In Figure 3.1, graph (A) shows a response curve which
changes fairly rapidly, while graph (B) shows a response curve with a more grad-
ual slope. The slope of the response curve can therefore be seen to be equivalent
to the degree of categorical–ness of the response.

The separation of the response curves is obtained by taking the difference be-
tween the means for the continuum with /s/–transitions and the continuum
with /

�
/–transitions. This gives a measure of the extent to which the subject’s

category boundaries were shifted as a result of the difference between the two
continua. In Figure 3.1, graph (A) shows a set of response curves with very lit-
tle separation between the curves, and graph (B) shows a set of response curves
with a larger separation between the response curves. Separation can be seen
as representative of the transitional effect—i.e. the extent to which the subject
attended to, or weighted, the transitional information.

The use of probit transformations has the primary benefit of allowing direct
comparison of the results of this study with those of Nittrouer and colleagues
(Nittrouer & Studdert-Kennedy 1987, Nittrouer 1992, Nittrouer 1996b), who
made use of the same transform. Additionally, probit is a well accepted method
of normalising data of this type (Cohen & Cohen 1983) and is well established
in the field of speech perception (see Liberman 1996). The use of this transform
allows for the relationship between numerous rather complex response curves to
be described and analysed by means of three fairly transparent values: the mean,
slope, and separation of the response curves.
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Figure 3.2: Set of random response curves. This graph represents the responses
of a single listener. The x-axis shows the continua of fricative noises, ranging in
frequency from 2.2kHz (the most /

�
/–like) to 3.8kHz (the most /s/–like). The

solid line represents this listener’s responses to /s/ responses to stimuli with
/s/–transitions; the dotted line represents the same listener’s responses to stim-
uli with /

�
/–transitions.

It should be noted that probit transformation expects a distribution of data which
fairly closely resembles an S–shaped curve (Cohen & Cohen 1983)—only those
response curves which conform to this pattern can be reasonably analysed using
probit. This restriction had to be borne in mind in the analysis of data from the
child subjects, as children’s perceptual responses can be quite variable (Hazan &
Rosen 1991, Hazan & Barrett 1999, Simon & Fourcin 1978). In order for data from
any one subject to be included in analysis, the following criterion had to be met:
if the subject’s two response curves crossed each other more than twice, those
response curves were considered to be non–S–shaped, and that subject’s data
was not included. A set of random response curves from a child who was tested
for, and subsequently eliminated from, Experiment 1 is displayed in Figure 3.2.

3.2 Relationship between perception and awareness

The relationship between perception and awareness, for each session in Experi-
ment 1 and for Experiment 2, will be displayed on a graph such as that shown in
Figure 3.3.

In these graphs, phonemic awareness is plotted on the y–axis, in terms of a raw
score on one of the phonemic awareness tests (from 0 to 40 or 50, depending
on the test). Cue weighting is plotted on the x–axis, in terms of the separation
(in kHz) between the response curves. It is extremely important to note that
an analytical performance on a cue weighting test is characterised, according to
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Figure 3.3: Example of the graph that will be used to display the relationship
between perception and awareness. Awareness is plotted on the y–axis in terms
of a raw phonemic awareness score; perception is plotted on the x–axis in terms
of the separation (in kHz) between the response curves.

Nittrouer, by a heavier weighting of the fricative noise cues, and thus by smaller
degrees of separation between response curves. Global cue weighting is there-
fore found at the right of the graph, moving away from the origin, and analytical
cue weighting is found at the left, moving towards the origin and a separation
between the response curves of zero.

Because both phonemic awareness development and perceptual weighting changes
are gradual processes which take place at varying rates for different children, the
children in these studies were not all at the same level of development at each
session in either experiment. As a result, each session in both studies can be
seen as a small cross–sectional study of the population being tested, inasmuch
as at any one session performances ranged from poor to good, and global to an-
alytical. Keeping this in mind, therefore, it is necessary to have a simple means
of describing the performance of each child at any session in the study. The
simplest method of categorisation is to divide performance in each process into
‘poor’ and ‘good’ (for awareness) or ‘global’ and ‘analytical’ (for perception): see
Figure 3.4. The performance of each subject can therefore be labeled according
to the quadrant into which their responses fall.

The division of the graph into quadrants is made at specific points on the x–
and y–axes. For cue weighting, the division is made at the point which corre-
sponds to the largest difference between category boundaries displayed by an
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adult subject—i.e. the most global of the adult responses. The ‘analytical’ half
of the graph can therefore be considered to cover the range of possible adult
responses to the stimuli. The division for phonemic awareness is made at the
median score for all children on the relevant phonemic awareness test in the first
test session in Experiment 1. These two division points were maintained from Ses-
sion 1 throughout Experiment 1 so that the children’s performance at subsequent
sessions of the study could be tracked in terms of their progression from these
initial starting points. The same division points were also used for Experiment 2
so that these subjects’ performance could be more easily compared to that of the
subjects from Experiment 1.

In addition to examining each of the sessions individually, we can also track the
progress of the four groups of subjects across the three sessions in the study. On
all three graphs, each of the data points are given one of four symbols—open
circle, filled circle, open triangle, filled triangle—each of which corresponds to
the position of that data point at Session 1 of the study. This effectively allows
us to give each subject one of four labels corresponding to their initial position.
By doing this it is possible to follow the development of acoustic cue weighting
and phonemic awareness in each of these four groups of subjects, from that first
session through the subsequent sessions in the study.
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Figure 3.4: Example of the graph that will be used to display the relationship
between perception and awareness. The graph is divided into quadrants at
the median phonemic awareness score (on the y-axis) and the most global of
the adults’ cue weighting responses (on the x-axis). Each point on the graph
represents one subject. The points in each quadrant are given a different symbol
so that the performance of each group of subjects can be tracked.

112



� ��� ��� �����	� ������� ����
�� ����

� �����
�
�
�

�	�
���

��


�
�
�
���
� �
� �
���

A
W

A
R

EN
ES

S

Ph
on

em
e

aw
ar

en
es

s
sc

or
eGood

Poor

Separation of response curves (in kHz)
PERCEPTIONAnalytical Global

�� �� ��

�� �	


� �
 ��

�� �� ��

�� ��

�� �� ��

 ! "# $%

&' ()

*+ ,- ./

Figure 3.5: Distribution of data that would be expected if cue weighting strate-
gies change before the development of phonemic awareness. Note that the
arrows indicate the direction that the data points would be expected to move at
subsequent sessions.

Predicted relationships

The hypotheses presented in Chapter 2 predict two alternative relationships be-
tween cue weighting and phonemic awareness. As noted above, development of
either of these is unlikely to be instantaneous for any one subject, or simultane-
ous across a group of subjects. Keeping this in mind, it should be the case that if
data is collected at any time while both processes are still developing, the distribution
of data should reflect one of these relationships.

The graphs below illustrate these possible distributions. The arrow on each
graph indicates the direction that the data points should move at each subse-
quent session in the study in each case (note that each data point represents one
subject).

HYPOTHESIS 1

Hypothesis 1 states that acoustic cue weighting develops first, maturationally,
thus facilitating the later development of phonemic awareness. If this is the case,
then the data should be expected to be distributed as illustrated in Figure 3.5.

In this relationship some of the children will have developed both good phone-
mic awareness and analytical cue weighting, while others will have both poor
awareness and global cue weighting. There will also be some children who are
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Figure 3.6: Distribution of data that would be expected if phonemic awareness
develops before cue weighting strategies change. Note that the arrows indi-
cate the direction that the data points would be expected to move at subsequent
sessions.

‘in transit’ between these two groups: children who have already developed an-
alytical cue weighting, but who have not yet developed good awareness. Impor-
tantly, we should not expect to see any children with extremely good awareness
scores who still have global cue weighting.

Over the course of the longitudinal study, the data points should follow the direc-
tion of the arrows. That is, the data points representing any children with poor
phonemic awareness and global cue weighting should first move left, into the
quadrant that corresponds to analytical strategies–plus–poor phonemic aware-
ness. At a subsequent session these same data points should move upwards
into the quadrant that corresponds to analytical perceptual strategies–plus–good
phonemic awareness.

HYPOTHESIS 2

The second possible relationship between perception and awareness is one in
which phonemic awareness develops first, putting pressure on the perceptual
system to shift to a strategy which favours phonemes, see Figure 3.6.

If this second hypothesis holds true, there should again be children with both
good phonemic awareness and analytical cue weighting, and others with both
poor awareness and global cue weighting. Additionally there should also be a
third group of children who have begun to develop phonemic awareness, but
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whose perceptual strategies are not yet analytical. Crucially, there should not be
any children with strongly analytical cue weighting who still have poor phone-
mic awareness.

Again, over the course of the longitudinal study, the data points should follow
the direction of the arrows. In this case this means that the data points repre-
senting any children with poor phonemic awareness and global cue weighting
should first move upwards, into the quadrant corresponding to good phonemic
awareness–plus–global perceptual strategies. At a later session the data points
should then move left, again into the quadrant corresponding to good phonemic
awareness–plus–analytical perceptual strategies.

The critical step for each of these two hypotheses, therefore, is the direction of the
first movement, which corresponds in each case to the development of the first
of the two processes. The other critical point to notice is the area of the graph
that is left empty in each situation: the upper right corner in the case where
perceptual strategies change first, and the lower left corner in the case where
phonemic awareness develops first.

It should be noted that there is a third possible relationship between acoustic
cue weighting and phonemic awareness—a linear relationship. In this case one
would expect to see only children with both good phonemic awareness and
analytical cue weighting, and others with both poor awareness and global cue
weighting, at all sessions in the study.

It should also be noted that small amounts of variation in performance can be
expected to be seen for both the perceptual tests (Hazan & Rosen 1991) and also
the phonemic awareness tests to a certain extent. Because of this, it is unlikely
that the results of these tests will fit exactly into the four pre–designed quadrants.
However, both the general direction of movement, and the location of the empty
part of the graph should be apparent from the results, and should give a good
indication of which of the two processes develops first.

4 Statistical analyses

In addition to the qualitative analyses permitted by the use of the above graphs,
quantitative analysis of the results of these two studies will also be undertaken.
Pearson’s correlations between cue weighting and phonemic awareness will be
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measured at each session in Experiment 1 and in Experiment 2. Pearson’s corre-
lations will also be assessed between the three measures of phonemic awareness,
as well as between the two measures of cue weighting (slope and separation of
response curves). ANOVAs will be used to determine the degree of difference
in perceptual strategy between the adults, and the children at all stages of Ex-
periment 1. ANOVAs will also be used to determine the degree of difference
in the children’s performance in both perceptual strategy and phonemic aware-
ness between each stage of Experiment 1 (i.e. between Stage 1 and 2, Stage 2
and 3, Stage 1 and 3), and between each of these stages and the study in Experi-
ment 2. Finally, multiple regression analysis will be used to determine the extent
to which variability in a process at one stage can be accounted for by processes
at earlier stages.
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CHAPTER 4

Experiment 1

This first experiment was a longitudinal study of changes in acoustic cue weight-
ing, and the development of phonemic awareness in a group of beginning–
reading children.

1 Subjects

Eighteen children participated in this study: 8 female and 10 male. An additional
9 children (4 female, 5 male) were also tested, but were not included in any anal-
yses because they failed to meet the perceptual testing criteria (outlined below,
see also Section 4 for a discussion of the excluded subjects). All 18 children were
tested at Sessions 1 and 2, but three children (1 female, 2 male) dropped out be-
fore Session 3, therefore only 15 children were tested at this session.

The children were selected from schools in the Edinburgh area: 12 were from
2 different state primary (non–fee–paying) schools, and 6 were from 2 differ-
ent classes in a private (fee–paying) school. At Session 1 the children ranged in
age from 5;2 to 6;0, with an average age of 5;8. All of the children were native
Scottish English speakers. Six of the 18 spoke a second language in addition to
Scottish English, to differing degrees of bilingualism (as reported by parents)1.
No significant differences in performance were found between the bilingual and
monolingual children for any of the tests carried out in this study. The results of
these 6 children were therefore analysed together with the results of the other 12.

1It should be noted that there are some studies which have found that bilingualism has an
effect on certain metalinguistic abilities (e.g. Campbell & Sais 1995), however none have shown
this effect to extend to the level of phonemic awareness development.
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None of the children had a history of chronic otitis media, as this has been shown
to delay or interfere with the development of perceptual weighting (see e.g.
Nittrouer 1996b). For the purposes of this study, chronic otitis media is defined
by Nittrouer (1996b) as more than 3 ear infections in the first three years of life
and/or the implantation of myringotomy tubes. In addition none of the children
or their siblings had ever received therapy for expressive language disorders.
The reason for avoiding language disordered children was two–fold: first, chil-
dren with such disorders (phonological disorders in particular) have been shown
to have delayed shifts in perceptual weighting (Watson 1997), and second, as
noted in Chapter 3, it has been shown that certain speech therapy programmes
encourage the development of phonemic awareness skills. The above two crite-
ria were determined by means of parental questionnaires. All of the children had
been tested by the school authorities for hearing problems, and all had hearing
within a normal range.

Additionally, in order to establish perceptual weighting norms for literate adults
for the contrast used in this study, 8 adult listeners (4 female, 4 male) were as-
sessed on their cue weighting strategies. The adults ranged in age from 21 years
to 52 years, with an average age of 27 years. All of the adult listeners were na-
tive speakers of English, and all had lived in the Edinburgh area for at least one
year at the time of testing (average number of years: 12). None of the adults had
ever suffered from chronic otitis media, and none had ever received therapy for
expressive language disorders.

2 Tests

Altogether, four tests were carried out in this study. These tests were designed to
assess: i) acoustic cue weighting, ii) phonemic awareness, iii) general language
ability, and iv) reading ability. The language test administered was the Short
Form of the standardised British Picture Vocabulary Scale (BPVS; Dunn, Dunn,
Whetton & Pintilie 1982). This test, which requires children to point to the correct
picture in response to a spoken word, is a test of receptive vocabulary, however,
it has been used in a number of studies (e.g. Brady et al. 1983, Nittrouer 1996b) as
a measure of general language or verbal cognitive ability. The test administered
to assess reading ability was the Schonell Graded Word Reading Test (also stan-
dardised, Schonell & Goodacre 1971). The materials and testing procedures for
both of these tests followed the guidelines for each. Both tests were presented by
the author (a non–Scottish English speaker).
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The cue weighting and phonemic awareness tests were non–standardised tests
designed specifically for this study. The materials and testing procedures for
both the cue weighting and the phonemic awareness tests will be outlined in
more detail below. Briefly, however, the stimuli for the acoustic cue weighting
test made use of a /

�
o/–/so/ (‘show–sew’) contrast. As in Nittrouer and col-

leagues’ previous studies (Nittrouer & Studdert-Kennedy 1987, Nittrouer 1992,
Nittrouer 1996b), the two acoustic cues that were manipulated in these stimuli
were i) the frequency of fricative noise, and ii) the configuration of the onset
transitions of the vowel formants. The fricative noises were designed to vary
along a continuum, from a frequency which strongly cued an /

�
/, to one which

strongly cued an /s/. The vowel–onset formant transitions were designed to
vary in one of only two configurations: one which strongly cued an /s/ and the
other which strongly cued an /

�
/. Each of the two types of vowel configuration

was combined with each of the points on the fricative continuum, resulting in
two /

�
o/–/so/ continua, both with the same fricative noises and vowel targets,

but one continuum with vowel–initial formant transitions appropriate for hav-
ing followed an /s/ and one continuum with transitions appropriate for having
followed an /

�
/.

Phonemic awareness was tested by means of three tasks: phoneme blending,
phoneme segmentation, and phoneme deletion. The presentation procedures for
the three tests were modeled on similar tests (outlined by Hatcher 1994), with
appropriate modifications for the specific testing of phonemic awareness, where
necessary.

2.1 Cue weighting: materials

The design of the stimuli for the perceptual tests followed that used by Nittrouer
(e.g. Nittrouer 1992, Nittrouer 1996b), with the modifications discussed in detail
in Chapter 3. The most important of these modifications was the use of ‘copy–
synthesised’ rather than hybrid, or stylised synthetic speech.

In both her 1992 and 1996 studies, the vowels in Nittrouer’s hybrid fricative–
vowel stimuli were excised from 5 different utterances of the same syllable. This
was done to ensure “that perceptual responses would not be idiosyncratic to any
one” vowel utterance (Nittrouer 1992, p. 357). This strategy was adopted for
the current study, and adapted to the construction of the synthetic vowels (the
synthesis method is described in more detail below). Additionally, in all of her
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cue weighting studies, Nittrouer presented the perceptual stimuli in isolation
(i.e. without a carrier phrase). Again, this method was followed for this study.

The creation of the stimuli for the cue weighting test was undertaken in two
parts. The first stage involved the recording of natural tokens of the target words
/so/ and /

�
o/ by an adult male speaker of Standard Scottish English, and the

subsequent acoustic analysis of these tokens. The second stage involved the
copy–synthesis of the two continua of test stimuli: that is, the synthesis of the
stimuli using the frequency and durational characteristics of the natural stimuli.

Acoustic analysis

As noted above, the acoustic characteristics of 5 different utterances of the vow-
els in the words /so/ and /

�
o/ were used to model 5 slightly different stimuli

per fricative context. It should be noted that, although the purpose of using 5
different vowel portions was to introduce a small amount of natural variation
into the stimuli, it also introduces the possibility that one of the utterances might
be widely different in acoustic characteristics, and thus might engender skewed
perceptual responses. In order to minimise large variations in articulation of the
natural tokens, therefore, the speaker recorded the target words /so/ and /

�
o/

in the carrier phrase ‘It’s a Bob.’ 10 repetitions of each word were recorded,
in random order. These recordings were used to determine the precise frequency
characteristics of the synthetic stimuli.

Because the utterances were to be presented in isolation, a set of the target words
spoken in isolation were also recorded. Four repetitions of each word, in random
order, were recorded. The isolated target words in these utterances were found
to be longer in duration, on average, than those that had been spoken in the
carrier phrase. These recordings were therefore used to determine the durational
characteristics of the synthetic stimuli, in particular the rate of frequency change
of the vowel formant transitions.

The natural tokens were recorded onto DAT (Sony DTC–60ES) via microphone
(Sony ECM–77B) and amplifier (Alice PAK2), in a sound attenuated recording
studio. The recordings were then transferred to a computer for analysis: the
speech was downsampled to 16 kHz at this point. All acoustic analysis was
carried out using Entropic’s waves+ software, running under Unix.
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Figure 4.1: Spectrogram of natural /
�
o/ token. Duration measurements of the

fricative noise, the transition, and the vowel target were made to the points indi-
cated.
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Duration Whole word Fricative Whole vowel Transition Vowel target
(in ms)

Isolation 423 173 250 75 175
Context 321 164 157 60 97

Table 4.1: Average durations of sections of natural tokens

All tokens of /so/ and /
�
o/ (both carrier–phrase tokens and isolated tokens),

were analysed for: i) overall length of token, ii) length of fricative noise, iii)
length of entire vowel (i.e. the length of the vowel from the onset to the offset
of voicing), iv) length of the transition only, and v) length of the vowel target (or
‘steady–state’ portion of the vowel). Transitions were measured from the onset
of voicing to the point at which the formant movement levelled off: this sec-
tion of the vowel was equivalent to the steepest portion of formant change (see
Whalen 1981), and was fairly consistently 60ms from the start of voicing (see Fig-
ure 4.1). The average values for all of the above length measurements are shown
in the Table 4.1. Note that these values are the averages of (i) all 8 isolated tokens
and (ii) 10 of the 20 carrier phrase tokens, chosen for their similarity, (the details
of this choice will be discussed in more detail below).

Both sets of tokens were also measured for the overall pitch (F0) pattern of the
entire utterance: that is, the entire phrase, including the target word, in the case
of the carrier–phrase tokens, and the target word only, in the case of the isolated
tokens. Three measurements were taken—one each at the beginning, middle,
and end of voicing in each utterance. The speaker’s pitch patterns were found to
be highly consistent, over both whole phrases and isolated target words.

The carrier–phrase tokens were analysed for the frequency characteristics of both
the fricatives and the vowels. Spectra of each natural fricative noise were exam-
ined to determine the frequency of the point of highest amplitude for each. Mea-
surements were also taken of the vowel formant frequencies: the first, second,
and third formants (F1, F2, and F3) were measured at 20ms intervals from the
beginning of voicing to the end of the vowel. This resulted in 8 frequency sam-
ple points per vowel on average, 4 sample points in the transition section, and 4
sample points in the vowel target section.
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Synthesis

The synthetic test stimuli were created using SenSyn, Sensimetrics’ cascade/parallel
formant synthesiser (based on Klatt 1980). As noted above, the frequency and
durational values used in the creation of the synthetic stimuli were copied from
natural tokens of the target words. The frequency values used in the stimuli were
actual values taken from 5 of the carrier–phrase natural tokens, while the dura-
tional values used to model the stimuli were based on average measurements
from all of the isolated natural tokens.

GENERAL The overall duration of each synthetic stimulus was 480ms, with
230ms of fricative noise and 250ms of vowel. It will be noted that the duration of
the fricative noise (and thus of the entire stimulus) is slightly longer (47ms) than
the average duration of the fricatives in the isolated natural tokens. The length
of the fricative noise was taken from Nittrouer (1992), who made the decision to
use longer fricative noises in an effort to rule out possible alternative explana-
tions for the differences in cue weighting that she had observed between adults
and children. One such alternative was that children’s cue weighting strategies
were simply the result of a difficulty in making use of fricative cues. Nittrouer’s
argument was that if this were the case, then the use of longer fricative noises
should give children a better opportunity to listen to, and make use of such cues.
Although Nittrouer (1992) found that children displayed the same cue weight-
ing strategies for longer as for shorter fricative noises (thus refuting the theory
that children have perceptual difficulties with fricative noises), it was decided to
maintain longer fricative noises for the current study, in order to fully test the
new /

�
o/–/so/ contrast. The duration of the vowel was based on the average

length of the isolated natural tokens.

FRICATIVES Nine different fricative noises were designed. Each noise consisted
of a single pole of aperiodic noise, varying along a continuum in 200 Hz steps
from 2.2 kHz (most /

�
/–like) to 3.8kHz (most /s/–like). These values, although

taken from the natural tokens collected for this study, are consistent with those
described in Nittrouer (1992). The amplitude of frication rose from 0 dB at 0ms
to 60 dB at 90ms, staying at 60 dB until 180ms and falling again to 30 dB from
180ms to 230ms.

VOWELS Ten of the 20 natural carrier–phrase tokens (5 each of /so/ and /
�
o/)

were chosen as the models for the frequency characteristics of the synthetic vow-
els. Each set of 5 natural tokens was chosen based on the similarity of vowel
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formant frequencies and length of transitions. In addition, all 10 tokens were
selected based on similarity of vowel target frequencies—this ensured that the
fricative induced differences in formant frequency at the onset of the vowel did
not extend into the vowel target itself.

Recall that, of the 8 frequency measurements taken of the carrier–phrase natural
tokens, the first 4 samples spanned the transitional section of the vowel, while the
last 4 were all from within the vowel target section. To synthesise vowels with the
appropriate duration, the 20ms interval between the 4 frequency measurements
taken within the transition was multiplied by 1.25 (the difference between the
duration of the transitional section in the carrier–phrase tokens, and the duration
of the same section in the isolated tokens). Thus sample 1 was placed at 0ms,
sample 2 at 25ms, sample 3 at 50ms, and sample 4 at 75ms. The frequency values
were interpolated between these points. The 25ms inter–sample interval was
maintained for the first two sample points of the vowel target section (samples 5
and 6), in order to ensure that any tailing off of the transitional movement at the
end of the main transition was synthesised at the same rate of change as the main
transitional movement. Finally, sample 7 and sample 8 were placed at 185ms and
250ms into the vowel, respectively. In actual fact, the relative placement of the
4 vowel target samples (samples 5–8) was fairly inconsequential, as for the most
part the formant frequency values of the samples changed very little, if at all,
over the course of these four samples.

The amplitude of voicing was 60 dB from the beginning of the vowel for 185ms,
falling to 0 dB from 185ms to 250ms (see Klatt 1980).

COMBINATION Each of the ten synthetic vowels was combined with each of the
nine fricative noises, resulting in 90 different stimuli altogether. Because the
speaker produced similar intonation patterns for whole phrases and for isolated
words, the intonation of the synthetic stimuli was modeled on an average pitch
pattern of both. F0 for each token, therefore, began at 160 Hz at 230ms, rose to
180 Hz at 355ms and then fell to 100 Hz at 480ms. Figure 4.2 shows spectrograms
of four of the 90 test stimuli.

2.2 Cue weighting: presentation

TRAINING The training for the perceptual test involved a number of steps. The
first was to introduce the children to the target words /

�
o/ and /so/, and to

the pictures that would be used to represent these words: a small boy show–ing
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Figure 4.2: Spectrograms of four example test stimuli. These spectrograms
show four ‘endpoint’ stimuli: that is, the two most extreme fricative noises, com-
bined with each of the two transitional contexts. The top two spectrograms rep-
resent stimuli with the most /s/–like fricative noise, while the bottom two rep-
resent stimuli with the most /

�
/–like fricative noise. The left two spectrograms

represent stimuli with /s/–transitions, while the right two spectrograms repre-
sent stimuli with /

�
/–transitions.
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someone a hole in a teddy bear, and someone sew–ing the hole in the teddy bear.
The children were familiarised with both the words and the pictures by means
of a short story, which had been recorded by an adult male speaker of Standard
Scottish English, and an accompanying picture book (see Appendix A). In order
to introduce the children to computer generated speech, a synthesised version of
the story was also presented.

The second stage of the training was to introduce the children to the principle
of the test. The children were shown the pictures representing the two target
words /

�
o/ and /so/. They were then told that they would hear one of the two

words corresponding with the pictures, and were instructed to indicate which
of the words they had heard by placing a counter on the appropriate picture.
The children were then trained on natural tokens of the two words, presented
(unrecorded) by the experimenter. Training continued in this way until it was
clear that each child understood the task.

The final stage of the training involved a pre–test, which made use of the actual
synthetic stimuli. This test served two purposes: first, to ensure that the children
understood the testing procedure, and second, to ensure that the children were
capable of identifying the synthetic stimuli. The stimuli used in the pre–test were
the endpoints of the fricative continua with the appropriate vowel formant tran-
sitions for each fricative, i.e. the 3.8kHz noise plus vowels with an /s/ transition
(the most /so/–like stimuli) and the 2.2kHz noise plus vowels with an /

�
/ tran-

sition (the most /
�
o/–like stimuli). There were 10 stimuli in the pre–test (five

vowels in each transition condition) which were presented in random order.

TEST The 90 test stimuli were randomised and split into 10 blocks for presen-
tation. Each child was presented with the entire set of 90 stimuli twice at each
session, resulting in 180 responses per child, and 10 responses per transition type
for each point on the fricative continuum. The children heard the two sets of 90
stimuli on two different days. The 90 stimuli (and the 10 pre–test stimuli) were
recorded for presentation in 5 different random orders. Each child heard the 90
stimuli in 2 different random orders at each testing day in the session, and never
heard the stimuli in the same 2 random orders across sessions.

Because some children had a tendency to fidget or talk between the stimuli, this
study followed the procedure used by Walley & Carrell (1983) and did not fix the
interstimulus interval for presentation of the stimuli to the children. Instead the
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experimenter monitored the stimuli over headphones, and paused the presenta-
tion briefly after every stimulus to allow the children to respond, and to record
this response. A bell indicated the end of each block of ten, at which point the
children were allowed to choose a small prize. Children heard the two sets of 90
stimuli on two different days.

ADULTS The training of the adults involved fewer stages than that of the chil-
dren. The adults did not listen to either version of the story, and were not trained
on unrecorded natural target words. The adults were told that they would hear
repetitions of the two words /so/ and /

�
o/ in random order, and were instructed

to indicate which they had heard by placing a tick in a box on a form provided.
The adults were given the same pre–test as the children, and had to meet the
same criterion (see below). Once the adults had completed the pre–test, and it
had been determined that they understood the task, they went on to label both
sets of 90 stimuli in one sitting. The interstimulus interval for adults was fixed at
3 seconds, and the inter–block interval 5 seconds.

CRITERIA All listeners were required to correctly identify 9 of the 10 pre–test
stimuli in order for their results to be included in analyses. For the test proper,
all listeners were required to respond correctly to at least 8 of the 10 continuum
endpoints (i.e. those stimuli presented in the pre–test). Additionally, if any of
the subjects displayed non–S–shaped response curves (i.e. if the subject’s two
response curves crossed each other more than twice) at either the pre–test or the
test stage, that subject’s data was not included in analysis. These criteria were
used in an attempt to eliminate any listener who was not completely attentive to
the task.

2.3 Phoneme awareness: materials

All of the words used in the phonemic awareness tests were selected from the
CHILDES database (MacWhinney 1995). All words selected had occurred 5 or
more times in the database. To the extent possible within the constraints of the
database, the test items were chosen to be balanced within tests for the type
of phoneme in a word (i.e. stops, fricatives, nasals, vowels) and the placement
of these phonemes within a word (i.e word–initial, –medial, or –final), as these
are factors which have been found to affect ability on phoneme awareness tasks
(McBride-Chang 1995b). The exceptions to this were post–vocalic /r/ and word
final /t/, /d/, /s/ and /z/. Post vocalic /r/ was not used at all in the phoneme
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blending or phoneme segmentation tests. This was done because, although Stan-
dard Scottish English is a rhotic dialect of English, some Scottish English speak-
ers do not actually use post vocalic /r/. Additionally, certain words with a
word–final /t/, /d/, /s/, or /z/ were not chosen: the criterion for the exclu-
sion of these words was if there was any way in which a child who was unfa-
miliar with the word could construe these phonemes as past tense or plural mor-
phemes (e.g. /kard/ could be the past tense of the nonsense verb /kar/). Again,
this precaution was taken because phoneme/morpheme confounds have also
been shown to affect phonemic awareness ability (McBride-Chang 1995b). One
final factor which has been shown to affect phonemic awareness—specifically,
number of phonemes in a word (McBride-Chang 1995b)—was manipulated de-
liberately in these tests in order to maintain a reasonably high level of difficulty
throughout the longitudinal testing period. The test and pre–test materials for
all three phonemic awareness tests can be found in Appendix B.

Phoneme blending and phoneme segmentation

Both the phoneme blending and phoneme segmentation tests had 50 test items
each: 20 three–phoneme words, 20 four–phoneme words and 10 five–phoneme
words. Because there is a possibility that manipulation of word–initial conso-
nant clusters and word–final consonant clusters may require different levels of
cognitive or metalinguistic ability (McBride-Chang 1995b), the four–phoneme
words in these tests were balanced for the position of clusters—either CCVC,
or CVCC. The five–phoneme words were predominantly CCVCC, with only 3
words in the blending test and 4 four words in the segmentation test that had
three–consonant–clusters: CCCVC.

Phoneme deletion

The phoneme deletion test had 40 three– and four–phoneme items, all with two–
consonant–clusters, and all with that consonant cluster in word–initial position:
CCV(C). The words used for this test were chosen based on the fact that each item
remained a valid word after its initial phoneme had been deleted—e.g. ‘snap’ be-
comes ‘nap’. A number of /s/–initial words had two valid responses, depending
on whether a phonemic or a phonetic approach was taken in the segmentation
of the initial consonant—e.g. ‘spot’ can become /p � t/ or /b � t/. Only /s/–initial
words in which both possible responses were valid words were selected for this
test.
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2.4 Phonemic awareness: presentation

The stimuli for all phoneme awareness tests (the training, pre–test and test stim-
uli) were recorded for presentation to the subjects by an adult male speaker of
Standard Scottish English. The speaker was instructed to produce all words
clearly, and all individual phonemes without any following vowel, i.e. /s/ rather
than /s � /.

Each test was introduced and explained to the children by the experimenter (a
non–Scottish English speaker). Testing involved the experimenter asking the
children to listen to the recorded stimuli, and to perform the required manip-
ulation (e.g. the experimenter said “Can you break this word up into little bits?”
followed by the recorded voice saying “pig.”).

Phoneme blending

TRAINING At the first stage of training for the phoneme blending test, the chil-
dren were introduced to the concept of the task. The children were shown a
puppet, and were told that the puppet spoke ‘in a funny way,’: it said every
word ‘all broken up into little bits.’ The children were then instructed to listen
to the puppet, and to guess what they thought it had said. The children were
then presented with a set of training words. The first words in this set were
two–syllable compound words, which had been segmented at the syllable level:
e.g. ‘cowboy’ was presented as /ka � –b � � /. The next words in the set were one
syllable words that had been segmented at the onset–rime level: e.g. ‘cow’ was
presented as /k–a � /. The final words in the set were three–phoneme words that
had been segmented at the phonemic level: e.g. ‘pig’ was presented as /p– � –g/.
The children received corrective feedback throughout this stage of the training.

The next stage of the training was a pre–test, for which no corrective feedback
was given. The five items in this test were one syllable words that had been
segmented at the onset–rime level. As described in more detail in Chapter 2
(Section 2.1), syllable and onset–rime awareness have been repeatedly found to
precede the development of phoneme awareness. It was therefore assumed that
children who were unable to manipulate words at this level would not be able
to successfully complete the phoneme manipulation in the test proper. If any
child was unable to successfully manipulate all five pre–test items, the test was
discontinued. The child was not, however, eliminated from further testing or
analysis.
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TEST The test made use of the puppet introduced in the training session. The
children were presented with words segmented at the phoneme level and were
instructed (using the same simple terminology as used in the training) to blend
the phonemes together into words. No corrective feedback was given. The stim-
uli for the phoneme blending test were split into 2 balanced sets, each containing
10 three–phoneme words, 10 four–phoneme words and 5–five phoneme words.
The stimuli were presented to the children in order of phoneme length (all three–
phoneme words, followed by all four–phoneme words, followed by all five–
phoneme words). It has been shown that the higher the number of phonemes
in a word, the more difficult it becomes for children to successfully manipulate
the phonemes (McBride-Chang 1995b). Presenting the words in this order, there-
fore, means that the test should get progressively more difficult. As noted above,
one reason for doing this was to maintain a reasonably high level of difficulty
for at least some test items throughout the longitudinal study. Additionally, it
was assumed that if any child was unsuccessful at a particular stage of the test,
they would be unlikely to be able to successfully manipulate later test items.
Therefore, if any child was unable to correctly manipulate 5 out of 6 consecutive
stimuli, the test was discontinued. The child was not eliminated from further
testing or analysis. The children heard the two sets of stimuli on two different
days.

Phoneme segmentation

TRAINING For the training for the phoneme segmentation test, the children were
given the puppet to which they had been introduced in the phoneme blend-
ing test (the phoneme segmentation test always followed the phoneme blending
test). The children were then told that they would hear a number of words, and
were instructed to try to say the words as the puppet had said them in the previ-
ous task: i.e. ‘all broken up into little bits’ (note that none of the words in the seg-
mentation test were the same as the words in the blending test, although some of
the training words were the same). The children were then presented with a set
of training words. The first words in this set were two–syllable compound words
which the children were encouraged to segment at the syllable level: e.g. ‘snow-
man’ becomes /sno–mæn/. The next words were one–syllable CV words which
the children were encouraged to segment into onset–rime units: e.g. ‘cow’ be-
comes /k–a � /. The final words in the set were three–phoneme words, which the
children were encouraged to segment at the phoneme level: e.g. ‘man’ becomes
/m–æ–n/. The children received corrective feedback throughout this stage of
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the training. If a child segmented a word into units which were larger than the
target units (e.g. segmented ‘man’ into onset–rime units instead of phonemes),
they were encouraged to ‘try to break the word up into even smaller bits.’

The next stage of the training was a pre–test, during which no corrective feed-
back was given. The five items in this test were one syllable CV words that the
children were encouraged to segment into onset–rime units. Again it was as-
sumed that children who were unable to manipulate words at this level would
not be able to successfully complete the phoneme manipulation in the test
proper. If any child was unable to successfully manipulate all five pre–test items,
the test was discontinued. The child was not eliminated from further testing or
analysis.

TEST The test made use of the puppet introduced in the training session. The
children were presented with words and were instructed (using the same sim-
ple terminology as used in the training) to segment the words into phonemes.
No corrective feedback was given. Only phoneme sounds (e.g. /k–æ–t/ for
‘cat’) were accepted as answers. If responses were given as letter names the
child was encouraged to respond again, using sounds only. The stimuli for the
phoneme segmentation test were split into 2 balanced sets, each containing 10
three–phoneme words, 10 four–phoneme words and 5–five phoneme words. As
in the phoneme blending test, the stimuli were presented to the children in order
of phoneme length (all three–phoneme words, followed by all four–phoneme
words, followed by all five–phoneme words). Again, it was assumed that if any
child was unsuccessful at a particular stage of the test, they would be unlikely
to be able to successfully manipulate later test items. Therefore, if any child was
unable to correctly manipulate 5 out of 6 consecutive stimuli, the test was dis-
continued. The child was not eliminated from further testing or analysis. The
children heard the two sets of stimuli on two different days.

Phoneme deletion

TRAINING Before any training was carried out for this test, the experimenter
first established that the children understood the concept of deletion, or ‘taking
away.’ The children were presented with two different coloured counters and
were asked to take one away, and say which one was left. Once it was clear that
the children understood this concept, they were then trained to apply it to units
of speech. The children were introduced to a cartoon drawing of a man with a
sack over his shoulder, and were told that this was a thief who liked to steal the
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first sound from every word he heard. The children were then presented with a
set of training words and were asked what would be left if the thief took the first
sound in the word away. The sound to be deleted was identified for the child in
all cases: e.g. ‘what does ‘cat’ sound like without the /k/?’ The set of training
words began with single–consonant–initial words (CVC) in which the sound to
be deleted was an onset. The next words began with two–consonant clusters:
CCV(C), in which the sound to be deleted was just the initial consonant of the
cluster. The children received corrective feedback throughout this stage of the
training.

The next stage of the training was a pre–test, during which no corrective feed-
back was given. The five items in this test were CVC words, in which the sound
to be deleted was an onset, and the remainder of the word was a rime. Again it
was assumed that children who were unable to manipulate words at this level
would not be able to successfully complete the phoneme manipulation in the test
proper. If any child was unable to successfully manipulate all five pre–test items,
the test was discontinued. The child was not eliminated from further testing or
analysis.

TEST The test made use of the cartoon character introduced in the training ses-
sion. The children were presented with CCV(C) words and were instructed (us-
ing the same simple terminology as used in the training) to delete the initial
phonemes. As in the training, the sound to be deleted was identified in all cases.
No corrective feedback was given. The stimuli for the phoneme deletion test
were split into 2 sets, each containing 20 words. If any child was unable to cor-
rectly manipulate 5 out of 6 consecutive stimuli, the test was discontinued. The
child was not eliminated from further testing or analysis. The children heard the
two sets of stimuli on two different days.

3 Procedure

All test materials were presented to the subjects using a portable MiniDisk player
(Sony MZ–R3), via headphones. Testing of each subject took place individually
in a quiet room.

The child subjects were tested three times over the course of 7 months, with
testing taking place at months 1, 4, and 7. Acoustic cue weighting and phonemic
awareness were tested at Sessions 1, 2, and 3 of the study. General language
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ability and reading skills were tested only at Sessions 1 and 3. The testing for
the child subjects was spread out over two days, which were not more than one
week apart. The order of testing was as follows:

� Day 1:

1. BPVS (Sessions 1 and 3)
2. 1st half of acoustic cue weighting
3. 1st half of phonemic awareness

� Day 2

1. 2nd half of acoustic cue weighting
2. 2nd half of phonemic awareness
3. Schonell Graded Word Reading (Sessions 1 and 3)

The adult subjects were tested on only one occasion, and only on their acoustic
cue weighting strategies. Both halves of the acoustic cue weighting test were
presented at the same sitting, with a short break in between.

4 Results

As noted above, 18 children met the perceptual testing criteria. The 9 additional
children who were tested but excluded from analysis either did not meet the cri-
teria for correct perceptual responses (9 out of 10 stimuli correctly identified for
the pre–test; 8 out of 10 endpoint stimuli correctly identified for the test proper),
or had response curves which did not sufficiently approximate S–shaped curves.
There are a number of potential explanations for the perceptual behaviour of
these 9 children. First, although great care was taken to ensure that all of the
children understood the task, a number of children appeared to adopt response
‘strategies’ which suggested that their responses did not coincide with their per-
cepts. One such strategy involved the regular alternation of responses back and
forth between ‘sew’ and ‘show,’ while another involved the consistent favour-
ing of one response to the exclusion of the other. Additionally, a number of
children appeared to have difficulty maintaining constant attention to the task:
these children often displayed delayed responses (and often only after prompt-
ing). The longer the delay, the more likely it would be that the child would have
forgotten what they had perceived, and be responding simply by guessing. Fi-
nally, there is a possibility among all of these children that some may have had
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undiagnosed ear infections, which (as noted above) would impact on their cue
weighting strategies (see e.g. Nittrouer 1996b).

At Session 1, the 18 children who met testing criteria had reading ages which
ranged from 6;0 and below (0 words read correctly on the Schonell Graded Word
Reading Test) to 8;6. At this session these 18 children had Age Equivalents based
on BPVS scores which ranged from 4;0 (Confidence Interval 3;4–4;8) to 11;6 (Con-
fidence Interval 10;4–12;9). At Session 3 the remaining 15 children had read-
ing ages which ranged from 6;0 to 8;6. Age Equivalents at this session ranged
from 6;3 (Confidence Interval 5;5–7;1) to 12;2 (Confidence Interval 11;0–13;7). As
noted above, there were no significant differences between bilinguals and mono-
linguals for any of the processes tested. Additionally, there were no significant
differences between the children attending state primary schools, and those at-
tending fee–paying schools for any of the processes tested.

The cue weighting and phonemic awareness results of this study will first be
presented by individual session, and will then be examined longitudinally. All
of the statistical analyses were carried out using SPSS running under Unix. The
raw data for all tests can be found in Appendix C.

4.1 Session 1

Acoustic cue weighting

The graphs in Figure 4.3 show the perceptual response curves for the 8 adults
(A), and the 18 children at Session 1 of the study (B). It can be seen that the
children’s response curves are shallower and more widely separated than those
of the adults.

ANOVAs with the perceptual measures of slope and separation as dependent vari-
ables, and age as the independent variable, show that there is a significant differ-
ence in both slope

����� ��� � ���
	 ��� ���
����	�� �����
and separation

����� ��� � ���
	 ��� � �
����	
� � ���

between the adults and the children at this session.

An examination of the two measures of acoustic cue weighting shows that there
is no significant correlation between the slope and the separation of response
curves for either the adults or the children.

Neither the slope nor the separation of the children’s response curves correlates
with either general language ability, or word reading ability.
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Figure 4.3: Responses of adults (A) and children at Session 1 (B) to /
�
o/–/so/

continua. The x-axis shows the continua of fricative noises, ranging in frequency
from 2.2kHz (the most /

�
/–like) to 3.8kHz (the most /s/–like). The solid line

represents a listener’s /s/ responses to stimuli with /s/–transitions; the dotted
line represents the same listener’s /s/ responses to stimuli with /

�
/–transitions.

Phonemic awareness

The mean scores for the phonemic awareness tests at this session are: phoneme
blending: 28/50, phoneme segmentation: 25/50, and phoneme deletion: 12/40.

All three measures of phonemic awareness correlate very highly with each other:
phoneme blending and phoneme segmentation

��� 	 � 
�� � �
����� � ��� ���
, phoneme

blending and phoneme deletion
��� 	 � � � ������� 	 � �����

, phoneme segmentation and
phoneme deletion

��� 	 � ������� ����	 � ����� �
.

Word reading ability correlates highly with both phoneme blending
��� 	 � � � 	
�
����	

� ����� �
and phoneme segmentation

��� 	 � 	�� ������� 	 � ��� � �
, but not with phoneme

deletion. General language ability does not correlate with any of the measures of
phonemic awareness.

Correlation between cue weighting and phonemic awareness

The graph in Figure 4.4 shows the children’s acoustic cue weighting in terms of
separation of response curves, and phonemic awareness in terms of phoneme
blending at Session 1. The graph is divided into quadrants at the median
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Figure 4.4: Relationship between perception and awareness: Session 1. The
graph is divided into quadrants at the median phonemic awareness score (on
the y-axis) and the most global of the adults’ cue weighting responses (on the
x-axis). Each point on the graph represents one subject.

phoneme blending score: 26.5/50, and the most global of the adults’ cue weight-
ing responses: 0.13kHz separation between the response curves. It can be seen
that there are children with both good phonemic awareness and analytical cue
weighting strategies, and children with poor phonemic awareness and global
cue weighting strategies. It can also be seen that there are a number of children
with very good phonemic awareness who have very global cue weighting strate-
gies, but few children who have poor phonemic awareness and very analytical
cue weighting strategies.

At this session, separation of response curves correlates with phoneme deletion
ability

��� 	 � ����	�	
��� 	 � ����� �
, but does not correlate with any other measure of

phonemic awareness. Slope of response curves does not correlate with any of
the three measures of phonemic awareness ability.

4.2 Session 2

Acoustic cue weighting

The graphs in Figure 4.5 show the perceptual response curves for the 8 adults
(A), and the 18 children at Session 2 of the study (B). Again it can be seen that the
children’s response curves are still slightly shallower and slightly more widely
separated than those of the adults.
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Figure 4.5: Responses of adults (A) and children at Session 2 (B) to /
�
o/–/so/

continua. The x-axis shows the continua of fricative noises, ranging in frequency
from 2.2kHz (the most /

�
/–like) to 3.8kHz (the most /s/–like). The solid line

represents a listener’s /s/ responses to stimuli with /s/–transitions; the dotted
line represents the same listener’s /s/ responses to stimuli with /

�
/–transitions.

ANOVAs with the perceptual measures of slope and separation as dependent vari-
ables, and age as the independent variable, show that there is again a significant
difference in both slope

����� ��� � ����	 �
� ���
��� 	 � �����
and separation

����� ��� � ����	
��� ���
��� 	 � �����

between the adults and the children. This difference appears to be
smaller for the separation measure than it was at Session 1 of the study.

An examination of the two measures of acoustic cue weighting shows that there
is a significant correlation between the slope and the separation of response
curves for the children at this session

��� 	 � � ����������	 � ��� �
.

General language ability and word reading ability were not tested at this session.

Phonemic awareness

The mean scores for the phonemic awareness tests at this session are: phoneme
blending: 39/50, phoneme segmentation: 36/50, and phoneme deletion: 24/40.

Again all three measures of phonemic awareness correlate very highly with each
other: phoneme blending and phoneme segmentation

��� 	 � 	

���
���� � � ��� ���
,

phoneme blending and phoneme deletion
��� 	 � ��	 ������� 	 � �
� �

, phoneme seg-
mentation and phoneme deletion

��� 	 � ����	�	
��� 	 � �
�����
.
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Correlation between cue weighting and phonemic awareness

The graph in Figure 4.6 shows the children’s acoustic cue weighting in terms of
separation of response curves, and phonemic awareness in terms of phoneme
blending at Session 2. The graph is divided into quadrants at the median
phoneme blending score from Session 1: 26.6/50, and the most global of the
adults’ cue weighting responses: 0.13kHz separation between response curves.
Again, it can be seen that there are children with both good phonemic aware-
ness and analytical cue weighting strategies, and children with poor phonemic
awareness and global cue weighting strategies. It can also be seen that there are
children with good phonemic awareness who have global cue weighting strate-
gies, but no children who have poor phonemic awareness and analytical cue
weighting strategies.

At this second session, separation of response curves correlates with phoneme
blending ability

��� 	 � 	 ����
���� 	 � ��� � �
, and phoneme segmentation ability

��� 	
� ����
��
��� 	 � ��� ���

but does not correlate with phoneme deletion. Slope of response
curves does not correlate with any of the three measures of phonemic awareness
ability.

General language ability and reading ability were not tested at this session.
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Figure 4.6: Relationship between perception and awareness: Session 2. The
graph is divided into quadrants at the median phonemic awareness score (on
the y-axis) and the most global of the adults’ cue weighting responses (on the
x-axis). Each point on the graph represents one subject.
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Figure 4.7: Responses of adults (A) and children at Session 3 (B) to /
�
o/–/so/

continua. The x-axis shows the continua of fricative noises, ranging in frequency
from 2.2kHz (the most /

�
/–like) to 3.8kHz (the most /s/–like). The solid line

represents a listener’s /s/ responses to stimuli with /s/–transitions; the dotted
line represents the same listener’s /s/ responses to stimuli with /

�
/–transitions.

4.3 Session 3

Acoustic cue weighting

The graphs in Figure 4.7 show the perceptual response curves for the 8 adults (A),
and the 15 children who remained at Session 3 of the study (B). At this session
there is much less difference between the response curves of the children, and
those of the adults.

ANOVAs with the perceptual measures of slope and separation as dependent vari-
ables, and age as the independent variable, show that there is no longer any sig-
nificant difference in slope or separation of response curves between the children
at this session and the adults.

An examination of the two measures of acoustic cue weighting shows again that
there is no significant correlation between the slope and the separation of re-
sponse curves for either the adults or the children.

At this session, word reading ability correlates with the separation of the chil-
dren’s response curves

��� 	 � �
�
� ������	 � �����
, but not with the slope of the response
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Figure 4.8: Relationship between perception and awareness: Session 3. The
graph is divided into quadrants at the median phonemic awareness score (on
the y-axis) and the most global of the adults’ cue weighting responses (on the
x-axis). Each point on the graph represents one subject.

curves. Once again, neither the slope nor the separation of the children’s re-
sponse curves correlates with general language ability.

Phonemic awareness

The mean scores for the phonemic awareness tests at this session are: phoneme
blending: 41/50, phoneme segmentation: 42/50, and phoneme deletion: 31/40.

All three measures of phonemic awareness correlate very highly with each
other again at this session: phoneme blending and phoneme segmentation

��� 	
� 
������
��� � � �
� ���

, phoneme blending and phoneme deletion
��� 	 � 	��
� ������	 � �������

,
phoneme segmentation and phoneme deletion

��� 	 � 	
��� ������	 � �������
.

At this session word reading ability correlates highly with both phoneme blend-
ing

��� 	 � �

�� ����� 	 � �����
and phoneme deletion

��� 	 � � ��� ����� 	 � �����
, but not with

phoneme segmentation. Once again, general language ability does not correlate
with any of the measures of phonemic awareness.

Correlation between cue weighting and phonemic awareness

The graph in Figure 4.8 shows the children’s acoustic cue weighting in terms of
separation of response curves, and phonemic awareness in terms of phoneme
blending at Session 3 of the study. The graph is divided into quadrants at the
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median phoneme blending score from Session 1 of the study: 26.6/50, and the
most global of the adults’ cue weighting responses: 0.13kHz separation between
response curves. Once again, it can be seen that there are children with both good
phonemic awareness and analytical cue weighting strategies, and a few children
still with poor phonemic awareness and global cue weighting strategies. It can
also be seen that there are children with good phonemic awareness who have
global cue weighting strategies, but only one child who displays poor phonemic
awareness and slightly analytical cue weighting strategies.

At this session separation of response curves correlates with phoneme blending
ability

��� 	 � � ��� ���
��� 	 � �����
, but does not correlate with any other measure of

phonemic awareness. Slope of response curves does not correlate with any of
the three measures of phonemic awareness ability.

4.4 Longitudinal

Acoustic cue weighting

ANOVAs with the perceptual measures of slope and separation as dependent vari-
ables, and session in the study as the independent variable, show that there is a sig-
nificant change in cue weighting strategy across all three sessions in the study. In-
terestingly, while there is a significant difference in separation of response curves
between Session 1 and Session 3

����� �
� ��
�� 	 ��� � ����� 	 � � ���
, there is no significant

difference in slope of response curves between Session 1 and Session 3. Examin-
ing the change in perceptual strategy session by session, it was found that there is
no significant difference in either slope or separation of response curves between
Session 1 and Session 2, or between Session 2 and Session 3, although the differ-
ence in separation of response curves approaches significance between Session 2
and Session 3

����� ��� � � � 	 ��� � 	
����	 � ��	��
.

ANOVAs with separation as the dependent variable, and the day of testing, and
the session in the study as independent variables, showed a significant difference
in perceptual behaviour across the three sessions in the study, but no signifi-
cant difference in behaviour across the different days of testing. This indicates
that changes in perceptual behaviour were significantly accounted for by differ-
ences across the sessions in the study, and not by any day–to–day variation in
behaviour.
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An examination of the two measures of acoustic cue weighting across all ses-
sions in the study shows that there is a certain amount of correlation between
the same measure over time, but no correlations at all between the two differ-
ent measures over time. Slope of response curves at Session 1 correlates signif-
icantly with slope at Session 2

��� 	 � �
��	 ������	 � �����
, and approaches a significant

correlation with slope at Session 3
��� 	 � � 	
	��
����	 � ��	��

. Slope at Session 2 corre-
lates significantly with slope at Session 3

��� 	 � �

���	
��� 	 � �����
. Separation of re-

sponse curves at Session 1 does not correlate with later measures of separation,
but separation at Session 2 correlates significantly with separation at Session 3��� 	 � ����
��
����	 � � ���

.

An examination of the predictive relationship between the two measures of per-
ception using multiple regression analysis, shows that 33% of the variability in
measures of slope at Session 3 of the study can be accounted for by measures of
slope at Session 2 of the study

����� 	 � ��� ��� 	 ��� � ����� ��� 	 � ��� �
. The addition of

slope at Session 1 of the study brings the amount of variability to 35%, however
the relationship then becomes non–significant, and slope at Session 1 does not
make a unique contribution to final measures of slope.

None of the variability in measures of slope at Session 3 of the study are pre-
dicted by any combination of measures of separation at all three sessions in the
study.

37% of the variability in separation at Session 3 of the study can be accounted
for by measures of separation at Session 2 of the study

����� 	 � ��	 ��� 	 ��� 
�� ��� 	
� �����

. The addition of separation at Session 1 brings the amount of variability
accounted for to 38%

����� 	 � �

 ��� 	 ��� 
�� ��� 	 � �����
, but separation at Session 1

makes no unique contribution to final measures of separation.

None of the variability in measures of final separation at Session 3 of the study
can be accounted for by any combination of measures of slope at any of the three
sessions in the study.

Phonemic awareness

ANOVAs with phonemic awareness measures (phoneme blending, segmentation
and deletion) as dependent variables, and session in study as the independent
variable, show that there is a significant change in ability for all three tasks
across the three sessions in the study. There is a significant difference between
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Session 1 and Session 3 for phoneme blending
����� � � ��
�� 	 �
� ��

����� 	 � �������

,
phoneme segmentation

����� �
� ��
�� 	 ��� 

���
��� 	 � �
�����
and phoneme deletion����� �
� ��
�� 	 ��� ���
����� 	 � �
�
���

. An examination of the change in phonemic aware-
ness ability session by session shows that while there is a significant difference in
ability on all three measures between Session 1 and Session 2 (phoneme blending����� ��� �
��� 	 ��� ��	�	 ��� 	 � �����

, phoneme segmentation
����� ��� � ��� 	 � � 	
���
��� 	 � �����

and
phoneme deletion

����� ��� �
��� 	 ��� �����
��� 	 � �����
), there is no significant difference in

ability between Sessions 2 and 3 for any of the three measures.

On examining the three measures of phoneme awareness across all sessions in
the study, it was found that all measures correlated well (

� � � ���
) with all other

measures at every session in the study, except for phoneme deletion at Session 1.
This measure correlated with all three measures at Session 2, but with none of
the other measures at Session 3.

Correlation between cue weighting and phonemic awareness

In examining the relationship between cue weighting and phonemic awareness
across all three sessions in this study, we are interested in the extent to which
measures of these two processes are able to predict each other. Because phoneme
deletion correlated least well with other measures at each session in the study,
only phoneme blending and phoneme segmentation will be examined as mea-
sures of phonemic awareness ability.

SEPARATION As noted above, multiple regression analysis shows that 37% of
the variability of measures of separation at Session 3 can be accounted for by
separation at Session 2

� ��� 	 � ��	 ��� 	 	
� ������� ��� 	 � � ���
, and that separation at

Session 1 makes no unique contribution to this relationship.

It was also noted above that none of the variability of separation measures at
Session 3 can be accounted for by any combination of measures of slope at any
of the three sessions in the study.

None of the variability of separation measures at Session 3 can be accounted for
by any combination of phoneme segmentation measures at any sessions in the
study.

39% of the variability of separation measures at Session 3 can be accounted for
by measures of phoneme blending at Session 1

� ��� 	 � ��� � � 	 
�� ���
��� ��� 	 � � � �
.

The addition of phoneme blending at Session 2 brings the amount of variability
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accounted for to 45%
� � � 	 � � � ��� 	 ��� �
����� ��� 	 � ��� �

, but blending at Session 2
does not make a unique contribution to the variability.

72% of the variability of separation measures at Session 3 can be accounted for
by a combination of measures of the separation of the response curves at the
previous session (Session 2) and importantly, phonemic awareness ability (as
measured by the phoneme blending task) at both previous sessions (Sessions 1
and 2)

��� � 	 � 	�� � � 	 ��� ����	�� ����	 � �
�����
. Each of these measures makes a unique

contribution to the 72% of variability accounted for by all three: separation at
Session 2 accounts for 16.75% of the 72%

� ������� � 	 � ����	�� ��� 	 � ����	 �
; blending at

Session 2 accounts for 34.65% of the 72%
� ������� � 	 � � �����
��� 	 � � ���

; blending at
Session 1 accounts for 48.6% of the 72%

� ������� � 	 � ��

��������	 � �������
.

SLOPE As noted above, multiple regression analysis shows that 33% of the vari-
ability of measures of slope at Session 3 can be accounted for by slope at Session 2��� � 	 � ��� � � 	 ��� � ����� ��� 	 � �����

, and that slope at Session 1 makes no unique con-
tribution to this relationship.

It was also noted above that none of the variability of slope measures at Session 3
can be accounted for by any combination of measures of separation at any of the
three sessions in the study.

None of the variability of slope measures at Session 3 can be accounted for by
any combination of phoneme segmentation measures or of phoneme blending
measures at any sessions in the study.

BLENDING Multiple regression analysis shows that 81% of the variability of mea-
sures of blending at Session 3 can be accounted for by blending at Session 2��� � 	 � 
 � ��� 	 ��	
� 
 � ��� ��� � � �
��� ���

. The addition of blending at Session 1 brings
the amount of variability accounted for to 84%, but blending at Session 1 makes
no unique contribution to this variability.

75% of the variability of measures of blending at Session 3 can be accounted for
by measures of segmentation at Session 3

� ��� 	 � 	�� � � 	 ���
� ��� � � ��� � � �
��� ���
.

30% of the variability of measures of blending at Session 3 can be accounted for
by measures of separation at Session 3

����� 	 � �
� ��� 	 �
� ����
�� ��� � � ��� �
.

None of the variability of phoneme blending measures at Session 3 can be ac-
counted for by any combination of measures of slope at any sessions in the study.
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SEGMENTATION Multiple regression analysis shows that 83% of the variability
of measures of segmentation at Session 3 can be accounted for by segmentation
at Session 2

����� 	 � 

� ��� 	 ����� ���
��� ��� � � ����� ���
. Measures of segmentation at

Session 1 make no unique contribution to this variability.

75% of the variability of measures of segmentation at Session 3 can be accounted
for by measures of blending at Session 3

� ��� 	 � 	�� � � 	 ����� � � � � ��� � � �
��� ���
.

None of the variability of phoneme segmentation measures at Session 3 can be
accounted for by any combination of measures of separation at any sessions in
the study.

None of the variability of phoneme segmentation measures at Session 3 can be
accounted for by any combination of measures of slope alone at any sessions
in the study. However, 89% of the variability of phoneme segmentation mea-
sures at Session 3 can be accounted for by a combination of segmentation mea-
sures at Session 2, and importantly, measures of response curve slope at both
previous sessions (Sessions 1 and 2)

� ��� 	 � 
�� ��� 	 ����� ��
���� ��� � � ���
� ���
. Each

of these measures makes a unique contribution to the 89% of variability ac-
counted for by all three: segmentation at Session 2 accounts for 80.71% of the
89%

� ������� � 	 � 
���	 ����� � � ����� � �
; slope at Session 2 accounts for 9.17% of the

89%
� ������� � 	 � ��� � 	 ��� 	 � � ���

; slope at Session 3 accounts for 10.12% of the 89%� ������� � 	 � ��� �
������	 � ��� �
.
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CHAPTER 5

Experiment 2

This second experiment was a cross–sectional study of acoustic cue weighting
strategies and phonemic awareness ability in a group of older, reading–training–
delayed (and predominantly non–reading) children.

1 Subjects

Eight children participated in this study: 6 female and 2 male. An additional
3 children were also tested, but were not included in any analyses because they
failed to meet the perceptual testing criteria (outlined in Chapter 4). The children
ranged in age from 6;11 to 7;7, with an average age of 7;3. All of the children
were native Scottish English speakers. Two of the 8 spoke a second language
in addition to Scottish English, to differing degrees of bilingualism (as reported
by parents). As in Experiment 1, neither of the bilingual children performed
significantly differently to the monolingual children for any of the tests carried
out in this study. The results of these 2 children were therefore analysed together
with the results of the other 6.

The children in this study were selected from an independent school in the Ed-
inburgh area which has a policy of delaying all reading, and reading–readiness
training until the age of 8 years. None of these children, therefore, had had for-
mal literacy training (some may have had informal exposure at home, although
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this was not encouraged by the school), and thus it was expected that the group
would have minimal, if any, phonemic awareness1.

For the reasons outlined in Chapter 4, none of the children had a history of
chronic otitis media, defined by Nittrouer (1996b) as more than 3 ear infections
in the first three years of life and/or the implantation of myringotomy tubes. In
addition, none of the children or their siblings had ever received therapy for ex-
pressive language disorders. The above two criteria were determined by means
of parental questionnaires. The children in this group were not tested for hear-
ing problems by school authorities for hearing problems, therefore hearing abil-
ity was determined by parental questionnaire: all were reported to have normal
hearing.

Additionally, having established the perceptual weighting norms for becoming–
literate children in Experiment 1, the results of the reading–training–delayed
children from this experiment will be compared with their beginning–reading
peers from Experiment 1. For the background of the subjects in Experiment 1
(i.e. sex, age, language background), see Chapter 4.

2 Tests

The same four tests as were carried out in Experiment 1 were also carried out
in this study: i) acoustic cue weighting, ii) phonemic awareness, iii) general lan-
guage ability (tested by means of the BPVS), and iv) reading ability (tested by
means of Schonell’s Graded Word Reading Test).

Test materials and general testing procedures and criteria were identical to those
used in Experiment 1 (see Chapter 4).

3 Procedure

All test materials were presented to the subjects using a portable MiniDisk player
(Sony MZ–R3), via headphones. Testing of each subject took place individually
in a quiet room.

1It should be noted that while literacy is not trained until the age of 8 years, this school system
begins second and third language training (French and German, in the case of this school) at the
first year of school. However, as noted in Chapter 4 (Footnote 1), it was presumed that while this
training might have some effect on overall metalinguistic ability, it would not have any effect on
phonemic awareness ability. As will become clear in the Results section, this does indeed appear
to be the case.
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The subjects were tested once, over the course of two days (not more than one
week apart). The order of testing was as follows:

� Day 1:

1. BPVS
2. 1st half of acoustic cue weighting
3. 1st half of phonemic awareness

� Day 2

1. 2nd half of acoustic cue weighting
2. 2nd half of phonemic awareness
3. Schonell Graded Word Reading

4 Results

As noted above, 8 children met the perceptual testing criteria. The 3 additional
children who were tested but excluded from analysis either did not meet the
criteria for correct perceptual responses (9 out of 10 stimuli correctly identi-
fied for the pre–test; 8 out of 10 endpoint stimuli correctly identified for the
test proper), or had response curves which did not sufficiently approximate S–
shaped curves. As explained in Chapter 4, the potential explanations for the
perceptual behaviour of these 3 children include the adoption by the subject of
response ‘strategies’, the subject’s inability to maintain attention to the task, and
the possibility that the subject may have had undiagnosed ear infections.

Six of the 8 children who met testing criteria had reading ages below their
chronological age, ranging from 6;0- to 6;7 (only one of these was able to read
more than 1 word correctly on the Schonell Graded Word Reading Test). Two of
the 8 children were actually found to be reading at or above their chronological
age range, with reading ages of 7;7 and 10;2 respectively. The 8 children had
Age Equivalents based on BPVS scores which ranged from 5;9 (Confidence In-
terval 5;0–6;7) to 10;2 (Confidence Interval 9;2–11;4). As noted above, there were
no significant differences between bilinguals and monolinguals for any of the
processes tested.

All of the statistical analyses were carried out using SPSS running under Unix.
The raw data for all tests can again be found in Appendix C.
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Figure 5.1: Responses of beginning–reading group (A) and reading–training–
delayed group (B) to /

�
o/–/so/ continua. The x-axis shows the continua of frica-

tive noises, ranging in frequency from 2.2kHz (the most /
�
/–like) to 3.8kHz (the

most /s/–like). The solid line represents a listener’s /s/ responses to stimuli
with /s/–transitions; the dotted line represents the same listener’s /s/ responses
to stimuli with /

�
/–transitions.

4.1 Acoustic cue weighting

The graphs in Figure 5.1 show the perceptual response curves for the 15 beginning–
reading children from Session 3 of Experiment 1 (A), and the 8 reading–training–
delayed children (B). It can be seen that the response curves of the reading–
training–delayed group are more widely separated than those of their beginning–
reading peers.

ANOVAs with the perceptual measures of slope and separation as dependent vari-
ables, and reading training as the independent variable, show that there is a sig-
nificant difference in separation

����� ��� � � � 	 ��� �
����� 	 � �������
but not slope between

the reading–training–delayed children and the beginning–reading children from
Session 3 of Experiment 1. Interestingly, this is the first stage at which there is
a significant difference in separation between the two groups: a comparison of
the reading–training–delayed children to the reading children at Session 1 and
again to the same group at Stage 2 shows no significant difference in separation
between the two groups. There was no significant difference in slope measures
between the reading–training–delayed group and the beginning–readers at any
of the three sessions of Experiment 1.
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An examination of the two measures of acoustic cue weighting shows that there
is no significant correlation between the slope and the separation of response
curves for the reading–training–delayed children.

Neither the slope nor the separation of the children’s response curves correlates
with either general language ability, or word reading ability.

4.2 Phonemic awareness

The mean scores for the phonemic awareness tests for this group were: phoneme
blending: 17/50, phoneme segmentation: 14/50, and phoneme deletion: 10/40.
It should be noted at this point that the 2 reading children (as would be expected)
had good scores on all three phonemic awareness tests. More unexpectedly, a
third (non–reading) subject also had good scores on the phoneme blending and
phoneme segmentation tasks, but not the phoneme deletion task.

ANOVAs with the phonemic awareness measures of blending, segmentation and
deletion as dependent variables, and reading ability as the independent variable,
show that there is a significant difference in all three between the reading–
training–delayed children and the beginning–reading children from Session 3 of
Experiment 1 (blending

����� ��� � � � 	 � ��� � � � ��� 	 � ��� ���
, segmentation

����� ��� � � � 	
��

� ���
����� � � �
� ���

and deletion
����� ��� � � � 	 
�� � 	��
��� 	 � ����
��

). This is the first
stage at which there is a significant difference in phoneme deletion ability be-
tween the two groups: a comparison of the reading–training–delayed children
to the reading children at Session 1 and Session 2 shows no significant dif-
ference in deletion between the two groups. However, there is a significant
difference in both phoneme blending and phoneme segmentation between the
reading–training–delayed children and the reading children at Session 2 (blend-
ing

����� ��� � � � 	 � ��� ��
��
��� 	 � ��� ���
, segmentation

����� ��� � � � 	 � �
� ��� ����� 	 � �������
).

There was no significant difference in any measures of phonemic awareness abil-
ity between the reading–training–delayed group and the beginning–readers at
Session 1 of Experiment 1.

4.3 Correlation between cue weighting and phonemic awareness

The graphs in Figure 5.2 show acoustic cue weighting in terms of separation of
response curves, and phonemic awareness in terms of phoneme blending for the
beginning–reading children (A) and the reading–training–delayed children (B).
The graph is divided into quadrants at the median phoneme blending score from
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Figure 5.2: Relationship between perception and awareness: beginning–
reading group (A) and reading–training–delayed group (B). The graph is di-
vided into quadrants at the median phonemic awareness score (on the y-axis)
and the most global of the adults’ cue weighting responses (on the x-axis). Each
point on the graph represents one subject.

Session 1 of Experiment 1: 26.6/50, and the most global of the adults’ cue weight-
ing responses: 0.13kHz separation between response curves. It is clear from these
graphs that the reading–training–delayed children have both poorer phonemic
awareness and more global cue weighting in general than the beginning–readers.
Additionally it can be seen that while there are three reading–training–delayed
children who have begun to develop some level of phonemic awareness, only
two of them have developed analytical cue weighting. Finally, the reading–
training–delayed children do not appear to develop analytical cue weighting
without having developed good phonemic awareness.
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CHAPTER 6

Discussion, conclusions and implications

1 Summary of study

The main aim of this thesis has been to explore the relationship between shifts
in acoustic cue weighting and the development of phonemic awareness. A clear
correlation between these two processes has been shown to exist by Nittrouer
(1996b). However, Nittrouer’s study did not provide any evidence as to the exact
nature of the relationship. In particular, Nittrouer was unable to address the is-
sue of the possible causal direction of the relationship—that is, the possible influ-
ence of one process on the development of the other. Additionally, studies to date
have provided evidence for both possible causal directions: McBride–Chang and
colleagues, (McBride-Chang 1996, Manis et al. 1997, McBride-Chang et al. 1997),
for example, have found that early perceptual abilities predict later performance
on phonemic awareness tasks, while others (de Gelder & Vroomen 1992, Flege
et al. 1992, Morais & Kolinsky 1995) have suggested that the development of
phonemic awareness may impact on speech perception strategies. The two stud-
ies that form the basis of this thesis, therefore, were designed to address this
issue.

The first study (Experiment 1) was a longitudinal study of 18 normally devel-
oping school children, aged 5;2 through 6;0 years (average age 5;8) at the be-
ginning of the study. All were in their first year of school at the beginning of
the study, and had undergone approximately 6–7 months of reading/reading–
readiness training. The children were tested three times, over the course of 7
months. At Sessions 1, 2 and 3 the children were assessed as to their acoustic cue
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weighting strategies and their phonemic awareness abilities. Additionally at Ses-
sion 1 and Session 3 the children were also tested on their word reading abilities
(Graded Word Reading Test Schonell & Goodacre 1971) and their general lan-
guage abilities (BPVS: Dunn et al. 1982). The acoustic cue weighting tests made
use of a /

�
o/–/so/ (‘show–sew’) contrast which varied in terms of frequency

of fricative noise, and vowel–onset formant transition configuration. Phonemic
awareness was tested by means of three tasks, all using real words: phoneme
blending, phoneme segmentation and phoneme deletion.

The second study (Experiment 2) was a cross–sectional study of a group of nor-
mally developing children, aged 6;11 to 7;7 (average age, 7;3). This group was
selected from a school which delays all reading/reading–readiness training until
children are approximately 8 years of age: the children in this group had there-
fore not received any formal literacy instruction at the time of testing. Using the
same tests as those used in Experiment 1, the children in this second study were
assessed on their acoustic cue weighting strategies, their phonemic awareness
skills and their word reading and general language abilities.

While the studies in this thesis were carried out on the premise that a relationship
exists between acoustic cue weighting and phonemic awareness, and further-
more were designed to elaborate on the nature of this relationship, the results of
these studies also give us some insight into the development of perception and
awareness as separate processes. The first two parts of this chapter will therefore
examine the new evidence that these studies provide regarding the development
of acoustic cue weighting and of phonemic awareness. The second part of this
chapter will then go on to determine what can be concluded from these studies
regarding the nature and direction of the relationship between the two processes.
Finally, this chapter will conclude with an examination of the implications of this
study for our understanding of the development of speech perception in general.

2 Acoustic cue weighting

2.1 Summary of results

Experiment 1

The results of Experiment 1 show a replication of the shifts in cue weighting
observed by Nittrouer and colleagues. Importantly, this is the first time that
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such shifts have been observed in the same group of children by means of a
longitudinal study. The children at the beginning of the longitudinal study have
significantly shallower and more separated response curves than do the adults.
This significant difference can also be seen between the children at Session 2 and
the adults. By Session 3, there is no longer any significant difference between the
slope or the separation of the adults’ and the children’s response curves.

If the perceptual progress of the children in Experiment 1 is examined, we can
see that while there is a significant difference in separation of response curves
between Session 1 and Session 3, there is no significant difference between slope
of response curves at these sessions. Neither slope nor separation of response
curves are significantly different between Sessions 1 and 2 or between Sessions 2
and 3, although the separation of the children’s response curves approaches sig-
nificance between Sessions 2 and 3.

Additional support for the phenomenon of shifts in acoustic cue weighting
can be seen by comparing day–to–day variation in perceptual behaviour with
changes seen between sessions. Because children’s perceptual behaviour can
be highly variable, it was important to ensure that any differences found be-
tween different sessions of the study were due to a genuine shift in perceptual
behaviour, and not simply to the sort of variation that might be found from one
day of testing to the next. The fact that testing took place over two days, and a
full set of perceptual and awareness tests were carried out each day, meant that
it was possible to test this. Statistical analysis (ANOVA) showed that the shifts
observed in perceptual behaviour were significantly accounted for by differences
across the three sessions of the study, and not by any variation that might have
occurred from day to day.

Experiment 2

The perceptual behaviour of the children in Experiment 2 shows that the percep-
tual phenomenon of shifts in cue weighting is not maturational. The reading–
training–delayed children in this study have significantly shallower and more
separated response curves than do their beginning–reading peers (i.e. the chil-
dren at Session 3 of Experiment 1). Additionally, the reading–training–delayed
group did not perceive the stimuli significantly differently from the children at
Session 1 of Experiment 1. The implications of this finding will be discussed in
more detail below.
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2.2 Issues

This section will attempt to address some of the issues raised in Chapter 2 (Sec-
tion 1.2) regarding acoustic cue weighting. These issues range from those which
are reasonably easily addressed—such as whether the type of stimulus used, i.e.
synthetic or natural, affects shifts in cue weighting—to those which are clearly
outside the scope of one small study—such as whether speech perception is a
process which is controlled by a dedicated system, or simply by a general au-
ditory system. The extent to which the results of this thesis can address any of
these issues, therefore, will also vary—from providing plausible but largely hy-
pothetical support for a certain viewpoint, to providing clear answers to some of
the questions asked in Chapter 2.

Phonetic context

As noted in Chapter 2, one of the more serious problems with Nittrouer’s DWS
model is the fact that it is based on listeners’ perceptual strategies for a very lim-
ited number of contrasts. In addition to this, even within those contrasts which
have been studied, a certain amount of variation has been found in the extent of
the transitional effects on which the DWS model is based: that is, the degree to
which a listener’s responses differ depending on the transitional context of the
stimuli. Specifically, the more extensive vowel onset transitions in /u/ and /a/
following /s/ and /

�
/ engendered a greater transitional effect than did the less

extensive transitions from /s/ and /
�
/ into /i/. While these results led Nittrouer

(Nittrouer & Studdert-Kennedy 1987, Nittrouer 1992) to suggest that transitional
effects are proportional to the extent of the transitions, this apparent variability
in the cue weighting shift phenomenon, along with the lack of further evidence
for the phenomenon, weakens claims made regarding the DWS model.

The results of the current studies show that shifts in acoustic cue weighting oc-
cur for /

�
o/–/so/ contrasts to a comparable extent to those seen for other con-

trasts in Nittrouer’s studies. However, while these results lend support to the
DWS model, they do not address the problem of the limited range of experimen-
tal evidence for shifts in cue weighting. While the /

�
o/–/so/ contrast has not

specifically been tested by Nittrouer and colleagues, the perception of /
�
/–/s/

has been well established as engendering cue weighting shifts in the context of
certain vowels. As a result, the use of a further /

�
/–/s/ contrast, albeit with a
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new vowel context, does not go very far towards expanding our understanding
of the phenomenon of cue weighting shifts.

The replication of Nittrouer’s results with a previously untested vowel context
does, on the other hand, lend a certain amount of support to Nittrouer’s argu-
ment that the degree of transitional effect is dependent on the extent of the tran-
sitions. The results of Experiment 1, with the back vowel /o/, show that reason-
ably extensive transitions do indeed engender reasonably extensive transitional
effects. This supports the contention that different vowel contexts, in giving rise
to different transitional effects, are responsible for the observed size of shifts in
cue weighting.

The results of this study also address the third, and slightly more abstract, prob-
lem brought up in Chapter 2 in relation to the lack of extensive experimental
evidence for the DWS—specifically, the claim that children always attend to tran-
sitions and adults always attend to ‘informative’ cues (which, in the case of the
contrasts studied thus far by Nittrouer, have been non–transitional cues). The re-
sults of Experiment 1 support the theory that young children attend more heav-
ily to transitional information, although given the fact that the perceptual tests
used in the study were not drastically different from those which have been used
previously by Nittrouer and colleagues, this is possibly unsurprising.

What is more surprising is what the combined results of both Experiment 1 and
Experiment 2 tell us about the cues that are weighted more heavily by older chil-
dren and adults. The results of Experiment 1 show the type of perceptual be-
haviour that has been found numerous times by Nittrouer: the adult subjects’
perception was more analytical than the children’s, meaning that they weighted
transitional cues less heavily and fricative noise cues more heavily than did the
children. Additionally, the results of Experiment 1 also showed that over the
course of 7 months, the children who had started the study with very global per-
ceptual strategies shifted to more analytical strategies. Again, this finding cor-
responds well with the results of Nittrouer’s cross–sectional studies. Up to this
point, therefore, the results of this thesis support Nittrouer’s claims that adults
and older children always weight cues differently to younger children.

However, the results of Experiment 2 do not fit so straightforwardly into Nit-
trouer’s DWS model, which, it should be recalled, stands for Developmental
Weighting Shift model. The reading–training–delayed children in this study
were at least the same chronological age as both the older children in Nittrouer’s
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studies and the older, beginning–reading children in Experiment 1, and many
were in fact older. Despite this, they did not weight the cues available to them
any differently than did the younger children from Experiment 1: the reading–
training–delayed children weighted transitional cues significantly differently to
their their beginning–reading peers, but not to the younger beginning–readers.

In terms of the issue in question (i.e. which cues the DWS predicts adults and
children will attend to) the results of Experiment 2 indicate that it is not the case
that older children and adults always weight cues differently to younger children.
They also indicate that Nittrouer’s definition of ‘informative’ cues as those that
are weighted most heavily by older children and adults will have to be refined
to take into account the factors that influence adults’ cue weighting strategies.
A more detailed discussion of these factors and their relationship to perceptual
changes will be carried out later in this chapter.

It should be noted that these results also strongly suggest that there is a more fun-
damental problem with Nittrouer’s model of the phenomenon of cue weighting
shifts, in particular the developmental stance of the model. We will return to this
crucial issue below, when we discuss the full implications of this study on our
understanding of speech perception.

Auditory processing

The results of these studies are much more limited in their ability to address the
question of whether speech perception is controlled by a speech–specific, or a
general auditory system. However, the results do allow for a certain amount
of speculation regarding this issue. It was noted in Chapter 2 (Section 3.2) that
the auditory theory, i.e. the theory that speech perception is just one capacity
of a general auditory system, seems to restrict the possible direction of influ-
ence between perceptual weighting and phonemic awareness. It seems unlikely
that a system which is designed for perception of all sounds would be impacted
upon by the development of a skill such as phonemic awareness, which is highly
speech– and language–specific. The reverse, however, can also said to be true—
that is, if a listener’s speech perception is impacted upon by the development of
phonemic awareness, then it could be inferred that speech perception is much
less likely to be a process which is controlled by general auditory capacities.
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The details of the relationship between cue weighting and phonemic awareness
will be discussed in greater detail below. However, simply from the results of Ex-
periment 2 it can be seen that changes in acoustic cue weighting do not appear
to occur in the absence of phonemic awareness development. This suggests that
phonemic awareness does have an impact on perceptual strategies, thus support-
ing the view that speech perception is controlled by a dedicated speech–specific
system.

Synthetic vs. natural stimuli

As noted in Chapter 2 (Section 1.2), Nittrouer herself has acknowledged that one
potential problem with the stimuli in her original 1987 and 1992 studies is the
way in which they combine natural and synthetic speech. Recall that Nittrouer’s
stimuli were created by concatenating synthetic fricative noises and natural vow-
els. This means that it is impossible to determine whether the young children
who weighted vowel–onset transitions more heavily than fricative noises did so
because they preferred the transitional cues over the non–transitional (fricative)
cues, or because they preferred the natural portions of the stimuli to the syn-
thetic portions. Nittrouer & Miller (1997b) were able to replicate the results of
Nittrouer’s original studies using all–synthetic speech. However, because the
vowel portions of these new stimuli were highly stylised, it remains difficult to
determine whether it was strictly the transitional effect of these stimuli that at-
tracted the young children’s attention.

The studies in this thesis were designed with this issue in mind. The percep-
tual test used in both Experiments 1 and 2 made use of wholly synthetic stimuli,
which were created by a method called copy–synthesis. This method preserves,
to a much greater extent than in Nittrouer & Miller’s (1997b) study, the configu-
ration of natural speech—in particular, the non–linear change in frequency of the
vowel–onset formant transitions. The fact that these all–synthetic stimuli engen-
dered responses which are consistent with the results of Nittrouer’s cue weight-
ing studies, indicates that Nittrouer’s conclusions regarding her own studies are
most likely correct. The perceptual behaviour of the young children in Nittrouer
& Studdert-Kennedy’s (1987) study, and those that followed it, does appear to
be due to the children’s perceptual attention to transitional cues, and not their
perceptual preference for non–synthetic speech.
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Slope and separation of response curves

Chapter 2 (Section 1.2) discusses Nittrouer’s claim that the slope and the sepa-
ration of the response curves from her studies are both the result of the same
perceptual phenomenon, namely listeners’ weighting of acoustic cues. Nittrouer
mounts this argument predominantly against the possibility that the cause of the
children’s shallower response curves is simply that they were inattentive to the
perception task. Her argument is based on two main pieces of evidence. The
first is simply the fact that age–dependent differences were found for both the
slope and the separation of the response curves. Nittrouer (1992) argues that if
the degree of slope and separation were due to two different phenomena—and
specifically if the slope were the result of the children not paying attention to
the task—then one would not expect to see both measures changing across age
groups. The other piece of evidence comes from one of the studies reported in
Nittrouer’s (1992) paper. In this study Nittrouer found that for stimuli with am-
biguous transitional cues, the slopes of young children’s response curves were
much shallower than adults’, however for stimuli with unambiguous transitional
cues, the slopes of young children’s response curves were not significantly dif-
ferent from the adults’. Nittrouer (1992) states that this is an indication that
children’s shallower response curves are not due to lack of attention: if they
were, then there shouldn’t have been a difference in children’s response curves
for stimuli with ambiguous and unambiguous transitional cues.

However, lack of attention is not the only alternative cause of children’s shal-
lower responses. Other researchers (e.g. Hazan & Barrett 1999, Simon & Fourcin
1978) have suggested that children’s responses to continuously varying stimuli
may become gradually more categorical as their speech perception mechanism
matures. Hazan & Barrett (1999) have shown that the slopes of children’s re-
sponse curves continue to get steeper even after they have shifted away from
heavier weighting of transitional cues, suggesting that the slope and the separa-
tion of response curves are indeed dictated by two different phenomena.

The results of the studies in this thesis provide highly convincing support for
this view. Examining the slope and the separation of the response curves for
each subject group, it becomes clear that there is very little correlation between
the steepness of individuals’ response curves and the relative placement of their
category boundaries. For the adults and the reading–training–delayed children,
both of whom were only tested once, no correlation at all was found between
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slope and separation measures for either group. For the beginning readers from
Experiment 1, a significant correlation between slope and separation was found
only at Session 2 of the three sessions in the study. In terms of the predictive re-
lationship between these factors, the listeners’ response curve slopes were found
to be very poor predictors of the listeners’ later response curve separation. Sim-
ilarly, the separation of response curve slopes at early sessions in the study are
very poor predictors of later slope of response curves. All of this evidence would
seem to indicate that the slope and the separation of response curves should not
be treated as two measures of the same aspect of perception, but rather as mea-
sures of two different aspects of perception. The question to be asked at this
point, then, is what these two different aspects might be.

If we compare the perceptual responses of the reading–training–delayed chil-
dren to those of the beginning–reading children at each session in the longi-
tudinal study, we find one possible answer to this question. There is no sig-
nificant difference in either slope or separation of response curves between
the reading–training–delayed group and the beginning–reading children at Ses-
sion 1 of Experiment 1—recall that at this session, the children in the beginning–
reading group were younger than those in the reading–training–delayed group,
but were predominantly non–reading as well. Moving on to Session 2 of Ex-
periment 1, again we find no significant difference in either slope or separa-
tion of response curves between the reading–training–delayed children and the
beginning–reading children. However, when we reach Session 3 of the experi-
ment, at which point the beginning–reading children are nearing the same age
as the reading–training–delayed children, and are predominantly all reading at
a reasonable level, the pattern of responses changes. What we observe is that
while there is now a significant difference in the separation of response curves be-
tween the Session 3 beginning–readers and the reading–training–delayed group,
there remains no significant difference in the slope of response curves between
beginning–readers and the reading–training–delayed group. At this session, the
factor that is the same across the groups is age, which suggests that the slope of
response curves is, as suggested by Simon & Fourcin (1978) and Hazan & Barrett
(1999), related to the gradual maturation of the speech perception system. By the
same token, we can hypothesise that something to do with the factor that is dif-
ferent between the groups—i.e. reading training and/or skill—is responsible for
the differences in separation of response curves between the two groups. In fact,
as will be discussed further below, it is not strictly literacy level, but a related
skill, phonemic awareness, that is related strongly to the separation of response
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curves in both these groups. However, the evidence presented here makes it
clear that the slope and the separation of a listener’s response curves are not as
highly correlated as Nittrouer has assumed. This suggests, in turn, that speech
perception is not a completely homogeneous construct.

3 Phonemic awareness

3.1 Summary of results

Experiment 1

The results of Experiment 1 show the development of phonemic awareness over
the course of 7 months. There is a significant difference between Session 1 and
Session 3 of the study for all measures of phonemic awareness. Examining these
differences session by session, it becomes clear that the greatest change in phone-
mic awareness ability occurred between Session 1 and Session 2: there is a signif-
icant difference between these two sessions for all three measures of phonemic
awareness, while there is no significant difference between Session 2 and Ses-
sion 3 for any of the three measures.

Experiment 2

If we compare the phonemic awareness ability of the reading–training–delayed
children in Experiment 2 to that of the children in Experiment 1, a similar, and
slightly more detailed picture emerges. There is no significant difference be-
tween the reading–training–delayed children and the beginning readers at Ses-
sion 1, for any phonemic awareness measure. We do, however, find a significant
difference between the reading–training–delayed children and the beginning
readers at Session 2 for measures of phoneme blending and phoneme segmen-
tation, but not for phoneme deletion. Finally, comparing the reading–training–
delayed group to the beginning–readers at Session 3, there is a significant differ-
ence between the groups for all three measures of phonemic awareness.

3.2 Issues

Again, in addition to providing information about the ways in which phone-
mic awareness develops, this study is also able to address a number of the is-
sues raised in Chapter 2 (Section 2.3) regarding phonemic awareness. Because
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so much more is already known about the development of phonemic aware-
ness than about the development of acoustic cue weighting, this study will not
provide much new evidence regarding this process. However, there are some
noteworthy results which will be discussed here, before we move on to a discus-
sion of the relationship between the development of this process and changes in
acoustic cue weighting.

Phonemic awareness testing

In this section we will determine whether the results of the two studies in this
thesis can in any way address the two questions raised in Chapter 2 regarding
phonemic awareness testing: namely, what constitutes a phonemic awareness
test, and how aware is aware? The studies can in fact only answer these questions
in a limited way. In terms of the first question, this is because care was taken in
the design of the phonemic awareness stimuli to ensure that they only tested
phonemic awareness: all three tasks were designed to tap phoneme, rather than
onset–rime or syllable awareness, and all tasks demanded an explicit awareness
of phonemes (all required phoneme manipulation) rather than simply an implicit
sensitivity towards phonemes.

There are two parts to the second question. The first regards the level of suc-
cess required on a phonemic awareness test for a subject to be considered aware.
Unfortunately, answering this question thoroughly would require large standar-
dising tests of early–school–age children. However, the second half of the ques-
tion, which regards whether a subject must be equally successful at all phonemic
awareness tasks to be considered phonemically aware, can be addressed to a cer-
tain extent by the studies in this thesis.

Statistical analysis of the longitudinal study in Experiment 1 shows that at each
session all three measures of phonemic awareness were very highly correlated.
This would suggest that all three tasks were tapping the same process to a large
extent. It would also suggest that one should expect that if a child is phonemi-
cally aware, they should perform to the same level for all phonemic awareness
measures. However, a closer examination of the results also suggests that assess-
ing phonemic awareness might not be as straightforward as these correlations
make it seem. First, phoneme blending and phoneme segmentation were more
highly correlated with each other than either was with phoneme deletion. Addi-
tionally at Sessions 1 and 2, phoneme deletion was more highly correlated with
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phoneme segmentation than with phoneme blending. This is not entirely sur-
prising, as in order to successfully complete a phoneme deletion task, the subject
needs to first be able to segment the phoneme to be deleted from the rest of the
word. The fact that phoneme deletion is so highly correlated at each session with
the other two factors, however, is slightly misleading.

First, the development of good phoneme segmentation and blending skills ap-
pears to precede the development of good phoneme deletion skills: many of the
children in Experiment 1 showed good blending and segmentation skills (i.e.
scored over 50%) without showing any phoneme deletion skills at all (in terms
of the test administered). Contrastively, there was no child in Experiment 1 who
had good phoneme deletion skills without also having good phoneme blending
and segmentation skills. Again, both of these results are unsurprising, given the
nature of the tasks used to test awareness. First, both phoneme blending and
phoneme segmentation as basic tasks are less complex than phoneme deletion:
they involve only one manipulation, while phoneme deletion requires more than
one. Thus one possible explanation for the later development of phoneme dele-
tion skills compared to phoneme blending skills in Experiment 1 is that phoneme
deletion is fundamentally more cognitively demanding than the other phonemic
awareness tasks.

Additionally, the results of the phoneme deletion tests were generally bimodally
distributed—that is, the children either performed at floor level or at ceiling level.
The development of phoneme blending and segmentation skills, on the other
hand, appears to be much more gradual. The point to note here is that the stim-
uli in the phoneme blending and phoneme segmentation tasks varied more than
those in the phoneme deletion task. The phoneme blending and segmentation
stimuli were designed to increase throughout the test in number of phonemes
per stimulus, and in number of phonemes per consonant cluster. This meant
that there was an increase throughout these tasks in the number of individual
phonemes to be held in memory. The phoneme deletion task, on the other hand,
consistently had 2 consonants in an initial consonant cluster, and furthermore
only ever required the subject to hold 2 items in memory—the initial phoneme,
and the ‘rest of the word.’ This difference in task structure could possibly explain
why bimodal results were seen for the phoneme deletion task, and not for the
blending and segmentation tasks: although phoneme deletion was a more com-
plex manipulation to master, once it was understood, completing the test did not
place any increased demands on the subjects’ memory or cognitive ability.
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Second, not only does phoneme deletion ability never develop before phoneme
blending or segmentation, but early phoneme deletion is the only measure that
does not correlate with later measures of phoneme awareness. As described in
more detail in Chapter 4, where phoneme blending and segmentation at Ses-
sion 1 correlate significantly with phoneme deletion at Sessions 2 and 3, and
phoneme blending and segmentation at Session 2 also correlate significantly
with phoneme deletion at Session 3, the relationship does not seem to work as
well the other way around. Specifically, phoneme deletion at Session 1 is the only
measure that does not correlate at all with either phoneme blending or segmenta-
tion at Session 3. Additionally, the correlations between deletion at Session 1 and
blending and segmentation at Session 2, as well as those between deletion at Ses-
sion 2 and blending and segmentation at Session 3 show the lowest correlation
of all the inter–measure relationships. These findings add to our understanding
of the delay in development of phoneme deletion relative to blending and seg-
mentation. The results show that the strongest relationship between phoneme
deletion and the other two measures is between early measures of blending and
segmentation, and later measures of deletion. This would seem to indicate that
in addition to being more demanding than blending and segmentation tasks,
phoneme deletion may be dependent on the earlier development of these skills.

Keeping this in mind, what can we now say in answer to the questions asked
at the beginning of this section? To a certain extent it should be expected that
phonemic awareness skills should be transferable—that is, in order to be consid-
ered aware, a subject’s skill should not be restricted to an ability to only perform
one phonemic awareness task. However, as the results above suggest, there may
be some phoneme awareness tasks that are cognitively more demanding than
others—a child that is in the process of developing cognitively, should not nec-
essarily be expected to be able to complete such tasks as easily as less complex
tasks. Additionally it is clear that there may also be tasks which depend for their
success on the development of other phonemic awareness skills—again subjects
should not be expected to be able to complete such tasks before they have de-
veloped the prerequisite skills. Clearly, therefore, as noted by McBride-Chang
(1995b) there are both cognitive and other metalinguistic skills which are im-
plicated in the completion of phonemic awareness tasks, and not all tasks will
require the same skills as others. It should not, therefore, be assumed that all
phonemic awareness tasks are equal—just that they are highly related in the level
of awareness that they tap.
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4 The relationship between acoustic cue weighting and

phonemic awareness

At this point in the chapter we turn to the main question that has driven both of
the experiments in this thesis: how can one characterise the relationship between
shifts in acoustic cue weighting and the development of phonemic awareness?
This thesis has been designed, in particular, to determine the direction of the rela-
tionship between these two processes.

4.1 Does one process develop before the other?

The first step in answering the above question is to determine whether one of
the two processes in question consistently develops before the other. This will
allow us to constrain our hypotheses regarding causal direction. If, for example,
a high score on the phonemic awareness tests always follows the development
of analytical perceptual strategies as measured by the perceptual tests, then it
is unlikely that phonemic awareness has a causal influence on the development
of perceptual strategies. The same can be said if the development of analytical
perceptual strategies, as measured by the perceptual test, consistently follows
the achievement of high scores on the phonemic awareness tests. These two
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Figure 6.1: Graphs of two hypothetical relationships between cue weighting
and phonemic awareness. Graph (A) illustrates the situation in which percep-
tual strategies change before the development of phonemic awareness begins;
Graph (B) illustrates the situation in which phonemic awareness develops before
perceptual strategies change.
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hypothetical situations are illustrated by the graphs in Figure 6.1 (introduced in
Chapter 3).

Figure 6.2 shows the results of all three sessions in Experiment 1. Recall that in
these graphs perceptual strategy is measured in terms of the degree of separa-
tion (in Hz) between the two response curves. This follows the procedure used
by Nittrouer (1996b) and thus allows for comparisons to be made between the
two studies. Additionally, as will be seen later in this chapter, there are other,
more theoretical reasons for choosing this as a measure of acoustic cue weight-
ing instead of the slope of subjects’ perceptual response curves. The measure of
subjects’ phonemic awareness is shown on these graphs in terms of their success
on the phoneme blending test. This test was chosen simply because it corre-
lates slightly more highly with the separation between the response curves than
phoneme segmentation and phoneme deletion.

An examination of each graph in Figure 6.2 separately shows that at each session
there were a number of children who had good phonemic awareness but who
had not yet developed analytical perceptual strategies. Additionally, at each ses-
sion, there were no children who had developed highly analytical perceptual
strategies, but who still had poor phonemic awareness. Just from these individ-
ual sets of results, it would appear that phonemic awareness develops before
changes in perceptual weighting.

Examining the movement of the data points from Session 1 through Session 3, it
becomes clear that the pattern observable at each individual session of the study
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Figure 6.2: Results of all three sessions of Experiment 1: relationship between
cue weighting and phonemic awareness. Graph (A) shows the results of Ses-
sion 1; Graph (B) shows the results of Session 2; Graph (C) shows the results of
Session 3.
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is also the pattern that can be seen throughout the study. Children who had both
poor phonemic awareness and global speech perception strategies at Session 1
(filled triangles) developed better phonemic awareness before developing more
analytical perceptual strategies at later sessions in the study. Children who had
already developed good phonemic awareness at Session 1 (open circles) then
went on to develop more analytical perceptual strategies. Once again it is impor-
tant to note that at no point did any child develop strongly analytical perceptual
strategies while still having very poor phonemic awareness skills.

The statistical analyses carried out on these results (given in more detail in Chap-
ter 4) support this view. A significant difference was seen between the Session 1
and the Session 3 results for both perceptual strategy and phonemic awareness.
However, when analysed session by session, the change in phonemic aware-
ness ability is greater between Session 1 and Session 2, than between Session 2
and Session 3 (indicated by a significant difference between scores at Session 1
and scores at Session 2, but a very non–significant difference between scores at
Session 2 and scores at Session 3). For the changes in perceptual strategy, on
the other hand, the difference in cue weighting approaches significance between
Session 2 and Session 3, but is not significant at all between Session 1 and Ses-
sion 2. This again suggests that the major changes in phonemic awareness take
place earlier than any major changes in acoustic cue weighting strategy.

If we compare the reading–training–delayed children (Experiment 2: see Fig-
ure 6.3) to the reading children at every session in the longitudinal study (Ex-
periment 1: see Figure 6.2), we get further evidence that phonemic awareness
develops before shifts in acoustic cue weighting.

The reading–training–delayed children are not significantly different from the
beginning–reading children at Session 1 for either phonemic awareness or per-
ceptual strategy. In terms of phonemic awareness, this is not surprising, as many
of the beginning–reading group were predominantly non–readers at this session,
and thus had not had a chance to develop good phonemic awareness skills.

However, in terms of the perceptual strategies this result is slightly more sur-
prising, in particular if one accepts Nittrouer’s theory that shifts in acoustic
cue weighting are maturational: the reading–training–delayed children are older
than the beginning–readers, and thus should presumably have more ‘mature’—
i.e. more analytical—perceptual strategies than the beginning readers. As noted
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above, the results of Experiment 2 call into question the developmental or matura-
tional aspect of Nittrouer’s model of cue weighting shifts. Again, we will return
to this issue later in this chapter.

Moving on to a comparison of the reading–training–delayed group to the beginning–
readers at Session 2, we find that while there is still no significant difference be-
tween the reading–training–delayed children and the beginning reading children
for perceptual strategy, there is a significant difference between the two groups
for two of the three phonemic awareness tests: blending and segmentation.

Finally, a comparison of the reading–training–delayed group and the beginning–
readers at Session 3 shows an increased difference in phonemic awareness abil-
ity between the two groups. The reading–training–delayed children are sig-
nificantly worse than the beginning–reading group for all measures of phone-
mic awareness: blending, segmentation, and deletion. Importantly, the results
also show that at this session, the reading–training–delayed children are sig-
nificantly different from the beginning–reading children for perceptual strategy:
the reading–training–delayed group have significantly more separated response
curve slopes than do the beginning–readers.

These results indicate, once again, that the beginning–reading children started to
develop phonemic awareness before their perceptual strategies began to change.
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Figure 6.3: Results of Experiment 2: relationship between cue weighting and
phonemic awareness
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4.2 Does one process predict the other?

Having determined that phonemic awareness appears to develop before changes
in acoustic cue weighting, the question to be answered at this point, then, is
whether the relationship between the two skills is in any way causative. That
is, does the process which develops first—phonemic awareness—actually have
some causal effect on the process which develops second—analytical perceptual
strategy? There are two parts to the answer to this question. First, what happens
to cue weighting strategies when phonemic awareness does develop? Second,
what happens to cue weighting strategies if phonemic awareness does not de-
velop?

Statistical analyses of the results of the longitudinal study give a clear indication
that phonemic awareness development has some causal influence on changes
in cue weighting strategies. Multiple regression analysis shows that 72% of the
variance seen in the separation of the response curves at Session 3 can be ac-
counted for by a combination of the separation of the response curves at the pre-
vious session (Session 2) and importantly, phonemic awareness ability (as mea-
sured by the phoneme blending task) at both previous sessions (Sessions 1 and 2)��� � 	 � 	�� ��� 	 ��� ����	�� ����	 � �
�����

. Each of these measures makes a unique contri-
bution to the 72% of variability accounted for by all three: separation at Session 2
accounts for 16.75% of the 72%

� ������� � 	 � � ��	��
��� 	 � ����	��
; blending at Session 2

accounts for 34.65% of the 72%
� ������� � 	 � �
�����
��� 	 � � � �

; blending at Session 1
accounts for 48.6% of the 72%

� � ����� � 	 � ��

��������	 � �������
.

Additionally, if we examine the relationship from the other direction, it is also
clear that it is much less likely that changes in perceptual strategy have a causal
effect on the development of phonemic awareness. We have already shown that
there was no child who developed analytical cue weighting strategies before de-
veloping good phonemic awareness. Multiple regression analysis goes on to
show that 81% of the variance seen in phonemic awareness (in terms of phoneme
blending) at Session 3 can be accounted for to a very high level of significance by
phoneme blending scores at Session 2

� ��� 	 � 
 � � � 	 ��	
� 
 � ��� ��� � � ���
� ���
. When

perceptual weighting (as measured by separation of response curves) at Session 1
and Session 2 are added, however, the percentage of variance accounted for only
goes up to 82%, and the level of significance falls

��� � 	 � 
�� ��� 	 � 	
� ������� ��� 	
� ������� �

. The most important point to note about this last analysis is that nei-
ther perceptual strategy at Session 1 nor perceptual strategy at Session 2 make a
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unique contribution at all to phonemic awareness at Session 3. This means that
perceptual strategy (in terms of separation of response curves) does not have
any causal effect on the development of phonemic awareness (as measured by
phoneme blending).

These comparisons show the conditions under which analytical perceptual strate-
gies do develop. However, for a more clear understanding of the conditions un-
der which they do not develop, we will have to turn to Experiment 2.

Figure 6.4 once again shows the results of Session 3 of Experiment 1 (Graph A)
and of Experiment 2 (Graph B), displayed in terms of separation of response
curve slopes and phoneme blending ability. Both of these graphs represent the
behaviour of groups of normally developing, same–age children. The only dif-
ference between these two groups is in the amount of literacy training that they
have been receiving, and thus (presumably) the degree of phonemic awareness
that they have developed. A comparison of these two graphs shows clearly that
without the development of phonemic awareness (as in the case of most of the
reading–training–delayed children) acoustic cue weighting strategies do not ap-
pear to change, even with a chronological change in age. Statistical analyses
support this: as noted above, there is a significant difference in perceptual strat-
egy between the reading–training–delayed children and their beginning reading
peers.

What can all of these results together tell us? First, we can say that phonemic
awareness develops before changes in acoustic cue weighting take place, and that
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Figure 6.4: Results of Experiment 1, Session 3 (A) and Experiment 2 (B).
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the reverse—changes in acoustic cue weighting taking place before the develop-
ment of phonemic awareness skills—never occurs. This means that it is highly
unlikely that changes in acoustic cue weighting have a causal effect on the de-
velopment of phonemic awareness. Second, we are able to say that the devel-
opment of phonemic awareness is predictive of later changes in cue weighting
strategies. Finally we can say that changes in acoustic cue weighting do not
take place in the absence of phonemic awareness development, even in what
Nittrouer had previously classified as older children (e.g. Nittrouer & Studdert-
Kennedy 1987, Nittrouer 1992). This last result means that not only are changes
in cue weighting strategies predicted by phonemic awareness, but they may be
dependent on the development of phonemic awareness. Additionally, as noted
earlier in this chapter, this last result tells us that changes in cue weighting are
not in fact maturational, and suggests that a revision of both the name and the
definition of Nittrouer’s Developmental Weighting Shift model may be in order.

All of these results and analyses allow us to fairly conclusively answer the ques-
tion, posed in Chapter 2: What is the nature and direction of the relationship
between changes in acoustic cue weighting and the development of phone-
mic awareness?. Two alternative answers to this question were proposed in
Chapter 2: (i) Changes in acoustic cue weighting will always occur before the
development of phonemic awareness, and shifts in cue weighting will predict
later ability in phonemic awareness; and (ii) Phonemic awareness will always
develop before shifts in acoustic cue weighting take place, and ability in phone-
mic awareness will predict later shifts in acoustic cue weighting.

It is clear from the results of these two studies that hypothesis (ii) is the cor-
rect answer to the question regarding the nature of the relationship—changes in
acoustic cue weighting are dependent upon (among other things) the develop-
ment of phonemic awareness skills.

5 Implications

The rest of this chapter will discuss the implications of the results of the current
studies on Nittrouer’s Developmental Weighting Shift model, and on our under-
standing of perceptual development in general.
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5.1 Perception first vs. awareness first

Having shown the direction of the relationship between perception and aware-
ness, we should now explore the nature of this relationship in more depth. In
particular, we need, at this point, to reconcile the results of this study, which
show that a certain aspect of perception is non–maturational and is influenced
by the development of metalinguistic functions, with other studies which have
shown the opposite: that perception predicts the development of phonemic
awareness. Specifically, the results of this study must be explained in light
of the results of the studies carried out by McBride–Chang and colleagues
(McBride-Chang 1995b, McBride-Chang 1996, Manis et al. 1997, McBride-Chang
et al. 1997) on the relationship between phonemic awareness and speech percep-
tion. McBride-Chang et al. (1997) found that speech perception, cognitive abil-
ity and verbal short term memory together predicted 42% of the variability in
phonemic awareness at a later date. How is it possible for phonemic awareness
both to predict and to be predicted by speech perception? There could, of course,
be a complex feed–back relationship between the two which would explain the
results of all of these studies. However, the results of the current study suggest a
more straightforward explanation.

As noted in Chapter 2 (Section 3.3), McBride–Chang and colleagues used cate-
gorical perception testing in their studies, and measured success on these tests in
terms of the ‘categorical–ness’ or slope of the response curves. Both the current
study and Nittrouer’s (1996b) study, on the other hand, examined the correlation
between perception and awareness in terms of the separation of the perceptual
response curves (a measure not available to McBride–Chang and colleagues be-
cause of the more conventional method of testing that they used). It does not
take a huge leap of the imagination to conclude that the differences seen in these
two sets of studies in the relationship between perception and awareness might
have something to do with these two different measures of perception.

There are a number of things to note about these two measures, some of which
have already been highlighted earlier in this chapter. First, the current studies
have shown that slope and separation are not actually very well correlated—
the correlation between the two only reached significance at one session in the
longitudinal study in Experiment 1; at all other sessions and for the adults and
reading–training–delayed children, the relationship fell well below significance.
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This in itself would seem to indicate that slope and separation are actually mea-
sures of two different aspects of perception. Support for this comes from a com-
parison of the results of Experiment 1 and Experiment 2. The reading–training–
delayed children and the beginning–reading children (from Session 3 of Experi-
ment 1) differed in phonemic awareness ability, but not in age. These two groups
were found to differ in degree of separation between response curves, but not
in slope of response curves. As noted earlier in this chapter, this suggests that
while the separation of the response curves is related to literacy (or more proba-
bly phonemic awareness) the slope of the response curves is more likely to be a
maturational aspect of perception.

All of this could go some way to explaining the differences between the results
of this study and those of McBride-Chang et al.’s (1997) study. It is quite possible
that before a child can even begin to embark on the process of uncovering phono-
logical structure at a conscious level, their perception (in a more general sense)
might have to be reasonably ‘mature’, and well organised in terms of general
phonological structure. However, when the child does embark on the process of
becoming phonemically aware, it is possible that the strategies that the child uses
to perceive phonological structure (i.e. in terms of cue weighting, etc.) might
have to change in order to meet the more specific demands of consciously ac-
cessing the phonemes in the way that is necessary for alphabetic literacy.

The fact that both slope and separation were measured in this study, as well as
phonemic awareness, means that this hypothesis can be empirically tested to
a certain extent. We have already seen that the separation of response curves
is predicted by earlier abilities on certain phonemic awareness tests, and that
separation does not predict later ability in phonemic awareness. What is very
interesting to note at this point is that the reverse is true of the slope of the
response curves: 89% of the variation in measures of phonemic awareness at
Session 3 of the longitudinal study (measured this time in terms of phoneme
segmentation ability) can be accounted for by the combination of segmentation
ability at Session 2, and by the slope of response curves at Sessions 1 and 2��� � 	 � 
�� ��� 	 ���
� ��
�� ��� � � ���
� ���

. Additionally, slope of response curves at Ses-
sion 3 are not predicted at all by any earlier measures of phonemic awareness.
It is not entirely clear why phoneme blending should be the better predictor of
acoustic cue weighting strategies while the slope of perceptual response curves
predicts phoneme segmentation skills, however it is fairly clear that in terms of
causal direction, the aspect of speech perception that is measured by the slope
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of a listener’s response curves may have some developmental influence on that
listener’s ability to become aware of phonemes.

These findings go a long way to reconciling the results of this study with the ap-
parently contradictory results of McBride–Chang and colleagues’ studies. Addi-
tionally, in terms of answering the question posed at the beginning of Chapter 2
about the nature of the relationship, it is clear that we cannot simply say either
that perception impacts on awareness or that awareness impacts on perception,
in any global sense—the relationship is more complicated than this. What we can
say is that there appears to be both a maturational aspect of speech perception
which may have an influence on phonemic awareness skills, and an aspect of
perception which has to do with changes in acoustic cue weighting and which
only occurs under the influence of phonemic awareness development.

5.2 The Developmental Weighting Shift model

We now turn to an examination of the implications of the results of this thesis on
Nittrouer’s Developmental Weighting Shift model itself.

There are a number of aspects to Nittrouer’s model, all of which have been dis-
cussed in detail in Chapter 2. However, to briefly re–cap, they are: i) that a shift
occurs between childhood and adulthood in the cues which are weighted most
heavily by listeners—specifically, that children give more perceptual weight to
transitional cues, while adults give more weight to non–transitional cues—ii)
that this shift is related to a more general movement from perception of speech
in terms of larger, syllable–sized units in children, to perception of speech in
terms of smaller, phoneme–sized units in adults, and iii) that this whole process
is due to the increased experience with language that occurs due to maturation.
Each of these aspects will be addressed in turn.

First, this study has shown that the phenomenon of shifts in cue weighting is
replicable in a number of different situations: for completely synthetic (‘copy–
synthesised’) speech stimuli, and for a new vowel context (/o/). However, this
study also showed that these shifts are only replicable for groups of alphabeti-
cally literate adults and becoming–literate children. Shifts in cue weighting do
not occur for children who are not learning to read, and more specifically, not
becoming phonemically aware.
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As noted above, Nittrouer and colleagues explain the occurrence of shifts in cue
weighting by relating them to theories that children perceive more globally, in
terms of larger units, and adults perceive more analytically, in terms of smaller
units. Nittrouer argues that if children perceive in terms of units the size of a
syllable, then it makes sense for them to attend most to the transitional cues,
as these cues give them the most information about the syllable structure as a
whole. Similarly, she also claims that if adults do indeed perceive in terms of
more phoneme–like units than it makes sense for them to attend most to what-
ever cue gives them the most information about single segments. Nittrouer’s
(1996b) study found that the children with more global perceptual strategies were
also the children who had not yet developed awareness of phonemes (i.e. only
had awareness of larger units), while those children with more analytical percep-
tual strategies were the same children who had developed phoneme awareness.
This finding served to reinforce Nittrouer’s view that changes in perceptual strat-
egy are due to changes in perceptual unit.

The findings of the studies in this thesis lend further support to this view, while
also elaborating on the nature of the change in cue weighting. The cue weight-
ing strategies observed in the responses of all the listeners in both Experiment 1
and Experiment 2 were clearly related to these same subjects’ development (or
lack) of phonemic awareness. In Experiment 1, perceptual strategy at the end of
the study was predicted by phonemic awareness ability at earlier sessions in the
study, while in Experiment 2, the reading–training–delayed subjects who had
not yet developed phonemic awareness, also had very global perceptual weight-
ing strategies compared to their beginning–reading peers. From these results
we can conclude that not only are changes in perceptual strategy related to the
development of phonemic awareness, but that the change in metaphonological
ability from awareness of larger units (syllables, onset–rime units) to awareness
of smaller units (phonemes) actually has an impact on perceptual strategy. This
would appear to support Nittrouer’s theory that the changes in perceptual strat-
egy that she observed were something to do with a change in phonological units.
However, it also casts some doubt on Nittrouer’s third claim regarding the DWS.

This last claim, that shifts in acoustic cue weighting are maturational, is partic-
ularly problematic for the results of Experiment 2. Both groups of children in
this study were chronologically the same age (6–7 years), and thus under Nit-
trouer’s hypothesis should be displaying the same perceptual strategies. More
specifically, according to the results found by Nittrouer and colleagues in other
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cue weighting studies, both groups of 6– to 7–year–olds should display predom-
inantly analytical rather than global perceptual strategies. The results of Ex-
periment 2, however, clearly show that the reading–training–delayed, predom-
inantly phonemically unaware group displays global rather than analytical per-
ceptual strategies. As noted above, the conclusion that must be drawn from these
results is that Nittrouer’s Developmental Weighting Shift model is not in fact a
model of a maturational process. It appears, instead, that changes in acoustic cue
weighting require some sort of catalyst, which, in the case of these experiments,
is alphabetic literacy instruction, and more specifically the onset of phonemic
awareness that occurs as a result of this instruction. Without such a catalyst,
shifts in cue weighting do not appear to occur.

Clearly then, Nittrouer’s Developmental Weighting Shift model is reasonably
robust—at least for /

�
/–/s/ contrasts—and holds up well to variations in stim-

ulus design. Additionally, it does appear from the predictive relationship found
between cue weighting and phonemic awareness development that Nittrouer’s
hypothesis regarding the DWS as a reflection of changes in phonological unit
may indeed be valid. However, the claim that the DWS model describes a mat-
urational process is strongly refuted by the findings of these studies. This last
point has potential knock-on effects for more general theories of perception, and
possibly of phonological development in general, as will be seen in the following
section.

5.3 Perception: development, testing and units

At the very end of the first chapter of this thesis, a number of very broad issues
were raised concerning the way in which we currently view speech perception,
and in particular perceptual development. As these issues were raised, it was
stated that addressing them would be outside the scope of this thesis. It was also
stated, however, that these issues would form the framework within which the
thesis would be constructed, and as such, the results of the thesis should have
some, if not direct, then more general implications for these issues.

The first of these issues revolves around the view of speech perception as a
‘black box’—i.e. a largely unspecified system which takes in the acoustic signal,
and which outputs some sort of phonological pattern—upon which the devel-
opment of the rest of speech and language communication depends. This view
can be seen, for example, in the studies of perception and literacy discussed in
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Chapter 2, Section 3.1, in which perception was almost always considered to
be a process which allowed for the later development of literacy skills, among
other things. This view depends on a number of assumptions about the way
in which perception operates. First, speech perception must be assumed to be
maturational—thus the speech perception system of the average adult experi-
mental subject will be representative of the way in which a fully functioning
and ‘mature’ perceptual system should work. Second, it must be assumed that
speech perception cannot be affected by the development of higher cognitive
processes, and certainly not by the development of non–necessary processes like
alphabetic literacy and phonemic awareness. It is quite clear from the results of
this study, however, that while some aspects of perceptual development are very
likely to be maturational, not all perceptual changes are maturational. Further-
more, this study shows that at least one aspect of perceptual change is not only
affected by, but possibly induced by the development of a non–universal and not
directly innate part of language.

The finding that different aspects of perception appear to be influenced to dif-
ferent extents both by maturation and by the development of other cognitive
processes, brings us to the second point to be discussed in this section. This issue
concerns the view that speech perception is a unitary construct which develops
and operates as a homogeneous system. Many studies, in particular those that
do not directly investigate perception itself, tend to treat speech perception as
a single cognitive process—thus ability on a categorical perception test, for ex-
ample, is seen as a reflection of speech perception ability as a whole. This view
can again be seen in many of the studies of literacy and perception discussed in
Chapter 2, Section 3.1.

Again, the lack of correlation or predictive relationship in this study between the
two measures of speech perception—slope and separation of response curves—
points to a need to consider speech perception less as a single, undifferentiated
process, and more as a complex of abilities. This is not the first time that such a
suggestion has been made—McBride-Chang et al. (1997) states that one “issue of
particular concern for future studies is the idea of speech perception as a global
construct” (p. 629)—however, the evidence from the current study provides con-
vincing evidence for this more heterogeneous view of perception. Furthermore,
while the results of the study do not allow us to make conclusive claims about
the exact nature of such a complex, it would seem appropriate to consider that
some of the changes in speech perception observed in studies to this point reflect
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a general maturation of overall perceptual ability (such as ‘categorical–ness’ of
responses), while others reflect changes in perceptual strategy (such as shifts in
acoustic cue weighting).

We now turn to the issue of the phoneme as the fundamental unit of percep-
tion. The results of this thesis raise some questions regarding the strength of this
claim. As noted in Chapter 1, most theories of speech perception, whether acous-
tic or gestural, propose the phoneme or phonemic feature as the basic unit of a
normal perceptual system. Under these theories, speech is made up of phonemic
units which are joined together by coarticulation. Although the acoustic theorists
and the gesturalists disagree as to the purpose of coarticulation—to the acoustic
theorists it is unnecessary ‘noise’ which occurs at phoneme boundaries, while to
gesturalists it is a fundamental consequence of the rapid sequential articulation
of gestures which helps to inform the perceptual system—for both groups it is
the phoneme that is perceived. There is in fact some evidence (from studies of
speech errors and speech deficits, for example) that phonemes do exist at some
perceptual level.

Other researchers, including Nittrouer and colleagues, have gone on to propose
that perceptual systems, and other systems which require phonological organ-
isation, do not start out with phonemes as the basic unit, but instead start out
with a unit which is much larger (i.e. a syllable) and shift over the course of
childhood to the smaller, phonemic unit. The finding of a relationship between
acoustic cue weighting and the movement from syllable and onset–rime aware-
ness to phoneme awareness in Nittrouer’s (1996b) study appears to support this
theory. The evidence from this thesis goes on to provide more experimental sup-
port for the existence of a relationship between perceptual cue weighting and
phonemic awareness, and thus possibly for a change in unit at the perceptual
level. However, the results of this thesis may also prove problematic for the the-
ory that phonemes are the default endpoint of perceptual maturation.

In order to understand the potential problems caused by the results of this the-
sis, we must first accept Nittrouer’s proposal that shifts in cue weighting reflect
changes in the unit of perceptual organisation from a syllable to a phoneme. We
must then go on to accept that the relationship between shifts in cue weighting
and the development of phonemic awareness is due to the fact that both are mov-
ing from syllable to phoneme organisation. Given both of these premises, and
given that the development of phonemic awareness is not necessary for success-
ful communication, then the findings of this thesis would seem to indicate that
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the shift to phoneme–based organisation in perception is also not a necessary step
for successful communication. Simply put, if shifts in perceptual organisation are
caused by phonemic awareness, and phonemic awareness is a higher cognitive
skill which is not developed by a large proportion of people (i.e. people who
have not had access to literacy training, or some other relevant training), then
shifts to phoneme–based perceptual strategies should also not occur in a large
proportion of people. This calls into question the fundamental role of phonemes
in perception that is assumed by theorists, and also the role of coarticulatory cues
as secondary in perception. Under this alternative hypothesis, the results of the
studies of speech errors, etc. referred to above would be due, not to the sub-
jects’ mature perceptual systems, but rather to the fact that they were probably
alphabetic literates.

The evidence provided by this thesis is not sufficient to support a claim that
phonemes exist simply as a results of alphabetic literacy. In fact, it would be
unwise to make such a claim at all, given the fact that in order for the alphabet
itself to have been invented, phonemes must exist at some level of organisa-
tion. However, beyond a better understanding of the nature of the relationship
between shifts in cue weighting and the development of phonemic awareness,
what should be taken away from this thesis is the fact that higher cognitive pro-
cesses like literacy and metalinguistic awareness do have an influence on more
fundamental processes like perception. The results of both Experiment 1 and Ex-
periment 2 show that alphabetic literacy, and the phonemic awareness that oc-
curs as a result of literacy development, have an effect on perceptual strategies.
What this means is that the perceptual behaviour of the ‘average adult subject’
referred to above should probably not be taken as representative of perceptual
ability in a strictly mature state. Rather, this type of subject will have perceptual
skills which are the result of both maturation and the effects of phonemic aware-
ness. This should also be borne in mind in the testing of child subjects, most
of whom will have been brought up within literate environments, and will be
attending schools where literacy is taught from an early age.

The fact that perceptual behaviour has been shown to be affected by the develop-
ment of higher cognitive skills means that we cannot assume that the perceptual
abilities of most experimental subjects (who are generally selected from highly
literate populations) have been shaped simply by maturational processes. By the
same token, future research must seek to determine to what extent higher order
knowledge like literacy impinges on other lower level linguistic behaviour. If the

179



true course of development of speech perception, and other linguistic systems, is
to be effectively mapped, then literacy and possibly other higher cognitive pro-
cesses, must be taken into account.
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APPENDIX A

Perception test materials

1 Text of story presented before perceptual testing:

This story is about a boy just about your age, whose name is Callum. This story
is also about Callum’s teddy bear, whose name is Mr Bear. Callum and Mr Bear
go everywhere together. One day Callum noticed that Mr Bear had a hole in his
tummy! His stuffing was starting to escape! “What am I going to do?” thought
Callum. “If all Mr Bear’s stuffing escapes, he’ll go all flat and floppy!”

Callum decided to go to the kitchen to show Mr Bear to his dad. “Can you sew
him for me?” Callum asked his dad. But dad was too busy making the tea.

So, Callum went upstairs to show Mr Bear to his mum. “Can you sew him for
me?” Callum asked his mum. But mum was too busy doing the ironing.

So, Callum went back downstairs to show Mr Bear to his big sister. “Can you
sew him for me?” Callum asked his sister. But his sister was too busy talking on
the phone.

Just then, the doorbell rang. It was Callum’s friend Mairi. “What’s the matter
Callum?” Mairi asked, “You look sad. Mr Bear doesn’t look too happy either.”
“He isn’t happy,” said Callum, “He’s got a hole in his tummy, and his stuffing is
starting to escape, and I tried to show him to everyone, but they’re all too busy
to sew him up.” “I know what to do,” said Mairi, “Let’s show Mr Bear to my
dad. He’s a tailor and he knows how to sew lots of things, even teddy bears.”

So Mairi and Callum took Mr Bear to show Mairi’s dad, and right enough,
Mairi’s dad knew just what to do to sew Mr Bear back together.
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2 Pictures used in perceptual testing

Figure A.1: Pictures of “show” and “sew” These line drawings accompanied the
above story, and were used in the perceptual tests for the children.
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APPENDIX B

Phonemic awareness test materials

Phoneme blending

Training: cow–boy
snow–man
sun–shine
sh–eep
c–ow
s–ing
b–a–th
p–e–n
f–a–ce
p–i–g

Pre-test: m–ilk
f–ish
b–ear
j–uice
d–oll
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Phoneme blending

Test (a): d–o–g
c–u–p
r–u–n
f–i–sh
r–ai–n
sh–o–p
m–a–n
c–a–tch
l–o–ve
c–a–t
f–r–o–g
s–n–a–ke
l–a–m–p
c–l–o–ck
t–a–s–te
f–l–a–g
s–t–u–ck
t–oa–s–t
s–t–o–p
n–e–s–t
f–r–ie–n–d
s–l–e–p–t
t–r–u–n–k
g–r–ou–n–d
s–t–r–ee–t

184



Phoneme blending

Test (b): m–oo–n
d–u–ck
l–ea–f
g–a–me
l–e–g
t–e–n
s–o–ck
s–i–t
t–i–me
r–oo–m
l–e–f–t
f–e–n–ce
t–e–n–t
l–a–s–t
d–r–u–m
j–u–m–p
g–l–a–ss
s–t–i–ck
d–r–o–p
s–a–n–d
s–t–a–n–d
p–l–a–n–t
s–t–a–m–p
s–c–r–a–tch
s–p–l–a–sh
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Phoneme segmentation

Training: cowboy
snowman
sunshine
cow
man
sun

Pre-test: tea
zoo
toy
shoe
day
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Phoneme segmentation

Test (a): red
cake
peck
book
cheese
phone
shut
comb
soup
mess
stone
clap
bump
vest
snail
chest
soft
space
green
hand
skunk
crunch
trust
stretch
blast
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Phoneme segmentation

Test (b): nose
make
laugh
bus
mouse
cage
bed
sun
name
can
post
block
crab
dust
spoon
desk
glove
fast
belt
step
spend
crisp
scrub
screen
strap
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Phoneme deletion

Training: cat
bus
hat
seat
glass
Scott

Pre-test: leg
cup
sit
farm
sand

Phoneme deletion

Test (a): snow
ground
slow
break
snap
bread
blow
crib
great
drag
bright
price
clean
clock
slid
brush
plate
grow
glove
play
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Phoneme deletion

Test (b): cloud
snail
broom
sleep
sled
clap
fly
place
spot
store
switch
crash
spill
smile
clip
bring
block
draw
black
slip
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APPENDIX C

Raw data

Note that the following abbreviations are used in the tables in this section:

Slp. /s/: slope of /s/–transition response curves
Slp. /

�
/: slope of /

�
/–transition response curves

Mn. /s/: mean of /s/–transition response curves
Mn. /

�
/: mean of /

�
/–transition response curves

Avg. slp.: average slope of two response curves
Sep. 1: separation of response curves in absolute difference between means
Sep. 2: separation of response curves in kHz
Bln.: phoneme blending score (/50)
Seg.: phoneme segmentation score (/50)
Del.: phoneme deletion score (/40)
Schonell: raw score on Schonell’s Graded Word Reading Test
BPVS: raw score on British Picture Vocabulary Scale
RA: reading age (from Schonell)
AE: age equivalent (from BPVS)

191



Beginning–reading children: Stage 1

Subject Slp. /s/ Mn. /s/ Slp. /

�

/ Mn. /

�

/ Avg. slp. Sep. 1 Sep. 2 Bln. Seg. Del. Schonell RA BPVS AE
R1 -1.86 4.40 -2.02 4.01 -1.94 0.38550 0.077100 50 44 18 21 7;4 14 6;3
R2 -0.53 5.13 -0.58 4.00 -0.55 1.12296 0.224592 49 40 17 13 6;11 13 5;9
R3 -1.00 3.75 -0.84 3.78 -0.92 -0.27190 0.054380 48 49 37 36 8;6 13 5;9
R4 -1.75 4.71 -1.94 4.20 -1.84 0.50874 0.101748 45 30 4 8 6;7 18 8;3
R5 -1.66 3.85 -1.74 3.66 -1.70 0.18628 0.037256 39 27 28 4 6;4 22 10;11
R6 -0.60 4.01 -0.58 3.40 -0.59 0.61042 0.122084 37 36 24 6 6;6 12 5;4
R7 -0.58 4.96 -0.75 3.89 -0.66 1.07262 0.214524 38 23 0 9 6;8 23 11;6
R8 -1.78 4.61 -1.71 3.89 -1.75 0.72460 0.144920 26 25 21 14 6;11 12 5;4
R9 -0.61 5.50 -1.94 4.20 -1.27 1.30368 0.260736 27 30 0 26 7;7 17 7;9
R10 -1.20 5.19 -1.66 4.89 -1.43 0.29948 0.059896 30 25 0 4 6;4 13 5;9
R11 -1.68 4.90 -0.77 4.26 -1.23 0.63888 0.127776 14 3 1 1 6;0- 10 4;5
R12 -0.97 4.57 -1.38 4.18 -1.17 0.39108 0.078216 15 20 29 1 6;0- 22 10;11
R13 -1.26 5.25 -1.78 4.22 -1.52 1.03516 0.207032 6 13 0 0 6;0- 15 6;8
R14 -1.32 4.66 -0.47 3.69 -0.90 0.96839 0.193678 16 6 0 3 6;2 16 7;2
R15 -0.44 4.07 -0.53 3.43 -0.48 0.64917 0.129834 0 0 0 0 6;0- 11 4;10
R16 -0.54 4.80 -0.48 4.50 -0.51 0.30435 0.060870 38 37 30 7 6;7 12 5;4
R17 -2.07 3.91 -1.93 3.30 -2.00 0.61219 0.122438 27 34 2 9 6;8 9 4;0
R18 -0.51 5.58 -0.81 4.70 -0.66 0.88437 0.176874 6 4 0 1 6;0- 10 4;5

Table C.1: Raw data
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Beginning–reading children: Stage 2

Subject Slp. /s/ Mn. /s/ Slp. /

�

/ Mn. /

�

/ Avg. slp. Sep. 1 Sep. 2 Bln. Seg. Del. Schonell RA BPVS AE
R1 -2.02 4.01 -2.02 4.01 -2.02 0 0 50 46 40 n/a n/a n/a n/a
R2 -1.20 3.81 -1.07 3.34 -1.14 0.46389 0.092778 49 42 38 n/a n/a n/a n/a
R3 -1.33 4.46 -2.12 3.82 -1.72 0.64536 0.129072 50 49 40 n/a n/a n/a n/a
R4 -1.11 4.84 -1.86 4.40 -1.48 0.44464 0.088928 50 34 6 n/a n/a n/a n/a
R5 -1.11 4.22 -1.67 3.98 -1.39 0.24321 0.048642 48 41 39 n/a n/a n/a n/a
R6 -0.60 3.47 -0.81 2.99 -0.71 0.47579 0.095158 46 49 39 n/a n/a n/a n/a
R7 -0.56 4.75 -0.63 3.85 -0.59 0.90084 0.180168 46 25 25 n/a n/a n/a n/a
R8 -1.87 4.31 -1.36 4.09 -1.61 0.22525 0.045050 36 42 39 n/a n/a n/a n/a
R9 -1.00 4.89 -1.65 4.07 -1.33 0.81968 0.163936 33 36 36 n/a n/a n/a n/a
R10 -1.08 5.23 -1.62 5.04 -1.35 0.19624 0.039248 44 40 0 n/a n/a n/a n/a
R11 -0.80 5.23 -1.68 4.90 -1.24 0.32845 0.065690 38 42 2 n/a n/a n/a n/a
R12 -1.45 4.65 -0.97 3.68 -1.21 0.96657 0.193314 34 43 39 n/a n/a n/a n/a
R13 -1.75 4.71 -0.64 4.19 -1.19 0.51757 0.103514 33 27 4 n/a n/a n/a n/a
R14 -1.39 4.88 -1.38 4.18 -1.38 0.69776 0.139552 39 28 0 n/a n/a n/a n/a
R15 -0.92 5.15 -1.35 4.00 -1.13 1.14786 0.229572 4 0 0 n/a n/a n/a n/a
R16 -1.85 4.41 -0.63 3.98 -1.24 0.43017 0.086034 46 41 40 n/a n/a n/a n/a
R17 -1.09 4.87 -0.93 4.41 -1.01 0.46026 0.092052 33 43 38 n/a n/a n/a n/a
R18 -0.96 6.04 -0.93 4.74 -0.95 1.29377 0.258754 9 15 0 n/a n/a n/a n/a

Table C.2: Raw data
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Beginning–reading children: Stage 3

Subject Slp. /s/ Mn. /s/ Slp. /

�

/ Mn. /

�

/ Avg. slp. Sep. 1 Sep. 2 Bln. Seg. Del. Schonell RA BPVS AE
R1 -1.94 4.20 -1.94 4.20 -1.94 0 0 50 47 40 33 8;3 14 6;3
R2 -1.08 4.20 -0.56 3.77 -0.82 0.43513 0.087026 50 50 39 21 7;4 16 7;2
R3 -1.61 4.61 -1.90 4.30 -1.75 0.30888 0.061776 50 50 40 37 8;6 17 7;9
R4 -1.78 4.61 -1.78 4.61 -1.78 0 0 50 48 40 11 6;10 21 10;2
R5 -1.78 4.60 -1.86 4.40 -1.82 0.20862 0.041724 49 44 38 8 6;7 24 12;2
R6 -0.70 3.66 -0.76 3.43 -0.73 0.22476 0.044952 49 50 40 33 8;3 14 6;3
R7 -0.91 4.82 -0.48 4.22 -0.70 0.59477 0.118954 48 36 38 18 7;2 24 12;2
R8 -0.95 4.91 -0.55 4.89 -0.75 0.01459 0.002918 48 46 39 28 7;9 14 6;3
R9 -0.70 4.40 -1.94 4.20 -1.32 0.19784 0.039568 46 46 40 30 8;0 16 7;2
R10 -0.72 4.70 -0.85 4.57 -0.79 0.12847 0.025694 43 43 33 12 6;10 10 4;5
R11 -1.54 5.50 -1.62 4.99 -1.58 0.51216 0.102432 40 47 3 7 6;7 12 5;4
R12 -1.68 4.90 -1.98 4.10 -1.83 0.79868 0.159736 36 49 39 5 6;5 19 8;11
R13 -0.68 5.42 -1.32 4.54 -1.00 0.88040 0.176080 30 43 38 2 6;0 16 7;2
R14 -0.73 5.30 -1.01 4.70 -0.87 0.59514 0.119028 29 25 0 4 6;4 17 7;9
R15 -1.35 5.09 -1.02 4.57 -1.19 0.52817 0.105634 4 2 0 7 6;7 14 6;3
R16 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
R17 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
R18 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Table C.3: Raw data
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Reading–training–delayed children

Subject Slp. /s/ Mn. /s/ Slp. /

�

/ Mn. /

�

/ Avg. slp. Sep. 1 Sep. 2 Bln. Seg. Del. Schonell RA BPVS AE

N1 -1.10 5.29 -1.46 4.51 -1.28 0.78357 0.156714 43 40 39 59 10;2 21 10;2
N2 -1.49 5.32 -1.63 5.09 -1.56 0.22895 0.045790 29 35 0 1 6;0- 17 7;9
N3 -1.19 5.03 -0.66 3.98 -0.93 1.04454 0.208908 2 0 0 0 6;0- 16 7;2
N4 -0.75 4.61 -0.55 4.00 -0.65 0.61666 0.123332 3 0 0 0 6;0- 16 7;2
N5 -1.71 4.80 -0.67 3.72 -1.19 1.08143 0.216286 14 1 0 0 6;0- 16 7;2
N6 -0.94 5.00 -0.86 3.84 -0.90 1.16851 0.233702 0 0 0 0 6;0- 14 6;3
N7 -1.62 5.13 -1.78 4.61 -1.70 0.51457 0.102914 40 31 40 25 7;7 13 5;9
N8 -0.66 5.28 -0.89 4.65 -0.78 0.63672 0.127344 9 6 1 7 6;7 19 8;11

Adults

Subject Slp. /s/ Mn. /s/ Slp. /

�

/ Mn. /

�

/ Avg. slp. Sep. 1 Sep. 2 Bln. Seg. Del. Schonell RA BPVS AE

A1 -1.94 4.20 -1.98 4.10 -1.96 0.09588 0.019176 n/a n/a n/a n/a n/a n/a n/a
A2 -1.71 4.81 -1.61 4.61 -1.66 0.20108 0.040216 n/a n/a n/a n/a n/a n/a n/a
A3 -1.19 5.75 -1.63 5.09 -1.41 0.66249 0.132498 n/a n/a n/a n/a n/a n/a n/a
A4 -1.23 4.72 -1.51 4.70 -1.37 0.02000 0.004000 n/a n/a n/a n/a n/a n/a n/a
A5 -1.37 5.18 -1.58 5.30 -1.47 -0.11746 0.023492 n/a n/a n/a n/a n/a n/a n/a
A6 -1.08 4.74 -1.78 4.22 -1.43 0.51812 0.103624 n/a n/a n/a n/a n/a n/a n/a
A7 -1.71 4.81 -1.85 4.41 -1.78 0.39712 0.079424 n/a n/a n/a n/a n/a n/a n/a
A8 -1.50 5.69 -1.58 5.27 -1.54 0.41393 0.082786 n/a n/a n/a n/a n/a n/a n/a

Table C.4: Raw data
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Öhman, S. (1966), ‘Coarticulation in VCV utterances: Spectrographic measures’,
Journal of the Acoustical Society of America 39, 159–168.

Oney, B. & Goldman, S. R. (1984), ‘Recoding and comprehension skills in Turk-
ish and English: Effects of the regularity of grapheme–phoneme correspon-
dences’, Journal of Educational Psychology 76, 447–568.

205



Pardo, J. S. & Fowler, C. A. (1997), ‘Perceiving the causes of coarticulatory
acoustic variation: Consonant voicing and vowel pitch’, Perception & Psy-
chophysics 59(7), 1141–1152.

Parnell, M. M. & Amerman, J. D. (1978), ‘Maturational influences on perception
of coarticulatory effects’, Journal of Speech and Hearing Research 21, 682–701.

Polka, L. & Werker, J. F. (1994), ‘Developmental changes in perception of non–
native vowel contrasts’, Journal of Experimental Psychology: Human Perception
and Performance 20, 421–435.

Porpodas, C. D. (1989), The phonological factor in reading and speaking of
Greek, in P. G. Aaron & R. M. Joshi, eds, ‘Reading and Writing Disorders in
Different Orthographic Systems’, Kluwer Academic Publishers, Dordrecht,
pp. 177–190.

Raz, I. S. & Bryant, P. (1990), ‘Social background, phonological awareness and
children’s reading’, British Journal of Developmental Psychology 8, 209–225.

Read, C. A., Zhang, Y., Nie, H. & Ding, B. (1986), ‘The ability to manipulate
speech sounds depends on knowing alphabetic reading’, Cognition 24, 31–
44.

Reed, M. A. (1989), ‘Speech perception and the discrimination of brief auditory
cues in reading disabled children’, Journal of Experimental Child Psychology
48, 270–292.

Repp, B. H., Liberman, A. M., Eccardt, T. & Pesetsky, D. (1978), ‘Perceptual inte-
gration of acoustic cues for stop, fricative and affricate manner’, Journal of
Experimental Psychology: Human Perception and Performance 4, 621–637.

Rosen, S. & Howell, P. (1987), Auditory articulatory, and learning explanations of
categorical perception in speech, in S. Harnad, ed., ‘Categorical Perception:
The Groundwork of Cognition’, Cambridge University Press, pp. 113–160.

Schonell, F. & Goodacre, E. (1971), The Psychology and Teaching of Reading, Oliver
and Boyd, London.

Scottish Office Education Department (1991), ‘English Language 5–14’, Curricu-
lum and Assessment in Scotland: National Guidelines .

Shankweiler, D., Liberman, I. Y., Mark, L. S., Fowler, C. A. & Fischer, F. W. (1979),
‘The speech code and learning to read’, Journal of Experimental Psychology:
Human Learning and Memory 5, 531–545.

Shattuck-Huffnagel, S. (1983), Sublexical units and suprasegmental structure in
speech production, in P. F. MacNeilage, ed., ‘The Production of Speech’,
Springer–Verlag, New York, pp. 109–136.

Shattuck-Huffnagel, S. (1987), The role of word–onset consonants in speech plan-
ning: New evidence from speech error patterns, in E. Keller & M. Gopnik,

206



eds, ‘Motor and Sensory Processes of Language’, LEA, Hillsdale, NJ, pp. 17–
51.

Simon, C. & Fourcin, A. J. (1978), ‘Cross–language study of speech pattern learn-
ing’, Journal of the Acoustical Society of America 63(3), 925–935.

Snowling, M., Goulandris, N., Bowlby, M. & Howell, P. (1986), ‘Segmentation
and speech perception in relation to reading skill: A developmental analy-
sis’, Journal of Experimental Child Psychology 41, 468–507.

Stevens, K. & Blumstein, S. (1981), The search for invariant acoustic correlates
of phonetic features, in P. D. Eimas & J. L. Miller, eds, ‘Perspectives on the
Study of Speech’, LEA, Hillsdale, NJ, pp. 1–38.

Stevens, K. N. (1980), ‘Acoustic correlates of some phonetic categories’, Journal of
the Acoustical Society of America 68(3), 836–842.

Stevens, K. N. (1985), Evidence for the role of acoustic boundaries in the percep-
tion of speech sounds, in V. Fromkin, ed., ‘Phonetic Linguistics: Essays in
Honor of Peter Ladefoged’, Academic Press, New York.

Stevens, K. N. & Klatt, D. H. (1974), ‘Role of formant transitions in the voiced–
voiceless distinction for stops’, Journal of the Acoustical Society of America
55(3), 653–659.

Streeter, L. A. (1976), ‘Language perception of 2–month–old infants shows effects
of both innate mechanisms and experience’, Nature 259, 39–41.

Studdert-Kennedy, M. (1987), The phoneme as a perceptuomotor structure, in
A. Allport, D. G. MacKay, W. Prinz & E. Scheerer, eds, ‘Language Perception
and Production: Relationships Between Listening, Speaking, Reading and
Writing’, Academic Press, London, pp. 67–84.

Studdert-Kennedy, M. (1991), Language development from an evolutionary per-
spective, in N. A. Krasnegor, D. M. Rumbaugh, R. L. Schiefelbusch &
M. Studdert-Kennedy, eds, ‘Biological and Behavioral Determinants of Lan-
guage Development’, LEA, Hillsdale, NJ.

Sussman, H. M., Fruchter, D. & Cable, A. (1995), ‘Locus equations derived
from compensatory articulation’, Journal of the Acoustical Society of America
97, 3112–3124.

Sussman, H. M. & Shore, J. (1996), ‘Locus equations as phonetic descriptors of
consonantal place of articulation’, Perception & Psychophysics 58(6), 936–946.

Sussman, J. E. (1993), ‘Auditory processing in children’s speech perception: Re-
sults of selective adaptation and discrimination tasks’, Journal of Speech and
Hearing Research 36, 380–395.

207



Sussman, J. E. & Carney, A. E. (1989), ‘Effects of transition length on the percep-
tion of stop consonants by children and adults’, Journal of Speech and Hearing
Research 32(1), 151–160.

Tallal, P. (1980), ‘Auditory temporal perception, phonics and reading disabilities
in children’, Brain and Language 9, 182–198.

Tallal, P. & Peircy, M. (1973), ‘Developmental aphasia: Impaired rate of nonverbal
processing as a function of sensory modality’, Neuropsychologia 11, 389–395.

Tallal, P. & Peircy, M. (1975), ‘Developmental aphasia: The perception of brief
vowels and extended stop consonants’, Neuropsychologia 13, 69–74.

Tallal, P. & Stark, R. E. (1981), ‘Speech acoustic cue discrimination abilities of nor-
mally developing and language–impaired children’, Journal of the Acoustical
Society of America 69, 568–574.

Trehub, S. E. (1976), ‘The discrimination of foreign speech contrasts by infants
and adults’, Child Development 47, 466–472.

Treiman, R. & Baron, J. (1981), Segmental analysis ability: Development and re-
lation to reading ability, in T. G. Waller & G. E. McKinnon, eds, ‘Reading
Research: Advances in Theory and Practice’, Vol. 2, Academic Press, New
York, pp. 159–198.

Treiman, R. & Zukowski, A. (1991), Levels of phonological awareness, in S. S.
Brady & D. P. Shankweiler, eds, ‘Phonological Processes in Literacy: A Trib-
ute to Isabelle Y. Liberman’, LEA, Hillsdale, NJ, pp. 67–83.

Treiman, R. & Zukowski, A. (1996), ‘Children’s sensitivity to syllables, onsets,
rimes and phonemes’, Journal of Experimental Child Psychology 61, 193–215.

Tunmer, W. E. & Nesdale, A. R. (1982), ‘The effects of digraphs and pseudowords
on phonemic segmentation in young children’, Applied Psycholinguistics
3, 299–311.

Vihman, M. M. (1992), Early syllables and the construction of phonology, in C. A.
Ferguson, L. Menn & C. Stoel-Gammon, eds, ‘Phonological Development:
Models, Research Implications’, York Press, Timonium, MD, pp. 393–422.

Vihman, M. M. (1993), ‘Vocal motor schemes, variation and the production–
perception link’, Journal of Phonetics 21, 163–169.

Vihman, M. M. (1996), Phonological Development: The Origins of Language in the
Child, Blackwell, Oxford.

Vihman, M. M., Macken, M. A., Miller, R., Simmons, H. & Miller, J. (1985),
‘From babbling to speech: A reassessment of the continuity issue’, Language
67, 297–319.

Vihman, M. M. & Velleman, S. L. (1989), ‘Phonological reorganization: A case
study’, Language and Speech 32, 149–170.

208



Vihman, M. M., Velleman, S. L. & McCune, . (1994), How abstract is child phonol-
ogy? Towards an integration of linguistic and psychological approaches, in
M. Yava¸s, ed., ‘First and Second Language Acquisition’, Singular Publish-
ing Group, San Diego.

Wallach, L., Wallach, M. A., Dozier, M. G. & Kaplan, N. E. (1977), ‘Poor children
learning to read do not have trouble with auditory discrimination but do
have trouble with phoneme recognition’, Journal of Educational Psychology
69, 36–39.

Walley, A. C. & Carrell, T. D. (1983), ‘Onset spectra and formant transitions in the
adult’s and child’s perception of place of articulation in stop consonants’,
Journal of the Acoustical Society of America 73, 1011–1022.

Walley, A. C., Smith, L. B. & Jusczyk, P. W. (1986), ‘The role of phonemes and
syllables on the perceived similarity of speech sounds for children’, Menory
and Cognition 14(3), 220–229.

Wardrip-Fruin, C. (1982), ‘On the status of temporal cues to phonetic categories:
Preceding vowel duration as a cue to voicing in final stop consonants’, Jour-
nal of the Acoustical Society of America 71, 187–195.

Wardrip-Fruin, C. (1985), ‘The effect of signal degredation on the status of cues to
voicing in utterance–final stop consonants’, Journal of the Acoustical Society
of America 77(5), 1907–1912.

Wardrip-Fruin, C. & Peach, S. (1984), ‘Developmental aspects of the perception
of acoustic cues in determining the voicing feature of final stop consonants’,
Language and Speech 27(4), 367–379.

Watson, J. (1997), Sibilant–Vowel Coarticulation In The Perception Of Speech By
Children With Phonological Disorder, PhD thesis, Queen Margaret College,
Edinburgh.

Werker, J. F. & Lalonde, C. E. (1988), ‘Cross–language speech perception: Initial
capabilities and developmental change’, Developmental Psychology 24, 627–
683.

Werker, J. F. & Tees, R. C. (1984), ‘Cross–language speech perception: Evidence
for perceptual reorganization during the first year of life’, Infant Behaviour
and Development 7, 49–63.

Werker, J. F. & Tees, R. C. (1987), ‘Speech perception in severely disabled and
average reading children’, Canadian Journal of Psychology 41(1), 48–61.

Whalen, D. H. (1981), ‘Effects of vocalic formant transitions and vowel quality
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