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ABSTRACT

The AT&T text-to-speech (TTS) synthesis system has been

used as a framework for experimenting with a perceptually-
guided data-driven approach to speech synthesis, with pri-

mary focus on data-driven elements in the \back end". Sta-

tistical training techniques applied to a large corpus are used

to make decisions about predicted speech events and selected

speech inventory units. Our recent advances in automatic

phonetic and prosodic labeling and a new faster harmonic

plus noise model (HNM) and unit preselection implementa-

tions have signi�cantly improved TTS quality and speeded

up both development time and runtime.

1. INTRODUCTION

In recent years, TTS systems have become much more

natural sounding, mostly due to a wider acceptance of

corpus-driven unit-selection synthesis paradigms, pioneered
at ATR[4]. In a sense, the desire for more natural-sounding

synthetic voices that is driving this work was a natural ex-

tension of the earlier desire to achieve high intelligibility[5].

However, experience shows that working towards \perfec-

tion" becomes increasingly di�cult. Without this limiting

factor, one might be tempted to ask when the problem of
highly intelligible, highly natural sounding synthetic speech

might be solved so it can be used in lieu of voice recordings,

everywhere, for every conceivable purpose.

Clearly, passing the Turing Test in synthesis for all appli-

cations, for all kinds of input text, and with all desired

kinds of emotions expressed in the voice is not possible

today, but will be the topic of speech synthesis research

for several years to come. A more practical, short-term

approach is to start from the application side and ask

oneself what synthesis quality is \good enough" for a given
application and whether there is technology today that

might satisfy the requirements of that speci�c application.

For example, if all the application needs to do is synthesize
telephone numbers, close-to-perfect results can be achieved

[http://www.research.att.com/ mjm/cgi-bin/saynum]

using a simple yet elegant form of unit-selection syn-
thesis. For somewhat larger domains (e.g., DARPA

Communicator[17]), quality targets have been reached by
recording limited-domain corpora and exploiting linguistic

knowledge as to where to extract larger units, what prosodic
contexts to use for the recordings, etc. Finally, for a

reasonably \open" domain such as news or email reading,

it would be dishonest to claim that synthesis quality today
is high enough to pass for the \real thing". What we

can claim, however, is that synthesis quality today has

reached a level that now enables news and email reading
(and many other useful applications, many of which are

in telecommunications), all at an acceptable \customer

quality" (i.e., at a quality that customers are willing to
pay for). Many of these applications of speech synthesis

technology work in tandem with the most advanced speech

recognition and natural language technologies.

Figure 1: The Speech Circle

A somewhat generic example of applying highly advanced
speech technologies in a telecommunications setting is de-

picted in Figure 1. The customer, shown at the top center,



makes a voice request to an automated customer-care ap-
plication. The speech signal related to this request is ana-

lyzed by the Automatic Speech Recognition (ASR) subsys-

tem shown on the top right. The ASR system \decodes" the

words spoken and feeds these into the Spoken Language Un-

derstanding (SLU) component shown at the bottom right.

The task of the SLU component is to extract the meaning of

the words. Here, the words \I dialed a wrong number" imply

that the customer wants a billing credit. Next, the Dialog

Manager depicted in the bottom left determines the next ac-

tion the customer-care system should take (\determine the

correct number") and instructs the TTS component (shown

in the top left) to synthesize the question \What number did

you want to call?"

The attentive reader will have noticed that the TTS output

is \closest to the customer's ear". Experience shows that
there is a tendency for customers to weight TTS quality very

heavily in judging the quality of the overall voice-enabled

system. There is also the tendency to make this judgment
very quickly, after hearing just a few prompts. Therefore,

application developers and system integrators are somewhat

reluctant to adapt TTS technology, accepting only the high-
est quality systems.

In this paper, we will elaborate on some recent steps towards

improving the AT&T corpus-based TTS system. Section 2

summarizes our work on automatic phonetic segmentation.

Section 3 highlights our automatic prosodic labeling e�orts.

Both turned out to be critical tools that enabled growing the

corpus of our system quickly to a size necessary for high qual-

ity synthesis for email or news reading. Section 4 updates

our work towards a most e�cient Harmonic-Plus-Noise rep-

resentation of speech with an eye on achieving higher channel

density. Section 5 describes new unit preselection techniques

that dramatically speed up the TTS system implementation

without reducing synthesis quality. Finally, the Conclusions
section will reveal the combined e�ect of the quality improve-

ments we have achieved over the last two years.

2. AUTOMATIC SEGMENTATION

OF TTS INVENTORY

Automatic phonetic labeling of our speech corpora is impor-

tant in that it brings a step closer the goal of fully automatic

constructions of voices for synthesis. Perceptual evaluations

indicate that our most successful automatic segmentation

and alignment technique was able to achieve signi�cantly
higher TTS speech quality compared with a very carefully

manually labeled corpus[7].

2.1. Segmentation Experiment

A 90-minute acoustic inventory of speech read by a fe-

male professional speaker was segmented and aligned by
several di�erent methods. For the purposes of this dis-

cussion, we will focus on three of the methods: (1) ex-

pert hand segmentation (HS), and automatic segmentation

based on Hidden Markov Models (HMM) by means of ei-
ther (2) speaker-dependent monophone (SDM) models, or

(3) speaker-dependent cross-word triphone (CWT) models.

An experimental synthesis system was constructed with the

acoustic inventory segmented and aligned by each of the

above methods, and test stimuli were generated by a method

that used the exact segment boundaries determined by its re-

spective labeling method.

2.2. Results

Triphone segmentation modeled hand labelers' alignment de-

cisions signi�cantly better than monophone segmentation
did. Median displacement from the hand labeled segments

was 6 ms for CWT, and 11 ms for SDM. For segment classi-

�cation accuracy, CWT also outperformed SDM, with 95%
agreement with labelers' transcriptions, vs. 88% for SDM.

Objective evaluations like these, however, that measure error

with reference to hand labeled segments, implicitly assume
that manual segmentation is superior to automatic segmen-

tation. They do not really tell us what we want to know.

Since we were interested in segmentation for the purposes

of TTS, we de�ned success perceptually by way of subjec-

tive scores in a formal listening test. We compared the per-

ceived synthesis quality of experimental TTS systems with

either manually labeled or automatically labeled acoustic in-

ventories. Forty-one listeners rated the speech quality of

30 Harvard phonetically balanced test sentences on a scale

from 1(Bad) to 5(Excellent). The hand segmented system
scored signi�cantly higher than the monophone models, but

it scored reliably lower than the cross-word triphone tech-

niques. For more information about this study, see [7].

Figure 2 shows the results from three key conditions in

the listening test: the speaker dependent monophone HMM

model (SDM), the hand segmented inventory (HS), and the

speaker dependent cross word triphone HMM model (CWT).

3. AUTOMATIC PROSODY

LABELING FOR UNIT

SELECTION

On the basis of two studies, one on the reliability of man-

ual prosodic labeling, and a second examining the percep-

tual prominence of various prosodic events, we identi�ed

and focused our automatic training e�orts on a simple set of
prosodic events that are both reliably identi�ed and percep-

tually salient. Automatic prosodic labeling not only saved

us an enormous amount of time, e�ort, and expense, but lis-
tening tests showed that it also gave us signi�cantly better

TTS quality than either the previous system or one using

manual labels.
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Figure 2: Mean Opinion Scores with standard error bars

for three segmentation methods.

3.1. Transcriber Reliability and Percep-

tual Prominence

One of our goals was to automate the lengthy process of

prosodically labeling our TTS inventory. However, reliability

among experienced labelers[14] for some ToBI[9] (Tones and

Break Indices) categories was too low for successful training

of an automatic prosody recognizer using the full EToBI (En-

glish ToBI) model. Transcriber agreement was high (> 50%)
for only two to four of eight pitch accent types (which mark

syllable prominence) and for three of nine edge tone types

(which mark prosodic phrase boundaries). Inter-transcriber
reliability results[14], together with results of a study on per-

ceptual judgments of syllable prominence and phrase bound-
aries, provided guidelines for developing a prosody label-

ing system for TTS that is simpler and more robust than

standard EToBI. ToBI labels were collapsed into a \ToBI
Lite" model: Bi-tonal pitch accents (L+H*, L*+H, and their

downstepped variants) were mapped to ** (the perceptu-

ally most prominent category), and other pitch accents were

mapped to * (moderate perceptual prominence), and only

edge tones marking major phrases were mapped to % (reli-

ably perceived phrase boundaries). This ToBI Lite system
was used successfully for automatic labeling of the acoustic

inventory and in prosodically enriched unit selection.

3.2. ToBI Lite Recognition

The input to the recognizer included automatic segmentation

results and acoustic parameterization. The automatic label-
ing algorithm[15] used to label the acoustic inventory uti-

lized a decision-tree based VQ that is designed jointly with a

HMM in which a single model state corresponds to each pos-
sible label. In this case, there were six possible labels (corre-

sponding to the three levels of prominence on phrasal bound-

aries and on non-boundaries) and the underlying HMM was
thus a fully-connected, 6-state HMM.

Twenty-four linguistically motivated acoustic features were

derived from the waveform and segmentation, and extracted

at the syllable level. Some features were binary (e.g. stress,
word-�nal, word-initial, schwa) and others were continuous

(e.g. normalized duration, maximum/average pitch ratio).

The desired output was perceptual labels for prominence
and phrasing for each syllable. Manually transcribed EToBI

labels from a training database of 860 utterances were col-
lapsed into ToBI Lite categories and used for training.

Maximum Mutual Information training of the VQ decision

tree was done jointly with training of the HMM using the

iterative method described by Wightman and Ostendorf[15],

resulting a Maximum Likelihood design for the overall label-
ing model.

Accuracy on an independent test set (using collapsed EToBI

labels as the reference) was quite high: 84% of non-accented

syllables and 85% of ** syllables were correctly recognized,
and phrase boundaries were correctly recognized 93% of the

time, with a false alarm rate of 2.0%. Very similar accuracy
measures were obtained when perceptual ToBI Lite judg-

ments were used as the reference: 81% of non-prominent syl-

lables and 85% of ** syllables were correctly recognized, and
phrase boundary accuracy was 93%, with 1.6% false alarms.

We applied ToBI Lite to the process of unit selection in TTS,

and perceptually evaluated the results.

3.3. Unit Selection and Prosody

Unit selection for synthesis is determined by a Viterbi search

for the lowest cost path through a network of possible acous-
tic inventory units. The cost function is de�ned as the sum

of target costs and concatenation costs. Concatenation costs

estimate how smoothly the units in a sequence are perceived
to join together. Target cost estimates the perceptual dis-

tance of a speci�c inventory unit from the desired target.

Units are described by a feature vector, with features such
as duration and f0. For each target unit in the utterance

to be synthesized, appropriate feature values are predicted.

The target cost is calculated as the sum of weighted feature
vector di�erences between the inventory unit and the target

unit. Feature weights are trained during the creation of a

TTS voice to optimize the mapping from feature vector dif-
ferences between units to cepstral distances between units

in the inventory. In the baseline TTS system used for this

experiment, the only features related to prosody were dura-

tion, f0, and syllable stress. These features are prosodically

ambiguous, because there is a one-to-many mapping from

them to prosodic structure.



3.4. Perceptual Test Applying ToBI Lite

to Unit Selection

A formal listening test was conducted to determine whether

or not TTS quality improved from the inclusion of prosodic
category features in target cost estimates. The test com-

pared subjective quality ratings for several variations of an

experimental AT&T unit selection TTS system that di�ered
only in their method of prosodic labeling of the inventory or

their use of prosody for unit selection.
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Figure 3: Mean Opinion Scores with standard error bars

for three TTS conditions. Conditions whose ratings were

not signi�cantly di�erent from each other are indicated by

the same horizontal line above the bars.

Figure 3 shows that the TTS system with automatic ToBI

Lite labeling (ATL) was judged superior to both the base-
line system (BL) and to ToBI Lite mappings from manual

ToBI labeling (HTL). The results indicate that the inclusion

of very simple but robust and perceptually salient prosodic
classi�cations in features used for unit selection signi�cantly

improved perceived TTS quality. Somewhat surprisingly,

automatic prosodic labeling resulted in signi�cantly higher
opinion scores than manual labeling, probably because of

its greater consistency. Automation of prosodic labeling also

provides a tremendous practical advantage through reducing
by several orders of magnitude the time needed to develop

a new synthetic voice. See [14] [16] for more information on

this work.

4. REFINEMENTS TO HARMONIC

PLUS NOISE MODEL (HNM) FOR

SIGNAL PROCESSING

The system now contains a very low complexity implemen-
tation of HNM. The cost is low enough that it does not o�-

set the advantages of coding speech data for small-footprint

con�gurations, nor diminish the attractiveness of applying
at least limited prosody modi�cation to the speech signal.

4.1. HNM

HNM is based on a harmonic plus noise representation of

the speech signal. The spectrum is divided into two bands.
The time-varying maximum voiced frequency determines the

limit between the two bands. In the lower band, the signal

is represented solely by harmonically related sine waves with
slowly varying amplitudes, and frequencies. The upper band,

which contains the noise part, is modeled by an AR model

and is modulated by a time-domain amplitude envelope. The
estimation of HNM parameters is an o�-line process where a

segmented speech database is analyzed and the HNM param-

eters (the harmonic amplitudes, the harmonic phases, and
the parameters of the AR model) are estimated and saved

into an inventory �le [10]. In order to remove linear phase

mismatches, phase spectra from voiced speech frames are
corrected based on the Center of Gravity technique[11]. At

synthesis time, HNM parameters are concatenated and the

prosody of some units may be altered in order to match the
desired prosody. In case of pitch modi�cation, amplitudes

and phases are estimated at the new harmonics [13]. Next,

HNM parameters have to be smoothed around concatenation
points (this mainly means linear interpolation of harmonic

amplitudes [10]). The last step is the generation of the syn-

thetic signal using the stream of (potentially) modi�ed HNM

parameters. Synthesis is performed in a pitch-synchronous

way (without any use of glottal closure instants) using an

overlap and add (OLA) process. In previous implementa-

tions of HNM, the noise part was obtained by �ltering a

unit-variance white Gaussian noise through a normalized all-

pole �lter. However, the use of high pass �lters increases the

complexity of the HNM module. Therefore, we have decided

to simplify the synthesis structure by generating the noise

part as a sum of harmonics with random phases [8]. For

unvoiced frames the fundamental frequency has been set to

100 Hz, while for voiced frames we have used the estimated

fundamental frequency for both bands; for the lower band
(periodic part), and for the upper band (non-periodic part).

This way an equation of sum of harmonics describes the en-

tire spectrum for both unvoiced and voiced frames and for
periodic and non-periodic parts.

Therefore, in order to reduce the HNM complexity we have

to �nd a fast way to generate and add K harmonics, where K
may be a large number. In this new implementation of HNM,

we suggest to transform the phase spectrum into phase de-

lays and then generate the speech signal as a sum of Delayed
Multi-Resampled Cosine functions (DMRC method)[12].

The phase delay, tk, of the kth harmonic is de�ned as:

tk = ��(k !0)=k !0 (1)

where �(k !0) is the measured phase at k !0 frequency.

Phase delays are expressed in samples and therefore are less
sensitive to quantization errors. Transforming phase spec-

trum into phase delays allows us to write a sum of harmonics



as follows:

h(t) =

KX

k=1

AkX([t k � tk]modT ) (2)

where mod stands for modulo, T is the integer pitch period

in samples, and X denotes the cosine function:

X(t) = cos(t !0); t = 0; � � � ; T � 1 (3)

Eq.2 shows that h(t) may be generated in a simple way.

First, we compute the signal X(t) (actually, X(t) is precom-
puted as there is a limited possible number of integer pitch

periods and it is just loaded from the disk during the genera-

tion of the harmonic signal), and then for every k harmonic,
X(t) is delayed by tk, and down-sampled by a factor k.

DMRC was found to be the fastest of all of the other tech-

niques we have used before (e.g., Inverse Fast Fourier Trans-

form, Recurrence Relations for trigonometric functions) al-
lowing a reduction of the complexity of the current HNM

by 95%. When this new way to synthesize harmonic signals

was included into the HNM synthesis module, HNM was
found to run 20 times faster than the original implementa-

tion. Moreover, informal listening tests (8 listeners) showed

that the synthetic signal obtained using the DMRC method

was superior in quality to the one obtained with the version

of HNM used so far.

5. UNIT PRESELECTION

Unit selection synthesis is computationally expensive. Con-

sequently we have focused some attention on reducing this
complexity, while at the same time maintaining synthesis

quality.

There has been previous work on reducing the computa-

tional complexity of unit selection, focused on two areas.

Some research[2],[6] concentrated on �nding ways to reduce

the choice of candidates for synthesis by using decision tree

methods. Other work[1] tackled the problem of join cost cal-
culations. In the case of [1], a complexity reduction of at

least a factor of four in the unit selection was reported, for

no signi�cant decrease in synthesis quality.

The focus of our new work has been on preselection where,

within the standard process of selecting units from a large,

labeled, speech database, a simple and fast cost calculation is

performed over all the possible unit candidates, and the top

n candidates are selected. These n are then considered as

candidates for full unit selection and are examined in detail.

While it turns out to be prohibitive to compute o�-line all

possible phone sequence information needed for preselection,
it is possible to compute sets of units that will be considered

in groupings of related contexts. The rationale is that nearest

neighbors have a greater in
uence in assessing context costs
than more distant units, and consequently it makes sense to

constructs sets of units suitable for synthesis based on just

nearest neighbor information. This, in contrast to the naive
approach, is of practical value.

This precomputation of sets means that at unit selection

time there are fewer units to be considered as candidates

for synthesis and so the computation is simpli�ed. Because
all possible combinations are precomputed and no possible

candidate rejected, the behavior of the system, in terms of

quality, is identical to the system it replaces.

The same idea can also be applied in combination with pre-

calculated join costs as described in [1]. The principle is

the same, but the only units to be considered are those that

appear when a large test set is synthesized.

The two preselection methods speed up unit selection con-
siderably. The results are described in more detail in [3]. A

formal listening test was conducted to compare subjective

quality ratings of speech synthesized using the preselection
methods. The results indicated no statistically reliable dif-

ference between the preselection version and standard unit

selection TTS.

6. CONCLUSIONS

Figure 4 illustrates the e�ect on perceived quality of the com-

bined improvements discussed above to the AT&T NextGen

TTS system compared to the December 1998 version of the

system.
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Figure 4: Mean Opinion Scores with standard error bars
for the versions of AT&T NextGen TTS \Before" (December

1998) and \After" the improvements described in this paper.

Our segmental and prosodic automatic labeling techniques

have not only given us higher synthetic speech quality for a

given data base, but because of their enormous time-savings,
they have given us the feasibility of enlarging the speech in-

ventory available for unit selection synthesis. Our new faster



HNM implementation allows us to do low complexity signal
manipulation { prosodic modi�cation and signal coding. The

combination of all these developments has led to a very no-

ticeable improvement in TTS quality. The unit preselection

work has speeded up the NextGen system appreciably with

no adverse e�ects on speech quality.
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