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This paper presents a new way of generating synthetic speech waveforms from a lin-
guistic description. The algorithm is presented as a proposed solution to the speech gen-
eration problem in a concept-to-speech system. Off-line, a database of recorded speech is
annotated so as to produce a phonological tree for each sentence in that database. Synthe-
sis is performed by generating a phonological tree called the target tree, and searching the
database of trees to find nodes which are the same in both trees. A search strategy using
target and concatenation costs is then used to find the optimal sequence of units for the
target sentence. This paper explains this algorithm, compares it to existing algorithms and
concludes with a discussion of future directions.
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1. Introduction

The term text-to-speech (TTS) synthesis is used to describe the process of converting given
raw text into synthetic speech. Concept-to-speech (CTS) is a term often used for speech
synthesis where the input is not text, but rather a machine generated message. We can think
of a TTS system as comprising two main components: text analysis and speech generation.
The text analysis component has to resolve the ambiguities inherent in written text and
produce a clean linguistic representation of the sentence to be spoken, e.g. appropriate
word stress. In CTS, the situation is very different. There is no prior input text as such,
rather a natural language generation (NLG) system generates some text from scratch. In
one of the domains used for this work (see section 3), the task is a intelligent museum
guide in which descriptions of museum exhibits are generated dynamically according to
the interests of the visitor, taking into account the context of what the visitor has already
seen. An utterance is generated by the NLG system in response to a query (e.g. “tell me
more about object X”) by using a database of exhibit information. The output of the NLG
system is then fed into the synthesizer which converts this into speech.

Thus in the CTS case, there is no text ambiguity: the generator can annotate the text
it it produces with the information needed to guide synthesis. For instance when the word
“project” is used, the system knows whether it is a noun or a verb whereas a TTS system
has to guess this. Information which is virtually impossible to resolve in TTS can be used
quite easily in CTS; as well as word stress, ambiguities arise in many other areas including
pronunciation, phrasing and prosody. In general CTS leads to a much richer more reliable
linguistic input to the synthesizer. Figure 1 shows a how TTS and CTS systems have differ-
ent input components, but can use the same speech generation component. NLG systems
vary in sophistication, ranging from systems which use simple templates to systems which
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Figure 1. Text to speech and Concept to speech

generate text using sophisticated linguistic models. Depending on the complexity of the
domain, many different approaches are used.

In speech generation, on the other hand, the choice is between two quite distinct ap-
proaches. In slot and filler synthesis systems, a carrier phrase such as “the train at platform
X is now departing for Y” has its slots X and Y replaced by a set of pre-recorded words.
While the number of possible messages may be large, it is finite. This sort of system is
often contrasted with “genuine” speech synthesis techniques such as diphone synthesis in
which arbitrary messages of any sort can be synthesized. The advantages of each system
are obvious - because the slot and filler system uses long carrier phrases with appropriate
prosody and naturally recorded words it can often sound excellent - however it can only
speak the range of messages for which it has recordings. In contrast, while diphone synthe-
sis is capable of generating the speech for any input, its quality is considerably worse. The
goal of the research described here has been to bridge the gap between these two different
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synthesis approaches and build build a synthesis solution that combines the high quality of
the slot and filler approach with the flexibility of diphone synthesis.

2. Domain-Specific Synthesis

It is generally accepted in the speech synthesis field that unconstrained text-to-speech syn-
thesis is the only goal of the field. The culture of processing unconstrained input has come
about because even early systems were quite capable of producing reasonably intelligible
speech from unconstrained input. This is possible in TTS because lexicons and letter to
sound rules can convert any letter sequence into a phone sequence. This phone sequence
can then be converted into sound using rule or diphone based waveform generation. Of
course the quality of the resulting speech is much less natural than human speech, but the
fact that even basic systems could handle unconstrained input led researchers to concen-
trate on improving the quality of speech for this unconstrained input task.

This situation is somewhat unusual in speech and language processing. For example,
in speech recognition, there has been a very noticeable development over the last 30 years,
from single-speaker, isolated word, low vocabulary tasks to speaker-independent large vo-
cabulary continuous speech tasks. Roughly speaking, the accuracy of speech recognisers
over the last 30 years hasn’t changed much as error-rates are usually quoted as being less
that 10%. However progress has certainly been made because the tasks have been getting
steadily harder.

The question is therefore, could more progress be made in synthesis by first mak-
ing the task easy enough so that more or less perfect synthesis is possible, and then
steadily increasing the difficulty of the task until perfect synthesis for unconstrained in-
put is achieved? Yi and Glass (1998) have summed up this situation by use of the graph
shown in figure 2. The two previously mentioned speech output methods, unconstrained
TTS and slot and filler synthesis are shown on the graph as being examples of the two
approaches.

This paper presents Phonological Structure Matching, a new algorithm that takes ap-
proach B. This algorithm is domain-specific in that it is geared towards producing high
performance in a limited domain, just as with a speech recogniser. In considering the prob-
lem of domain-specific synthesis, some aims and principles were set out to guide the devel-
opment of this type of system. It was important that the main limitations of slot-and-filler
synthesis were removed. While the vocabulary of domain-specific systems will certainly be
specialised, it is simply too prohibitive a restriction to have a fixed vocabulary. Again, with
regard to the grammar, more flexibility is needed than with the slot-and-filler approach. It
was also considered important to build a system that was automatically trainable/adaptable
to new domains. In other words a general technique for domain-specific synthesis was the
requirement, rather than a solution for a particular domain.

The proposed solution works for specific domains not by having a pre-determined vo-
cabulary or grammar, but rather by using pre-recorded domain-specific language data to
train the system. In other words, the idea is to bias the synthesizer’s viewpoint of what
language is to cover the words and constructions found the in the given domain.
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Figure 2. Different approaches to synthesis development, adapted from Yi and Glass (1998). In ap-
proach A, unconstrained input is the achieved first and then quality is improved. In approach B,
near-perfect quality is achieved first and then flexibility is improved

3. Domain Descriptions

(a) ILEX Museum Guide

ILEX is a natural language generation system built to serve as a museum guide. It uses
a database of museum exhibits which contains a variety of information about each exhibit.
Rather than produce a canned description of a given exhibit, ILEX is intelligent in that it
delivers unique descriptions of objects depending on a number of contextual factors. ILEX
keeps track of which exhibits have already been seen, and hence when viewing a room of
Roman swords, the system only gives background information for the first exhibit. As the
visitor moves around the exhibits, only the particular details of each exhibit are explained,
and these are often contrasted with previous exhibits.

(b) Jupiter Weather Information System

The Jupiter system is a weather information system developed by the Spoken Lan-
guage Systems group at MIT. In response to spoken user queries, the system finds web
based weather information systems, analyses their content and generates a suitable reply.
For this domain, we used 200 typical messages from the system as training data. Within
these 200 sentences, there were about 600 unique words. This domain is interesting in that
although weather reports are often formulaic, it is still the case that new constructions are
occasionally used. The majority of vocabulary items are place names, and while the train-
ing data covers the names of the most frequently requested places, new names often occur,
and hence the synthesis component must be able to handle this.
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Figure 3. Fragment of a phonological tree

4. Speech Data

The algorithm uses pre-recorded speech from each domain. 62 paragraphs of item descrip-
tions were used for the ILEX domain. The labelled speech contains over 6000 words and
22000 phones. The Jupiter data comprises 200 weather reports, making about 6000 words
and 17000 phones. In addition to the domain-specific data, 450 Timit style sentences [?]
were also used. The utterances were recorded from a single speaker and hand labelled for
phone boundaries. The syntactic structure of each sentence was also labelled by hand. A
held out set for each domain was used for testing. In the Jupiter domain, 5% of the test set
words were not in the training data. In the ILEX domain, this figure was 25%.

5. Basic Phonological Structure Matching

(a) Phonological Trees

The phonological structure matching (PSM) algorithm is based on concatenating ap-
propriate arbitrary sized units of speech from a database. More specifically, nodes in a
phonological target tree generated by the NLG system are matched against nodes in a set
of phonological database trees in order to find the biggest units of speech in the database
to concatenate.

The database preparation stage is performed off-line and involves building a phono-
logical tree for each utterance. In the current setup, the phonological tree is constructed
by combining the metrical tree for the sentence with the sub-syllabic phonological struc-
ture. Metrical trees are binary branching trees whose nodes have relative metrical strength
relations. If a node is labelled strong, its sister will be weak and vice versa. The above-
word part of the metrical tree is formed by first copying the syntax structure generated
by the NLG system and then assigning strong and weak nodes according to the nuclear
stress rule and other conventions described in Liberman (1975). Below the word, a binary
branching tree is formed between the words and syllables, again according to conventions
laid down in Liberman (1975). Below the syllable, a traditional onset-rhyme structure is
formed which links the syllables to the phones. The result is a single tree which completely
describes the phonology of the utterance from phones to the sentence node. Because the
timings of the phone boundaries have been marked (by hand) it is an easy matter to deter-
mine the start and stop time of any constituent in the tree. An example of part of a tree is
shown in figure 3.
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At run-time, the first task is to produce a target tree representing the phonological
structure of the utterance we want to synthesize. This is formed in a similar way to the
database trees. The syntactic tree and words come from the output of the NLG, which is
then mapped into a metrical tree as above. The sub-word part of the tree is created by using
a lexicon and the metrical and sub-syllabic structure rules. This tree is called the target tree
as it represents the phonological structure of the utterance we wish to synthesize.

(b) Finding Candidates

Given the target tree and database trees, the next task is to match nodes in the target
tree with those in the database. As each node in the database tree represents a section of
recorded speech waveform, the idea is that by finding nodes in the database trees which
match the target tree, we are effectively finding suitably stretches of waveform that can be
used in actual synthesis.

First the root node of the target tree is set to be the current node. The database of trees
is then searched to see if any node matches the current node. A match is taken to be the
minimum requirement for a potential synthesis unit and occurs when the trees beneath the
current and database node match with regard to structure, and and have the same terminal
nodes (phones). At this stage, other information (such as strong/weak metrical information)
is ignored. Each match is added to a list of candidates for the current node. If no matches
are found, each daughter of the current node is set to be the current node and the process is
repeated. In the worst case, the current node will be a terminal phone node, and there will
definitely be matches to that as all phones are present in the database. The result of this is
a target tree which has some of its nodes labelled as candidate nodes.

Candidates can be any sort of linguistic unit including phones, syllables, words, phrases
and even whole sentences. The top-down search algorithm is designed to pick candidates
high up in the database tree, which naturally correspond to longer units. There are several
benefits in having longer units. In any type of concatenative synthesis, joins between units
can cause distortion, and so reducing the number of joins should help improve the quality
of the speech. Associated with this is the basic fact that in concatenative synthesis, “the
whole is greater than the sum of the parts” with regard to the nature of phone sequences.
For example, while the phonological representation of the word “tests” may be /t e s t
s/, the co-articulation of the /s t s/ sequence is extremely complex, and hence it is very
hard to decide where the boundaries between the phones occur. Because of this, a single
unit which contains this sequence should sound substantially better than a set of units
which follow the phonological pattern. As the tree matching algorithm chooses the largest
possible units, there is a good chance it would find a match to the word “tests” and if not,
at least a consonant cluster matching the /s t s/ sequence (e.g. from the word “rests”).

For higher level units, other factors make longer units more preferable to concatenated
sequences of shorter units. Natural rhythm is one of the hardest properties of speech to
reproduce syntheticly, but by using units which span several syllables, rhythm effects can
be implicitly modelled within the unit.

The tree matching algorithm has significant consequences for domain specific synthe-
sis. While the utterances in the museum domain can’t be generated by a simple slot and
filler mechanisms, it is the case that certain stock phrases such as “this is an example”,
“in the sixth century” or “collector’s item” occur quite often. If the database has a large
amount of domain-specific data, these units will naturally be found frequently, leading to
longer overall units on average.

� ���#���"� 
��� �	�����#�#
�� �#��� �������!�!�	�"��
"���



Concept-to-Speech Synthesis by Phonological Structure Matching 7

(a)

(b)

Figure 4. Target tree with candidate nodes at different depths. The candidates at each node form a
candidate list, shown at the bottom. Each candidate relates to a different section of speech waveform
of the speaker saying the information described by the node.

(c) Selecting Candidates

The target tree contains multiple candidates and from these the single best set of units
needs to be chosen. Although the candidate units are of arbitrary length, the tree struc-
ture ensures that there is no overlap between units, which can be a potential problem in
non-uniform unit synthesis. Figure 4 shows an example target tree in which the nodes con-
taining candidates are drawn in black. Although node (a) may have units which are higher
level and longer than those for node (b), all the candidates for node (a) end at the same
point and hence there is no overlap between these and the node (b) candidates. Because of
this, a linear list containing the set of units for each candidate node can be created. This
list can be thought of as being made up from a number of slots of arbitrary length, where
each slot contains multiple candidates. This is also shown in figure 4.

(i) Target and Concatenation Costs

The basic tree matching algorithm only performs a rough match between a target node
and a node in the database, and hence there are still substantial differences between the
various candidate units for a node. A more detailed match is now used to see how well the
candidate units match the target node. This match looks at factors such as the strong/weak
values in the tree and the position of the node in the tree (phrase-final units sound quite dif-
ferent from phrase initial, etc). According to this measure, each candidate unit is assigned
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a target cost which represents the distance between the target and candidate unit (a cost of
zero indicates a perfect match).

It is also possible to measure how well two candidate units join together. This is known
as the concatenation cost. In the PSM algorithm, the concatenation cost is a calculated us-
ing phonological and acoustic information. Each candidate unit for a given target node will
have exactly the same phone sequence at its terminal nodes. But the phones immediately
preceding and following the unit may differ from candidate to candidate. Experience with
diphone synthesis has shown that unit context is important in ensuring smoothing joins.
For example if we have a phone /X/ in the context of phones /b/ and /c/, /b X c/, this will
join smoothly to a phone /c/ in the previous context of /X/, e.g. Xcd. Therefore a smooth
join can be expected between a unit /X/ followed by a unit /Y/ if the phone immediately
preceding /Y/ in the original speech and phone immediately following /X/ in the original
speech are the same. In diphone synthesis, it is also preferable to join phones in the middles
rather than at their edges. Given these basic observations, concatenation cost is calculated
by a mixture of phonological information (whether the units are in the appropriate context,
thus allowing joining in middles) and acoustic information, calculated by measuring the
Mahalanobis distance

�
between the acoustic features of each frame. Mel-scaled cepstra

[?], F0 and energy are used for the acoustic features.

(ii) Search and Concatenation

Selecting the best set of units is a compromise between choosing the units with the
lowest target and concatenation cost. As each unit affects the concatenation cost of the
next candidate, the selection of candidates can’t be done locally but rather has to be done
for the whole utterance. This is achieved by using the Viterbi algorithm. The candidate
list is turned into a lattice by making a path between each possible pair of nodes at a the
boundary between two candidate slots. The Viterbi algorithm moves left to right through
this, and in doing so it calculates a partial path cost, which is the sum of the target and
concatenation costs of units in a given path. The Viterbi algorithm works by making use
of the fact that for a given unit, only the lowest cost path up to that point need be used,
any other paths will never be in the lowest overall path for the sentence. So only the single
best path for each candidate unit need be kept at each point. Once the search terminates,
the units forming the path with the lowest overall cost is selected.

Given a set of candidate units, the final waveform is constructed by extracting the
waveforms corresponding to the chosen units and concatenating them.

6. Analysis of the Phonological Structure Matching Algorithm

As diphone synthesis and acoustic/phonetic unit selection are among the most popular
algorithms currently being used, it is useful to discuss how they perform against the PSM
algorithm.

In both diphone and acoustic/phonetic unit selection synthesis, the waveform genera-
tion module shown in figure 1 often comprises of three phonetic components which then
feed into the unit synthesis component. This is shown in figure 5. These components take
the input phonological representation and use rules or other algorithms to generate a pho-
netic phone sequence, a duration in seconds for each phone and a F0 contour. The phonetic

�
An extension of simple Euclidean in which each component of the vector is normalised with respect to its

variance.
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Figure 5. Standard approach to synthesis where a phonological representation is mapped into a
phonetic one before selection takes place.

phone sequence is meant to represent the sequence of phones actually observable in the
waveform. For example, phone reduction, deletion and assimilation are represented.

The output of these components forms a phonetic representation which is then fed to the
unit synthesis module. If this is a standard diphone synthesizer, the diphones for the phone
sequence are found in the unit database and concatenated. This concatenated waveform
will have the F0 and duration of the diphones as they were recorded, and this is unlikely
to match the phonetic specification of pitch and duration produced by the F0 and duration
generation module. Signal processing techniques such as PSOLA (Moulines & Charpen-
tier, 1990) and residual excited LPC (Hunt et. al, 1989) are therefore used to change the F0
and duration of the concatenated waveform to match the phonetic specification.

Diphone synthesis has two main problems. Firstly the signal processing introduces dis-
tortion. Secondly, pitch and duration aren’t the only factors which make two tokens of
the same phone sound different. For example, phones in stressed syllables are different
from ones in unstressed syllables, and phones in phrase initial position sound different
from ones in unstressed position. A proposed solution to these problems has been termed
unit-selection and a number of systems can be said to belong to this framework (Sagisaka
et al, 1992), (Hunt & Black, 1996), (Campbell & Black, 1996), (Donovan & Woodland,
1995), (Breen & Jackson, 1998), (Black & Taylor, 1997), (Conkie, 1999), (Cronk & Ma-
con, 1998).

While the details differ, the basic principle behind unit-selection is to have multiple
examples of each type of unit (e.g. diphones) which have different inherent pitch and dura-
tion. Instead of selecting just on phone identity as in diphone synthesis, pitch and duration
are also taken into account. The result is a waveform whose pitch and duration match the
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phonetic specification more closely than with diphone synthesis. From here, systems differ
as to whether or not they use signal processing. Those that do usually only have to make
small adjustments, and so the distortion that is introduced is less than with diphone syn-
thesis. Other systems abandon the use of signal processing altogether, in the hope that the
prosody of the concatenated waveform is close enough to the specified prosody.

The PSM algorithm can be viewed as a type of unit selection algorithm in that it selects
from multiple units of the same basic type. Indeed the use of the Viterbi algorithm to find
the path which best optimises target and concatenation cost is taken directly from the Hunt
and Black unit selection algorithm (Hunt & Black, 1996). The major difference between
the PSM algorithm and the others is that PSM selects on phonological criteria while the
others select on phonetic and acoustic criteria. With regard to figure 5 the PSM algorithm
can be viewed as simply moving the selection criteria up a level in the linguistic hierarchy:
the modules in the dotted box are deleted and selection is performed on the phonological
representations directly.

The phonetic specification modules can be seen as a process which transforms the
phonological specification into a phonetic one. For example, phonological information
such as phrase finality is manifested in the phonetics by the relevant phones having a longer
duration. There are three main reasons why we have to chosen to use phonological infor-
mation. Firstly, a phonological representation is more compact than a phonetic one, and
this reduces the size of the feature space used in selection. As the phonetic and phonolog-
ical representations contain the same information (one is just the transform of the other),
no loss of power or information is involved in making this decision. Secondly, the phonetic
specification modules often make errors. If their output is used for selection, matches will
be made to inappropriate targets. In speech synthesis systems, errors generally multiply
throughout processing, so while the phonological representation may also contain errors, it
will generally have the same or fewer errors than the phonetic representation. Finally, these
modules take a somewhat crude view of the relationship between phonology and phonet-
ics. For example, all assimilation is performed at a symbolic phone level. In the previously
mentioned examples of the word “tests”, the post lexical rules have a choice between pro-
ducing /t e s t s/, /t e s/ or /t e s s/ etc. In fact, none of these phonetic sequences really
describes the complexities of articulation involved in pronunciation of this word. But by
simply saying select a unit whose underlying phonology is /t e s t s/, the synthesizer doesn’t
have to worry about the exact nature of the surface phone sequence.

7. Back-off and Signal Processing

As previously mentioned, unit selection systems fall into two groups, those which use sig-
nal processing and those which don’t. While it has been interesting to see how far one can
get without signal processing, there is little chance this can really succeed due to the com-
binatorics of units. For illustration purposes consider the variation required of a single unit.
In normal male speech, F0 can vary from about 80Hz to 270Hz, and taking a 10Hz quanti-
sation as being adequate, that means we need at least 20 units of the same type to represent
pitch variation. But the pitch is not constant throughout a unit, and so we need units for
rising and falling F0 contours. Assuming this can be modelled by begining, middle and
end values, the number of possible units to model all pitch variation is 20x20x20 = 8000.
Duration variation is similar and we might need 15 units to cover this variation (from say
50ms to 200ms in 10ms steps). Given that the smallest practical units are diphones (about
2000 exist in English), we would therefore need 8000x15x2000 = 240,000,000 units, cor-
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Figure 6. PSM combined with signal processing

responding to hundreds of years of recorded speech. That said, it is still sometimes the case
that the distortion caused by signal processing is deemed to be worse than the speech hav-
ing the wrong prosody. However, as signal processing algorithms improve through further
research, the balance will swing back decidedly in their favour.

In acoustic/phonetic unit selection, the application of signal processing is straightfor-
ward - the signal processing is used to make the concatenated waveform’s prosody the same
as that of the output of the phonetic specification modules. With the PSM algorithm the sit-
uation is slightly more difficult as there is no phonetic specification. As it is unreasonable
to require a signal processing module that performs phonological modification directly, we
use a back-off scheme that employs a phonetic specification procedure similar to that of
an acoustic/phonetic unit selection module, shown in figure 6. The PSM algorithm works
as before, but a record is kept of how well the best unit for a given slot matches the target
phonological representation. In parallel, a phonetic specification is produced as for pho-
netic/acoustic selection. A further module is now use to decide what the final prosodic
modification should be. If the phonological match is good, the original unit prosody will
be kept. If the phonological match is bad, the prosody from the phonetic specification is
used and signal processing performs the necessary modifications. Usually, the situation is
somewhere between the two and so a mixture of the unit and specified prosody is used,
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12 P A Taylor

weighted to take into account the closeness of phonological match, the known accuracy
of the phonetic specification and the amount of distortion that the signal processing will
produce. This ensures that a suitable compromise between the naturalness of unmodified
speech and the desirability of having suitable prosody is found.

8. Performance

No formal evaluations have been carried out yet, but it is worth giving some informal
impressions regarding system quality. The best examples of the PSM are a vast improve-
ment on diphone synthesis with regard to naturalness. Many of these good examples are
bordering on being indistinguishable from natural speech. The reasons behind this im-
provement are those laid out above: using longer units with natural prosody and minimal
signal processing. At present the PSM algorithm also makes some bad mistakes, and hence
the occasional example is worse than diphone synthesis. We feel that these bad examples
are more to do with teething troubles regarding a very new system rather than anything
systematically wrong with the algorithm itself.

The voice quality of the PSM algorithm is fairly similar to that of acoustic/phonetic
unit selection. Where the PSM really wins is in areas such as rhythm, timing, phrase-final
lengthening and intonation. This is again for the above mentioned reason that the PSM
algorithm models these implicitly rather than by using explicit modules which make errors.

9. Future Work

(a) Phonological Structure

Our choice of phonological structure is by no means optimal. While the use of metrical
trees has proved successful, there are many other types of phonological structure described
in the literature and many of these may prove more suitable. The best representation for
this algorithm is one that describes the phonology as accurately and compactly as possible:
an accurate representation will cover all the required affects adequately and a compact
representation will help in producing tractable cost functions.

(b) Training

There are a number or parameters and weights in the system which perform functions
such as measuring the relative important of stress vs phrase-finality, whether F0 continuity
is more important than spectral continuity, and how much signal processing modification
to use. Currently these are set by hand using informal listening experiments. This is ob-
viously not ideal, but it is difficult to see an easy alternative. The fundamental problem is
that there is no straightforward relationship between acoustic and perceptual measures of
speech. While spectral discontinuity can be measured taking the mahalanobis distance of
two spectra, this is only a vague indicator of how humans perceive spectral discontinuity
at unit joins. Some recent work (Chappell & Hanson, 1998), (Plumpe & Meredith, 1998),
(Wouters & Macon, 1998) has started to focus on the design of perceptually weighted
acoustic measures, and these might be used in the future in training the system parameters.
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(c) Candidate Selection

At present, the PSM algorithm attempts to find the biggest possible matches in the
database to a given node. If a match is found, the remainder of the database is searched
for other similar matches. If no match is found, the units matching the node’s daughters
and searched for. Problems can occur if only a small number of matches are found for a
node and none of those matches are particularly good. In these cases, it may have been
better to use smaller units which match the target better. Current work is looking at ways
to extend the search past a node with candidates to find candidates for its daughters. During
selection, the relative merits of long units with high target costs are then matched against
shorter units with lower target cost but an extra concatenation costs between the units.

(d) Measurements of Task Difficulty

It would be useful to have a measure of how difficult a particular domain is, as this
could give an indication of expected quality from a system used in this domain. We have
not as yet come up with any firm decisions regarding this, but it seems possible that the
measures of vocabulary size and perplexity used in speech recognition could be adopted.
Perplexity is a measure of word entropy and measures the amount of regularity in a corpus.
This is a useful indicator in synthesis because of joins between units. If the perplexity of a
domain is low, the number of possible word sequences will be lower and hence the chance
of units being found with the appropriate phonological context is higher.

(e) Text-to-Speech

The reason the PSM algorithm has been put forward as a useful solution to concept-to-
speech is that it is easily adaptable to a given domain. However, the algorithm also works in
standard text-to-speech synthesis. The TTS problem can be seen in PSM terms as simply
having a much larger domain, and hence the training data should cover a wide variety
of text styles rather than being domain specific. The output speech quality is obviously
worse for TTS than for CTS, firstly because the domain is bigger and secondly because
of errors in text analysis. However, the basic strength of the PSM algorithm (that it uses
phonological rather than phonetic/acoustic selection criteria) will also be true in a TTS
task.
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