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ABSTRACT

We propose a new class of hidden Markov model

(HMM) called asynchronous-transition HMM (AT-HMM).

Opposed to conventional HMMs where hidden state
transition occurs simultaneously to all features, the
new class of HMM allows state transitions asynchronous

between individual features to better model asynchronous

timings of acoustic feature changes. In this paper, we
focus on a particular class of AT-HMM with sequen-
tial constraints introducing a concept of “state tying
across time”. To maximize the advantage of the new
model, we also introduce feature-wise state tying tech-
nique. Speaker-dependent speech recognition experi-
ments demonstrated that reduced error rates more than
30% and 50% in phoneme and isolated word recogni-
tion, respectively, compared with conventional HMMs.

1. INTRODUCTION

Conventional Hidden Markov Models (HMMs) for speech
recognition implicitly assume that individual acoustic
feature parameters change their statistical properties
simultaneously by treating acoustic features of input
speech as a vector sequence. This assumption seems
over-simplified to model asynchronous changes of acous-

tic features. For example, cepstrum and its time-derivative

(delta-cepstrum) can not synchronize with each other
in principle, because a stationary value of time-derivative
means a constant change in the cepstrum value. Intu-
itively, these features seem to be better modeled by
HMM with different state transition timings. More in
general, there is no guarantee that all feature param-
eters change at the same time; different features may
have state transition of different timing.

We proposed asynchronous-transition HMM (AT-
HMM) to better model asynchronize vector sequence
and discussed general classes of AT-HMMs [8]. This
paper focuses on a particular class of AT-HMM with
sequential constraints in hidden state transition. The
main idea here is “state tying across time” to imple-
ment the above idea still utilizing the conventional HMM
structures and algorithms. This is yet another scheme
of parameter tying in addition to existing various state
tying techniques between allophones [4], state output
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Figure 1: Asynchronous trajectories of 1st and 8th

MFCCs in word /aoi/.

probabilities [3, 4], mixture components [2], and distri-
bution parameters [5].

This paper consists of two major parts. In the first
part, we introduce sequential AT-HMMs where state
transition timings are asynchonous but constrained by
a transition sequence. The state transition structures
(topologies) to represent phone context dependency are
common throughout all features here. In the second
part, however, the structure is independently optimized
for each of features to maximize the advantage of AT-
HMM. This feature-wise state tying technique involves
a new scheme of successive state splitting (SSS) algo-
rithm. In both parts, AT-HMM is evaluated through
phoneme and isolated word recognition experiments.

2. ASYNCHRONOUS-TRANSITION HMM

As shown in Fig. 1, it is often observed that the dy-
namic patterns of individual feature sequences (vector
components of acoustic feature vectors) have different
timings of changing their values. Theoretically, cep-
strum and its time-derivative have different timings.
This fact may have increased the required number of
hidden states in conventional HMMs. To enable rep-
resenting such asynchrony between features, we intro-
duced Asynchronous-Transition HMM (AT-HMM) as
a new framework of HMM [8].

Fig. 2-(a) conceptually illustrates a trajectory in
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2-dimensional trajectory.

a 2-dimensional feature space represented by conven-
tional HMM where two distinct features have different
timings of changing their values. In this case, four hid-
den states contain redundancy that feature C; does not
change between states 1 and 2 and between 3 and 4,
and feature C3 does not change beteen states 2 and
3. To reduce ths redundancy and better model the
trajectory, we can tie states 1 and 2, and 3 and 4 for
feature C7, and tie states 2 and 3 for feature C, as
shown in Fig. 2-(b). Consequently, the model contains
a smaller number of independent parameters in state
output probabilities.

In this implementation of AT-HMM, transition tim-
ings are asynchronized while transitions are sequen-
tially constrained in a certain order. This implementa-
tion of AT-HMM has two significant advantages. First,
the sequential constraint may reduce excess freedom in
a simple asynchronous scheme without any constraint.
Second, since the structure is substantially same as con-
ventional HMMs except for tying across time, the AT-
HMM is easily adapted to most HMM-based speech
recognition systems without any major modification.

2.1. Algorithm for Generating AT-HMMs
There are more than one possible algorithm for obtain-

ing the AT-HMM tying structure for phones with time
resolution of NV points such as:

o Clustering N hidden states in a normal HMM to
find appropriate tying

; Calculate expected
c2 state transition timings

Cluster state
transition timings

; : : Retrain
Figure 3: ‘Algorithm for obtainill§ &Y ATNMMIM tem-
porally tied structure.

e Clustering transition timings in scalar output HMMs
for all features into N points

The latter is simple as described below and dipicted in
Fig. 3:

Step 1: Given a conventional phone HMM, retrain the
model for each of individual features, i.e., re-
train 1-dimensional (scalar-output) phone HMM
for each feature (vector component of acoustic
feature sequence) to obtain state transition prob-
abilities for individual features.

Step 2: Calculate all expected transition timings for
all features (utilizing that E[state duration] =
1/(state transtion probability)), cluster them into
a given resolution N of timings, and determine
the temporal tying structure for each phone model.

Step 3: Retrain the new AT-HMM with temporal ty-
ing structure generated in Step 2.

Vector sequence with asynchronous temporal struc-
ture more better model by using many clusters than

using few clusters in Step 2. *** cannot understand
*kk

2.2. Phone Recognition Experiments

AT-HMM was evaluated in speaker-dependent phoneme
recognition experiments and compared with synchronous
HMM (conventional HMM). The both context-dependent
HMM topologies were common and generated by the
ML-SSS algorithm [7].

Speech data from ATR A-set data consists of four
(2 male + 2 female) speakers sampled at 12kHz. 12th-
order MFCCs, AMFCCs, log-power and Alog-power
were extracted with a 5ms frame period and a 25ms
frame length. Hand-segmented phoneme data from
odd numbered words out of 5240 Japanese common
words and 516 phonetically balanced words were used
for model training and phoneme data from even num-
bered words out of 5240 words were used for evaluation.

Fig. 3 shows the speaker-dependent phoneme recog-
nition results. AT-HMM with five states per model
reduced error rate by more than 20%. The number
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pared with conventional HMM (by ML-SSS)

Table 1: Isolated word recognition results by AT-HMM

compared with conventional HMM (generated by ML-
SSS)

Method #distributions | %errors | %reduction
HMM 200 8.1 —
AT-HMM 200 4.3 46.9
HMM 400 6.2 —
AT-HMM 400 3.8 38.7

of hidden states provides the time resolution in repre-
senting the asynchronous structure. The larger number
allows the more precise modeling of sequential struc-
ture while the minimum phone duration is constrained
by the number. Actually, in the experimental results,
the AT-HMM with five states per model gave slightly
higher recognition rates than ones with other numbers
of states from 3 to 8.

2.3. Isolated Word Recognition Experiments

AT-HMM with five states per model was chosen as the
best performing model in the phoneme recognition ex-
periment, and was evaluated with isolated word speech
recognition using 2620-word speech data and a 2620-
word lexicon. Table 4 shows the experimental results
of isolated word recognition. The AT-HMM reduced
more than 40% of recognition errors by conventional
HMM.

3. FEATURE-WISE ALLOPHONE
CLUSTERING

The optimal allophone (context-dependent phone)
clusters may differ among individual features. To ob-
tain feature-dependent allophone clusters, we propose a
feature-wise state tying technique called Feature-Wise
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Figure 5: FW-SSS algorithm for generating AT-HMMs
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Table 2: Isolated word recognition result by AT-HMM
generated by FW-SSS

Method #distributions | %errors | %reduction
HMM 200 8.1 —
AT-HMM 200 3.2 60.5
HMM 400 6.2 —
AT-HMM 400 3.0 51.6

Successive State Splitting (FW-SSS). FW-SSS is an ex-
tension of the Maximum Likelihood (ML)-SSS algo-
rithm. The main difference is that FW-SSS is scalar
version of ML-SSS for all features in parallel and that
the state to be split next is selected from all states of
all features. The outline of the algorithm is as follows
and shown in Fig. 4:

Step 1: Train a single state HMM for each feature
with all phone samples, i.e., the output proba-
bility for each feature is represented by a single
Gaussian with a mean and a variance.

Step 2: Find the best state of all states that will earn
the largest likelihood gain by splitting it into two
states with a single Gaussian distribution for each.
State splitting is examined both in contextual
and temporal domains.

Step 3: Retrain states affected by the split using the
corresponding data subsets.

Step 4: Repeat steps 2 and 3 until the number of all
states reach a preset number.

Step 5: Finally, utilize the algorithm in subsection 2.1
to obtain AT-HMMs.

Through the FW-SSS algorithm, a hidden Markov
network is obtained with sub-optimized combination of
numbers of hidden states for features reflecting the dy-
namic properties of distinct features. As the result, in-
dividual features have different allophone clusters and
network topologies. The number of allocated hidden
states to individual features differ from each other.

3.1. Phone Recognition Experiments

For evaluation of this type of AT-HMM generated by
FW-SSS algorithm, speaker-dependent phoneme recog-
nition was performed over 4 speakers using AT-HMMs
generated for several different numbers of distributions.

Fig. 5 shows the performance of AT-HMM for six
different model complexities. In comparison with con-
ventional HMM, more than 30% of error reduction was
obtained. AT-HMM generated from FW-SSS include
asynchrony between features and feature-wise allophone
clusters generated by the FW-SSS.

3.2. Isolated Word Recognition Experiments

AT-HMM generated by FW-SSS algorithm was evalu-
ated for isolated word speech recognition. Phone mod-
els as same as the models for phoneme recognition were
evaluated using 2620-word speech data and a 2620-
word lexicon.

Table 4 shows the experimental results of isolated
word recognition. The acoustic model generated by
the FW-SSS algorithm lowered the error rates by more
than 50% compared with conventional HMM. AT-HMM
generated by FW-SSS gave higher recognition rate than
AT-HMM without being considered state sharing struc-
ture for each features.

4. CONCLUSION

Focusing on asynchrony between acoustic features for
HMM-based speech recognition, we introduced some
new concepts such as asynchronous transition HMM
(AT-HMM), tying across/along time, and FW-SSS al-
gorithm for the optimal context-dependent structure of
AT-HMM. In phoneme and isolated word recognition
experiments, AT-HMMs gave more than 20% and 40%
lower error rates compared with conventional HMMs.
Furthermore, the FW-SSS algorithm gave an AT-HMM
reducing more than 30% and 50% errors. Future works
will include mixture density speaker-independent mod-
els and more experimental evaluation in continuous
speech recognition.
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